Termodinamica Ejercicios Primera Ley

127
90 Termodinámica Primera Ley De La Termodinámica Ing. Renán Criollo

Transcript of Termodinamica Ejercicios Primera Ley

Page 1: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Page 2: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

DEMOSTRACIONES

Page 3: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMAS DE APLICACIÓNPROBLEMA 1

El siguiente gráfico indica el comportamiento de un mol de gas ideal monoatómico; determinar L, Q, ∆U,H para cada etapa y para todo el sistema.

P

A B

C VDATOS

A (P1; V1; T1); T1=600KB (P2; V2; T2); V2=2V1

C (P3; V3; T3); P3= P2/2; T3< T2

L, Q, ∆U,H = ?

SOLUCION

ETAPA PROCESOA-B Expansion isobáricaB-C Enfriamiento isométricoC-A Compresión isotérmica

Etapa A-B

Page 4: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

∆U

Q

∆H

Etapa B-C

Page 5: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

∆U

Q

∆H

Etapa C-A

Trabajo

Page 6: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

RESULTADOS

ETAPA PROCESO Q (J) L(J) ∆U(J) ∆H(J)A-B Expansión isobárica 12471 4988.4 7482.6 12471B-C Enfriamiento isométrico - 7482.6 0 -7482.6 - 12471C-A Compresión isotérmica - 3457.7 -3457.7 0 0

CICLO 1530.7 1530.7 0 0PROBLEMA 2

Page 7: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

El siguiente gráfico indica el comportamiento de un mol de gas ideal diatómico. Determinar L, Q, ∆U,H para cada etapa y para todo el sistema considerando los siguientes datos:

P

B C

A D VDATOS

A (P1; V1; T1)B (P2; V2; T2)C (P3; V3; T3)D (P4; V4; T4)TA=40KTB=14OKTC=320KTD=280KL, Q, ∆U,H =?

SOLUCIÓN

ESTADO P(atm) V(L) T(K)1 P1 V1 402 P2 V2=V1 1403 P3=P2 V3 3204 P4= P1 V4 280

ETAPA PROCESOA-B Calentamiento isobáricoB-C Expansión isobáricaC-D Expansión adiabáticaD-A Compresión isobárica

Page 8: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa A-B

Trabajo

∆U

Q

∆H

Etapa B-C

Trabajo

Page 9: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

Etapa C-D

Trabajo

Page 10: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

Etapa D-A

Trabajo

Page 11: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

RESULTADOS

ETAPA PROCESO Q(J) L(J) ∆U(J) ∆H(J)A-B Calentamiento isobárico 2078.5 0 2078.5 2909.9B-C Expansión isobárica 5237.82 1496.52 3741.3 5237.82C-D Expansión adiabática 0 831.4 -831.4 -1163.96D-A Compresión isobárica -6983.76 -1995.36 -4988.4 -6983.76

CICLO ----------------- 332 332 0 0

Page 12: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 3

1 mol de un gas ideal monoatómico es sometido a los siguientes procesos:

a) Expansión isotérmica reversible; seguida de un enfriamiento isobárico.la presión inicial es de 10 atm La presión final de 5 atm; la temperatura inicial es 500k y la temperatura final es de 300K.

b) Expansión isotérmica irreversible contra una presión externa constante de 5 atm; luego un enfriamiento isobárico. La presión inicial es 10 atm; y varía la presión de 500K hasta 300K.

c) Expansión isotérmica reversible de 10 atm hasta 7 atm; luego enfriamiento isobárico de 500K hasta 300K y finalmente expansión isotérmica reversible hasta 5atm.

Calcular para cada uno de los procesos Q total en cada proceso.

DATOS

a) i = 10atmPf=5atmTi=500KTf=300K

b) Pi = 10atmPoposición=5atmTi=500KTf=300K

c) Pi = 10atmPf=7atmPf`=7atmTi=500KTf=300K

Gas monoatómico:

SOLUCION

a)

P (atm) 10 1

5 500K 3 2

300K V(L) V3 V 2

ETAPA PROCESO1-2 Expansión isotérmica reversible

Page 13: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

2-3 Compresión isobáricaEtapa 1-2

Trabajo

∆U

Q

Etapa 2-3

Q

Page 14: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Calor total

b)

P (atm) 10 1

5 500K 3 2

300K V (L) V3 V 2

ETAPA PROCESO1-2 Expansión isotérmica irreversible2-3 Enfriamiento isobárico

Etapa 1-2

Q1-2

Page 15: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q2-3

Calor total

c) P (atm) 10 1

3 2 7 500ºR 5 4 300ºR

V (ft3)

Page 16: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

V1 V3 V4 V2

ETAPA PROCESO1-2 Expansión isotérmica reversible2-3 Enfriamiento isobárico 3-4 Expansion isotérmica reversible

Etapa 1-2

Q1-2

Q2-3

Page 17: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q3-4

Calor total

Page 18: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 4

La energía de un Sistema cuando aumenta en 60BTU al mismo tiempo que desarrolla 75BTU de trabajo sobre sus alrededores. Determinar el calor transferido al o desde el sistema.

