Este documento ha sido generado para facilitar la ...jcpintoes.en.eresmas.com/CTB10.pdf · Los...

23
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos segmentos de 3 cm y de 4 cm. Se llama proporcionalidad de los segmentos al cociente de sus longitudes. Es decir, comparamos uno con el otro: , y decimos que tres veces el segmento es igual que cuatro veces el segmento . Supongamos que tenemos otros segmentos de 9 cm y de 12 cm la proporción entre ellos sería . Por tanto, estos nuevos segmentos están en la misma proporción que los anteriores y se dice: Los segmentos y son proporcionales a los segmentos y Lo escribimos así: . Ejemplo: Calcula la razón entre el segmento AB = 12 cm. y el segmento CD = 25 cm.: Autoevaluación Escribe la razón entre los segmentos RT = 24 cm. y PQ =21 cm. a) b) c) d) 2

Transcript of Este documento ha sido generado para facilitar la ...jcpintoes.en.eresmas.com/CTB10.pdf · Los...

Este documento ha sido generado para facilitar la impresión delos contenidos.

Los enlaces a otras páginas no serán funcionales.

Los segmentos se determinan por su longitud. Supongamos que tenemos dos segmentos de 3 cm y

de 4 cm. Se llama proporcionalidad de los segmentos al cociente de sus longitudes. Es decir,

comparamos uno con el otro: , y decimos que tres veces el segmento es igual que cuatro

veces el segmento .

Supongamos que tenemos otros segmentos de 9 cm y de 12 cm la proporción entre ellos sería

. Por tanto, estos nuevos segmentos están en la misma proporción que los anteriores y se

dice:

Los segmentos y son proporcionales a los segmentos y

Lo escribimos así: .

Ejemplo:

Calcula la razón entre el segmento AB = 12 cm. y el segmento CD = 25 cm.:

Autoevaluación

Escribe la razón entre los segmentos RT = 24 cm. y PQ =21 cm.

a)

b)

c)

d) 2

¿Los segmentos cuyas longitudes son 1, 3, 5 y 15 cm. están en proporción?

a) sí

b) no

c) No se puede saber

Área de Matemáticas - Módulo IV

Dados tres segmentos de longitudes a, b y c se denomina cuarta proporcional de a, b y c a un

segmento de longitud x, tal que verifique .

Dados dos segmentos de longitudes a y b se llama media proporcional a un segmento de longitud x, tal

que verifique .

Ejemplo:

Dados los segmentos de 5 cm, 4 cm y 10 cm, calcula la cuarta proporcional

Dados los segmentos de 10 cm. y 6 cm., calcula la media proporcional

Autoevaluación:

Calcula la cuarta proporcional de los segmentos a = 12 cm., b = 5cm. y c = 9 cm.

a)

b)

c)

d)

Calcula la media proporcional de los segmentos a = 12 cm. y c = 3 cm.

a) 2

b) 4

c) 36

d) 6

Área de Matemáticas - Módulo IV

El teorema de Thales nos dice:

Si las rectas, son paralelas y cortan a otras dos rectas ( ), entonces, los segmentos que

determinan en ellas son proporcionales, esto nos quiere indicar que:

Ejemplo 1:

Calcula la longitud del segmento B'C' del dibujo

Solución: Por el teorema de Thales, tenemos , por tanto:

Ejemplo 2:

Comprueba si son paralelas las rectas r, s y t del dibujo.

Los segmentos que determinan las tres rectas son proporcionales porque

. Por tanto, por el teorema de Thales las rectas tienen que ser paralelas.

Autoevaluación

¿Son paralelas las rectas a, b y c del dibujo?

a) sí

b) no

c) no se puede saber

d) puede que sí y puede que no

Calcula la longitud del segmento AB

a) 3

b) 5

c)

d) 75

Área de Matemáticas - Módulo IV

Aplicaciones del teorema de Thales

Veamos a continuación dos aplicaciones geométricas del teorema de Thales:

División de un segmento en partes iguales1.

Si queremos dividir un segmento de 6 cm en tres partes iguales, es muy sencillo. Basta con tomar tressegmentos de 2 cm cada uno.

Sin embargo, el problema no es tan sencillo si el segmento mide 7 cm, ya que el número 7 no es divisible por3.

Veamos como se divide un segmento AB cualquiera en tres partes iguales.

Por uno de sus extremos, por ejemplo A, trazamos una recta cualquiera r y a partir de A marcamossobre la recta r la medida que queramos tres veces. Señalando los puntos M, N y T.

1.

A continuación unimos el punto T con el extremo del segmento B.2.Trazamos rectas paralelas a TB por los otros puntos M y N y obtenemos los puntos C y D en elsegmento AB.

3.

Si observamos la figura es un sistema de rectas paralelas cortadas por dos secantes. Aplicamos elteorema de Thales y tendremos:

4.

y como AM = MN = NT tendremos

AD = DC = CB

con lo que hemos dividido el segmento AB en tres partes iguales.

División de un segmento en partes proporcionales. Vamos a dividir un segmento AB en dospartes proporcionales a 2 y 3.

2.

Para ello:

Trazamos una recta r cualquiera que pase por A y seguidamente llevamos sobre ella un segmento de 2y otro de 3 unidades, obteniendo los puntos M y N.

1.

Unimos N con B.2.Por M trazamos una recta paralela obteniendo el punto C.3.

Hemos dividido el segmento AB en dos partes AC y CB, y aplicando el teorema de Thales tendremos:

luego los segmentos AC y CB están en proporción de .

