Movimiento armónico simple

13
1 Movimiento Armónico Simple Concepto: Un tipo de movimiento particular ocurre cuando sobre el cuerpo actúa una fuerza que es directamente proporcional al desplazamiento del cuerpo desde su posición de equilibrio. Si dicha fuerza siempre actúa en la dirección de la posición de equilibrio del cuerpo, se producirá un movimiento de ida y de vuelta respecto de esa posición, por eso a estas fuerzas se les da el nombre de fuerzas de restitución, porque tratan siempre de restituir o llevar al cuerpo a su posición original de equilibrio. El movimiento que se produce es un ejemplo de lo que se llama movimiento periódico u oscilatorio. El movimiento oscilatorio es un movimiento periódico en torno a un punto de equilibrio estable. Los puntos de equilibrio mecánico son, en general, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, pequeños desplazamientos darán lugar a la aparición de una fuerza que tenderá a llevar a la partícula de vuelta hacia el punto de equilibrio. Tal fuerza se denomina fuerza restauradora. Ejemplos de movimientos periódicos son la oscilación de una masa acoplada a un resorte, el movimiento de un péndulo, las vibraciones de las cuerdas de un instrumento musical, la rotación de la Tierra, las ondas electromagnéticas tales como ondas de luz y de radio, la corriente eléctrica en los circuitos de corriente alterna y muchísimos otros más. Un tipo particular es el movimiento armónico simple. En este tipo de movimiento, un cuerpo oscila indefinidamente entre dos posiciones espaciales sin perder energía mecánica. Pero en los sistemas mecánicos reales, siempre se encuentran presente fuerzas de rozamiento, que disminuyen la energía mecánica a medida que transcurre el tiempo, en este caso las oscilaciones se llaman amortiguadas. Si se agrega una fuerza externa impulsora de tal manera que la pérdida de energía se equilibre con la energía de entrada, el movimiento se llama oscilación forzada. En términos de la energía potencial, los puntos de equilibrio estable son los mínimos locales de la misma, y el movimiento oscilatorio tiene lugar en un entorno de un mínimo local. Desde el punto de vista matemático un movimiento es oscilatorio si la ecuación diferencial que describe su movimiento es de la forma: ] 1 [ 0 . 2 0 2 x dt x d

Transcript of Movimiento armónico simple

Page 1: Movimiento armónico simple

1

Movimiento Armónico Simple

Concepto:

Un tipo de movimiento particular ocurre cuando sobre el cuerpo actúa una fuerza

que es directamente proporcional al desplazamiento del cuerpo desde su posición

de equilibrio. Si dicha fuerza siempre actúa en la dirección de la posición de

equilibrio del cuerpo, se producirá un movimiento de ida y de vuelta respecto de

esa posición, por eso a estas fuerzas se les da el nombre de fuerzas de

restitución, porque tratan siempre de restituir o llevar al cuerpo a su posición

original de equilibrio. El movimiento que se produce es un ejemplo de lo que se

llama movimiento periódico u oscilatorio.

El movimiento oscilatorio es un movimiento periódico en torno a un punto de

equilibrio estable. Los puntos de equilibrio mecánico son, en general, aquellos en

los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es

estable, pequeños desplazamientos darán lugar a la aparición de una fuerza que

tenderá a llevar a la partícula de vuelta hacia el punto de equilibrio. Tal fuerza se

denomina fuerza restauradora.

Ejemplos de movimientos periódicos son la oscilación de una masa acoplada a un

resorte, el movimiento de un péndulo, las vibraciones de las cuerdas de un

instrumento musical, la rotación de la Tierra, las ondas electromagnéticas tales

como ondas de luz y de radio, la corriente eléctrica en los circuitos de corriente

alterna y muchísimos otros más.

Un tipo particular es el movimiento armónico simple. En este tipo de movimiento,

un cuerpo oscila indefinidamente entre dos posiciones espaciales sin perder

energía mecánica. Pero en los sistemas mecánicos reales, siempre se encuentran

presente fuerzas de rozamiento, que disminuyen la energía mecánica a medida

que transcurre el tiempo, en este caso las oscilaciones se llaman amortiguadas. Si

se agrega una fuerza externa impulsora de tal manera que la pérdida de energía

se equilibre con la energía de entrada, el movimiento se llama oscilación forzada.

