Cinematica de una particula

101
UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I CINEMATICA DE UNA PARTICULA AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PERÚ 2010

description

 

Transcript of Cinematica de una particula

Page 1: Cinematica de una particula

UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO”

FACULTAD DE INGENIERÍA CIVIL

CURSO: FISICA I

CINEMATICA DE UNA PARTICULA

AUTOR: Mag. Optaciano L. Vásquez GarcíaHUARAZ - PERÚ

2010

Page 2: Cinematica de una particula

I. INTRODUCCIÓN

MECANICA

MECÁNICA DE FLUIDOS

MECÁNICA DE CUERPO

DEFORMABLE

MECANICA DE CUERPO RIGIDOS

DINAMICAESTATICA

CINETICACINEMATICA

Page 3: Cinematica de una particula

II. NOCION DE CINEMATICA La cinemática (del griegoκινεω, kineo, movimiento) es la

rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo.

También se dice que la cinemática estudia la geometría del movimiento.

En la cinemática se utiliza un sistema de coordenadas para

describir las trayectorias, denominado sistema de referencia.

Page 4: Cinematica de una particula

II. ELEMENTOS BASICOS DE LA CINEMATICA

1.ESPACIO ABSOLUTO. Es decir, un espacio anterior a todos los objetos materiales e

independiente de la existencia de estos.

Este espacio es el escenario donde ocurren todos los fenómenos físicos, y se supone que todas las leyes de la física se cumplen rigurosamente en todas las regiones de ese espacio.

El espacio físico se representa en la Mecánica Clásica mediante un espacio puntual euclídeo.

Page 5: Cinematica de una particula

II. ELEMENTOS BASICOS DE LA CINEMATICA

2.TIEMPO ABSOLUTO

La Mecánica Clásica admite la existencia de un tiempo absoluto que transcurre del mismo modo en todas las regiones del Universo y que es independiente de la existencia de los objetos materiales y de la ocurrencia de los fenómenos físicos.

Page 6: Cinematica de una particula

II. ELEMENTOS BASICOS DE LA CINEMATICA

2.MOVIL El móvil más simple que podemos considerar es el punto material o

partícula. La partícula es una idealización de los cuerpos que existen en la

Naturaleza, en el mismo sentido en que lo es el concepto de punto geométrico.

Entendemos por punto material o partícula a un cuerpo de dimensiones tan pequeñas que pueda considerarse como puntiforme; de ese modo su posición en el espacio quedará determinada al fijar las coordenadas de un punto geométrico.

Naturalmente la posibilidad de despreciar las dimensiones de un cuerpo estará en relación con las condiciones específicas del problema considerado.

Page 7: Cinematica de una particula

II. RELATIVIDAD DEL MOVIMIENTO Estudiar el movimiento de un cuerpo quiere decir determinar su

posición en el espacio en función del tiempo, para ello se necesita un sistema de referencia.

En el espacio euclidiano un sistema de queda definido por los elementos siguientes.a. un origen O, que es un punto del espacio físico.b. una base vectorial del espacio vectorial asociado a dicho espacio físico.

Page 8: Cinematica de una particula

RELATIVIDAD DEL MOVIMIENTO Decimos que una partícula se encuentra en movimiento con respecto a

un referencial si su posición con respecto a él cambia en el transcurso del tiempo.

En caso contrario, si la posición del cuerpo no cambia con respecto al referencial, el cuerpo está en reposo en dicho referencial.

De las definiciones que acabamos de dar para el movimiento y el reposo de un cuerpo, vemos que ambos conceptos son relativos.

Page 9: Cinematica de una particula

RELATIVIDAD DEL MOVIMIENTO En la Figura hemos representado dos

observadores, S y S′, y una partícula P.

Estos observadores utilizan los referenciales xyz y x′y′z′, respectivamente.

Si S y S′ se encuentran en reposo entre sí, describirán del mismo modo el movimiento de la partícula P. Pero si S y S′ se encuentran en movimiento relativo, sus observaciones acerca del movimiento de la partícula P serán diferentes.

Page 10: Cinematica de una particula

RELATIVIDAD DEL MOVIMIENTO Para el observador en ubicado en la tierra la LUNA describirá una

órbita casi circular en torno a la TIERRA. Para el observador ubicado en el sol la trayectoria de la luna es una

línea ondulante. Naturalmente, si los observadores conocen sus movimientos

relativos, podrán reconciliar sus observaciones

Page 11: Cinematica de una particula

MOVIMIENTO RECTILÍNEODecimos que una partícula tiene un movimiento rectilíneo cuando su trayectoria medida con respecto a un observador es una línea recta

1. POSICIÓN. La posición de la partícula en cualquier instante queda definida por la coordenada x medida a partir del origen O.

Si x es positiva la partícula se localiza hacia la derecha de O y si x es negativa se localiza a la izquierda de O.

Page 12: Cinematica de una particula

MOVIMIENTO RECTILÍNEO2. DESPLAZAMIENTO.