DATOS

∆U=60 BTUL= 75 BTUQ=?

SOLUCIÓN

Un sistema cerrado efectúa un proceso durante el cual se extraen 10 BTU de calor del sistema y se desarrollan 25 BTU de trabajo. Después del proceso anterior el sistema regresa a su estado inicial mediante un segundo proceso durante el cual se agrega 15BTU de calor al sistema. ¿Qué cantidad de trabajo se transfiere durante el segundo proceso?

DATOSPrimer proceso:Q1= - 10 BTUL1= 25 BTU

Segundo proceso:Q2= 15 BTUL2=?

SOLUCIÓN

Proceso 1 Proceso 2

L1= 25 BTU Q1= - 10 BTU Q2= 15 BTU L2= ?

Sistema Sistema

Page 19: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 5

Una masa de gas se expande reversiblemente dentro de un cilindro desde un volumen inicial de 5 ft3 hasta un volumen final de 15 ft3. La presión del gas dentro del cilindro se mantiene constante en 25 PSIABS. Si se agregan 50BTU de calor al gas durante el proceso ¿Cuál es el cambio de energía interna del gas? ¿Cuál es el cambio de entalpía del gas?

DATOSVi=5 ft3

Vf=15 ft3

P=25 PSIABS =cteQ=50 BTU

a) U=?b) H=?

SOLUCIÓN

a)

b)

Page 20: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 6

Calcular la entalpía de 1 lb-mol de un fluido que ocupa un volumen de 10 ft3

cuando su energía interna es de 450 BTU y la presión vale 35 PSIABS.

DATOS

n =1 lb-molV=10 ft3

U=450 BTUP=35 PSIABS

H=?SOLUCIÓN

Page 21: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 7

Se comprimen 50 lb-mol de aire, reversiblemente en un cilindro a presión constante de 25 PSIABS desde un volumen inicial de 415 ft3 hasta un volumen final de 400 ft3. Se sabe que el calor extraído del aire durante el proceso es de 243 BTU.

a) ¿Cuál es el cambio de energía interna del aire?b) ¿Cuál es el cambio de entalpía del aire?

DATOS

n = 50 lb-molP=25 PSIABS=cteVi =415 ft3

Vf =400 ft3

Q=243 BTUa) U=?b) H=?

SOLUCIÓN

a)

b)

Page 22: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 8

El vapor de agua que a 15 PSIABS, se hace pasar por un radiador, tiene en volumen especifico y una entalpía a la entrada de 26.29 ft3/lb-m y 1150.9 BTU/lb-m respectivamente. Una vez que se condensa el vapor dentro del radiador; el condensado sale del aparato a 15 PSIABS teniendo un volumen especifico y una entalpía de 0.01673 ft3/lb-m y 181.2 BTU/lb-m respectivamente. Si se desprecian los cambios de energía cinética y energía potencial ¿Qué cantidad de calor provee el radiador para cada lb-m de vapor?

DATOS

Pi=15 PSIABS

Hi=1150.9 BTU/lb-mPf=15 PSIABS

Hf=181.2 BTU/lb-mQ=?

SOLUCIÓN

Page 23: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 9

Considérese la expansión de aire dentro de un cilindro. Supóngase que el volumen y la presión iniciales son 1ft3 y 1500PSIABS respectivamente. Si el proceso de expansión es reversible y la trayectoria está dada por PV1.4 = cte. Calcular el trabajo total desarrollado por el gas al alcanzar u volumen final de 8ft3, expresar el resultado en BTU.

DATOS

Pi=1500 PSIABS

Vi =1 ft3

Vf =8 ft3

L=?SOLUCIÓN

P

1500 - - - 1 P*V1.4 =cte

P2 - - - - - - - - - - - - - 2

V 1 8

Cálculo de P con las ecuaciones de Poisson

Cálculo del trabajo

Page 24: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Page 25: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 10

Un sistema cerrado efectúa el siguiente ciclo formado por 4 etapas .Completar la siguiente tabla:

ETAPA Q(BTU) L (BTU) U(BTU)1-2 1040 02-3 0 1423-4 -900 04-1 0

SOLUCIÓN

Etapa 1-2

Etapa 2-3

Etapa 3-4

Etapa 4-3

Como es un ciclo cerrado:

RESULTADOETAPA Q(BTU) L (BTU) U(BTU)

1-2 1040 0 10402-3 0 142 -1423-4 -900 0 -9004-1 0 2 2

Page 26: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

CICLO 140 140 0PROBLEMA 11

Un sistema cerrado efectúa el siguiente ciclo formado por 4 etapas .Completar la siguiente tabla:

ETAPA Q(BTU) L (BTU) U(BTU)1-2 0 13902-3 0 3953-4 0 -10004-1 0

SOLUCIÓN Etapa 1-2

Etapa 2-3

Etapa 3-4

Etapa 4-3Como es un ciclo cerrado:

RESULTADOETAPA Q(BTU) L (BTU) U(BTU)

1-2 1390 0 13902-3 0 395 -3953-4 -1000 0 -10004-1 0 -5 5

Page 27: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

CICLO 390 390 0PROBLEMA 12

En la figura se muestra un ciclo formado por tres procesos reversibles efectuado por un sistema cerrado. El proceso 1-2 es adiabático, el proceso 2-3 es a presión constante y el proceso 3-1 es a volumen constante. Si el cambio de energía interna durante el proceso 1-2 es -50 BTU ¿Cuánto vale el calor transferido neto durante este ciclo? ¿Se trata de un ciclo que absorbe o produce trabajo?

DATOS

U1-2=-50 BTUQN=? P (PSI) 1

75

15 3 2 1 8 V (ft3)

SOLUCIÓN

Etapa 1-2

Etapa 2-3

ETAPA PROCESO1-2 Expansión adiabática2-3 Compresión isobárica3-4 Calentamiento isométrico

ESTADO P(PSI) V(ft3) T(ºR)1 75 1 T1

2 15 8 T2

3 15 1 T3

Page 28: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 3-1

Cálculo del calor neto

Page 29: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMAS DE APLICACIÓN PARTE II

PROBLEMA 1

Una libra mol de un gas ideal monoatómico (Cv=3/2r) inicialmente a 600R es calentado isotérmicamente hasta que el volumen llega a ser el doble del que tenia al comienzo, luego mediante un enfriamiento isométrico se reduce la presión a la mitad de su valor inicial. Posteriormente se realiza una compresión isotérmica que vuelve al gas a su estado original. Calcular Q, L, U, H para cada una de las tres etapas y para el proceso completo, asumiendo reversibilidad en todos ellos.

DATOS

ESTADOSESTADO P,atm V,L T,R

1 P1 V1 6002 P2=P1 2V1 12003 P3=0.5P1 2V1 600

SOLUCIÓN P T=600R

P1 1 2

P2= 0.5P1 T=1200R

3 V V1 V2 =2V1

etapa proceso Gas utilizado1-2 P=cte Calentamiento isobárico2-3 V=cte Enfriamiento isométrico3-1 T=cte Compresión isotérmica

Page 30: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Para el calentamiento isobárico

Q y ΔH

ΔU

Trabajo

Para el proceso isométrico

Trabajo

ΔU y Q

Page 31: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

ΔH

Para el proceso isotérmico

ΔU y ΔH

Trabajo

Q y L

Encontrar las entropías del sistema.

Para el calentamiento isobárico

Page 32: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Para el proceso isométrico

Para el proceso isotérmico

RESULTADOS

ETAPA PROCESO Q, BTU L, BTU U, BTU H, BTUS,

1-2 Calentamiento isobárico 2980,5 1192 1788 2980,5 3,442-3 Enfriamiento isométrico -1788 0 -1788 -2980,5 -2,063-1 Compresión isotérmica 826,37 -826,37 0 0 -1,38

CICLO ----------------------------- 366.5 366.5 0 0 0

PROBLEMA 2

Una libra mol de un gas ideal (Cv=5/2R) es calentado isotérmicamente desde 40oF hasta 140oF, luego isobáricamente hasta 320oF; en una expansión se reduce su temperatura hasta 280oF; finalmente, se lo enfría isobáricamente hasta su estado original .el ciclo completo sugiere una absorción de 79,5 BTU por parte del sistema. Determinar Q, L, U y H en cada una de las etapas y en todo el ciclo. Especifique que clases de proceso es la tercera etapa.

