Cicatrizacion de los tejidos

14
DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA Ante una agresión de cualquier etiología, se desencadena un proceso inflamatorio mediado por factores humorales y celulares, que intenta limitar y reparar la lesión producida. La inflamación localizada es una respuesta de protección estrechamente controlada por el organismo en el lugar de la lesión. FISIOPATOLOGÍA DE LA INFLAMACIÓN La defensa natural del organismo se basa en tres elementos: barrera externa, sistemas inespecíficos, y respuestas antígeno-específicas. La inflamación es la respuesta inicial e inespecífica del organismo ante estímulos mecánicos, químicos o microbianos. Es una respuesta rápida y ampliada, controlada humoral y celularmente (complemento, cininas, coagulación y cascada fibrinolítica) y desencadenada por la activación conjunta de fagocitos y células endoteliales. Es una respuesta beneficiosa si el proceso inflamatorio mantiene un equilibrio entre células y mediadores. Aparece vasodilatación, aumento de la permeabilidad vascular, activación/adhesión celular e hipercoagulabilidad. La vasodilatación y el incremento de la permeabilidad microvascular en el lugar de la inflamación aumentan la disponibilidad local de nutrientes y de oxígeno, produciendo calor, hinchazón y edema tisular. Los cambios hemodinámicos producen los cuatro síntomas clásicos asociados a la inflamación local: rubor (eritema), tumor (edema), calor y dolor. La respuesta a la agresión induce cambios cardiovasculares (aumento de la frecuencia cardiaca, de la contractilidad y del gasto cardíaco) y neuroendocrinos (liberación de catecolaminas, cortisol, hormona antidiurética, hormona de crecimiento, glucagón e insulina). Existe atrapamiento de líquidos debido al tercer espacio, e incremento del consumo de oxígeno. La diferencia en la concentración arteriovenosa de oxígeno se mantiene en rangos normales por la adaptación del aporte de oxígeno (DO2) pero, si aparece deuda de oxígeno, el organismo adopta rápidamente la vía anaerobia. Asociado al aumento en las necesidades metabólicas, se comprueba una caída en las resistencias vasculares sistémicas. Si no aparece una segunda agresión estas alteraciones fisiológicas locales y sistémicas persisten de tres a cinco días y desaparecen en siete-diez días, con reducción clínica del tercer espacio, aumento de la diuresis y normalización del pulso y de la temperatura. En ocasiones, la intensidad o la repetición de la agresión provocan la pérdida del control local o la activación de unos mecanismos de respuesta que están habitualmente quiescentes y que sobrepasan los sistemas de control, con una reacción sistémica exagerada (SIRS). Puede desencadenarse por una infección (virus, bacterias, protozoos y hongos) o por una causa no infecciosa (traumatismo, reacciones autoinmunes, cirrosis o pancreatitis). Bone, en 1996, describe tres fases en el desarrollo del SIRS. INTERVENCION FISIOTERAPEUTICA I TEMA Nº 5. CICATRIZACION DE LOS TEJIDOS

Transcript of Cicatrizacion de los tejidos

Page 1: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

Ante una agresión de cualquier etiología, se desencadena un proceso inflamatorio mediado

por factores humorales y celulares, que intenta limitar y reparar la lesión producida.

La inflamación localizada es una respuesta de protección estrechamente controlada por el

organismo en el lugar de la lesión.

FISIOPATOLOGÍA DE LA INFLAMACIÓN

La defensa natural del organismo se basa en tres elementos: barrera externa, sistemas

inespecíficos, y respuestas antígeno-específicas. La inflamación es la respuesta inicial e

inespecífica del organismo ante estímulos mecánicos, químicos o microbianos. Es una

respuesta rápida y ampliada, controlada humoral y celularmente

(complemento, cininas, coagulación y cascada fibrinolítica) y

desencadenada por la activación conjunta de fagocitos y células

endoteliales. Es una respuesta beneficiosa si el proceso inflamatorio

mantiene un equilibrio entre células y mediadores. Aparece

vasodilatación, aumento de la permeabilidad vascular,

activación/adhesión celular e hipercoagulabilidad.

La vasodilatación y el incremento de la permeabilidad microvascular en el lugar de la

inflamación aumentan la disponibilidad local de nutrientes y de oxígeno, produciendo calor,

hinchazón y edema tisular. Los cambios hemodinámicos producen los cuatro síntomas

clásicos asociados a la inflamación local: rubor (eritema), tumor (edema), calor y dolor.

La respuesta a la agresión induce cambios cardiovasculares (aumento de la frecuencia

cardiaca, de la contractilidad y del gasto cardíaco) y neuroendocrinos (liberación de

catecolaminas, cortisol, hormona antidiurética, hormona de crecimiento, glucagón e insulina).

Existe atrapamiento de líquidos debido al tercer espacio, e incremento del consumo de

oxígeno.

La diferencia en la concentración arteriovenosa de oxígeno se mantiene en rangos normales

por la adaptación del aporte de oxígeno (DO2) pero, si aparece deuda de oxígeno, el

organismo adopta rápidamente la vía anaerobia. Asociado al aumento en las necesidades

metabólicas, se comprueba una caída en las resistencias vasculares sistémicas. Si no

aparece una segunda agresión estas alteraciones fisiológicas locales y sistémicas persisten

de tres a cinco días y desaparecen en siete-diez días, con reducción clínica del tercer espacio,

aumento de la diuresis y normalización del pulso y de la temperatura.