En términos de la energía potencial, los puntos de equilibrio estable son los

mínimos locales de la misma, y el movimiento oscilatorio tiene lugar en un entorno

de un mínimo local.

Desde el punto de vista matemático un movimiento es oscilatorio si la ecuación

diferencial que describe su movimiento es de la forma:

]1[0.2

0

2

xdt

xd

Page 2: Movimiento armónico simple

2

Con solución dada por:

)(.)( 0 tsenAtx

o bien,

)cos(.)( 0 tAtx

Ambas soluciones son válidas por la relación:

)2

(cos

xxsen

Luego:

)'́cos(.)2

cos(.)(.)( 000

tAtAtsenAtx

Dónde:

2'

Se Trabajara solo con la primera de estas, el trabajo con la segunda es análogo.

De esta manera, tenemos:

Posición:

)(.)( 0 tsenAtx

Velocidad:

22

000 )()cos(.)( txAtAtv

Aceleración:

)(.)(.)(2

00

2

0 txtsenAta

Energía:

Cinética:

)t(cos.A.v.mK 0

222

0

2

2

1

2

1

Page 3: Movimiento armónico simple

3

Potencial:

)(..2

10

222

0 tsenAU

Mecánica:

22

0 .2

1AUKE

Definición de algunos términos básicos:

Periodo (T): tiempo que tarda en producirse una oscilación.

Frecuencia (f): número de oscilaciones que se producen cada segundo.

Elongación, x (t): posición de la partícula respecto de la posición de equilibrio

(x=0). Amplitud (A): máxima elongación: máxima distancia de la partícula a la

posición de equilibrio.

Frecuencia angular ( ):

f

T.2

2

Fase ( t )

Fase inicial ( )

Se puede notar que cualquier movimiento armónico simple esta, bien definido

cuando conocemos, su frecuencia o el periodo.

Page 4: Movimiento armónico simple

4

Hidrostática

La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en

estado de equilibrio, es decir, sin que existan fuerzas que alteren su movimiento o

posición. Los principales teoremas y Principios que respaldan el estudio de la

hidrostática son La Ecuación Fundamental de la Hidrostática, el principio de

Pascal y el principio de Arquímedes.

Ecuación fundamental de la Hidrostática

Presión

En física y disciplinas afines, la presión es una magnitud física

que mide la fuerza por unidad de superficie, y sirve para

caracterizar como se aplica una determinada fuerza resultante

sobre una superficie.

En el Sistema Internacional de Unidades (SI) la presión se

mide en una unidad derivada que se denomina pascal (Pa)

que es equivalente a una fuerza total de un newton actuando

uniformemente en un metro cuadrado.

La presión es la magnitud que relaciona la fuerza con la superficie sobre la que

actúa, es decir, equivale a la fuerza que actúa sobre la unidad de superficie.

Cuando sobre una superficie plana de área A se aplica una fuerza normal F de

manera uniforme y perpendicularmente a la superficie, la presión p viene dada por:

p = F / A

Presión absoluta y relativa: En determinadas aplicaciones la presión se mide no

como la presión absoluta sino como la presión por encima de la presión

atmosférica, denominándose presión relativa, presión normal, presión de gauge o

presión manométrica. Consecuentemente, la presión absoluta es la presión

atmosférica más la presión manométrica (presión que se mide con el manómetro).

Page 5: Movimiento armónico simple

5

Presión hidrostática

Un fluido pesa y ejerce presión sobre las paredes, sobre el fondo del recipiente

que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta

presión, llamada presión hidrostática, provoca, en fluidos en reposo, una fuerza

perpendicular a las paredes del recipiente o a la superficie del objeto sumergido

sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas

resultantes de las presiones ya no serían necesariamente perpendiculares a las

superficies.

Esta presión depende de la densidad del líquido en cuestión y de la altura a la que

esté sumergido el cuerpo y se calcula mediante la siguiente expresión

denominada Ecuación fundamental de la Hidrostática:

Donde, usando unidades del SI,

es la presión hidrostática (en pascales);

es la densidad del líquido (kg /m3);

es la aceleración de la gravedad ( m / s2)

es la altura del fluido (m).