Datos

ESTADOS

Page 33: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

ESTADO P,atm V,L T,R1 P1 V1 5002 P2 V2=V1 6003 P3=P2 V3 7804 P4=P1 V4 740

SOLUCIÓN P P1 2 T=600R 3

P2= 0.5P1

1 T=500R T=740R 4 V V1 V2 V3

Etapa 1-2 Trabajo

ΔU y Q

ΔH

Page 34: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 2-3

Q y ΔH

ΔU

Etapa 3-4

Proceso adiabático (hipoteticamente)

Calculo de γ

Page 35: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

ΔU

Q

ΔH

Cumple con la condición del que el tercer proceso es adiabático

Page 36: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 4-1

Q y ΔH

ΔU

Trabajo

CÁLCULO DE LA ENTROPÍA DEL SISTEMA

Etapa 1-2

Etapa 2-3

Page 37: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 3-4

TABAL DE RESULTADOS

ESTADOSESTADO DESCRIPCIÓ

NPROCESO Q, BTU L,BTU U,BTU H,BTU S,

1-2 Calentamiento isométrico

V=cte 496,75 0 496,75 695,45 0,90

2-3 Calentamiento isobárico

P=cte 1251,81 357,66 894,15 1251,81 1,82

3-4 Expansión adiabático(hipó

tesis)

Q=0 0 198,7 -198,7 -278,18 0

4-1 Compresión isobárica

P=cte -1669,08 -476,88 -1192,2 -1669,08 -2,72

CICLO 79,5 79,5 0 0 0

Page 38: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 3

1 lb-mol de un gas ideal ( , se encuentra a 10 atm y 500 ºR. Calcular

el calor desarrollado en cada una de los siguientes procesos; todos los cuales implican con una expansión y enfriamiento isobárico.

a) Expansión isotérmica reversible seguida de un enfriamiento isobáricob) Expansión isotérmica irreversible contra una presión externa constante

de 5 atm; luego un enfriamiento isobárico.c) Expansión isotérmica reversible hasta 7 atm; luego un enfriamiento

isobárico hasta 300ºR; finalmente expansión isotérmica reversible hasta 5 atm.

d) Expansión irreversible contra una presión externa constante de 7 atm sin que varié la temperatura; enfriamiento isobárico hasta 300ºR y nueva expansión irreversible e isotérmica contra 5 atm.

e) Expansión irreversible contra una presión externa constante de 7 atm sin que varié la temperatura; enfriamiento isobárico hasta 300ºR y nueva expansión reversible e isotérmica contra 5 atm.

DATOS

d) Pi = 10atm Pf=5atm

Page 39: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Ti=500 ºRTf=300 ºR

e) Pi = 10atm

Poposición=5atmTi=500 ºRTf=300 ºR

f) Pi = 10atmPf=7atmPf`=7atmTi=500 ºRTf=300ºR

g) Pi = 10atmPoposición=7atmTi=500ºRTf=300 ºRPoposición=5atm

h) Pi = 10atmPoposición=7atmTi=500 ºRTf=300 ºRPoposición=5atm

SOLUCIÓNa)

P (atm) 10 1

5 500ºR 3 2

300ºR V(ft3) V3 V 2

ETAPA PROCESO1-2 Expansión isotérmica reversible2-3 Enfriamiento isobárico

Etapa 1-2

Page 40: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 2-3

Calor total

b)

Page 41: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

P (atm) 10 1

5 500ºR 3 2

300ºR V(ft3) V3 V 2

ETAPA PROCESO1-2 Expansion isotérmica irreversible2-3 Enfriamiento isobárico

Etapa 1-2

Etapa 2-3

Page 42: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Calor total

c)

ETAPA PROCESO1-2 Expansion isotérmica reversible2-3 Enfriamiento isobárico 3-4 Expansion isotérmica reversible

P (atm) 10 1

3 2 7 500ºR 5 4 300ºR

V (ft3) V1 V3 V4 V2

Etapa 1-2

Page 43: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 2-3

Etapa 3-4

Page 44: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Calor total

d) P (atm) 10 1

3 2 7 500ºR 5 4 300ºR

V (ft3) V1 V3 V4 V2

ETAPA PROCESO1-2 Expansión isotérmica irreversible2-3 Enfriamiento isobárico 3-4 Expansion isotérmica irreversible

Etapa 1-2

Page 45: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 2-3

Etapa 3-4

Page 46: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Calor total

ETAPA PROCESO

1-2 Expansión isotérmica irreversible2-3 Enfriamiento isobárico 3-4 Expansion isotérmica reversible

P (atm) 10 1

3 2 7 500ºR 5 4 300ºR

V (ft3) V1 V3 V4 V2

Etapa 1-2

Page 47: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapa 2-3

Etapa 3-4

Page 48: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Calor total

PROBLEMA 4

4 moles de un gas ideal están confinadas en un cilindro térmicamente aislado a 6 atm y 27ºC , el pistón es soltado repetitivamente permitiendo la expansión adiabática del gas contra la presión atmosférica (1atm) .Determinar la temperatura final , el cambio de energía interna y de entalpia, el calor

transferido y el trabajo realizado si .Expresar los resultados en

calorías.