En ocasiones, la intensidad o la repetición de la agresión provocan la pérdida del control local

o la activación de unos mecanismos de respuesta que están habitualmente quiescentes y que

sobrepasan los sistemas de control, con una reacción sistémica exagerada (SIRS). Puede

desencadenarse por una infección (virus, bacterias, protozoos y hongos) o por una causa no

infecciosa (traumatismo, reacciones autoinmunes, cirrosis o pancreatitis).

Bone, en 1996, describe tres fases en el desarrollo del SIRS.

INTERVENCION FISIOTERAPEUTICA I

TEMA Nº 5. CICATRIZACION DE LOS TEJIDOS

Page 2: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

FASE I

como respuesta a la agresión, se liberan localmente citocinas que inducen la respuesta inflamatoria, reparan

los tejidos y reclutan células del sistema retículo endotelial

FASE II

Se liberan pequeñas cantidades de citocinas a la circulación para aumentar la respuesta local. Se reclutan

macrófagos y plaquetas y se generan factores de crecimiento. Se inicia una respuesta de fase aguda, con

disminución de los mediadores proinflamatorios y liberación de los antagonistas endógenos Estos mediadores

modulan la respuesta inflamatoria inicial. Esta situación se mantiene hasta completar la cicatrización, resolver

la infección y restablecer la homeostasis. Si la homeostasis no se restablece, aparece….

FASE III

O reacción sistémica masiva. Las citocinas activan numerosas cascadas humorales de mediadores

inflamatorios que perpetúan la activación del sistema retículo endotelial, con pérdida de la integridad

microcirculatoria y lesión en órganos diversos y distantes. Desde el punto de vista clínico, la etapa I de Bone se

caracteriza por fenómenos inflamatorios locales, la etapa II por la presencia de signos clínicos y de laboratorio

que ponen de manifiesto la activación sistémica de la cascada inflamatoria (SRIS) y la etapa III por presentar

además de los anteriores signos, alteración del funcionamiento de diversos órganos o sistemas. Resulta muy

importante insistir que estos fenómenos pueden originarse por noxas de origen infeccioso (bacterias, virus,

hongos, etc.), o no infeccioso (trauma, grandes quemados, pancreatitis, etc.).

Los signos cardinales de la inflamación:

Rubor o enrojecimiento

Calor = aumento de la temperatura, del flujo sanguíneo y del metabolismo local.

Tumefacción: aumento de tamaño (bulto), por acumulación de sangre y exudado.

Dolor = por irritación de las fibras sensitivas nerviosas.

La inflamación puede ser descrita como:

Aguda, los signos y síntomas clásicos de inflamación.

Sub aguda, tiene características de la aguda y la crónica.

Crónica, la lucha entre el agente causante y las defensas del cuerpo prosiguen una

lucha durante un periodo largo.

Las causas desencadenantes de una inflamación son muy variadas, de forma general se

pueden englobar dentro de los siguientes grupos causales:

Organismos vivos (bacterias, virus, protozoos, parásitos...)

Estímulos físicos (frío, calor, radiaciones, lesión mecánica...)

Estímulos químicos (ácidos, sustancias tóxicas...)

Cuerpos extraños.

Reacciones inmunitarias (alergias, enfermedades autoinmunes...)

Page 3: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

CICATRIZACIÓN

Producida una herida, acontece un conjunto de procesos biológicos que utiliza el organismo

para recuperar su integridad y arquitectura, que se conocen como proceso de cicatrización y

que involucra 3 fases:

1. FASE INFLAMATORIA.

Entre el primer y segundo día (24 a 48 horas). Se caracteriza por una

respuesta vascular y otra celular, manifestadas por vasodilatación,

aumento de la permeabilidad vascular y aparición de leucocitos

(neutrófilos y macrófagos) formándose una costra que sella la herida.

Durante este período, el tejido no recupera una fuerza de tensión

apreciable y depende únicamente del material de sutura para mantener

su aposición.

2. FASE DE FIBROPLASIA (O DE MIGRACIÓN/ PROLIFERACIÓN).

Entre el tercer y decimocuarto día. En este período aparecen los

fibroblastos (células ge rminales del tejido fibroso) que van a formar el

tejido de granulación, compuesto por sustancia fundamental y

colágeno. Además, ocurre recanalización de los vasos linfáticos y se

forman capilares sanguíneos.

3. FASE DE MADURACIÓN.

Se extiende entre el 15º día hasta que se logra la cicatrización

completa (6 meses a un año). El prin cipal evento fisiológico es la

epitelización y el aumento progresivo de la fuerza tensil (hasta 70 a

90% de la fuerza original). Posteriormente ocurre la remodelación del

colágeno y la regresión endotelial, traducida clínicamente por

disminución del color cicatrizal

TIPOS DE CICATRIZACIÓN

Una cicatriz es la forma natural del cuerpo de sanar y reemplazar la piel perdida o dañada.