Page 6: Movimiento armónico simple

6

es la presión atmosférica ó la presión conocida de un unto dentro del

fluido

Propiedades de la presión en un medio fluido

1. La presión en un punto de un fluido en reposo es igual en todas las direcciones.

2. La presión en todos los puntos situados en un mismo plano horizontal en el

seno de un fluido en reposo (y situado en un campo gravitatorio constante) es la

misma.

3. En un fluido en reposo la fuerza de contacto que ejerce en el interior del fluido

una parte de este sobre la otra es normal a la superficie de contacto.

4. La fuerza asociada a la presión en un fluido ordinario en reposo se dirige

siempre hacia el exterior del fluido, por lo que debido al principio de acción

reacción, resulta en una compresión para el fluido.

5. La superficie libre de un líquido en reposo (y situado en un campo gravitatorio

constante) es siempre horizontal pero a cierta escala puesto que se aprecia que la

superficie libre de los océanos es esférica.

6. En los fluidos en reposo, un punto cualquiera de una masa líquida está

sometida a una presión que es función únicamente de la profundidad a la que se

encuentra el punto. Otro punto a la misma profundidad, tendrá la misma presión. A

la superficie imaginaria que pasa por ambos puntos se llama superficie

equipotencial de presión o superficie isobárica.

Paradoja Hidrostática: La fuerza debida a la presión que ejerce un fluido en la

base de un recipiente puede ser mayor o menor que el peso del líquido que

contiene el recipiente, esta es en esencia la paradoja hidrostática.

La ecuación fundamental de la estática de fluidos establece que la presión

solamente depende de la profundidad por debajo de la superficie del líquido y es

independiente de la forma de la vasija que lo contiene. Como es igual la altura del

Page 7: Movimiento armónico simple

7

líquido en todos los vasos, la presión en la base es la misma y el sistema de vasos

comunicantes está en equilibrio.

Presión atmosférica:

La presión atmosférica es la presión ejercida por el aire atmosférico en cualquier

punto de la atmósfera. Normalmente se refiere a la presión atmosférica terrestre,

pero el término es generalizable a la atmósfera de cualquier planeta o satélite.

La presión atmosférica en un punto representa el peso de una columna de aire de

área de sección recta unitaria que se extiende desde ese punto hasta el límite

superior de la atmósfera. Como la densidad del aire disminuye cuando nos

elevamos, no podemos calcular ese peso a menos que seamos capaces de

expresar la densidad del aire ρ en función de la altitud z o de la presión p. Por ello,

no resulta fácil hacer un cálculo exacto de la presión atmosférica sobre la

superficie terrestre; por el contrario, es muy fácil medirla.

La presión atmosférica en un lugar determinado experimenta variaciones

asociadas con los cambios meteorológicos. Por otra parte, en un lugar

determinado, la presión atmosférica disminuye con la altitud, a causa de que el

peso total de la atmósfera por encima de un punto disminuye cuando nos

elevamos. La presión atmosférica decrece a razón de 1 mmHg o Torr por cada

10 m de elevación en los niveles próximos al del mar. La presión atmósférica

estándar, 1 atmósfera, fue definida como la presión atmosférica media al nivel del

mar que se adoptó como igual a 101.325 Pa o 760 Torr.

Historia

En la antigüedad el peso del aire no se concebía, puesto que consideraban que

por su naturaleza tendía a elevarse (Aristóteles); explicando de manera sencilla la

ascensión de los líquidos en las bombas por lo que consideraban el horror al vacío

(fuga vacui).

Cuando los jardineros de Florencia quisieron elevar el agua con una bomba de

hélice, apreciaron que no podían superar la altura de 10,33 m (cerca de 34 pies).

Consultado Galileo, determinó éste que el horror de la naturaleza al vacío se

limitaba con una fuerza equivalente al peso de 10,33 m de agua (lo que viene a

ser 1 atm de presión), y denominó a dicha altura altezza limitatíssima.