DATOS

n= 4 molesPi=6 atmTi=27ºC= (27+273)=300KPOPOSICIÓN=1 atm

a) Tf=?b) U=?c) H=?d) Q=?e) L=?

SOLUCIÓN

P (atm)

5 1

Page 49: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q=0

300K 1

2 V(L)

V1 V 2

a)

b) Remplazo el valor de Tf en la ecuación 1

Page 50: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

c)

d)

PROBLEMA 5

Calcular el trabajo realizado por 1 lb-mol de un gas ideal a 2,72 atm y 500ºR al experimentar una expansión isotérmica irreversible contra una presión constante de 1 atm .Determinar también la transferencia de calor y los cambios de energía interna y entalpia. Expresar los resultados en BTU.

DATOS

n=1 lb-molPi=2.72 atmTi=500ºRPOPOSICIÓN=1 atm

a) L=?b) Q=?c) U=?d) H=?

SOLUCIÓN

P (atm) 1 2.72

1 500ºR

Page 51: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

2 V

V1 V2

ESTADO T(ºR) P(atm) V(L)1 500 2.72 V1

2 500 1 V2

a)

b)

c)

d)

Page 52: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

RESULTADOS

ETAPA Q(BTU) L(BTU) U(BTU) ∆H(BTU)1-2 628.243 628.243 0 0

PROBLEMA 6

1 mol de gas ideal , se expande adiabáticamente contra una presión

constante de 1 atm hasta que el volumen es el doble del inicial.Si la temperatura inicial es 25 ºC y la presión inicial es 5 atm calcular: T f, Q, L.U,H.

DATOS

POPOSICIÓN=1 atm

Vf=2Vi

Ti=25ºC=(25+273)=298KPi=5 atm

SOLUCIÓN

P (atm)

5 1 Q=0

298K

1

Page 53: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

2 V(L)

V1 V 2

a)

b) Remplazo el valor de Tf en la ecuación 1

Page 54: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

c)

d)

PROBLEMA 7

Calcular el volumen final y el trabajo de expansión en procesos: a) Reversible isotérmico.b) Reversible adiabáticoc) Irreversible adiabático

De 10 L de gas ideal monoatómico a 0ºC y 20 atm que se expande hasta que la presión final es 1 atm

DATOS

Vi=10LPi= 20atm

Ti=0ºC=273KPf=1atmVf=?L=?

SOLUCIÓN

a) Expansion isotérmica reversible

P (atm)

Page 55: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

1 20

1 273K

2 V (L)

10 V2=?a) Volumen final

b) Trabajo

Page 56: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

b) Expansión adiabática reversible

P (atm)

20 1 Q=0

298K

1 2

V(L) 10 V2=?

Volumen Final

Trabajo

Page 57: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

c) Expansión adiabática irreversible

P (atm)

20 1 Q=0

298K

1 2

V(L) 10 V2=?

Page 58: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Volumen final

Trabajo

Page 59: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 8

1 mol de gas ideal monoatómico inicialmente a 1 atm y 300K es sometido a un ciclo de las siguientes transformaciones reversibles:

a) 1-2 Compresión isotérmica hasta dos atmosferasb) 2-3 calentamiento isobárico hasta 400Kc) 3-1 retorno al estado inicial según la variación lineal P=a+b*T.

Representar el ciclo y evaluar Q, L,U,H para cada etapa y para el ciclo.

DATOSn= 1 mol

Ti=300KPi=1 atm

SOLUCIÓN

P (atm)

2 2

3

Page 60: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

400K 1 300K

1 V (L)

V2

V3 V1

ESTADO P(atm) T(K) V(L)1 1 300 V1

2 2 300 V2

3 2 400 V3

a) Etapa 1-2

Trabajo

∆U

Q

ETAPA PROCESO1-2 Compresión isotérmica2-3 Calentamiento isobárico3-1 -----------------------------------

-

Page 61: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

H

b) Etapa 2-3

Trabajo

∆U

Q

Page 62: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆H

c) Etapa 3-1

∆U

Q

Page 63: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆H

RESULTADOS

ETAPA PROCESO Q(J) L(J) U(J) H(J)1-2 Compresión isotérmica -1728.85 -1728.85 0 02-3 Calentamiento isobárico 20785 8314 12471 207853-1 ------------------------------------ -12471 -20785

CICLO ------------ 0 0

PROBLEMA 9

1 ft3 de gas ideal a 25ºC y 20PSIABS es comprimido hasta 80 PSIABS siguiendo

una trayectoria descrita por P*V1.25. Si , determinar:

a) La temperatura finalb) El trabajo realizadoc) El cambio de energía internad) El cambio de entalpiae) El calor transferido indicando si el gas lo absorbe o lo libera.f) La masa del gas.

