CLASE 11 CrecimientoMicrobiano - UNAMdepa.fquim.unam.mx/amyd//archivero/11_Crecimientomicrob...0.980...

35
Crecimiento microbiano En microbiología el crecimiento se define como el incremento en el número de células. La bipartición (fisión binaria) es el proceso por el cual una célula se divide para formar dos células iguales. El intervalo que transcurre en la formación de dos células a partir de una célula se llama generación y el tiempo requerido para esto es el tiempo de generación o tiempo de duplicación.

Transcript of CLASE 11 CrecimientoMicrobiano - UNAMdepa.fquim.unam.mx/amyd//archivero/11_Crecimientomicrob...0.980...

  • Crecimiento microbiano

    En microbiología el crecimiento se define como el incremento en el número de células.

    • La bipartición (fisión binaria) es el proceso por el cual una célula se divide para formar dos células iguales.

    • El intervalo que transcurre en la formación de dos células a partir de una célula se llama generación y el tiempo requerido para esto es el tiempo de generación o tiempo de duplicación.

  • Fisión binaria

    Durante la fisión binaria cada célula hija recibe una copia del cromosoma, de los ribosomas, complejos macromoleculares, así como monómeros y iones inorgánicos para existir como una célula independiente.

    El ADN se ancla a la membrana y así, cada célula hija se queda con una copia.

    Se forma un septo que dará lugar a cada una de las células, las envolturas rodean a cada copia del ADN y finalmente se da la separación de las células.

  • Durante la división celular intervienen varias proteínas que han sido llamadas: Fts, filamentous temperature sensitive

    Se encuentran ampliamente distribuidas en procariotas incluyendo Arqueas

    FtsZ tiene una estructura similar a la tubulina (división celular de eucariotas).

    Proteínas Fts

  • Proteínas Fts

    Las proteínas Fts (filamentous temperature sensitive) interactúan para formar el aparato de división llamado divisoma. • FtsZ polimeriza y forman una anillo en el centro de la célula. • FtsA es una enzima ATP hidrolasa que provee la energía para ensamblar proteínas en el divisoma. • ZipA ancla a FtsZ a la membrana citoplasmática. • FtsI es una proteína involucrada en la síntesis de péptidoglucano y es también llamada proteína de unión a penicilina (su actividad es bloqueada por el antibiótico).

  • FtsZ se encuentra en diferentes puntos del citoplasma y desaparece de éste en el momento de la división celular ubicándosele en el centro formando el anillo

  • Cuando la célula se alarga se sintetiza la nueva pared celular. Este material se añade a la pared preexistente sin que se pierda la integridad celular.

    En la zona del anillo FtsZ se forman poros que son creados por autolisinas presentes en el divisoma. El nuevo material se añade a través de estas aberturas.

  • A medida que progresa la elongación celular las dos copias del cromosoma se separan y cada uno termina en una célula hija. Cuando ocurre la constricción, el anillo FtsZ comienza a despolimerizarse y se dispara la síntesis de pared celular para sellar una región con la otra.

  • Autolisinas

    Pequeñas aberturas son llevadas a cabo por las enzimas autolisinas que tiene una función similar a la lisozima.

    Las autolisinas se encuentran presentes en el complejo divisoma.

    La síntesis del nuevo peptidoglocano deja en la células Gram positivas una cicatriz.

    Las aberturas y la síntesis debe ser coordinada para evitar la autolísis de la célula.

  • Replicación del ADN

    La replicación del ADN ocurre previo a la formación del anillo FtsZ, este se forma en el espacio entre los cromosomas duplicados.

    • MinC es un inhibidor de la división celular y previene que FtsZ ensamble el anillo hasta que el centro se encuentre formado. • MinE inhibe la actividad de MinC y se ancla al centro de la división. • FstK participa en la elongación. • FstZ también tiene actividad de GTP hidrolasa, libera energía para la polimerización y despolimerización, así como para el ensamblaje y desensamblaje del anillo.

  • Proteínas Min La replicación del DNA ocurre antes de que se forme el anillo FtsZ, el cese de esta síntesis parece ser la señal para la formación del anillo y esta estructura aparece precisamente en el espacio situado entre los dos nucleoides.

    La localización del punto medio real parece ser debida a una serie de proteínas llamadas Min, especialmente MinE

    A medida que progresa la elongación celular las dos copias del cromosoma se separan y cada uno termina en una célula hija.

  • Proteína MreB y la forma de las bacterias

    La presencia de la proteína MreB se ha relacionado con la forma de las bacterias no cocoides.

    • FtsZ tubulina bacteriana. • MreB actina bacteriana.

    Nature Cell Biology  5, 175 - 178 (2003)

  • Crecimiento exponencial

    Cuando un cultivo se duplica de manera regular durante un intervalo de tiempo, se denomina crecimiento exponencial.