El desplazamiento se define como el cambio de posición. Se representa por el símbolo Δx. Si la posición final de la partícula P’ está la derecha de su posición

inicial P, el desplazamiento x es positivo cuando el desplazamiento es hacia la izquierda ΔS es negativo

'ˆ ˆ' '

x x x

r r r x i xi

Page 13: Cinematica de una particula

MOVIMIENTO RECTILÍNEO3. VELOCIDAD MEDIA

Si la partícula se mueve de P a P’ experimentando un desplazamiento Δx positivo durante un intervalo de tiempo Δt, entonces, la velocidad media será

2 2

2 1

ˆ ˆ' '' '

m

m

x xxvt t t

r r r x i xivt t t t t

Page 14: Cinematica de una particula

MOVIMIENTO RECTILÍNEO3. VELOCIDAD MEDIA

La velocidad media también puede interpretarse geométricamente para ello se traza una línea recta que une los puntos P y Q como se muestra en la figura. Esta línea forma un triángulo de altura x y base t.

La pendiente de la recta es x/t. Entonces la velocidad media es la pendiente de la recta que une los puntos inicial y final de la gráfica posición-tiempo

Page 15: Cinematica de una particula

MOVIMIENTO RECTILÍNEO

4. VELOCIDAD INSTANTÁNEA Es la velocidad de la partícula en cualquier instante de tiempo se

obtiene llevando al límite la velocidad media es decir, se hace cada vez más pequeño el intervalo de tiempo y por tanto valores más pequeños de x. Por tanto:

0

0

lim( )

ˆlim( )

t

t

x dxvt dtr dr dxv it dt dt

Page 16: Cinematica de una particula

MOVIMIENTO RECTILÍNEO4. VELOCIDAD INSTANTÁNEA

Si una partícula se mueve de P a Q. A medida que Q se aproxima más y más a P los intervalos de tiempo se hacen cada vez menores. A medida que Q se aproxima a P el intervalo de tiempo tiende a cero tendiendo de esta manera las pendientes a la tangente. Por tanto, la velocidad instantánea en P es igual a la pendiente de la recta tangente en el punto P. La velocidad instantánea puede ser positiva (punto P), negativa (punto R) o nula (punto Q) según se trace la pendiente correspondiente

Page 17: Cinematica de una particula

MOVIMIENTO RECTILÍNEO

5. RAPIDEZ MEDIA. La rapidez media se define como la distancia total de la trayectoria recorrida por una partícula ST, dividida entre el tiempo transcurrido t, es decir,

( ) Trap

Svt

Page 18: Cinematica de una particula

MOVIMIENTO RECTILÍNEO6. ACELERACIÓN MEDIA .

Si la velocidad de la partícula al pasar por P es v y cuando pasa por P’ es v’ durante un intervalo de tiempo Δt, entonces:

La aceleración media se define como

''med

v v vat t t

Page 19: Cinematica de una particula

MOVIMIENTO RECTILÍNEO6. ACELERACIÓN INSTANTANEA .

La aceleración instantánea se obtiene llevando al límite la aceleración media cuando t tiende a cero es decir

0

2

2

lim( )

( )

t

v dvat dt

d dx d xadt dt dt

Page 20: Cinematica de una particula

Ejemplo 01 La posición de una partícula que se mueve en línea recta está

definida por la relación Determine: (a) la posición, velocidad y aceleración en t = 0; (b) la posición, velocidad y aceleración en t = 2 s; (c) la posición, velocidad y aceleración en t = 4 s ; (d) el desplazamiento entre t = 0 y t = 6 s;

2 36x t t

Page 21: Cinematica de una particula

Solución La ecuaciones de movimiento son

Las cantidades solicitadas son

326 ttx 2312 tt

dtdxv

tdt

xddtdva 6122

2

• En t = 0, x = 0, v = 0, a = 12 m/s2

• En t = 2 s, x = 16 m, v = vmax = 12 m/s, a = 0

• En t = 4 s, x = xmax = 32 m, v = 0, a = -12 m/s2

• En t = 6 s, x = 0, v = -36 m/s, a = 24 m/s2

Page 22: Cinematica de una particula

DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

1. LA ACELERACIÓN COMO FUNCIÓN DEL TIEMPO a = f(t).Se sabe que a = dv/dt, entonces podemos escribir

Page 23: Cinematica de una particula

DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

2. LA ACELERACIÓN COMO FUNCIÓN DE LA POSICIÓN a = f(x).Se sabe que a = vdv/ds, entonces podemos escribir

Page 24: Cinematica de una particula

DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

2. LA ACELERACIÓN COMO FUNCIÓN DE LA VELOCIDAD a = f(v).Se sabe que a = dv/dt o también a = vdv/ds, entonces

podemos escribir

Page 25: Cinematica de una particula

DETERMINACIÓN DEL MOVIMEINTO DE UNA PARTÍCULA

4. LA ACELERACIÓN ES CONSTANTE a = constanteA este caso se le denomina movimiento rectilíneo uniforme y las ecuaciones obtenidas son