Una cicatriz está compuesta normalmente de tejido fibroso. Las cicatrices pueden formarse

por muchas razones diferentes, incluyendo como resultado de infecciones, cirugía, lesiones o

inflamación del tejido. Las cicatrices pueden aparecen en cualquier parte del cuerpo, y la

composición de una cicatriz puede variar - con apariencia plana, grumosa, hundida,

coloreada, dolorosa o irritada.

Page 4: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

El aspecto final de una cicatriz depende de muchos factores, incluyendo el tipo de piel y la

ubicación en el cuerpo, la dirección de la herida, el tipo de lesión, la edad de la persona que

tiene la cicatriz y su estado nutricional.

Existen 3 maneras de cicatrización según el período y la forma en que ésta ocurra.

CICATRIZACIÓN PRIMARIA O POR PRIMERA INTENCIÓN

Es la ideal para cualquier cirujano. Los tejidos cicatrizan por unión primaria, cumpliendo así las siguientes características:

mínimo edema, sin isecreción local, en un tiempo breve, sin separación de los bordes de la herida y con mínima formación

de cicatriz.

CICATRIZACIÓN SECUNDARIA O POR SEGUNDA INTENCIÓN

Cuando la herida no se afronta por falta de una atención oportuna o por indicación médica (heridas muy sucias), se lleva a

cabo un proceso de cicatrización más prolongado y más complicado. La herida cicatriza desde las capas profundas y desde

sus bordes. Habitualmente se forma tejido de granulación que contiene miofibroblastos y la herida cierra por contracción. El

proceso de cicatrización es lento y generalmente deja una cicatriz inestética.

CICATRIZACIÓN TERCIARIA O POR TERCERA INTENCIÓN (CIERRE PRIMARIO DIFERIDO).

Este es un método seguro de reparación en heridas muy contaminadas o en tejidos muy traumatizados. El cirujano realiza

un aseo prolijo de la lesión y difiere el cierre para un período que va desde el tercer al séptimo día de producida la herida,

de acuerdo a la evolución local, asegurando así un cierre sin complicaciones

El proceso fisiológico descrito anteriormente puede verse modificado considerablemente en

ciertos tejidos altamente especializados como el hueso, el musculo y el tejido nervioso.

A continuación se hace una revisión del proceso inflamatorio de cada uno de los tejidos, sus

características más importantes y los aspectos que desde la intervención debe tener en

cuenta el fisioterapeuta; iniciando con una breve explicación sobre el colágeno como proteína

fundamental de la gran mayoría de los tejidos

EL COLAGENO

El colágeno esta considero como el elemento estructural más importante en los seres vivos

conocidos. El colágeno es la proteína más abundante en los animales

superiores, pudiendo suponer un tercio de todas las proteínas del

cuerpo. Sus principales propiedades son su gran resistencia a la tensión

y su relativa inextensibilidad. (Michel J. Alter). El colágeno está formado

por muchas moléculas de aminoácidos, pero podemos destacar tres

principalmente. La glicina, prolina e hidroxiprolina. (Grant,1972). La

molécula de colágeno es una estructura helicoidal compleja cuyas

propiedades mecánicas se deben tanto a su composición biomecánica,

como a la disposición de sus moléculas.

El colágeno es un componente abundante en piel, tendones, sistema vascular. Existen varios

tipos de colágeno, designados por números romanos.

Page 5: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

Colágeno

tipo I

el más abundante, la unidad estructural constituyente es el tropocolágeno, una proteína de alrededor de

300.000 de peso molecular, constituida por tres cadenas del mismo tamaño, dos de ellas idénticas, las

llamadas a1, y otra ligeramente distinta, la a2. Las tres cadenas están unidas entre sí por puentes de

hidrógeno entre los grupos amino y carboxilo de los restos de glicina, y por puentes de hidrógeno con las

cadenas laterales de la hidroxiprolina, formando una hélice triple, estructura peculiar del colágeno. Esta hélice

solamente se rompe en los extremos. Su función más importante es la resistencia al estiramiento

Colágeno

tipo II

presente especialmente en el cartílago en forma de fibrillas finas, se sintetiza en el condroblasto y su función

principal es la resistencia a la presión intermitente

colágeno

tipo III

formado por tres cadenas idénticas a1, y tiene la peculiaridad de que en el extremo carboxilo terminal las tres

cadenas no están agrupadas en forma de hélice, sino unidas entre ellas por puentes disulfuro Este tipo de

colágeno, situado en el perimio y endomisio del músculo, parece ser especialmente importante en cuanto a

conferir dureza a la carne. Su función principal es la de sostén y filtración .Las unidades de tropocolágeno, que

tienen una longitud de unos 2.800 amstrongs, se encuentran agrupadas de forma paralela, unidas unas a otras

para formar las fibras de colágeno. Dentro de las fibras, las unidades están desplazadas aproximadamente un

cuarto de su longitud con respecto a las contiguas, y cada unidad dista de la siguiente unos 400 amstrongs

colágeno

tipo IV y V

Aparecen específicamente localizados en las membranas basales, o sea, en aquellas estructuras que separan

generalmente los epitelios de los tejidos conjuntivos. El colágeno IV es muy frecuente en todas las membranas

basales. El colágeno V se ha descrito específicamente en la membrana basal de la placenta (órgano muy

especial, transitorio), que citamos solo para dar un ejemplo de cómo esta proteína se adapta a distintas

funciones biológicas que van apareciendo a lo largo de la evolución de las especies.