Page 8: Movimiento armónico simple

8

En 1643, Torricelli tomó un tubo de vidrio de un metro de longitud y lo llenó de

"plata viva" (mercurio). Manteniendo el tubo cerrado con un tapón (material de

corcho), lo invirtió e introdujo en una vasija con mercurio. Al retirar el dedo

comprobó que el metal descendía hasta formar una columna cuya altura era 13,6

veces menor que la que se obtenía al realizar el experimento con agua. Como

sabía que el mercurio era 13,6 veces más pesado que el agua, dedujo que ambas

columnas de líquido estaban soportadas por igual contrapeso, sospechando que

sólo el aire era capaz de realizar dicha fuerza. Luego de la temprana muerte de

Torricelli, llegaron sus experimentos a oídos de Pascal, quien no tardó de eliminar

la idea del terror al vacío al observar los resultados de los experimentos que

realizó.

Empleando un tubo encorvado y usándolo de forma que la atmósfera no tuviera

ninguna influencia sobre el líquido, observó que las columnas llegaban al mismo

nivel. Sin embargo, cuando permitía la acción de la atmósfera, el nivel variaba.

No obstante, el concepto de presión atmosférica no empezó a extenderse hasta la

demostración, en 1654, del burgomaestre e inventor Otto von Guericke quien, con

su hemisferio de Magdeburgo, cautivó al público y a personajes ilustres de la

época.

Medidores de Presión

Barómetro Torricelli Manómetro Diferencial Manómetro Manómetro

Page 9: Movimiento armónico simple

9

Principio de Pascal

En física, el principio de Pascal es una ley enunciada por el físico y matemático

francés Blaise Pascal (1623-1662) que se resume en la frase: «el incremento de la

presión aplicada a una superficie de un fluido incompresible, contenido en un

recipiente indeformable, se transmite con el mismo valor a cada una de las partes

del mismo». Es decir, que si se aplica presión a un líquido no comprimible en un

recipiente cerrado, ésta se transmite con igual intensidad en todas direcciones y

sentidos. Este tipo de fenómeno se puede apreciar, por ejemplo en la prensa

hidráulica la cual funciona aplicando este principio.

Aplicaciones

Prensa Hidráulica ó Prensa hidrostática:

Para Multiplicar una fuerza de acuerdo a la relación de áreas de los pistones.

Frenos hidráulicos: Los frenos hidráulicos de los automóviles son una aplicación

importante del principio de Pascal. La presión que se ejerce sobre el pedal del

freno se transmite a través de todo el líquido a los pistones los cuales actúan

sobre los discos de frenado en cada rueda multiplicando la fuerza que ejercemos

con los pies.

Refrigeración: La refrigeración se basa en la aplicación alternativa de presión

elevada y baja, haciendo circular un fluido en los momentos de presión por una

tubería. Cuando el fluido pasa de presión elevada a baja en el evaporador, el

fluido se enfría y retira el calor de dentro del refrigerador. Como el fluido se

encuentra en un ciclo cerrado, al ser comprimido por un compresor para elevar su

temperatura en el condensador, que también cambia de estado a líquido a alta

presión, nuevamente esta listo para volverse a expandir y a retirar calor

(recordemos que el frío no existe es solo una ausencia de calor).

Page 10: Movimiento armónico simple

10

Principio de Arquímedes

Es un principio físico que afirma que un cuerpo total o

parcialmente sumergido en un fluido estático, será

empujado con una fuerza vertical ascendente igual al peso

del volumen de fluido desplazado por dicho cuerpo. Esta

fuerza recibe el nombre de empuje hidrostático o de

Arquímedes, y se mide en newtons (en el SI).

El principio de Arquímedes se formula así:

donde ρf es la densidad del fluido, V el volumen del cuerpo sumergido y g la

aceleración de la gravedad, de este modo, el empuje depende de la densidad del

fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje

actúa siempre verticalmente hacia arriba y está aplicado en el centro de gravedad

del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de

carena.

Historia

La anécdota más conocida sobre Arquímedes, matemático griego, cuenta

cómo inventó un método para determinar el volumen de un

objeto con una forma irregular. Según cuentan, una corona

con forma de corona triunfal había sido fabricada para Hierón

II, tirano gobernador de Siracusa, el cual le pidió a

Arquímedes determinar si la corona estaba hecha de oro

sólido o si un orfebre deshonesto le había agregado plata.

Arquímedes tenía que resolver el problema sin dañar la

corona, así que no podía fundirla y convertirla en un cuerpo

regular para calcular su densidad.