Page 26: Cinematica de una particula

Ejemplo 01El auto mostrado en la figura se mueve en línea recta de tal manera que su velocidad para un período corto de tiempo es definida por pies/s, donde t es el tiempo el cual está en segundos . Determine su posición y aceleración cuando t = 3,00 s. Considere que cuando t = 0. S = 0

Page 27: Cinematica de una particula

Solución POSICIÓN Para el sistema de referencia considerado y sabiendo que la velocidad es función del tiempo v = f(t). La posición es

Cuando t = 3 s, resulta

ACELERACIÓN. Sabiendo que v = f(t), la aceleración se determina a partir de a = dv/dt

Cuando t = 3 s

Page 28: Cinematica de una particula

Ejemplo 02Un proyectil pequeño es disparado verticalmente hacia abajo dentro de un medio fluido con una velocidad inicial de 60 m/s. Si resistencia del fluido produce una desaceleración del proyectil que es igual a donde v se mide en m/s. Determine la velocidad v y la posición S cuatro segundos después de que se disparó el proyectil.

Page 29: Cinematica de una particula

SoluciónVelocidad: Usando el sistema de referencia mostrado y sabiendo que a = f(v) podemos utilizar la ecuación a = dv/dt para determinar la velocidad como función del tiempo esto es

POSICIÓN: Sabiendo que v = f(t), la posición se determina a partir de la ecuación v = dS/dt

Page 30: Cinematica de una particula

Ejemplo 03 Una partícula metálica está sujeta a

la influencia de un campo magnético tal que se mueve verticalmente a través de un fluido, desde la placa A hasta la placa B, Si la partícula se suelta desde el reposo en C cuando S = 100 mm, y la aceleración se mide como donde S está en metros. Determine; (a) la velocidad de la partícula cuando llega a B (S = 200 mm) y (b) el tiempo requerido para moverse de C a B

Page 31: Cinematica de una particula

Solución

Debido a que a = f(S), puede obtenerse la velocidad como función de la posición usando vdv = a dS. Consideramos además que v = 0 cuando S = 100 mm

La velocidad cuando S = 0,2 m es

El tiempo que demora en viajar la partícula de C a B se determina en la forma

Cuando S = 0,2 m el tiempo es

Page 32: Cinematica de una particula

Ejemplo 04 Desde una ventana situada a 20 m sobre el suelo se lanza una bola verticalmente hacia arriba con una velocidad de 10 m/s. Sabiendo que la bola todo el tiempo se encuentra sometida a un campo gravitacional que le proporciona una aceleración g = 9,81 m/s2 hacia abajo. Determine: (a) la velocidad y la altura en función del tiempo, (b) el instante en que la bola choca con el piso y la velocidad correspondiente

Page 33: Cinematica de una particula

tvtvdtdv

adtdv

ttv

v81.981.9

sm81.9

00

2

0

ttv

2s

m81.9sm10

0

210 2

0

10 9.81

10 9.81 10 9.81y t t

y

dy v tdt

dy t dt y t y t t

22s

m905.4sm10m20 ttty

Solución

Page 34: Cinematica de una particula

Solución

0sm81.9

sm10 2

ttv

s019.1t

• Remplazando el valor del tiempo obtenido se tiene.

22

22

s019.1sm905.4s019.1

sm10m20

sm905.4

sm10m20

y

ttty

m1.25y

Cuando la bola alcanza su altura máxima su velocidad es cero, entonces se tiene

Page 35: Cinematica de una particula

Solución

• Cuando la bola choca contra el suelo y = 0 Entoces tenemos.

0sm905.4

sm10m20 2

2

ttty

s28.3

smeaningles s243.1

tt

s28.3sm81.9

sm10s28.3

sm81.9

sm10

2

2

v

ttv

sm2.22v

Page 36: Cinematica de una particula

MOVIMIENTO DE VARIAS PARTICULAS: Movimiento relativo

Sea A y B dos partículas que se mueven en línea recta como se ve en la figura. Sus posiciones respecto a O serán xA y xB. La posición relativa de B con respecto a A será.

La velocidad relativa d A con respecto a B será.

La aceleración relativa se expresa en la forma

B A B Ax x x ABAB xxx

B A B Av v v ABAB vvv

B A B Aa a a ABAB aaa

Page 37: Cinematica de una particula

Ejemplo 05 Desde una altura de 12 m, en el

interior de un hueco de un ascensor, se lanza una bola verticalmente hacia arriba con una velocidad de 18 m/s. En ese mismo instante un ascensor de plataforma abierta está a 5 m de altura ascendiendo a una velocidad constante de 2 m/s. Determine: (a) cuando y donde chocan la bola con el ascensor, (b) La velocidad de la bola relativa al ascensor en el momento del choque

Page 38: Cinematica de una particula

SOLUCION:• Remplazando la posición, velocidad inicial

y el valor de la aceleración de la bola en las ecuaciones generales se tiene.

22

221

00

20

sm905.4

sm18m12

sm81.9

sm18

ttattvyy

tatvv

B

B

• La posición y la velocidad del ascensor será.

ttvyy

v

EE

E

sm2m5

sm2

0

Page 39: Cinematica de una particula

• Escribiendo la ecuación para las posiciones relativas de la bola con respect al elevador y asumiendo que cuando chocan la posición relativa es nula, se tiene.