CICATRIZACION DE LA PIEL

La piel está formada por tres capas: epidermis, dermis y tejido celular subcutáneo; La

Epidermis es la porción más externa de la piel. Tiene 0,04-1,5mm de espesor (máximo en

palmas y plantas); La Dermis es la capa intermedia. Constituye el 95 % del espesor total de la

piel. Alcanza su máximo espesor en la espalda donde puede llegar a

ser 30 veces más gruesa que la epidermis, es un sistema de tejido

conectivo fibroso que contiene las redes nerviosas y vasculares y los

apéndices formados por la epidermis. Las células propias son

fibroblastos, macrófagos, mastocitos y linfocitos, compuesta

principalmente por colágeno, El fibroblasto también sintetiza fibras

elásticas y de reticulina y la sustancia fundamental de la dermis (sostén de las fibras de

colágeno, elásticas y de las células). El colágeno es el principal material resistente a la

presión. Las fibras elásticas son importantes para el mantenimiento de la elasticidad de la piel;

Tejido celular subcutáneo Capa más interna de la piel. Está compuesta por lóbulos de

adipocitos separados por tabiques fibrosos formados por colágeno y vasos sanguíneos de

gran calibre.

PROPIEDADES DE LA PIEL

Visco elasticidad de la piel: se deben tener en cuenta dos aspectos, la capacidad de

estiramiento temporal y la capacidad de recuperación después de un estiramiento

Page 6: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

Propiedades tensoras de la piel: normalmente la piel se mantiene bajo cierta tensión, más

en los jóvenes que en los adultos. Esta tensión influye negativamente en el resultado de la

cicatriz.

Extensibilidad de la piel: la elasticidad de la piel es mayor en niños y en zonas de piel

delgada. Con la edad se pierde elasticidad y se reemplaza por la laxitud de la piel.

La piel que está sobre las articulaciones es más extensible, lo que permite los

movimientos. Por el contrario, en zonas con mayor grosor de la piel, con presencia de pelo

y fijación por trabéculas a planos profundos (palmas y plantas), la extensibilidad será

menor

FASE INFLAMATORIA. La fase inflamatoria / exudativa se inicia en el momento en que se

produce la herida y su duración es aproximadamente de tres días dependiendo de las

condiciones fisiológicas. Las primeras reacciones vasculares y celulares consisten en la

coagulación y la hemostasia y concluyen después de haber transcurrido aproximadamente 10

minutos. Por medio de la dilatación vascular y un aumento de la permeabilidad vascular se

consigue intensificar la exudación de plasma sanguíneo en el intersticio. Con ello se fomenta

la migración de los leucocitos hacia la zona de la herida, sobre todo de granulocitos y

macrófagos neutrófilos, cuya función prioritaria consiste en limpiar y proteger a la herida de

posibles infecciones a través de la fagocitosis. Al mismo tiempo liberan mediadores

bioquímicamente activos, que activan y estimulan células de gran importancia para la

siguiente fase del proceso curativo de la herida. Los macrófagos juegan un papel clave en

esta fase. Su numerosa presencia cobra importancia decisiva para el desarrollo de la curación

de la herida.

FASE DE FIBROPLASIA (O DE MIGRACIÓN/ PROLIFERACIÓN). En la cicatrización normal

hay un equilibrio entre la producción de colágeno y su degradación. Las colagenasas

producidas por leucocitos y macrófagos se encargan de la destrucción del colágeno. La

síntesis de colágeno se produce en exceso en fases iniciales y, aunque luego se degrada,

siempre permanece en cantidades superiores a la de la piel normal. A lo largo del proceso de

cicatrización predominan diferentes tipos de colágeno. En fases iniciales se sintetiza y

deposita colágeno tipo III; pero es rápidamente reemplazado por tipo I, el predominante en la

piel. El colágeno proporciona la fuerza tensora de la cicatriz. La epitelización comienza

rápidamente tras la agresión. Los queratinocitos migran desde áreas vecinas (folículos pilosos

y glándulas anexas) y proliferan restaurando así el epitelio. Los restos de tejido, la fibrina y los

leucocitos forman una costra por debajo de la cual ocurre la epitelización. Unas horas

después del traumatismo las células basales se agrandan y aflojan las uniones desmosómicas

que las adhiere a la dermis para cubrir una mayor área. Las mitosis celulares comienzan entre

el primer y segundo día tras la agresión. Cuando una célula se encuentra con otra idéntica

cambia la dirección del movimiento y cuando se encuentra rodeada de células similares queda

Page 7: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

en reposo (inhibición por contacto). La estratificación comienza cuando ya se ha cubierto toda

el área cruenta de la herida.

Las células endoteliales promueven la angiogénesis necesaria para abastecer de oxígeno y

nutrientes la zona de cicatrización. La migración de las células endoteliales se lleva a cabo

mediante colagenasas específicas que abren camino a través del tejido. Simultáneamente se

crea la luz de los túbulos y las conexiones vasculares con capilares neoformados vecinos.

