Ecuaciones de estado de los gases Ley de los gases ideales.

52
Ecuaciones de estado de los gases Ley de los gases ideales

Transcript of Ecuaciones de estado de los gases Ley de los gases ideales.

Page 1: Ecuaciones de estado de los gases Ley de los gases ideales.

Ecuaciones de estado de los gasesLey de los gases ideales

Page 2: Ecuaciones de estado de los gases Ley de los gases ideales.

Estados de la materiaEstados de la materia

GAS LÍQUIDO SÓLIDO

Page 3: Ecuaciones de estado de los gases Ley de los gases ideales.

Estado gaseosoEstado gaseoso

En estado gaseoso las partículas son independientes unas de otras, están separadas por enormes distancias con relación a su tamaño. Tal es así, que en las mismas condiciones de presión y temperatura, el volumen de un gas no depende más que del número de partículas (ley de Avogadro) y no del tamaño de éstas, despreciable frente a sus distancias.

De ahí, la gran compresibilidad y los valores extremadamente pequeños de las densidades de los gases

Page 4: Ecuaciones de estado de los gases Ley de los gases ideales.

Las partículas de un gas se mueven con total libertad y tienden a separarse, aumentando la distancia entre ellas hasta ocupar todo el espacio disponible (expansibilidad).

Por esto los gases tienden a ocupar todo el volumen del recipiente que los contiene.

Las partículas de un gas se encuentran en constante movimiento en línea recta y cambian de dirección cuando chocan entre ellas y con las paredes del recipiente.

Estos choques de las partículas del gas con las paredes del recipiente que lo contiene son los responsables de la presión del gas.

Las colisiones son rápidas y elásticas (la energía total del gas permanece constante).

Page 5: Ecuaciones de estado de los gases Ley de los gases ideales.

Cl2 gaseoso

HCl y NH3 gaseosos

Estado gaseoso

Page 6: Ecuaciones de estado de los gases Ley de los gases ideales.

Un gas queda definido por cuatro variables:

Cantidad de sustancia Volumen Presión Temperatura

moles L, m3, … atm, mm Hg o torr, Pa, bar ºC, K

Unidades:

1 atm = 760 mm Hg = 760 torr = 1,01325 bar = 101.325 Pa

K = ºC + 273 1L = 1dm3

MEDIDAS EN GASES

Page 7: Ecuaciones de estado de los gases Ley de los gases ideales.

El volumen de un gas es directamente proporcional a la cantidad de materia (número de moles), a presión y temperatura constantes.

A presión y temperatura constantes, volúmenes iguales de un mismo gas o gases diferentes contienen el mismo número de moléculas.

Ley de AvogadroLey de Avogadro

Page 8: Ecuaciones de estado de los gases Ley de los gases ideales.

Modelo Molecular para la Ley de AvogadroModelo Molecular para la Ley de Avogadro

V = K n (a T y P ctes)

La adición de más partículas provoca un aumento de los choques contra

las paredes, lo que conduce a un aumento de presión, que desplaza el

émbolo hasta que se iguala con la presión externa. El proceso global

supone un aumento del volumen del gas.

Page 9: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Avogadro

V n o V = k1 · n

En condiciones normales:

1 mol de gas = 22,4 L de gas

A una temperatura y presión dadas:

Page 10: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Boyle y Mariotte

El volumen de un gas es inversamente proporcional a la presión que soporta (a temperatura y cantidad de materia constantes).

Page 11: Ecuaciones de estado de los gases Ley de los gases ideales.

Modelo Molecular para la Ley de Boyle y MariotteModelo Molecular para la Ley de Boyle y Mariotte

V = K 1/P (a n y T ctes)

El aumento de presión exterior origina una disminución del volumen, que

supone el aumento de choques de las partículas con las paredes del

recipiente, aumentando así la presión del gas.

Page 12: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Boyle y MariotteLey de Boyle y Mariotte

Page 13: Ecuaciones de estado de los gases Ley de los gases ideales.