025905.41812 2 ttty EB0.39s

3.65stt

• Remplazando el tiempo para el impacto en la ecuación de la posición del elevador y en la velocidad relativa de la bola con respecto al ascensor se tiene

65.325Ey m3.12Ey

65.381.916

281.918

tv EB

sm81.19EBv

Page 40: Cinematica de una particula

MOVIMIENTO DE VARIAS PARTICULAS: Movimiento dependiente

La posición de una partícula puede depender de la posición de otra u otras partículas.

En la figura la posición de B depende de la posición de A.

Debido a que la longitud del cable ACDEFG que une ambos bloques es constante se tiene

2 tan2 02 0

A B

A B

A B

x x cons tev va a

Debido a que sólo una de las coordenadas de posición xA o xB puede elegirse arbitrariamente el sistema posee un grado de libertad

Page 41: Cinematica de una particula

MOVIMIENTO DE VARIAS PARTICULAS: Movimiento dependiente

Aquí la posición de una partícula depende de dos posiciones más.

En la figura la posición de B depende de la posición de A y de C

Debido a que la longitud del cable que une a los bloques es constante se tiene

Como solo es posible elegir dos de las coordenadas, decimos que el sistema posee DOS grados de libertad

2 2A B Cx x x ctte

022or022

022or022

CBACBA

CBACBA

aaadt

dvdt

dvdt

dv

vvvdt

dxdt

dxdt

dx

Page 42: Cinematica de una particula

Ejemplo 06 El collar A y el bloque B están

enlazados como se muestra en la figura mediante una cuerda que pasa a través de dos poleas C, D y E. Las poleas C y E son fijas mientras que la polea D se mueve hacia abajo con una velocidad constante de 3 pul/s. Sabiendo que el collar inicia su movimiento desde el reposo cuando t = 0 y alcanza la velocidad de 12 pulg/s cuando pasa por L, Determine la variación de altura, la velocidad y la aceleración del bloque B cuando el collar pasa por L

Page 43: Cinematica de una particula

Solución Se analiza en primer lugar el

movimiento de A. El collar A tiene un MRUV, entonces

se determina la aceleración y el tiempo

2

20

20

2

sin.9in.82

sin.12

2

AA

AAAAA

aa

xxavv

s 333.1sin.9

sin.12 2

0

tt

tavv AAA

Page 44: Cinematica de una particula

Solución• Como la polea tiene un MRU se calcula el

cambio de posición en el tiempo t.

in. 4s333.1s

in.30

0

DD

DDD

xx

tvxx

• El movimiento del bloque B depende del movimiento de collar y la polea. El cambio de posición de B será

0in.42in.8

02

22

0

000

000

BB

BBDDAA

BDABDA

xx

xxxxxx

xxxxxx

in.160 BB xx

Page 45: Cinematica de una particula

Solución• Derivando la relación entre las posiciones

se obtiene las ecuaciones para la velocidad y la aceleración

2 constant2 0

in. in.12 2 3 0s s

18 lg/

A D B

A D B

B

B

x x xv v v

v

v pu s

in.18sBv

2

2 0in.9 0s

A D B

B

a a a

a

2

2

in.9s

9 lg/

B

B

a

a pu s

Page 46: Cinematica de una particula

Ejemplo 07La caja C está siendo levantada moviendo el rodillo A hacia abajo con una velocidad constante de vA =4m/s a lo largo de la guía. Determine la velocidad y la aceleración de la caja en el instante en que s = 1 m . Cuando el rodillo está en B la caja se apoya sobre el piso.

Page 47: Cinematica de una particula

Solución La relación de posiciones se determina teniendo en cuenta

que la longitud del cable que une al bloque y el rodillo no varia.

Cuando s = 1 m, la posición de la caja C será

Se determina ahora la posición xA, cuando s = 1 m

2 24 8C Ax x m

4 4 1 3C Cx m s m m x m

2 23 4 8 3A Am x m x m

Page 48: Cinematica de una particula

Solución La velocidad se determina derivando la relación entre las

posiciones con respecto al tiempo

La aceleración será

1/ 22

2 2

1 16 (2 ) 02

3 (4 / )

16 16 3

2, 4 /

C AA A

AC A

A

C

dx dxx xdt dt

x m m sv vx

v m s

2 2 2

2 2 2 2 3

2 2 2

3

2

16 16 16 [16 ]

4 3(0) 3 (4 )16 9 16 9 [16 9]

2,048 /

C A A A A A AC A

A A A A

C

C

dv x v x a x vda vdt dt x x x x

a

a m s

Page 49: Cinematica de una particula

Ejemplo 08El sistema representado parte del reposo y cada componente se mueve a aceleración constante. Si la aceleración relativa del bloque C respecto al collar B es 60 mm/s2 hacia arriba y la aceleración relativa del bloque D respecto al bloque A es 110 mm/s2 hacia abajo. Halle: (a) la aceleración del bloque C al cabo de 3 s, (b) el cambio de posición del bloque D al cabo de 5 s

Page 50: Cinematica de una particula

Ejemplo 09Un hombre en A está sosteniendo una caja S como se muestra en la figura, caminando hacia la derecha con una velocidad constante de 0,5 m/s. Determine la velocidad y la aceleración cuando llega al punto E. La cuerda es de 30 m de longitud y pasa por una pequeña polea D.