Una vez establecido el flujo vascular unos capilares desaparecen tras la remodelación y otros

se diferencian en arterias y venas. La formación de vasos sanguíneos se produce en dirección

hacia regiones con menor tensión de oxígeno.

FASE DE MADURACIÓN. La remodelación es la última y más larga fase de la cicatrización.

El depósito de colágeno en los tejidos es un balance entre la actividad colagenolítica y la

síntesis de colágeno. Durante la remodelación la fuerza tensional aumenta a pesar de la

disminución de la cantidad de colágeno. Este fenómeno es debido a la modificación

estructural del colágeno depositado. El aumento en el diámetro de las fibras se asocia al

aumento de la fuerza tensional. La remodelación es un proceso dinámico de maduración de la

cicatriz que puede durar meses o años. Este es, sin embargo, un proceso imperfecto y el

colágeno de la cicatriz no alcanza el patrón de organización normal por lo que la fuerza

tensional de la cicatriz nunca es igual al de la piel indemne.

El colágeno se estabiliza a las 21 días con un 20% de fuerza normal, alcanza el 70% al año.

CICATRICES HIPERTRÓFICAS Y QUELOIDES

HIPERTRÓFICAS QUELOIDES

Elevadas, eritematosas pueden originar prurito o dolor.

Pero a diferencia de los queloides están limitadas a la zona

original del trauma. Las cicatrices hipertróficas

aparecen rápidamente después de la herida,

aumentan su tamaño en los 3-6 primeros

meses y luego comienzan su regresión. Los

queloides suelen aparecer más tarde, meses o años tras la

agresión. A pesar de una posible atrofia en la parte central,

continúan su crecimiento, exceden el tamaño de la lesión

inicial y nunca regresan..La cicatrización hipertrófica es

más frecuente en niños y personas jóvenes y en raza

negra o asiática.

Son exclusivos de los humanos. Son más comunes en

raza negra (prevalencia del 16% de

factores predisponentes genéticos, no

siendo claro el tipo de herencia). Los

queloides tienen tendencia a presentarse

en determinadas regiones del cuerpo: zona

esternal, deltoides, parte superior de la espalda y lóbulos

de las orejas. El queloide es elevado, eritematoso y

pruriginoso pero se extiende a la piel sana más allá de la

zona del trauma.

Histológicamente tanto las cicatrices hipertróficas como los queloide presentan una importante vascularización,

adelgazamiento de la epidermis y gran densidad de fibroblastos. La síntesis y la degradación de colágeno están

aumentadas.

Page 8: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

Al aplicar stress, entendido este como la fuerza de carga aplicada a un tejido mientras esta en

extensión o acortamiento, hay incremento en la elongación del tejido y se divide en tres fases,

una inicial, intermedia y final.

Al aplicar fuerza inicialmente a un tejido este comienza a elongarse, hay presencia de fibras

colágenos y elásticas que con la carga se orientan en forma paralela en la misma dirección de

esta. En la fase intermedia hay elongación progresiva que requiere de aumento sucesivo de

colágeno que se auto alinea en dirección de la carga.

En la fase final del proceso hay un aumento significativo en la carga que lleva a elongación del

tejido.

En la piel la inextensibilidad del colágeno está demostrada por un pequeño aumento en la

elongación del tejido cuando hay incremento en la carga aplicada. En este estadio la cicatriz

es menos eritematosa, disminuye su grosor y su apariencia es madura. La fuerza tensil

continua incrementándose porque las fibras colágeno están orientadas en sentido de las

líneas de stress y aunque no hay aumento en la producción de colágeno, el terapeuta debe

asumir el reto de ganancia de fuerza en el sitio de la lesión.

La presencia de una cicatriz debe ser manejada adecuadamente por el fisioterapeuta como

medida preventiva de complicaciones, con elementos como la preso terapia, utilizando los

recursos con los que cuenta actualmente como los elastómeros, los gel de silicona, las

prendas de licra y/o vendajes auto adheribles, además de la fricción transversa profunda

descrita por CYRIAX, que posibilita el incremento de la circulación en la zona y restringe la

formación de bandas fibrosas causantes del engrosamiento y las adherencias por lo cual la

aplicación de la electroterapia contribuye a su mejoramiento

CICATRIZACION DEL HUESO

El tejido óseo está formado por un material mineralizado depositado en una matriz orgánica

de fibras de colágeno. El hueso está derivado embriológicamente del tejido

mesenquimal, del que derivan sus células (osteoblastos, osteocitos y osteoclastos).

El hueso, según su origen, se clasifica en:

H. encondral: costal, esqueleto axial; tiene una fase cartilaginosa, antes de la

osificación.

H. membranoso: calota, esqueleto facial, clavícula; se forma directamente de la

condensación del tejido mesenquimal.

Histológicamente el hueso está formado por: hueso cortical: zona compacta externa y

hueso esponjoso o canceloso formado por trabéculas óseas con tejido medular

intercalado.

Page 9: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

La unidad estructural del hueso se denomina osteona, compuesta por láminas concéntricas

que rodean un canal haversiano central, que contiene vasos sanguíneos y fibrillas nerviosas; y

por las cuales los osteocitos migran para formar hueso. La reabsorción ósea es efectuada por

los osteoclastos, que crean nuevos canales haversianos, favoreciendo así la nueva migración

de osteoblastos y elementos vasculares para la formación de hueso. Por tanto el hueso

normal se encuentra en un ciclo continuo de formación y reabsorción llamado Remodelación.

