Integral Multiple

28
INTEGRACION

description

métodos numericos

Transcript of Integral Multiple

Page 1: Integral Multiple

INTEGRACION

Page 2: Integral Multiple

INTEGRAL DOBLE

Si extendemos el concepto de integral definida a una dimensión adicional, obtenemos una integral doble, la cual ya no hallará áreas, sino volúmenes, y ya no usaremos rectángulos sino paralelepípedos.

Para la integral simple, se requería que la función estuviera definida en un intervalo cerrado del conjunto de los números reales, para la integral doble, la función de dos variables estará definida en una región cerrada en R2

Page 3: Integral Multiple

Se tiene una función en dos dimensiones.

Función en tres dimensiones.

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 4: Integral Multiple

Su dominio es un intervalo sobre un eje.

Su dominio es una región sobre un plano.

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 5: Integral Multiple

Divide al intervalo en subintervalos.

Divide a la región en subregiones.

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 6: Integral Multiple

Toma un punto cualquiera dentro del subintervalo.

Toma un punto cualquiera dentro de una subregión.

INTEGRAL SIMPLE INTEGRAL DOBLE

xi,yi

Page 7: Integral Multiple

Suma las áreas de los rectángulos formados de base Δx y altura f(xi).

Suma de los paralelepípedos cuya área de la base es ΔiA= Δix* Δiy y de altura f(xi,yi)

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 8: Integral Multiple

Para mejorar la aproximación del área bajo la curva se analiza el limite con Δx tendiendo a cero.

Para mejorar la aproxiamcion del volumen bajo la superficie se analiza el limite con IIΔII (norma) tendiendo a cero.

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 9: Integral Multiple

INTEGRAL SIMPLE INTEGRAL DOBLE

Page 10: Integral Multiple

EJEMPLO: OBTENGA UN VALOR APROXIMADO DE LA INTEGRAL DOBLE:

DONDE R ES LA REGION RECTANGULAR QUE TIENE VERTICES EN (0,0) Y (4,2). CONSIDERE LA PARTICION DE R GENERADA POR LAS RECTAS x1=0, x2=1, x3=2, x4=3 y1=0, y2=1 Y TOME EL CENTRO DE LA I-ESIMA SUBREGION COMO (xi,yi)

0 1 2 3 4

2

1

x

y

Page 11: Integral Multiple

METODO DE APROXIMACION

Page 12: Integral Multiple

Se aplican métodos, como la regla de Simpson o del trapecio para segmentos múltiples a las integrales iteradas, y el resultado de esta primera integración se incorpora en la segunda integración.

Para calcular de manera aproximada la integral doble usando el método de Simpson en las integrales iteradas.

Entonces si la región es rectangular dividimos la región R fraccionando [a,b] en n intervalos y [c,d] m intervalos.

h

k

Page 13: Integral Multiple

Aplicando la regla compuesta de Simpson:

Luego se aplica nuevamente la regla compuesta de Simpson a cada integral.

Page 14: Integral Multiple

EJEMPLO: EVALUAR LA INTEGRAL DOBLE CON 4 INTERVALOS:

Aplicando la regla de Simpson compuesta en la integral interna se tiene:

Page 15: Integral Multiple
Page 16: Integral Multiple

INTEGRAL ITERATIVA

Este análisis proviene de considerar como un elemento de volumen una columna de base rectangular dydx y de altura z. Al sumar todos los elementos de esta clase desde y=c hasta y=d, siendo x entre tanto constante, se encuentra el volumen de una delgada rebanada que tiene cdf(c)f(d) como una cara. Entonces el volumen de todo el sólido se halla sumando todas estas rebanadas desde x=a hasta x=b.

Para determinar una integral doble, se realiza la evaluación sucesiva de integrales simples llamadas iterativas.

Page 17: Integral Multiple

INTEGRALES ITERATIVAS SOBRE REGIONES RECTANGULARES:

Sea f una función de dos variables definida en la región plana R=[a,b]x[c,d]= a≤x ≤b y c ≤y≤d. Si f es continua en R, entonces:

Page 18: Integral Multiple

INTEGRALES ITERATIVAS SOBRE REGIONES NO RECTANGULARES Sea R la región del Tipo I si f es continua

entonces:

La región debe tener como frontera inferior la grafica de una ecuación y=g1(x) y como frontera superior la grafica de un ecuación y=g2(x).

g2(x)

g1(x)

REGION TIPO I

Page 19: Integral Multiple

Sea R la región de Tipo II. Si f es continua en R, entonces:

La región debe tener como frontera izquierda la grafica de una ecuación x=h1(y), y como frontera derecha la grafica de una ecuación h2(y).

h1(y)

h2(y)

REGION TIPO II

Page 20: Integral Multiple

EJEMPLO: EVALUE LA INTEGRAL ITERADA:

Page 21: Integral Multiple

La integral doble puede interpretarse geométricamente en términos del volumen de un solido tridimensional.

Ya que cada termino de la sumatoria de Riemann cuando f≥0, es el volumen de un paralelepípedo la suma de Riemann es entonces igual al volumen de la unión de todos los paralelepípedos.

Si f es continua y los rectángulos en la base son pequeños la sumatoria tiende a un numero L. Esto se aproxima al volumen del solido que se encuentra debajo de la superficie grafica z=f(x,y) y arriba del plano z=0.

VOLUMENES DE SOLIDOS

Page 22: Integral Multiple

TEOREMA Sea f una función de dos variables y continua en

una región cerrada R del plano xy tal que f(x,y) ≥0 para todo (x,y) de R. Si V unidades cubicas es el volumen del solido S que tiene la región R como su base y cuya altura es f(x,y) unidades en el punto (x,y) de R, entonces

Page 23: Integral Multiple

EJEMPLO: CALCULE EL VOLUMEN DEL SOLIDO DEL PRIMER OCTANTE

POR LOS DOS CILINDROS X^2+Y^2=4 Y X^2+Z^2=4

Page 24: Integral Multiple

CENTRO DE MASA Y MOMENTO DE INERCIA

Page 25: Integral Multiple

CENTRO DE MASA Las integrales simples determinan el centro de masa de

una lamina homogénea en cambio con integrales dobles se puede determinar el centro de masa de una lamina homogénea o no homogénea.

M=masaMx=momento de masa con respecto al eje xMy=momento de masa respecto al eje y

Page 26: Integral Multiple

EJEMPLO: Una lamina tiene la forma de una región rectangular limitada

por las rectas x=3 y y=2 y los ejes coordenados. La densidad superficial en cualquier punto es xy^2 kilogramos por metro cuadrado. Calcule el centro de masa.

Page 27: Integral Multiple

MOMENTO DE INERCIA Suponga que se tiene una lamina que ocupa una región R en

el plano xy tal que la densidad superficial en el punto (x,y) tiene medida p(x,y), donde p es continua en R. entonces, la medida del momento de inercia de la lamina con respecto al eje x, denotado por Ix, esta determinada por:

De manera similar la medida del momento de inercia de la lamina con respecto al eje y, denotado por Iy esta dada por:

Page 28: Integral Multiple

EJEMPLO: Calcular el momento de inercia de una lamina que tiene la

forma de la región limitada por 4y=3x, x=4 y el eje x; con respecto al eje x.