Page 51: Cinematica de una particula

Resolución gráfica de problemas en el movimiento rectilíneo

La velocidad y la aceleración en el movimiento rectilíneo están dadas por las ecuaciones,

La primera ecuación expresa que la velocidad instantánea es igual a la pendiente de la curva en dicho instante.

La segunda ecuación expresa que la aceleración es igual a la pendiente de la curva v-t en dicho instante

//

v dx dta dv dt

Page 52: Cinematica de una particula

Resolución gráfica de problemas en el movimiento rectilíneo

Integrando la ecuación de la velocidad tenemos

El área bajo la gráfica v-t entre t1 y t2 es igual al desplazamiento neto durante este intervalo de tiempo

El área bajo la gráfica a-t entre t1 y t2 es igual al cambio neto de velocidades durante este intervalo de tiempo

2 2

1 12 1 2 1;

t t

t tA x x vdt A v v adt

Page 53: Cinematica de una particula

Otros métodos gráficos• El momento de área se puede utilizar para

determinar la posición de la partícula en cualquier tiempo directamente de la curva v-t:

1

0

1 0

0 1 1

area bajo la curva v

v

x x v t

v t t t dv

usando dv = a dt ,

1

0

11001

v

vdtatttvxx

1

0

1

v

vdtatt Momento de primer orden de area

bajo la curva a-t con repecto a la línea t = t1

1 0 0 1 1área bajo la curva

abscisa del centroide

x x v t a - t t t

t C

Page 54: Cinematica de una particula

Otros métodos gráficos

• Método para determinar la aceleración de una partícula de la curva v-x

tan a BC

dva vdx

ABa BC subnormal

Page 55: Cinematica de una particula

EJEMPLO 10 Un ciclista se mueve en línea recta tal que su posición es

descrita mediante la gráfica mostrada. Construir la gráfica v-t y a-t para el intervalo de tiempo 0≤ t ≤ 30 s

Page 56: Cinematica de una particula

EJEMPLO 11Un carro de ensayos parte del reposo y viaja a lo largo de una línea recta acelerando a razón constante durante 10 s. Posteriormente desacelera a una razón constante hasta detenerse. Trazar las gráficas v-t y s-t y determinar el tiempo t’ que emplea en detenerse

Page 57: Cinematica de una particula

Solución: Grafica v - tLa gráfica velocidad-tiempo puede ser determinada mediante integración de los segmentos de recta de la gráfica a-t. Usando la condición inicial v = 0 cuando t = 0

Cuando t = 10 s, v = 100 m/s usando esto como condición inicial para el siguiente tramo se tiene

tvdtdvasttv

10,10;1010000

1202,2;2;1010100

tvdtdvattstv

Cuando t = t´, la velocidad nuevamente es cero por tanto se tiene 0= -2t’ + 120

t’ = 60 s

Page 58: Cinematica de una particula

Solución: Grafica s - tLa gráfica posición-tiempo puede ser determinada mediante integración de los segmentos de recta de la gráfica v-t. Usando la condición inicial s = 0 cuando t = 0

Cuando t = 10 s, S = 500 m usando esto como condición inicial para el siguiente tramo se tiene

Cuando t = t´, la posición

S = 3000 m

2

005,10;10;100 tsdttdstvst

ts

600120

1202;1202;60102

10500

tts

dttdstvststs

Page 59: Cinematica de una particula

Ejemplo 12La gráfica v-t, que describe el movimiento de un motociclista que se mueve en línea recta es el mostrado en la figura. Construir el gráfico a-s del movimiento y determinar el tiempo que requiere el motociclista para alcanzar la posición S = 120 m

Page 60: Cinematica de una particula

SoluciónGrafico a-s.Debido a que las ecuaciones de los segmentos de la gráfica están dadas, la gráfica a-t puede ser determinada usando la ecuación dv = a ds

0

;15;12060

6.004.0

32.0;600

dsdvva

vmsm

sdsdvva

svms

Page 61: Cinematica de una particula

SoluciónCalculo del tiempo.El tiempo se obtiene usando la gráfica v-t y la ecuación v = ds/dt. Para el primer tramo de movimiento, s = 0, t = 0

Cuando s = 60 m, t = 8,05 s

3ln5)32.0ln(532.0

32.0;32.0;600

0

st

sdsdt

dsvdsdtsvms

st

o

Page 62: Cinematica de una particula

SoluciónCalculo del tiempo.Para el segundo tramo de movimiento

Cuando S = 120 m, t´= 12 s

05.415

15

15;15;12060

6005.8

st

dsdt

dsvdsdtvms

st

Page 63: Cinematica de una particula

Ejemplo 13Una partícula parte del reposo y se mueve describiendo una línea recta, su aceleración de 5 m/s2 dirigida hacia la derecha permanece invariable durante 12 s. A continuación la aceleración adquiere un valor constante diferente tal que el desplazamiento total es 180 m hacia la derecha y la distancia total recorrida es de 780 m. Determine: (a) la aceleración durante el segundo intervalo de tiempo, (b) el intervalo total de tiempo.