El patrón de crecimiento del hueso es diferente en hueso encondral que en el membranoso. El

hueso encondral se forma sobre un cartílago precursor y el h. membranoso se forma por un

proceso pasivo a través de los núcleos de osificación que aumentan de tamaño gradualmente.

Sobre la remodelación ósea intervienen una serie de fuerzas biomecánicas (stress), que

generan una carga eléctrica. Así, la electronegatividad favorece el depósito óseo y la electro

positividad está asociada a la reabsorción.

La reparación se da en 6 estadios: impacto, inducción, inflamación, callo blando, callo duro,

remodelación.

El impacto se refiere a las fuerzas que actúan para producción de la lesión, la inducción,

contempla desde la formación del hematoma, la presencia de células reparadoras en el sitio

de lesión, hasta aproximadamente 48 horas.

La inflamación, esta mediada por neutrófilos, macrófagos, mastocitos y fibroblastos: Los

osteoclastos también están presentes para degradación del tejido necrótico favoreciendo el

proceso de granulación del tejido y de formación de vasos sanguíneos. En la formación de

callo blando, hay presencia de condroblastos que convierten el nuevo tejido en fibrosos,

estabilizándolo, desapareciendo el dolor, este proceso se inicia aproximadamente dos

semanas después de la lesión.

El callo duro, hay osificación osteocondral en el callo cartilaginosos, haciéndose visible a los

rayos X la zona de consolidación. Posteriormente la remodelación que va de meses a años

permite la formación de hueso lamelar en donde hay recuperación del diámetro del hueso.

El tratamiento va encaminado al movimiento controlado para la reducción del edema,

mantenimiento de los rangos de movimiento, promoción del proceso de reparación y

movilización de los tejidos blandos comprometidos en la inmovilización.

FACTORES QUE AFECTAN A LA CICATRIZACIÓN

Biomecánicas (cargas mecánicas, etc.)

Campos eléctricos (efecto piezoeléctrico)

Alteraciones del equilibrio endocrino (paratohormona, calcitonina, cortico esteroides,

diabetes mellitus...)

Otros (edad, localización, tipo de fractura, etc.)

Único tejido que puede lograr una regeneración tisular completa, recuperando el 100% de su capacidad biomecánica

Page 10: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

CICATRIZACION DEL MUSCULO

Los músculos pueden considerarse los «motores» del organismo. Sus propiedades de

excitabilidad, contractibilidad, elasticidad, etc. les permiten generar fuerza y movimiento. Los

músculos estriados esqueléticos están constituidos por células alargadas:

las fibras musculares. Estas fibras, que se organizan en fascículos, se

unifican por medio de envolturas elásticas. El conjunto de fibras

musculares se encuentra distribuido en un "andamiaje" de tejido conjuntivo.

Cada fibra está envuelta por el endomisio, paquetes de fibras forman haces

envueltos por perimisio y finalmente el total de fibras del músculo se encuentra envuelto por el

epimisio. Todo este "esqueleto conjuntivo" se va transformando en tendón, en la medida que

se dirige a los extremos del vientre muscular, con un decrecimiento de la cantidad de fibras

musculares y un aumento de la estructura conjuntiva, como se vería si hacemos sucesivos

cortes transversales en el paso de vientre muscular a tendón. Desde un punto de vista

histológico es la fibra muscular y la fibra colágeno, lo que le da propiedades biomecánicas de

la contracción muscular

FASE INFLAMATORIA: Hemostasis, inflamación (neutrófilos, macrófagos-24-72 h), aparición

de hematoma, formación edema e isquemia (necrosis).Se inicia el restablecimiento vascular a

las fibras lesionadas

FASE REPARADORA Dependiendo del grado de la lesión, se presenta 1.-Regeneración

fibrilar funcional (deseable) 2.-Formación de tejido fibroso cicatricial (no deseable), Puede

repetir la lesión, con pérdida de fuerza de contracción

FASE DE REMODELACIÓN Producción de matriz extracelular (fibroblastos), compuesta de:

Células mioblásticas (células satélite y leucocitos mononucucleados) que reparan las

miofibrillas

En condiciones no óptimas, con gran deposición de colágeno y actividad fibroblástica, con

la consiguiente formación de tejido fibroso en lugar de muscular.

Reorientación fibrilar con ligero ejercicio (tras al menos 5 días), que si está ausente

provoca una mala reorganización. 4 a 6 semanas de actividad controlada.