Modelo Molecular para la Ley de Charles y Gay-LussacModelo Molecular para la Ley de Charles y Gay-Lussac

V = K T (a n y P ctes)

Al aumentar la temperatura aumenta la velocidad media de las partículas, y

con ello el número de choques con las paredes. Eso provoca un aumento

de la presión interior que desplaza el émbolo hasta que se iguala con la

presión exterior, lo que supone un aumento del volumen del gas.

Page 14: Ecuaciones de estado de los gases Ley de los gases ideales.

El volumen de un gas es directamente proporcional a la temperatura absoluta (a presión y cantidad de materia constantes).

Ley de Charles y Gay-Lussac (1ª)Ley de Charles y Gay-Lussac (1ª)

Page 15: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Charles y Gay-Lussac (1ª)Ley de Charles y Gay-Lussac (1ª)

a P = 1 atm y T = 273 K, V = 22.4 litros para cualquier gas.

El volumen se hace cero a 0 K

V α T (a n y P ctes)

V = k T

Transformación isobárica

Page 16: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Charles y Gay-Lussac (1ª)Ley de Charles y Gay-Lussac (1ª)

Page 17: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Charles y Gay-Lussac (2ª)Ley de Charles y Gay-Lussac (2ª)

La presión de un gas es directamente proporcional a la temperatura absoluta (a volumen y cantidad de materia constantes).

P a T (a n y V ctes)

P = k T

Transformación isócoraP (

atm

)

T (K)

Page 18: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Charles y Gay-Lussac (2ª)Ley de Charles y Gay-Lussac (2ª)

Page 19: Ecuaciones de estado de los gases Ley de los gases ideales.

(a) Al aumentar la presión a volumen constante, la temperatura aumenta

(b) Al aumentar la presión a temperatura constante, el volumen disminuye

(c) Al aumentar la temperatura a presión constante, el volumen aumenta

(d) Al aumentar el número de moles a temperatura y presión constantes, el volumen aumenta

Page 20: Ecuaciones de estado de los gases Ley de los gases ideales.

Combinación de las tres leyes:

P

Boyle: V =k’

ΔT= 0, Δn= 0

Charles: V = k’’. T ΔP= 0, Δn= 0

Avogadro: V = k’’’. n ΔP= 0, ΔT= 0

=P

k’k’’k’’’ n TV =

P

R n T

Ley de los gases ideales:

PV = nRTR se calcula para:

n = 1 mol

P = 1 atm

V = 22,4 l

T = 273 K

R = 0.082 atm L/ mol K

R = 8.31 J/ mol K = 1.987 cal /mol K

Ecuación general de los gases idealesEcuación general de los gases ideales

T

P.V=

P´. V´

Page 21: Ecuaciones de estado de los gases Ley de los gases ideales.

pV=nRT

mks pls cgs

n Kg mol Lb mol g mol

P Pa= N/m2 atm atm

V m3 pie3 cm3

T K ºR K

R 8314,3 m3 Pa/kg mol K

0,7302pie3atm/lb mol ºR

82,057 cm3atm/ g mol K

Page 22: Ecuaciones de estado de los gases Ley de los gases ideales.

Aplicaciones de la ecuación de los gases ideales

Page 23: Ecuaciones de estado de los gases Ley de los gases ideales.

Determinación de la masa molar

PV = nRT y n = mM

PV =mM RT

M = mPVRT

Page 24: Ecuaciones de estado de los gases Ley de los gases ideales.

Densidades de los gases

PV = nRT y d = mV

PV =mM RT

MPRTV

m= d =

, n = mM

Page 25: Ecuaciones de estado de los gases Ley de los gases ideales.

Ley de Dalton de las presiones parciales

• Las leyes de los gases se aplican a las mezclas de gases.

• Presión parcial:Cada componente de una mezcla de gases ejerce una presión igual a la que ejercería si estuviese él sólo en el recipiente.

Page 26: Ecuaciones de estado de los gases Ley de los gases ideales.