Page 64: Cinematica de una particula

Solución En la figura se muestra el gráfico velocidad-tiempo , ya que a = constante.

La distancia total es la suma de las áreas en valor absoluto

Como la aceleración es la pendiente de la curva v-t, tenemos

2 11

1

2 21 1

1

5 /

5 / ( ) 5 / (12 )60 / (1)

vtg a m st

v m s t m s sv m s

1 2 1 2 1 3 3

2 3 3

1 1780 ( ) ( )2 2

1 1(12 )60 / ( ) 780 (2)2 2

Td A A m t t v t v

s t m s t v m

Page 65: Cinematica de una particula

Solución El desplazamiento viene expresado por

1 2 1 2 1 3 3

2 3 3

1 1180 ( ) ( )2 2

1 1(12 )60 / ( ) 180 (3)2 2

x A A m t t v t v

s t m s t v m

Sumando las ecuaciones (2) y (3), resulta

2

2

(12 )60 / 9604 (4)

s t m s mt s

La aceleración en el segundo intervalo tiempo es

12

2

2

60 /4

15 / (5)

v m sa tgt s

a m s

Page 66: Cinematica de una particula

Solución Se determina t3

232

3

23 3

15 /

15 / ( ) (6)

va tg m s

t

v m s t

Remplazando la ec. (4) y (6) en (3) se tiene

3 3

22

3

3

1 1(12 4 )60 / ( )(15 ) 1802 2

15 /480 ( ) 1802

6,32

s s m s t t m

m sm t m

t s

El intervalo total de tiempo será

1 2 3 12 4 6,3322,33

t t t t s s st seg

Page 67: Cinematica de una particula

Ejemplo 14Un cuerpo se mueve en línea recta con una velocidad cuyo cuadrado disminuye linealmente con el desplazamiento entre los puntos A y B los cuales están separados 90 m tal como se indica. Determine el desplazamiento Δx del cuerpo durante los dos últimos segundos antes de llegar a B.

Page 68: Cinematica de una particula

Poblemas propuestos 1. El movimiento de una partícula se define por la

relación donde x se expresa en metros y t en segundos. Determine el tiempo, la posición y la aceleración cuando la velocidad es nula.

2. El movimiento de una partícula se define mediante la relación donde x se expresa en pies y t en segundos. Determine: (a) el tiempo en el cual la velocidad es cero, (b) La posición y la distancia total recorrida cuando t = 8 s

2.

3 22 6 15x t t

22 20 60x t t

Page 69: Cinematica de una particula

Problemas propuestos 3. La aceleración de una partícula se define mediante la

relación . La partícula parte de x = 25 pulg en t = 0 con v = 0. Determine: (a) el tiempo en el cual la velocidad de nuevo es cero; (b) la posición y la velocidad cuando t = 5 s, (c) La distancia total recorrida por la partícula desde t = 0 a t = 5 s.

4. La aceleración de una partícula está definida por la relación a = -3v, con a expresada en m/s2 y v en m/s. Sabiendo que para t = 0 la velocidad es 60 m/s, determine: (a) la distancia que la partícula viajará antes de detenerse, (b) el tiempo necesario para que la partícula se reduzca al1% de su valor inicial

2 2(64 12 ) /a t pul s

Page 70: Cinematica de una particula

Problemas propuestos 5. El bloque A tiene una

velocidad de 3,6 m/s hacia la derecha. Determine la velocidad del cilindro B

6. Los collares A y B deslizan a lo largo de las barrar fija que forman un ángulo recto y están conectadas por un cordón de longitud L. Determine la aceleración ax del collar B como una función de y si el collar A se mueve con una velocidad constante hacia arriba vA

Page 71: Cinematica de una particula

Problemas propuestos 7. Una partícula que se mueve

a lo largo del eje x con aceleración constante , tiene una velocidad de 1,5 m/s en el sentido negativo de las x para t = 0, cuando su coordenada x es 1,2 m. tres segundos más tarde el punto material pasa por el origen en el sentido positivo. ¿Hasta qué coordenada negativa se ha desplazado dicha partícula?.

8. Determine la rapidez vP a la cual el punto P localizado sobre el cable debe viajar hacia el motor M para levantar la plataforma A a razón de vA = 2 m/s.

Page 72: Cinematica de una particula

Problemas propuestos 9. Determine la velocidad del

bloque A si el bloque B tiene una velocidad de 2 m/s hacia arriba

10. Determine la velocidad del bloque A si el bloque B tiene una velocidad de 2 m/s hacia arriba

Page 73: Cinematica de una particula

Problemas propuestos 10. Determine la velocidad con la

cual el bloque asciende si el extremo del cable en A es halado hacia abajo con velocidad de 2 m/s hacia abajo

11.