    Una gráfica aritmética del crecimiento muestra un incremento constante mientras una logarítmica (log10) permite observar con respecto al tiempo cuando el crecimiento es exponencial y puede entonces calcularse el tiempo de generación.

  • Tiempo de generación

    Tiempo de generación (G) es el tiempo requerido para que una célula se divida o una población se duplique.

    G = t/n

    Si partimos de una célula al cabo de una generación habrá duplicado su número y así sucesivamente en cada generación.

    Como se puede comprobar el crecimiento se produce en progresión geométrica:

    1 generación -------------> 2 células

    2 generaciones -------------> 4 células 3 generaciones -------------> 8 células

    4 generaciones -------------> 16 células 5 generaciones -------------> 32 células

  • Tiempo de generación

    log N - log No log N - log No n = ___________________ n = ____________________ n = 3.3 (log N - log No)

    log 2 0.301

    N = No2n log N = log No + n log 2

    To -------------> No 1 generación -------------> 2No = No21 2 generaciones -------------> 4No = No22 3 generaciones -------------> 8No = No23 4 generaciones -------------> 16No = No24 5 generaciones -------------> 32No = No25 n generaciones (T) -------------> N = No2n

    t G = ___________________________

    3.3 (log N - log No)

  • Tiempos de duplicación

    Bacteria

    Medio Tiempo de duplicación

    (minutos) Escherichia coli Glucosa-sales 17

    Bacillus  megaterium Sacarosa-sales 25

    Streptococcus lactis Leche 26

    Staphylococcus aureus Medio de infusión de corazón

    27-30

    Streptococcus lactis Medio con lactosa 48

    Lactobacillus acidophilus Leche 66-87

    Rhizobium japonicum Manitol-sales-extracto de levadura

    344-461

    Mycobacterium tuberculosis Medio definido 762-932

    Treponema pallidum Testículos de conejo 1980

  • Curva de crecimiento

    A

    B

    CD

    E

    Tiempo

    Log

    de

    l nú

    me

    ro d

    e

    mic

    roo

    rga

    nism

    os

  • Curva de crecimiento

    • A (Fase Lag). Periodo de latencia o adaptación: no hay aumento significativo de la densidad celular, el crecimiento es asincrónico. • B (Fase Log). Periodo de crecimiento exponencial, el crecimiento es sincrónico y se alcanza la máxima velocidad de crecimiento. • C (Fase pre-estacionaria). Periodo de retardo desaparece el crecimiento exponencial, los microorganismos entran en estrés. • D (Fase estacionaria). Periodo estacionario: no hay cambios significativos de la densidad celular con respecto al tiempo, existe un equilibrio entre los microorganismos vivos y muertos. • E (Fase de muerte). Fase en la que el equilibro desaparece y predominan los microorganismos muertos. No hay nutrientes para el recambio y las condiciones del medio de cultivo son adversas para el crecimiento.

  • Tipos de cultivo

    • Cultivo en lote

    • Cultivo en lote alimentado

    • Cultivo en contínuo

  • Temperatura

    (2). Las reacciones enzimáticas aumentan su velocidad. (3). Las reacciones enzimáticas se llevan a cabo a su máxima velocidad. (4). Desnaturalización de proteínas y membrana citoplasmática. Lisis térmica.

    Óptimo

    Temperatura

    Máximo Mínimo

    (1)

    (2)

    (3)

    (4)

    Velocidad de crecimiento

    (1). Gelificación de la membrana; los procesos de transporte se llevan a cabo lentamente y no hay crecimiento.

  • Temperatura.

  • Temperatura. Clasificación.

    Clasificación de microorganismos de acuerdo a su temperatura óptima de crecimiento

    Psicrófilos 0 - 20°C Flavobacterium sp. 13ºC (b-)

    Mesófilos 20 - 40°C Escherichia coli 37ºC (b-)

    Termófilos 40 – 60°C G. stearothermophylus 60ºC (b+, esp)

    Hipertermófilos 60 – 80°C Thermococcus celer

    Termófilos extremos > 80°C Pyrodictium brockii

    Psicotróficos: Microorganismos que crecen a temperatura ambiente pero causan contaminación en condiciones de refrigeración.

  • Temperatura.

    Nature 409, 1092-1101 (22 February 2001)

  • Microorganismos patógenos

    E. coli

    Helicobacter pylori

    Candida albicas

    Trichomonas vaginalis

  • pH

    Microorganismos pH 1

    2

    Acidófilos 3

    4

    5

    6

    Neutrófilos 7

    8

    9

    10

    Alcalófilos 11

    12

    13

    14

  • pH

    pH 8.8–8.3

    Nature 409, 1092-1101 (22 February 2001)

    pH 3.3–3.5

  • Temperature and pH requirements for growth distinguish thermophilic bacteria and archaea.

    Nature Reviews Microbiology 5, 316-323 (April 2007)

    Zona en la que las bacterias están mejor adaptadas.