DATOS

Vi=1 ft3

Pi=20PSIABS

Pf=80PSIABS

a) Tf=?b) L=?c) U=?

Page 64: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

d) H=? e) Q=?f) m=?

SOLUCIÓN P (PSI)

80 2

T2=?

20 1 537ºR

V(ft) 1 V2=?

Cálculo de γ

g) Cálculo del número de moles

Temperatura final

Page 65: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

Variación de energía interna

Variación de entalpia

Calor

Page 66: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Masa

PROBLEMA 10

Demostrar que el intercambio de calor entre un gas ideal, de CV constante, y su alrededor en un proceso politrópico puede ser representado por

SOLUCIÓN

Page 67: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

R en función de

Reemplazo 2 en 1

Page 68: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 11

1 mol de gas ideal , se expande reversiblemente desde 20 atm y

27ºC hasta 1 atm mediante los siguientes procesos.a) Isotérmicob) Isocóricoc) Adiabáticod) Politrópico (con =1.3)

Calcular la temperatura final., el trabajo realizado, el calor transferido,U,H en cada proceso.

DATOS

n=1 mol

Pi=20 atm

Pf=1 atmTi= 27ºC= (27+273)=300K

Tf=?

Page 69: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

L=?Q=?U=?

H=?

SOLUCIÓN

a) Expansión Isotérmica

P (atm) 1 20

1 300K

2 V (L)

V1 V2

Temperatura final

Trabajo

Page 70: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

H

b) Enfriamiento Isocórico

P (atm) 1 20

1 2 300K

T2=? V (L) V1=V2

Page 71: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

∆U

Q

∆H

c) Expansión adiabática

Page 72: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

P (atm)

20 1 Q=0

300K

1 T2=? 2

V(L) V1 V2

Temperatura final

Trabajo

∆U

Page 73: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q

∆H

d) Expansión politrópica

P (atm)

20 1

T2=?

1 2 300K

V(L) V1 V2

Temperatura final

Trabajo

Page 74: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

H

PROBLEMA 12

1 mol de gas ideal a 400Ky 1 atm de presión es: Expandido a presión constante hasta alcanzar 1.5 veces su volumen,

1. Expandido a continuación hasta reducir 1/3 su presión mediante un proceso isócoro.2. Expandido adiabáticamente de modo que su temperatura de reduce en un 25%.3. Finalmente es comprimido poli trópicamente hasta su estado inicial.

Si , Encontrar el valor de k par a el proceso poli trópico. Calcular

U,H, Q y L para cada etapa y para el ciclo completo. Suponiendo reversibilidad cada vez.

Page 75: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

DATOSn=1 molTi=400KPi=1 atm

a) P=cteVf=1.5*Vi

b) V=ctePf=Pi-1/3Pi

c) Q=0Tf=Ti-0.25Ti

d) Compresión politrópicaU,H, Q y L=?

SOLUCIÓN P (atm)

1

1 400K

V(L)

V1 V2= V3 V4

ESTADO P(atm) T(K) V(L)1 1 400 V1

2 1 T2 V2=1.5* V1

3 P3=P2-1/3 P2 T3 V3 =V2

4 P4 T4= T3-0.25 T3 V4

ETAPA PROCESO1-2 Expansión Isobárica2-3 Enfriamiento isocórico3-4 Expansión adiabática4-1 Compresión politrópica

3

4

2

T3

T4

T2

P4

P3

Page 76: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

a) Expansion isobárica (Etapa 1-2)

Cálculo de T2

Trabajo

∆U

Q

∆H

Page 77: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

b) Enfriamiento isocórico (Etapa 2-3)

Cálculo de T3

Cálculo de P3

Trabajo

∆U

Page 78: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q

∆H

c) Expansión adiabática (Etapa 3-4)

Cálculo de γ

Cálculo de T4

Cálculo de P4

Page 79: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

∆U

Q

∆H

d) Compresión politrópica (Etapa 4-1)

Cálculo de

Page 80: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Trabajo

∆U

Q

H

Page 81: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

RESULTADOS

ETAPA PROCESO Q(J) L(J) U(J) H(J)1-2 Expansión Isobárica 5819.8 1662.8 4157 5819.82-3 Enfriamiento isocórico -4157 0 -4157 -5819.83-4 Expansión adiabática 0 2078.5 -2078.5 -2909.94-1 Compresión politrópica -1169.16 -3247.66 2078.2 2909.9

CICLO ------------------ 493.99 193.99 0 0

PROBLEMA 13

1mol de gas ideal a 400K y 1 atm es sometido al siguiente proceso, todas las etapas del cual son reversibles.

a) Expansión isotérmica.b) Expansión adiabáticac) Compresión isotérmicad) Compresión adiabática que la lleva a su estado inicial.

