Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

6
20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado Wikilibros https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 1/6 Matemáticas Álgebra Ecuaciones Ecuaciones de tercer grado De Wikilibros, la colección de libros de texto de contenido libre. < Matemáticas | Álgebra | Ecuaciones Contenido 1 Método de Cardano 2 Caso 1. Una raíz real y dos complejas conjugadas entre sí 3 Caso 2. Raíces reales de multiplicidad dos 4 Caso 3. Raíces reales de multiplicidad tres 5 Caso 4. Tres raíces reales y distintas entre sí 6 Raíces de la ecuación completa Método de Cardano Sea una ecuación algebraica polinomial de tercer grado completa sin normalizar en una sola variable de la forma donde son sus coeficientes polinomiales. Sean las tres raíces de la ecuación que deseamos calcular. Dividiendo ambos lados de la ecuación por su coeficiente principal obtenemos si definimos , la ecuación queda como con lo cual hemos ya normalizado la ecuación , pues es más fácil de trabajar la ecuación ya normalizada que la ecuación , pero con la ventaja de que las raíces de ambas son exactamente iguales. Ahora, realicemos la transformación de Tschirnhausen, dada en la forma lo que nos permite eliminar el término de la potencia cuadrática cuando se sustituye la ecuación en la ecuación , así se obtiene

Transcript of Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

Page 1: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 1/6

MatemáticasÁlgebraEcuacionesEcuaciones de tercer gradoDe Wikilibros, la colección de libros de texto de contenido libre.< Matemáticas | Álgebra | Ecuaciones

Contenido

1 Método de Cardano2 Caso 1. Una raíz real y dos complejas conjugadas entre sí3 Caso 2. Raíces reales de multiplicidad dos4 Caso 3. Raíces reales de multiplicidad tres5 Caso 4. Tres raíces reales y distintas entre sí6 Raíces de la ecuación completa

Método de Cardano

Sea una ecuación algebraica polinomial de tercer grado completa sin normalizar en una sola variable de la forma

donde son sus coeficientes polinomiales. Sean las tres raíces de la ecuación quedeseamos calcular. Dividiendo ambos lados de la ecuación por su coeficiente principal obtenemos

si definimos , la ecuación queda como

con lo cual hemos ya normalizado la ecuación , pues es más fácil de trabajar la ecuación ya normalizada que laecuación , pero con la ventaja de que las raíces de ambas son exactamente iguales. Ahora, realicemos latransformación de Tschirnhausen, dada en la forma

lo que nos permite eliminar el término de la potencia cuadrática cuando se sustituye la ecuación en la ecuación , así se obtiene

Page 2: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 2/6

donde al desarrollarse los binomios y simplificar términos comunes nos da

y si hacemos las sustituciones arbitrarias pero convenientes

obtenemos la ecuación

a la cual se le llama ecuación cúbica reducida por contener un término menos (en este caso ha desaparecido el términocuadrático por el uso de la transformación de Tschirnhaus) que la ecuación completa , la cual es más fácil deresolver que la ecuación , de modo que si resolvemos la ecuación entonces las raíces de la ecuación secalcularán de forma sencilla usando la ecuación por ser esta una relación lineal e invertible. Note que si

, implica necesariamente según las ecuaciones y que . La ecuación tiene tresraíces que se calculan como sigue:

donde los valores de , y se definen como

donde es el discriminante de la ecuación cúbica y nos ayuda a establecer cuatro casos posibles distintos comosigue.

Caso 1. Una raíz real y dos complejas conjugadas entre sí

Si y , para , se tiene para la ecuación una raíz real dada como por la ecuación y dos raíces complejas conjugadas , dadas por las ecuaciones y . Al restar a cada una de

estas raíces la cantidad de acuerdo a la ecuación se obtiene una raíz real y dos complejas conjugadas también para la ecuación de interés . Este es uno de los dos casos en que se presentan las raíces de

multiplicidad unitaria.