Presión parcial

Ptot = PA + PB + PC + …

Pi = ni xRT

V

PT = Pi = n1RT

V+ n2

RT

V+ n3

RT

V+ .... = (n1 + n2 + n3 + ...) RT

V = ni

RT

V

PT = nTRT

VnT = ni

Page 27: Ecuaciones de estado de los gases Ley de los gases ideales.

ni

ntot

= iRecuerde:

Pi = ni xRT

V

PT = nTRT

V

Pi

PT

ni

nTxi== Pi = xi PT

Para un gas húmedo: PT = Pgas seco + Pvapor de agua

Page 28: Ecuaciones de estado de los gases Ley de los gases ideales.

PRESIÓN, UNIDADES Y MEDIDAPRESIÓN, UNIDADES Y MEDIDA

La presión es una fuerza aplicada a una superficie o distribuida sobre ella. La presión "P" ejercida por una fuerza "F" y distribuida sobre una área "A" se define mediante la relación.

P = F / AP = F / A

Page 29: Ecuaciones de estado de los gases Ley de los gases ideales.

La presión puede expresarse en muy diversas unidades, tales como: kg/cm2, psi, cm de columna de agua, pulgadas o cm de Hg, bar y como ha sido denominada en términos internacionales, en Pascales (Pa)

Page 30: Ecuaciones de estado de los gases Ley de los gases ideales.

Propiedades de la presión en un fluido Propiedades de la presión en un fluido estacionarioestacionario

Un fluido ejerce presión igual en todos direcciones

La fuerza debida a la presión siempre actúa en una dirección perpendicular a cualquier superficie que esté en contacto con él

La presión a un punto en un fluido se debe al peso fluido arriba del punto

Page 31: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 32: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 33: Ecuaciones de estado de los gases Ley de los gases ideales.

La presión puede medirse de dos maneras

La presión absoluta se mide con relación al cero absoluto o vacío total.

La presión relativa se mide con respecto a la presión atmosférica, es decir, su valor cero corresponderá al valor de la presión absoluta atmosférica.

Page 34: Ecuaciones de estado de los gases Ley de los gases ideales.

Otro tipo de medida consiste en la medida de la misma entre dos puntos de un proceso.

La presión de vacío es aquella que se mide como la diferencia entre una presión atmosférica y la presión absoluta (cero absoluto).

Presión manometrica. Es la presión medida con referencia a la presión atmosférica la diferencia entre la presión medida y la presión atmosférica real. Como ésta es variable, la comparación de valores medidos en diferentes intervalos de tiempo, resulta incierta.

Presión hidrostatica. Es la presión existente bajo la superficie de un líquido, ejercida por el mismo.

Presión de línea. Es la fuerza ejercida por el fluido, por unidad de superficie, sobre las paredes de una conducción por la que circula.

Presión diferencial. Es la diferencia entre un determinado valor de presión y otro utilizado como referencia. En cierto sentido, la presión absoluta podría considerarse como una presión diferencial que toma como referencia el vacío absoluto, y la presión manométrica como otra presión diferencial que toma como referencia la presión atmosférica.

Page 35: Ecuaciones de estado de los gases Ley de los gases ideales.

La presión atmosférica se mide con un dispositivo llamado barómetro. En su forma más básica, el barómetro consiste en un tubo invertido lleno de mercurio en un recipiente de mercurio que está abierto a la atmósfera.

Page 36: Ecuaciones de estado de los gases Ley de los gases ideales.

Mediciones de presión atmosférica

Page 37: Ecuaciones de estado de los gases Ley de los gases ideales.

El monitoreo y control de la presión en cualquier proceso industrial resulta determinante para la,

Calidad Seguridad

Page 38: Ecuaciones de estado de los gases Ley de los gases ideales.

CLASES DE SENSORES DE PRESIONCLASES DE SENSORES DE PRESION Mecánicos

Elementos primarios de Medida Directa, miden la presión comparándola con la ejercida por un liquido. El desplazamiento puede indicarse por un sistema de flotador y palanca sobre una escala.