    Zona en la que las arqueas están mejor adaptadas.

    Zona en la que ambas están bien adaptadas.

  • Oxígeno

    Enzimas Metabolismo Ejemplos

    Aerobios Obligados Es necesario para el crecimiento,

    contiene SOD y catalasa. Respiración

    aerobia Micrococcus luteus

    P. aeruginosa

    Facultativos Crecen mejor en presencia de oxígeno, presentan SOD y

    catalasa.

    Respiración aerobia,

    anaerobia y fermentación

    Enterobacter sp. S. cerevisiae

    Microaerofílicos Requieren baja concentración de O2, presentan SOD y catalasa.

    Respiración aerobia

    Spirillum vollutans

    Anaerobios Aerotolerantes No requieren O2, pero crecen en

    su presencia. Sólo SOD. Fermentación S. pyogenes

    Clostridium sp.

    Obligados El O2 es letal, no contiene enzimas destoxificantes

    Fermentación o respiración anaerobia

    Metanobacterium formicicum

  • Relación con el O2

    Aerobio facultativo

    Microaerofílico Anaerobio aerotolerante

    Anaerobio obligado

    Aerobio obligado

    Crecimiento en medio fluido de Tioglicolato.

  • Cultivo de anaerobios

    Jarra de anaerobiosis

    NaHCO3 + NaBH4 + O2 → CO2 + H2O + H2

  • Enzimas destoxificantes

    O2 + e- → O2- Superóxido O2- + e- + 2H+ → H2O2 Peróxido de hidrógeno H2O2 + e- + H+ → H2O + OH. Radical hidroxilo HO. + e- + H+ → H2O Agua Reacción general: O2 + 4e- + 4H+ → 2H2O

    Peroxidasa H2O2

    + NADH + H+ → 2H2O + NAD+

    Superóxido dismutasa (SOD) O2

    - + O2- + 2H+ → H2O2 + O2

    Catalasa H2O2 + H2O2 → 2H2O + O2

  • Concentración de solutos

    Concepto Definición

    No Halófilos Crecen en concentraciones de 1-6 % de NaCl

    Halófilos moderados Crecen en concentraciones de 6-15% de NaCl

    Halófilos extremos Crecen en concentraciones de 15-30% de NaCl

    Halotolerantes Toleran disminuciones en el aw pero crecen mejor en ausencia de solutos.

    Osmófilos Son capaces de vivir en altas concentraciones de azúcares.

    Xerófilos Crecen en condiciones de aw bajo.

  • Actividad del Agua aw es la relación entre la presión de vapor del aire en equilibrio con una sustancia o solución a la presión de vapor a la misma temperatura del agua pura.

    aw Medio de crecimiento

    Microorganismos que desarrollan

    1.000 Agua pura Caulobacter, Spirillum

    0.995 Sangre humana Streptococcus, Escherichia 0.980 Agua salada Pseudomonas, Vibrio

    0.950 Pan Muchos cocos G+

    0.900 Miel de maple, jamón Cocos G-

    0.850 Salami Saccharomyces rouxii

    0.850 Pastel de frutas, jalea Saccharomyces bailii, Penicillium

    0.800 Lagos salados Halobacterium, Halococcus

    0.750 Cereales, dulces, frutas secas

    Xeromyces bisporus y otros hongos xerófilos.

  • Solutos compatibles

    Son compuestos que forman los microorganismos para compensar la concentración de solutos exterior.

    • Aminoácidos: Glicina-betaína y ectoina

    • Carbohidratos: Sacarosa y trehalosa • Poli alcoholes: Manitol y glicerol • Otros: KCl y propionato dimetilsulfónico (PDS)

    N

    CH3

    CH3

    CH3 CH2 COO-

    Glicina-Betaina

    CH2

    CH3

    CH2 N

    C C N COO-

    Ectoina

  • Formación de solutos compatibles

    Organismo Soluto principal aw máximo Bacterias no fotótrofas Glicina betaína , prolina (G+),

    glutamato (G-) 0.97 – 0.90

    Cianobacterias de agua dulce Sacarosa, trehalosa 0.98

    Cianobacterias marinas Algas marinas

    α-glucosilglicerol Manitol, glucósidos, prolina,

    PDS

    0.92

    Cianobacterias de lagos salados Glicina betaína 0.90 – 0.75

    Bacterias fototrópicas, anoxigénicas halofílicas

    ( Ectothiorhodospira)

    Glicina betaína. Ectoína, trehalosa

    Arqueas halófilas extremas (Halobacterium) y algunas bacterias (Haloanaerobium)

    KCl 0.75

    Alga verde halofílica (Dunaliella) Glicerol 0.75

    Levaduras xerófilas Glicerol 0.83 – 0.62

    Hongos filamentosos xerófilos Glicerol 0.72 – 0.61