Page 74: Cinematica de una particula

Problemas propuestos Para levantar el embalaje

mostrado mediante el aparejo se usa un tractor. Si el tractor avanza con una velocidad vA. Determine una expresión para la velocidad ascendente vB del embalaje en función de x. Desprecie la pequeña distancia entre el tractor y su polea de modo que ambos tengan la misma velocidad.

Page 75: Cinematica de una particula

MOVIMIENTO CURVILÍNEOSe dice que una partícula tiene un movimiento curvilíneo cuando su trayectoria descrita esta es una línea curva.

Page 76: Cinematica de una particula

MOVIMIENTO CURVILÍNEO1. Vector Posición: Es aquel vector dirigido desde el

origen de un sistema coordenado hacia el punto de ubicación instantánea P la partícula. Se representa por r = r(t).

Page 77: Cinematica de una particula

MOVIMIENTO CURVILÍNEO2. Vector Desplazamiento: Supongamos ahora que la

partícula se mueve durante un pequeño intervalo de tiempo t hasta el punto P’, entonces su posición será r’ (t + ). El desplazamiento es vector dirigido desde P a P’ y se expresa

'( ) ( )r r t t r t

Page 78: Cinematica de una particula

MOVIMIENTO CURVILÍNEO3. Velocidad Media: Cuando la partícula se mueve de P a P’

experimenta un desplazamiento r en un intervalo de tiempo t. la velocidad media se define como

''m

r r rvt t t

La velocidad media es un vector que tiene la misma dirección que el desplazamiento es decir es secante a la curva.

La velocidad media depende del intervalo de tiempo.

Page 79: Cinematica de una particula

MOVIMIENTO CURVILÍNEO4. Velocidad Instantánea: Si el intervalo de tiempo se hace

cada ves más pequeño (t0), el desplazamiento también tiende a cero. Llevando al límite la velocidad media se obtiene la velocidad instantánea. Es decir.

La velocidad instantánea es un vector tangente a la trayectoria.

0 0

'lim lim't t

r r r drvt t t dt

Page 80: Cinematica de una particula

MOVIMIENTO CURVILÍNEO3. Velocidad Instantánea:

Multiplicando y dividiendo la expresión anterior por la longitud del arco s = acrPQ, obtenemos

0 0 0lim lim lim

t t t

r s r svs t s t

A medida que Q se acerca a P la magnitud de r se aproxima a s, entonces se tiene

Además se tiene

0lim tt

dr r eds s

0lim

t

s dsvt dt

t

dsv edt

Page 81: Cinematica de una particula

MOVIMIENTO CURVILÍNEO5. Aceleración media: En la figura se observa las velocidades instantáneas de la partícula en P y Q. El cambio de velocidades durante t es v. La aceleración media es el cambio de velocidades en el intervalo de tiempo. Es decir

La aceleración media es un vector paralelo a v y también depende de la duración del intervalo de tiempo

Q Pm

Q P

v vvat t t

Page 82: Cinematica de una particula

MOVIMIENTO CURVILÍNEO3. Aceleración media: En la figura se observa las velocidades instantáneas de la partícula en P y Q. El cambio de velocidades durante t es v. La aceleración media es el cambio de velocidades en el intervalo de tiempo. Es decir

La aceleración media es un vector paralelo a v y también depende de la duración del intervalo de tiempo

Q Pm

Q P

v vvat t t

Page 83: Cinematica de una particula

MOVIMIENTO CURVILÍNEO6. Aceleración instantánea: Se obtiene llevando al límite la aceleración media es decir haciendo cada ves mas y mas pequeños los intervalos de tiempo

La aceleración instantánea es un vector que tiene misma dirección que el cambio instantáneo de la velocidad es decir apunta hacia la concavidad de la curva

0

2

2

limt

v dvat dt

d dr d radt dt dt

Page 84: Cinematica de una particula
Page 85: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

1. POSICIÓN. La posición instantánea de una partícula en componentes x, y, z es

kzjyixr

Las coordenadas x, y, z son funciones del tiempo: x = f(t), y = f(t), z = f(t)

La magnitud del vector de posición será

222 zyxr

Page 86: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

2. Desplazamiento. Si una partícula se mueve de P a P en un intervalo de tiempo t. El desplazamiento está dado por:

ˆˆ ˆ'r r r xi yj zk

2 2 2( ) ( ) ( )r x y z

Page 87: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

3. Velocidad media. Si una partícula se mueve de P a P’ experimenta un desplazamiento r en un intervalo de tiempo t. La velocidad media será

Es un vector secante a la trayectoria

ˆˆ ˆm

r x y zv i j kt t t t

Page 88: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

4. Velocidad instantánea. Se obtiene llevando al límite cuando t 0, la velocidad media es decir:

Es un vector tangente a la curva y tiene una magnitud definida por

kvjviv

kzjyixkdtdzj

dtdyi

dtdxv

zyx

222zyx vvvv

Page 89: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

5. Aceleración media. Cuando la partícula cambia de posición su velocidad tambien cambia. Entonces la aceleración media será