El colágeno se estabiliza a las 6 semanas. Descenso de la fuerza de contracción directamente relacionada con la

extensión de la lesión y el incremento de tejido fibroso

CICATRIZACION DEL TENDON

Los tendones poseen una organización externa muy precisa. Las fibras de colágeno están

dispuestas paralelamente formando haces apretados, denominados haces

primarios que se agrupan en haces secundarios, entre los cuales se encuentran

unas finas trabéculas de tejido conjuntivo laxo que siguen hasta la superficie del

tendón rodeándolo y formando el paratendón; en cuyo interior se encuentran

pequeños vasos y filetes nerviosos. A su vez, el tendón tiene una envuelta que

facilita su deslizamiento sobre los tejidos en su recorrido, compuesta en los

Page 11: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

tendones flexores de los dedos de la mano, por poleas esenciales para el movimiento de

flexión y que refuerzan su vaina sinovial. En la comunidad científica existe controversia acerca

de la procedencia de las células que intervienen en la cicatrización. La discusión gira en torno

a si las células de la superficie del tendón (cicatrización intrínseca), o las células de tejidos

que los rodean (cicatrización extrínseca) son los que producen los agentes necesarios para la

cicatrización. Hoy día, se mantiene que ambos mecanismos de cicatrización coexisten en

distinta proporción según la naturaleza del traumatismo y la agresión quirúrgica. Así, la

cicatrización intrínseca será dominante en presencia de sección franca, reparada de la forma

más atraumática posible, que restituya la estanqueidad del epitendón y la vaina sinovial,

permitiendo una movilización precoz para reactivar la bomba sinovial.

En la fase inicial de la cicatrización los fibroblastos de forman a partir del epi y endotendón

migrando al sitio de la lesión para su reparación, para luego de fagocitosis celular iniciar la

síntesis de colágeno, la cual dura de 1 a 3 días aproximadamente. La movilización debe

iniciarse en esta etapa, de forma pasiva del tendón comprometido o por el principio de que

una acción contra resistencia de un agonista permite relajación del antagonista (el tendón

comprometido).

La fase fibroblástica, dura entre 4 y 21 días, hay predominio de fibroblastos y la secreción de

colágeno se hace en patrones al azar, inicia en esta etapa la ganancia de fuerza. A la cuarta

semana se inicia la fase de remodelación y hasta la sexta el sitio se llena de colágeno, el cual

en esta etapa reoriente sus fibras de acuerdo a la aplicación de estrés. La remodelación del

tendón puede durar hasta 112 días, tiempo en el cual el tendón recupera su fuerza tensil, si ha

tenido un buen abordaje.

56% de fuerza de tensión se logra a las 6 semanas, y 79% al año

CICATRIZACION DEL LIGAMENTO

El ligamento se compone de tejido conectivo fibroso, de una naturaleza similar a los tendones

(Estructura visco elástica). Este tejido se encuentra estructurado por un grupo de pequeñas

entidades denominadas fascículos, los cuales conforman las fibras básicas. A su

vez, en esta estructura existen fibras onduladas que contribuyen de forma

significativa en su respuesta no lineal a un esfuerzo de tensión aplicado; sin

embargo, aún no está claro en qué forma y cantidad es la relación función-

estructura que desempeña un papel en el comportamiento de un ligamento. Se

compone de70% colágeno (I) menor orientado que en los tendones, 1 % elastina (más en lig.

Amarillo), Matriz extracelular con escaso número de fibroblastos

1. FASE INFLAMATORIA (hasta 72 h).Con formación de hematoma y edema (monocitos y

macrófagos)

Page 12: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

2. FASE REPARADORA (hasta 6 semanas) Producción celular y de matriz extracelular

(tejido de granulación) Crecimiento vascular (en su caso) entre los extremos de la lesión.

Cicatriz celular (fibroblastos que producen Colágeno I y III y matriz extracelular)

3. FASE REMODELADORA (hasta 12 meses). Hasta 50-70 % de fuerza tensil original.

Disminuye la presencia de fibroblastos y macrófagos, empaquetado de fibras de colágeno

tipo I.

50-70 de fuerza de tensión se consigue al año

CICATRIZACION DEL TEJIDO NERVIOSO

El tejido nervioso posee una capacidad muy limitada de regeneración en respuesta a

cualquier agresión externa. Por un lado, las neuronas maduras son incapaces de reproducirse

y el cerebro adulto cuenta con muy pocas células precursoras

que puedan dar origen a nuevas células nerviosas. Por el otro, si

un nervio es cortado, su capacidad para crecer nuevamente es

muy pobre. La cicatrización se da gracias a la regeneración

axónica por la presencia de laminina y al NGF (factor de

crecimiento del nervio) liberado por células de Schwann. Ésta

regeneración puede ocurrir sólo si los sitios de enfrentamiento

están cercanos. Cuando están separados, se produce un NEUROMA DE AMPUTACIÓN (tej.

conjuntivo desorganizado entre cabos axónicos); debido a esto se ve alterada la función (no

tiene conducción).

Para comprender mejor el tipo de lesión nerviosa que puede verificarse y las modalidades de

recuperación funcional, es apropiado recordar breve y muy esquemáticamente la estructura

de un tronco nervioso. El componente básico está constituido por el axón, rodeado por una

vaina mielínica. Los diferentes axones están agrupados en fascículos contenidos en el

denominado endonervio, a su vez delimitados por una vaina peri neural. Los distintos haces

pueden ser a su vez agrupados en un tronco principal, solo motor, solo sensitivo o mixto,

rodeado por una vaina epineural. Las lesiones neurológicas, originalmente se subdividen en

tres grados: neuropraxis, axonotmésis, neurotmésis.