Mientras tomaba un baño, notó que el nivel de agua subía en

la tina cuando entraba, y así se dio cuenta de que ese efecto podría usarse para

determinar el volumen de la corona. Debido a que la compresión del agua sería

despreciable, la corona, al ser sumergida, desplazaría una cantidad de agua igual

a su propio volumen. Al dividir la masa de la corona por el volumen de agua

desplazada, se podría obtener la densidad de la corona. La densidad de la corona

sería menor si otros metales más baratos y menos densos le hubieran sido

añadidos. Entonces, Arquímedes salió corriendo desnudo por las calles, tan

Page 11: Movimiento armónico simple

11

emocionado estaba por su descubrimiento para recordar vestirse, gritando

"¡Eureka!" (en griego antiguo: "εὕρηκα!," que significa "¡Lo he encontrado!)"

La historia de la corona dorada no aparece en los trabajos conocidos de

Arquímedes, pero en su tratado Sobre los cuerpos flotantes él da el principio de

hidrostática conocido como el principio de Arquímedes. Este plantea que todo

cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual

al peso del volumen de fluido desalojado es decir dos cuerpos que se sumergen

en una superficie (ej:agua), y el más denso o el que tenga compuestos más

pesados se sumerge más rápido, es decir, tarda menos tiempo, aunque es igual la

distancia por la cantidad de volumen que tenga cada cuerpo sumergido.

Unidades de presión

Unidades de Presión: La presión es una magnitud escalar y se define como la

relación entre la fuerza normal aplicada y el área de la superficie sobre la cual ella

se aplica.

De esta manera sus unidades derivarán de la relación entre la unidad de fuerza y

la unidad de superficie del sistema de unidades que se adopte.

SIMELA – SI: La unidad de presión en el Sistema Internacional (SI) es el

newton por metro cuadrado (N/m2) que recibe el nombre de pascal (Pa)

1 Pa = 1 N/m2

Sistema técnico inglés: la presión se expresa en libras por pulgada

cuadrada (lb/pulg2) y se denomina PSI (del inglés Pounds per Square Inch)

Libras/pulgada cuadrada (psi) x 0.00689 = Megapascales (MPa)

Libras/pulgada cuadrada (psi) x 0.070307 = Kilopondios/centímetro cuadrado

(kp/cm2)

Otra unidad común es la atmosfera (atm) que es aproximadamente la

presión del aire al nivel del mar. Actualmente 1 atm se define como =

101,325 kilopascales (kPa)

1 atm = 1,01325 x 105 Pa = 1.013,25 hPa

Page 12: Movimiento armónico simple

12

1 atm 14,70 lb/pulg2.

1 atm = 1,033 kp/cm2

En la práctica se expresa la presión en altura equivalente de columna de un

determinado líquido. Por ejemplo en:

1- milímetros de mercurio, unidad que se denomina torricelli (Torr ó

mmHg) en honor del físico italiano Torricelli,

2- pulgadas de mercurio (pulgHg ó in.Hg),

3- pulgadas de agua (pulgH2O ó in.H2O)

4- pies de agua (pieH2O)

Sistema CGS: En este sistema se adopta la dina como unidad de fuerza y

el cm2 como unidad de superficie. De esta manera la unidad de presión en

el sistema CGS es la dina/cm2 que se conoce como baria (b):

1 b = 1 dina/cm2

Siendo la baria una unidad muy pequeña se define el bar (bar) como equivalente a

un millón de barias. La palabra bar tiene su origen en báros, que en griego

significa peso.

Una presión de 1 bar es algo menor que 1 atm

1 atm = 1,01325 bares 1 bar

1 bar = 1.000.000 b = 106 b

1 bar = 100.000 Pa = 105 Pa = 1000 hPa

1 bar = = 10.194 kp/m2

1 bar = 14,5037738 PSI

Normalmente la presión atmosférica se da en milibares (mb), siendo la presión

estándar al nivel del mar igual a 1.013,2 milibares.

El hectopascal es equivalente al milibar: 1 mb = 1 hPa.

Page 13: Movimiento armónico simple

13

Sistema Técnico Gravitatorio: La unidad de fuerza es el kilogramo fuerza

(kgf) también llamado kilopondio (kp) y la unidad de superficie el metro

cuadrado (m2).

La unidad de presión es kp /m2 ó kgf/m2 aunque es usual el kp/cm2 ó kgf/cm2