La temperatura inferior alcanzada durante el proceso es 200K y el Trabajo total

realizado es de 3000cal. Si , determinar para cada etapa L, Q,U,L.

DATOS

Page 82: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

n=1mol

Pi=1 atm=14.7 PSILN=3000Cal

L, Q,U,L=?SOLUCIÓN

P (PSI)

14.7

P2

720.6ºR

P4

P3 360.6ºR

V(ft3) V1 V4 V2 V3

a) Expansión isotérmica

Cálculo del V1

Trabajo

1

2

34

Page 83: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

H

b) Expansión adiabática

Cálculo de γ

Trabajo

Page 84: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

c) Compresión isotérmica

Trabajo

∆U

Page 85: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Q

H

d) Compresión adiabática

Cálculo de P4

Cálculo de V4

Trabajo

Page 86: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

∆U

Q

∆H

PROBLEMAS DE APLICACIÓN PARTE III

PROBLEMA 1

Calcular la energía térmica transferida a 6 moles de Nitrógeno a 1 atm y 127 ˚C para aumentar la temperatura en 100 ˚C manteniendo la presión constante.

(Cal/mol-K).

DATOS:

n=6T1=400 KT2= 500 KP= 1 atm.

Page 87: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

SOLUCIÓN

PROBLEMA 2

Calcular la energía térmica transferida al disminuir en 100 ˚C la temperatura de la misma cantidad de Nitrógeno en las condiciones iníciales indicadas en el ejemplo anterior.

DATOS:

n=6T1=400 KT2= 300 KP= 1 atm.

SOLUCIÓN

Page 88: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

(El Nitrógeno cede calor para disminuir la temperatura).

La magnitud absoluta es distinta a la obtenida en el ejemplo anterior debido a que se trata de una región de temperatura.

Para muchos cálculos térmicos la exactitud de los resultados que producen no es estrictamente necesaria, allí que es común el uso de capacidades caloríficas medias para ciertos intervalos de temperaturas.

PROBLEMA 3

Calcular el trabajo realizado por cierta cantidad de gas que inicialmente se halla comprimido a 5 atm de presión a la cual su volumen es de 10 litros, al reducir repentinamente su presión hasta 1 atm. El volumen alcanzado a esta última presión es de 50 litros. Comparar con el trabajo que realiza la misma cantidad de gas entre iguales estados inicial y final si la reducción de la presión se lleva a cabo en dos etapas abruptas; primero hasta 2,5 atm a la cual ocupa 20 litros y finalmente hasta 1 atm.

DATOS:

P1= 5 atm.Vi= 10 L

Page 89: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

P2= 1 atm.Vf= 50 L.

SOLUCIÓN

Trabajo realizado en una etapa.

Trabajo realizado en dos etapas.

PROBLEMA 4

Un g-mol de un gas ideal (Cv=5/2R) se expande reversiblemente desde 20 atm y 27 ˚C hasta 1 atm mediante los siguientes procesos alternativos: a) Isotérmico, b) Isocorico y c) Adiabático.Calcular Q, L, ∆U, ∆H en cada alternativa.

DATOS:

n=1 molP1= 20 atmP2= 1 atmT= 300 K

SOLUCIÓN

Page 90: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

a) Expansión Isotérmica T=cte por lo tanto ∆T=0

Estado P, atm V, L T, K1 20 V1 3002 1 V2 300

∆U = ∆H = 0

RESULTADOS

Etapas Q, KJ L, KJ ∆U, KJ ∆H, KJ

1-2: Expansión Isotérmica 7,47 7,47 0 0

b) Expansión isocórica. V=cte por lo tanto ∆V=0

T2=15K

Estado P, atm V, L T, K1 20 V1 300

Page 91: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

2 1 V1 15 Trabajo

∆U

Q

∆H

RESULTADOS

Etapas Q, KJ L, KJ ∆U, KJ ∆H, KJ

1-2: Expansión Isométrica -5,92 0 -5,92 -8,29

c) Expansión Adiabática. Q=0

Para calcular T2 utilizo la relación de POISSON.

Page 92: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Estado P, atm V, L T, K1 20 V1 3002 1 V2 127,5

Expansión Adiabática.

QQ =0

∆U

Trabajo

∆H

RESULTADOS

Etapas Q, KJ L, KJ ∆U, KJ ∆H, KJ

Page 93: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

1-2: Expansión Adiabática 0 3,58 -3,58 -5

PROBLEMA 5

Calcular Q, L, ∆U, ∆H para la compresión reversible de 2 moles de un gas ideal desde 1 atm hasta 100 atm, a 25 ˚C.