Ejemplo 1. Usando el método de Cardano calcule las tres raíces de la ecuación cúbica siguiente:

Page 3: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 3/6

Solución. Primero normalizamos la ecuación dividiendo ambos lados por su coeficiente principal , para dar

la cual al compararla con la ecuación podemos definir que , con los cualespodemos calcular y a partir de las ecuaciones y respectivamente para dar

con estos valores podemos calcular el discriminante mediante la ecuación para dar

puesto que y , entonces obtendremos una raíz real y dos complejas conjugadas. Para ello,calculamos primero los valores de A y B mediante las ecauciones y , respectivamente, para dar

las raíces de la ecuación se calculan mediante las ecuaciones , y para dar respectivamente

ahora, ya por último, usaremos la ecuación para poder obtener las raíces de la ecuación que nos pedían resolver,como

.

Caso 2. Raíces reales de multiplicidad dos

Page 4: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 4/6

Si y , para , se tiene para la ecuación tres raíces reales de las cuales dos de ellasson iguales entre sí, es decir, este es el único caso donde se presentan las raíces dobles. Esto es, que

. Al restar a cada una de estas raíces la cantidad de acuerdo a la ecuación seobtienen tres raíces reales para la ecuación cúbica , de las cuales dos de ellas serán iguales entre sí también

.

Ejemplo 2. Resuelva mediante el método de Cardano la siguiente ecuación cubica:

Solución. Es una ecuación ya normalizada, por lo que al compararla con la ecuación podemos definir que , con los cuales podemos calcular los valores de y mediante las

ecuaciones y como sigue:

con estos valores podemos calcular el discriminante a partir de la ecuación como

puesto que , entonces obtendremos tres raíces reales de las cuales dos de ellas serán exactamente iguales entresi. Calculamos los valores de y de las ecuaciones y para dar

así, las raíces de la ecuación serán

de este modo, las raíces pedidas son obtenidas mediante la ecuación como

Caso 3. Raíces reales de multiplicidad tres

Page 5: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 5/6

Existe el caso en que se pueden obtener tres raíces reales de multiplicidad tres que ocurre si y sólo si se cumple lacondición de que , lo que implica necesariamente de ecuerdo a la ecuación que , lo quetambién implica necesarimente según las ecuaciones y que , lo que a su vez implicanecesariamente según las ecuaciones a que , de aquí que al regresar a latransformación de Tschirnhaus dada por la ecuación vemos que las tres raíces son reales y múltiples demultiplicidad tres y que valen

esto es, que la ecuación se puede poner como

es decir, que puede expresarse como un binomio elevado al cubo.

Caso 4. Tres raíces reales y distintas entre sí

Si y , para cualquier valor y signo de q, pero donde necesariamente , se tiene para laecuación tres raíces reales , que son distintas entre sí, las cuales se calculan como

donde se define como

de donde vemos que el símbolo que precede al valor constante 2 en la expresión se usará como sigue: el signopositivo se usará cuando y el signo negativo se usará cuando .

Raíces de la ecuación completa

Si es posible obtener con las ecuaciones a precedentes las tres raíces de se regresa a la transformaciónde Tschirnhaus dada por la ecuación y se obtienen las tres raíces d la ecuación , como sigue

o si las raíces de están dadas por las ecuaciones y se debe usar en la ecuación .

Obtenido de «https://es.wikibooks.org/w/index.php?title=Matemáticas/Álgebra/Ecuaciones/Ecuaciones_de_tercer_grado&oldid=284596»

Esta página fue modificada por última vez el 14 jul 2015 a las 16:24.

Page 6: Matemáticas_Álgebra_Ecuaciones_Ecuaciones de tercer grado - Wikilibros.pdf

20/9/2015 Matemáticas/Álgebra/Ecuaciones/Ecuaciones de tercer grado ­ Wikilibros

https://es.wikibooks.org/wiki/Matem%C3%A1ticas/%C3%81lgebra/Ecuaciones/Ecuaciones_de_tercer_grado 6/6

El texto está disponible bajo la Licencia Creative Commons Atribución­CompartirIgual 3.0; pueden aplicarsetérminos adicionales. Véase Términos de uso para más detalles.