Elementos primarios Elásticos, miden la presión por su propia deformación. La aplicación de una presión a su interior produce indirectamente un movimiento que se transmite a una aguja indicadora.

Neumáticos, utilizan componentes mecánicos que procuran el equilibrio entre fuerzas (tubo Bourdon) o de movimientos (elementos de fuelle).

Electromecánicos-Electrónicos, utiliza elementos mecánicos Elásticos combinado con un transductor eléctrico que genera la señal eléctrica correspondiente.

Page 39: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 40: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 41: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 42: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 43: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 44: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 45: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 46: Ecuaciones de estado de los gases Ley de los gases ideales.
Page 47: Ecuaciones de estado de los gases Ley de los gases ideales.

Ejercicio 1

Determine:a. La presión absoluta en el punto A en pascales.b. La presión absoluta del aire encerrado en el brazo izquierdo del

tubo, en pascales.

Px

0,20m

0,15m

0,25m

21

3

A

En el tubo de la figura existen 3 líquidos que no se mezclan. El brazo de la izquierda está cerrado y tiene aire a una presión desconocida. El brazo de la derecha esta abierto. Las densidades de los líquidos son:

ρ1=1000kg/m3 ρ2=800kg/m3 ρ3=600kg/m3

La presión atmosférica en el lugar es Pat=100000 Pa.

Page 48: Ecuaciones de estado de los gases Ley de los gases ideales.

1=1000kg/m3;

2=800kg/m3;

3=600kg/m3.

Pat=100000Pa.

Px

0,20m

0,15m

0,25m

21

3

A

A 2 2 3 3 atmP gh gh P

A

A

A

P 800 10 0,2 600 10 0,4 100000

P 1600 2400 100000

P 104000Pa

aire 1 1 AP gh P

aire A 1 1

aire

aire

aire

P P gh

P 104000 1000 10 0,35

P 104000 3500

P 100500Pa

La presión absoluta en el punto A en pascales.

La presión absoluta del aire encerrado en el brazo izquierdo del tubo, en pascales.

Page 49: Ecuaciones de estado de los gases Ley de los gases ideales.

Ejercicio 2

Considere el tubo en U de la figura, que contiene mercurio (M=13,6 gcm-3 ). Se

vierte agua (A=1 gcm-3 ) en ambos

lados. La presión atmosférica es 105 Pa.

mercurio

agua

agua

h1

h

h2=5cm A

1. Determinar la diferencia de las longitudes de las columnas de agua si h=10cm.

2. Determinar la Presión absoluta en el punto A (en Pascales)

Page 50: Ecuaciones de estado de los gases Ley de los gases ideales.

Determinar la diferencia de las longitudes de las columnas de agua si h=10cm.

mercurio

agua

agua

h1

h

h2=5cm A

at a M 2 at a 1 2P gh gh P g h h h

M 21 2

a

hh h

1 2

1 2

13,6 5h h

1h h 68cm

Page 51: Ecuaciones de estado de los gases Ley de los gases ideales.

mercurio

agua

agua

h1

h

h2=5cm A

Determinar la Presión absoluta en el punto A (en Pascales)

A at A M 2P P gh gh

5 3 1 3 2A

5 5 5A

5A

P 10 10 10 10 13,6 10 10 5 10

P 10 0,01 10 0,068 10

P 1,078 10 Pa

Page 52: Ecuaciones de estado de los gases Ley de los gases ideales.

Ejercicio 3

El tubo en U de la figura está abierto a la presión atmosférica pa = 1atm en ambos extremos y contiene dos líquidos (1) y (2) que no se mezclan. Si la condición de equilibrio es como se indica en la figura, se pide la razón entre las densidades de los dos fluidos ρ1/ρ2.

0,05m0,06m

2

1

PatmPatm

a 1 a 2p + g 1= p + g 6

1

2

=6