DATOS:

n=2P1 = 1 atm.P2= 100 atm.T=298 K.

SOLUCIÓN P (atm)

Page 94: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

100 2

298K

V (L) V2 V 1

Estado P, atm V, L T, K 1 1 V1 2982 100 V2 298

Compresión Isotérmica. T=cte por lo tanto ∆T=0

;

∆U = ∆H = 0

PROBLEMA 6

Calcular Q, L, ∆U, ∆H para la compresión de 2 moles de un gas ideal desde 1 atm hasta 100 atm, a 25 ˚C cuando la presión externa es de 500 atm.

DATOS:

n=2P1 = 1 atm.P2 = 100 atm.Pext =500 atmT=298 K.

SOLUCIÓN

Page 95: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Estado P, atm V, L T, K1 1 48,9 2982 100 0,489 298

Compresión Isotérmica. T=cte por lo tanto ∆T=0

∆U = ∆H = 0

Trabajo

RESULTADOS

Page 96: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Etapas Q, MJ L, MJ ∆U, MJ ∆H, MJ

1-2: Compresión Isotérmica -2,45 -2,45 0 0

PROBLEMA 7

Calcular Q, L, ∆U, ∆H para la compresión adiabática reversible de 1 mol de un

gas ideal monoatómico desde 0,1 a 25 ˚C hasta 0,01 .

DATOS:

n=1V1 = 100LV2 = 10LT1=298 K

SOLUCIÓN P (atm) P2 _ _ _ __ 2

Page 97: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

l l l

l 1383K l

P1 l -- -- -- --l-- -- -- -- -- -- -- -- -- -- -- 298 K

l l V ( )

0,01 0,1

Para calcular T2 utilizo la relación de POISSON.

Estado P, atm V, L T, K1 P1 100 2982 P2 10 1383

Compresión Adiabática. Q =0

∆U

Trabajo

∆H

Page 98: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

RESULTADOS

Etapas Q, KJ L, KJ ∆U, KJ ∆H, KJ

1-2: Compresión Adiabática 0 -13,53 13,53 22,6

PROBLEMA 8

Calcular Q, L, ∆U, ∆H para la expansión adiabática e isobárica de 1 mol de un

gas ideal monoatómico desde 1 a 25 ˚C hasta 10 contra una presión

externa de 1 atm.

DATOS:

n=1V1=1LV2 = 10LT1= 298 KPext = 1 atm.

SOLUCIÓN

Page 99: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Expansión Adiabática.

Q=0 Trabajo

∆U

Callo de la temperatura final

∆H

Page 100: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

RESULTADOS

Etapas Q, J L, J ∆U, J ∆H, J

1-2: Expansión Adiabática 0 912 -912 -1517

PROBLEMA 9

Determinar la capacidad calorífica media Cp del Nitrógeno gaseoso a la presión constante de 1 atm entre 400 y 800 K.

(Cal/mol-K).

DATOS:

T1=400 KT2= 800 KP= 1 atm.

SOLUCIÓN

Page 101: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

PROBLEMA 10

Resolver el mismo problema enunciado en el ejemplo anterior pero empleando la capacidad calorífica media obtenida en el ejemplo 9.

SOLUCIÓN

Intervalo (400-500) K que es válido el valor de 7,274

El error cometido es del 2,6 %. Este error se reduce considerablemente en la medida que el margen de validez de la capacidad calorífica se hace más y más próximo a la fase del calentamiento considerado.

PROBLEMA 11

Un trozo de 50 g de Aluminio a 50 ˚C se introduce en un recipiente con 60 g de agua a 20 ˚C. Determinar la temperatura del equilibrio alcanzada en el supuesto de que no hay pérdidas de calor hacia el exterior (recipiente y atmosfera). Las capacidades caloríficas medias del Aluminio y el Agua son respectivamente 0,212 y 1 cal/g-K

DATOS:

ALUMINIO. AGUA.m=50 g m=60 gt=50˚C t= 20 ˚C

Page 102: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo

Cp=0,212 cal/g-K Cp=1 cal/g-K

SOLUCIÓN

˚C

PROBLEMA 13

La capacidad calorífica a volumen constante del Nitrógeno gaseoso a

presiones bajas está dada por:

Calcular la energía térmica transferida cuando 6 moles de Nitrógeno experimentan una elevación de su temperatura desde 400 hasta 500 ˚C a volumen constante.

DATOS:

n=6T1=400 K

T2= 500 K

SOLUCIÓN

Page 103: Termodinamica Ejercicios Primera Ley

90Termodinámica

Primera Ley De La TermodinámicaIng. Renán Criollo