Es un vector que se encuentra dirigido a lo largo del cambio de velocidades

ˆˆ ˆyx zm

vv vva i j kt t t t

Page 90: Cinematica de una particula

COMPONENTES RECTANGULARES DE LA VELOCIDAD Y LA ACELERACIÓN

5. Aceleración instantanea. Se obtiene llevando al límite la aceleración media.

Es un vector que se encuentra dirigido hacia la concavidad de la curva y su magnitud es

x y z

x x

y y

z z

dva a i a j a kdt

dondea v xa v y

a v z

222zyx aaaa

Page 91: Cinematica de una particula

EjemploEn cualquier instante la posición horizontal del globo meteorológico está definida por x = (9t) m, donde t es el segundo. Si la ecuación de la trayectoria es y = xª/30, donde a = 2: Determinar la distancia del globo a la estación A, la magnitud y la dirección de la velocidad y de la aceleración cuando t = 2 s

Page 92: Cinematica de una particula

EjemploEl movimiento de la caja B está definida por el vector de posición

donde t esta en segundos y el argumento para el seno y el coseno está en radianes. Determine la localización de la caja cuando t = 0,75 s y la magnitud de su velocidad y aceleración en este instante

ˆˆ ˆ[0,5 (2 ) 0,5cos(2 ) 0,2 ]r sen t i t j tk m

Page 93: Cinematica de una particula

Ejemplo Los movimientos x e y de las guías A y B,

cuyas ranuras forman un ángulo recto, controlan el movimiento del pasador de enlace P, que resbala por ambas ranuras. Durante un corto intervalo de tiempo esos movimientos están regidos por

donde x e y están en milímetros y t en segundos. Calcular los módulos de las velocidad y de la aceleración a del pasador para t = 2 s. esquematizar la forma de la trayectoria e indicar su curvatura en ese instante.

2 31 120 y 154 6

x t y t

Page 94: Cinematica de una particula

MOVIMIENTO CURVILINEO PLANOEs aquel movimiento que se realiza en un solo plano.

r t x t i y t j

2 1

2 1 2 1

r r t r t

x x i y y j

x yv t v t i v t j

x t i y t j

x y

x y

a t a t i a t j

v t i v t j

x t i y t j

Page 95: Cinematica de una particula

MOVIMIENTO PARABÓLICOEs caso mas simple del movimiento plano, en el cual ax = 0 y ay = - g = .9,81 m/s2. En la figura se muestra este movimiento y su trayectoria

Page 96: Cinematica de una particula

MOVIMIENTO PARABÓLICO: HipótesisPara analizar este movimiento se usa las siguientes hipótesis

(a) El alcance del proyectil es suficientemente pequeño como para poder despreciar la curvatura de la superficie terrestre (la aceleración gravitatoria g es normal a dicha superficie);

(b) La altura que alcanza el proyectil es suficientemente pequeña como para poder despreciar la variación del campo gravitatorio (aceleración de la gravedad) terrestre con la altura;

(c) La velocidad del proyectil es suficientemente pequeña como para poder despreciar la resistencia que presenta el aire al movimiento del proyectil y

(d) No tendremos en cuenta el efecto de rotación de la Tierra que, como veremos más adelante, tiende a desviar el proyectil hacia la derecha de su trayectoria cuando el movimiento tiene lugar en el hemisferio Norte.

Page 97: Cinematica de una particula

MOVIMIENTO PARABÓLICO: ecuaciones Movimiento horizontal. Debido a que ax = 0

);(2

;21

;

020

2

200

0

ssavv

tatvxx

tavv

c

c

c

xx

x

xx

vvtvxx

vv

)()(

)(

0

00

0

Page 98: Cinematica de una particula

MOVIMIENTO PARABÓLICO: ecuaciones Movimiento vertical: Debido a que ay = - g = -9,81 m/s2

);(2

;21

;

020

2

200

0

yyavv

tatvyy

tavv

c

c

c

0

20 0

2 20 0

( )

1( )2

( ) 2 ( )

y y

y

y y

v v gt

y y v t gt

v v g y y

Page 99: Cinematica de una particula

Ejemplo

Un saco desliza por una rampa saliendo de su extremo con una velcoidad de 12 m/s. Si la altura de la rampa es 6 m desde el piso. Determine el tiempo necesario para que saco impacte contra el piso y la distancia horizontal R que avanza

Page 100: Cinematica de una particula

Ejemplo La máquina de picar está diseñada para extraer madera en trozos y lanzarlos con una velocidad vo = 7,5 m / s. Si el tubo se orienta a 30° respecto a la horizontal como se muestra en la figura, determinar qué tan alto se apilarán los trozos de madera, si la distancia del apilamiento a la salida es 6 m

Page 101: Cinematica de una particula

Ejemplo La pista de carreras de este evento fue diseñado para que los pilotos puedan saltar de la pendiente de 30 °, desde una altura de 1m. Durante la carrera, se observó que el conductor permaneció en el aire de 1,5 s. determine la velocidad de salida de la pendiente, la distancia horizontal alcanzada y la altura máxima que se eleva el piloto y su moto. Desprecie el tamaño de ambos.