Neuropraxis. Se caracteriza por la interrupción sólo funcional y temporal de la conducción

nerviosa, Puede estar presente, a nivel histológico, sólo una desmielinización segmentaria.

La recuperación funcional se produce en un período comprendido entre una hora y un

máximo de 12 semanas.

Axonotmesis. Se caracteriza por la interrupción anatómica de los axones, pero con

conservación de las vainas de revestimiento del nervio. Las vainas endoneurales de cada

axón quedan intactas. El muñón nervioso distal (en la parte profunda del seccionamiento)

va al encuentro de una degeneración de Waller hasta sus ramificaciones terminales (esto

explica la lentitud de la recuperación funcional, a pesar de la regeneración relativamente

rápida del tejido nervioso), mientras que el muñón proximal degenera hasta el primer nudo

Page 13: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

de Ranvier. La regeneración nerviosa es posible y se reinicia a partir del muñón proximal

sano dirigido a receptores periféricos específicos, a la velocidad de aproximadamente 1

mm por día, siguiendo la guía representada por las vainas nerviosas sanas. La

recuperación funcional puede producirse si la regeneración sucede en su totalidad, pero

puede necesitar varios meses. Resulta apropiado recordar que aunque la recuperación de

la sensibilidad, en teoría, siempre es posible, aun después de mucho tiempo la

recuperación funcional del músculo que ha sido denervado por más de 12 meses es un

evento poco probable debido a su degeneración irreversible, a pesar de la regeneración

nerviosa.

Neurotmesis. Se caracteriza por la interrupción completa tanto de los axones como de las

vainas de revestimiento del nervio. La degeneración sigue los esquemas expuestos ante-

riormente, mientas que la regeneración, al carecer de la guía suministrada por las vainas

nerviosas, puede producirse en forma desordenada con la formación del denominado

neuroma de amputación.

La recuperación funcional espontánea del nervio es extremadamente rara. Habitualmente se

considera como período promedio de recuperación funcional 1 año a partir del evento

traumático. Más allá de este período las probabilidades de recuperación espontánea son

remotas.

1. La defensa natural del organismo se basa en tres elementos, cuáles

son? Explique a través de un esquema y de ejemplos de ellos

2. A través de un esquema represente las etapas de Bone, los actores

celulares y lo que ocurre en cada una de ellas

3. Elabore un cuento, una canción o un trabalenguas en cuyo contenido se encuentren las

características de cada una de las etapas de un proceso de cicatrización.

4. Realice un cuadro comparativo entre las etapas de cicatrización de los diferentes

tejidos, incluyendo recomendaciones que el fisioterapeuta debe tener en cuenta a la

hora de su intervención

5. Organice y prepare sus, respuestas en un informe por escrito con tres compañeros

mas, para ser socializado en la próxima clase

PARA DESARROLLAR…

Page 14: Cicatrizacion de los tejidos

DOCENTE FT. BELKY XIOMARA MEDINA NORIEGA

BIBLIOGRAFIA

Cuadernos de cirugía (Valdivia) Vol. 14 N° 1, 2000, pp. 90-99 ISSN 0718-2864 versión

on-line

http://www.todonatacion.com/ciencias-del-deporte/conceptos-

fisiologia.php?pasado=colageno

Sepsis y Shock Séptico Dr. Alberto Dougnac L.

http://escuela.med.puc.cl/paginas/publicaciones/MedicinaIntensiva/Sepsis.html

LA PIEL. CICATRIZACIÓN CUTÁNEA Susana López Fernández. Residente de 3er

año. Hospital de la Santa CreuiSant Pau. (Barcelona) Jaume Masià Ayala. Médico

adjunto. Hospital de la Santa CreuiSant Pau. (Barcelona) Pere Serret Estalella. Jefe de

servicio. Hospital de la Santa CreuiSant Pau. (Barcelona)

http://www.secpre.org/documentos%20manual%202.html

INJERTOS (CÚTANEOS, DERMOGRASOS, TENDINOSOS, NERVIOSOS, ÓSEOS,

CARTILAGINOSOS Y VASCULARES). Andrés Marcos Vivas. Residente de 5º año de

Cirugía Plástica y Reparadora. Hospital Virgen de las Nieves. Granada. , Juan Carlos

Hijano Mir. Residente de 4º año de Cirugía Plástica y Reparadora. Hospital Virgen de

las Nieves. Granada. http://www.secpre.org/documentos%20manual%203.html

EL FISIOTERAPEUTA FRENTE AL PROCESO DE CICATRIZACION DE

DIFERENTES TEJIDOS. Ft Amparo Ardila, Ft Ingrid Toloza. Revista ASCOFI, Vol. 49,

año 2004

http://www.healthsystem.virginia.edu

RESPUESTA INFLAMATORIA SISTÉMICA: FISIOPATOLOGÍA Y MEDIADORES. García de Lorenzo y Mateos, j. López Martínez y m. Sánchez castilla

LA PIEL, *Las heridas y su tratamiento. Hartmann. 1999 Adaptado por Verónica Drago Machado, Enfermera Universitaria

Bioingeniería: nuevo material biológico que permite la supervivencia y el crecimiento de tejido nervioso. Juan Carlos López García. http://www.biomeds.net/biomedia/R16/destacado3.htm