Practica 4 II

4
Dirección: Ladrón de Guevara E11-253 Teléfono: (02) 2976300 Ext.2209 Correo: [email protected] Quito - Ecuador ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones Carrera de Ingeniería Electrónica y Redes de Información Carrera de Ingeniería Eléctrica LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N°4 1. TEMA CONTROL DE MOTORES DC 2. OBJETIVOS 2.1. Enseñar al estudiante la problemática que existe para controlar motores DC para resolver problemas de locomoción en robótica o temas afines. 3. INFORMACIÓN Motor DC En robótica es muy común utilizar pequeños motores DC para proporcionar movimiento, principalmente por su facilidad de uso y costo y por la dificultad y alto costo que implica controlar motores AC. Si bien en los motores AC es relativamente más fácil controlar su velocidad, es difícil obtener los voltajes adecuados para operarlos. En tamaño el motor AC es más pequeño que un motor DC de la misma potencia. En contraposición, sin embargo, el motor DC puede producir más torque que el motor AC.

description

epn

Transcript of Practica 4 II

Dirección: Ladrón de Guevara E11-253 Teléfono: (02) 2976300 Ext.2209 Correo: [email protected] Quito - Ecuador

ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R."

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control

Carrera de Ingeniería Electrónica y Telecomunicaciones Carrera de Ingeniería Electrónica y Redes de Información

Carrera de Ingeniería Eléctrica

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

PRÁCTICA N°4

1. TEMA

CONTROL DE MOTORES DC

2. OBJETIVOS

2.1. Enseñar al estudiante la problemática que existe para controlar motores DC para

resolver problemas de locomoción en robótica o temas afines.

3. INFORMACIÓN

Motor DC

En robótica es muy común utilizar pequeños motores DC para proporcionar movimiento,

principalmente por su facilidad de uso y costo y por la dificultad y alto costo que implica

controlar motores AC. Si bien en los motores AC es relativamente más fácil controlar su

velocidad, es difícil obtener los voltajes adecuados para operarlos. En tamaño el motor AC

es más pequeño que un motor DC de la misma potencia. En contraposición, sin embargo,

el motor DC puede producir más torque que el motor AC.

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

Dirección: Ladrón de Guevara E11-253 Teléfono: (02) 2976300 Ext.2209 Correo: [email protected] Quito - Ecuador

Los dos tipos de control que se necesita ejercer sobre un motor DC son: dirección de giro y

velocidad, sea a lazo abierto o cerrado. Para entender cómo se puede lograr estos 2 tipos

de control es necesario repasar el principio de funcionamiento de los motores DC

pequeños.

En los motores DC de gran potencia, se emplean bobinas de campo para generar el campo

magnético indispensable para producir el movimiento del motor. Puesto que la bobina de

campo tiene una resistencia interna, se genera adicionalmente calor. Este calor hace que

se reduzca la eficiencia del motor. En motores grandes, la generación de calor no

constituye un gran problema, pero si lo es para motores pequeños, justo aquellos que se

requieren para robótica. Por esta razón para motores menores a 0.1HP, se emplean

imanes permanentes en vez de electroimanes.

Bajo esta condición el motor DC se comporta como sigue. Suponga un motor DC con las

especificaciones de placa siguientes:

Voltaje de armadura, Varm, 12 V DC

Resistencia de armadura, Rarm, 2 Ω.

Sin carga y si se aplica un voltaje DC de 12V, se esperaría que circule una corriente de 6A;

sin embargo, en la práctica es posible que tenga una lectura de por ejemplo, 0.1 A.

Figura1. Torque vs Posición Angular del Rotor [1]

En figura se muestra el circuito equivalente del motor DC al que se le aplica un voltaje

desde la fuente identificada como DC. Cuando el motor gira se comporta como un

generador de voltaje y la fuerza contra-electromotriz generada por el movimiento, Varm,

aparece con polaridad opuesta a la de la fuente. Sin carga, obviamente que el motor gira a

su máxima velocidad; por lo tanto, Varm, será también la máxima. Bajo estas condiciones,

la corriente que circula por el motor está dada por:

𝐼𝑎𝑟𝑚 =𝑉𝐷𝐶 − 𝑉𝑎𝑟𝑚

𝑅𝑎𝑟𝑚

Bajo el supuesto que efectivamente circula 0.1 A, esto quiere decir que el Varm es de

11.8V. Los 0.2 V caen en Rarm y es lo que en esencia produce el calentamiento del motor.

Cuando se aplica un torque como carga, la velocidad del motor tiende a disminuir y así

mismo lo hace Varm. Esto significa que la corriente que circula por el motor debe tender a

subir, proporcionalmente e igual pasa con el voltaje en Rarm y el calor producido por el

motor.

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

Dirección: Ladrón de Guevara E11-253 Teléfono: (02) 2976300 Ext.2209 Correo: [email protected] Quito - Ecuador

Cuando la carga logra detener el motor, Varm sería igual a 0 V, y la corriente, Istall (llamada

de parada) circulando por el mismo sería la máxima (6 A). Igualmente, el calor generado por

el motor sería el máximo. Por supuesto, lo expuesto hasta aquí, describe situaciones ideales.

El ejemplo nos conduce a una conclusión muy interesante: El torque aplicado reduce la

velocidad del motor. Si se quisiera mantener la velocidad del motor constante, se debería

aplicar más voltaje DC al motor tal que compense la caída de tensión sobre Rarm.

Se puede decir también que la corriente que consume el motor depende del torque de

carga aplicado al mismo. De hecho, los fabricantes llegan a determinar para cada motor

una constante de torque, Kt, que especifica el torque producido por unidad de corriente (de

allí que sus unidades son: onza-pulgada/amperio).

Si se da la Kt, es posible encontrar la corriente de armadura para cualquier torque de carga

aplicado por medio de la expresión:

𝐼𝑎𝑟𝑚 = 𝑇𝑐𝑎𝑟𝑔𝑎/𝐾𝑡

La contante Kt puede ser calculada si se conoce el torque del motor sin carga, Tnl, y la

corriente del motor sin carga, Inl, por medio de la expresión:

𝐾𝑡 =𝑇𝑛𝑙

𝐼𝑛𝑙

Por ejemplo, asumiendo que para un motor se especifica que producirá un torque de 3.5

onz-plg a una corriente de 1.8 A, se puede decir que aproximadamente:

𝐾𝑡 = 3.5 𝑜𝑛𝑧 − 𝑝𝑢𝑙𝑔/1.8 𝐴

𝐾𝑡 = 1.94 𝑜𝑛𝑧 − 𝑝𝑢𝑙𝑔/𝐴

Si se conoce la corriente a la que el motor se para, Install, sería posible calcular el torque,

Tstall, eue eventualmente detendría el motor, aplicando:

𝑇𝑠𝑡𝑎𝑙𝑙 = 𝐼𝑠𝑡𝑎𝑙𝑙 ∙ 𝐾𝑡

Para el ejemplo:

𝑇𝑠𝑡𝑎𝑙𝑙 = 6𝐴 ∙ 1.94 𝑜𝑛𝑧 ∙ 𝑝𝑢𝑙𝑔/𝐴

𝑇𝑠𝑡𝑎𝑙𝑙 = 11.67 𝑜𝑛𝑧 − 𝑝𝑢𝑙𝑔

En la práctica, no todo este torque se puede aplicar al motor. Aún sin carga, hay un torque,

el Tnl, que tiene todo motor real debido a fricciones dentro del mismo. Esto quiere decir que

en el torque de parada debe incluirse el torque sin carga como sigue:

𝑉𝑚 = [𝑉𝐷𝐶 − (𝐼𝑎𝑟𝑚 ∙ 𝑅𝑎𝑟𝑚)]/𝐾𝑒

Cuando hace girar al motor manualmente, éste se convierte en un pequeño generador y

entrega un voltaje proporcional a la velocidad de giro del mismo. Este voltaje es el que se

emplea para cuando se requiere de realimentación para propósitos de control.

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

Dirección: Ladrón de Guevara E11-253 Teléfono: (02) 2976300 Ext.2209 Correo: [email protected] Quito - Ecuador

4. TRABAJO PREPARATORIO

4.1. Consultar la terminología y ecuaciones que se emplean en el control de motores DC

de pequeña potencia.

4.2. Consultar las técnicas de control para el manejo de motores DC de pequeña

potencia.

4.3. Realizar un programa para un microcontrolador de su elección, el cual permita variar

la velocidad de un motor DC en pasos de 10% mediante dos pulsadores (uno de

ascenso y uno de descenso). Además mediante un interruptor se podrá cambiar el

sentido de giro del motor DC. Por medio de un LCD se podrá visualizar el sentido de

giro y el incremento porcentual de velocidad. Adjuntar el programa, el diagrama de

flujo correspondiente y el circuito desarrollado.

4.4. Realizar un programa en Labview que controle la velocidad de un motor DC de 0 a

100% a través de un slider y que mediante el encoder de la planta EPC y la DAQ

obtengan la velocidad del motor en rpm.

4.5. Traer armado el circuito con las prestaciones solicitadas.

5. EQUIPO Y MATERIALES

Fuente DC

Motor DC de baja potencia (cada grupo deberá traer su propio motor )

6. PROCEDIMIENTO

6.1. En la práctica se probará el correcto funcionamiento del circuito, verificando que se

cumpla las condiciones de velocidad y cambio de giro solicitado en el preparatorio.

7. INFORME

7.1. Descripción detallada del procedimiento realizado en la práctica.

7.2. Desarrollar un programa en LabView que genere las señales de control para

cumplir los requerimientos solicitados en el trabajo preparatorio.

7.3. Conclusiones y Recomendaciones

7.4. Bibliografía.

Responsable:

Ing. Luis Morales.

Revisado por: Ing. Luis Morales.

Jefe de Laboratorio