/Aplicaciones_Teorema_Thales.htm#DIVISIÓN%20DE%20UN%20SEGMENTO%20EN%20PARTES%20IGUALE

Área de Matemáticas - Módulo IV

Triángulos en posición de Thales

Consideremos el dibujo. Tenemos dos triángulos que tienen el ángulo A común, el ángulo , y el ángulo

. Por tanto, las rectas B'C' y BC son paralelas y se puede aplicar el teorema de Thales, por lo que loslados serán proporcionales:

Si, además, mides los lados BC y B'C' veras que están en la misma proporción. Por tanto:

Se dice que dos triángulos son semejantes si se pueden poner en posición de Thales o lo que es lomismo- si sus ángulos son iguales y sus lados homólogos proporcionalesAl número «r» que es el resultado del cociente se le llama razón de semejanza.

Ejemplos

Observa estos triángulos, en los que las medidas están dadas en cm, eindica razonadamente si son semejantes. Calcula, en caso afirmativo, larazón de semejanza.

Como los tres ángulos son iguales tenemos que ver si los lados homólogos sonsemejantes.

, luego son proporcionales y por tanto los triángulos sonsemejantes y la razón de semejanza es 4.

Un pino de 2,4 m de altura arroja una sombra de 2 m. En el mismo instante,un chopo arroja una sombra de 6,4 m ¿Cuál es la altura del chopo?

Tenemos, como se ve en la figura, dos triángulos semejantes. Por tanto, loslados homólogos son proporcionales y tendremos:

m

Autoevaluación

Calcula , sabiendo que: cm, cm y cm

a) 9 cm

b) 3 cm

c) 5,33 cm

d) 6 cm

Calcula x e y, en los triángulos semejantes

a) x = 6,875 cm y = 3,125

b) x = 4,4 cm y = 2 cm

c) x = 3,204 cm y = 4,5 cm

d) x = 4 cm y = 1 cm

Área de Matemáticas - Módulo IV

Si nos fijamos en el dibujo los polígonos se pueden descomponer en triángulos semejantes, y cuando estoocurre se dice que las figuras son semejantes.

Por tanto teniendo en cuenta la condición para que dos triángulos sean semejantes podemos enunciar:

Dos polígonos o figuras se dice que son semejantes si tienen los lados homólogos proporcionales ysus respectivos ángulos iguales.

La razón de semejanza de los polígonos es la razón entre los lados homólogos y la representaremospor r.

Ejemplo

La figura ilustra las sombras producidas por una sombrilla y una estaca sobre elsuelo. ¿Cuál es la altura de la sombrilla?

Llamamos x a la altura de la sombrilla, como los dos triángulos son semejantespor tanto escribimos la proporcionalidad entre los lados homólogos:

m

Área de Matemáticas - Módulo IV

Escalas

Supongamos que queremos dibujar nuestra habitación en un papel, dicha habitación tiene 5 m ancho por 3 mde largo. Para dibujarla, cada metro lo vamos a dibujar como 2 cm. Obtendríamos el siguiente dibujo.

Los 5 m reales de ancho, los representamos por 10 cm en papel. Por tanto, tenemos que:

, es la razón de semejanza entre el dibujo y la realidad

A esta proporción se le llama escala e indica que cada unidad en el dibujo son 50 unidades en la realidad.

Para que un dibujo pueda ser correctamente interpretado debemos indicar la escala a la que está hecho. En elcaso anterior diremos que la escala es 1:50 que es como es escriben las escalas en los planos.

Autoevaluación

Esta finca está dibujada a escala 1:2000. Calcula su superficie en m2

a) 48 m2

b) 83,33 m2

c) 09600 m2

d) 1000 m2

Área de Matemáticas - Módulo IV

Relación entre los perímetros de polígonos semejantes

Los rectángulos de la figura son semejantes y su razón de semejanza es r = .

Si calculamos el perímetro de los dos rectángulos tendremos:

Si ahora calculamos la razón de los perímetros de los dos rectángulos tendremos:

, que es igual a la razón de semejanza entre los rectángulos.

Por tanto, podemos enunciar:

La razón de semejanza entre los perímetros de dos figuras semejantes es igual a la razón de semejanzaentre las propias figuras.

Ejemplo

Los lados de un triángulo miden 8,12 y 16 cm. Calcula los lados de otro triángulosemejante al dado sabiendo que su perímetro es de 108 cm.El perímetro del primer triángulo será: 8 + 12+ 16 = 36. Como la razón de los

perímetros es igual a la razón de semejanza, tendremos r = . Por tanto,

los lados están en la misma razón:

Autoevaluación

¿Cuánto mide el perímetro de una figura semejante a la dada si la razón de

semejanza es ?

a) 22

b) 25,5

c) 46,5

d) No se puede calcular

Área de Matemáticas - Módulo IV

Relación entre áreas de dos polígonos semejantes

Si calculamos las áreas de los mismos rectángulos tendremos:

Si ahora calculamos la razón de las áreas tendremos:

es decir, la razón de semejanza elevada al cuadrado.

Por tanto, podemos enunciar:

La razón de las áreas de dos polígonos semejantes es igual al cuadrado de la razón de semejanza.

Ejemplo

Los lados de un rectángulo miden 10 cm y 15 cm, y el área de otro rectángulo

semejante es de 6 m2

Calcula los lados de dicho rectángulo.

El área del primer rectángulo será 10(15 = 150 cm2. Y como la razón de lasáreas es el cuadrado de la razón de semejanza, tendremos que la razón entrelas áreas es:

Luego la razón de semejanza es r = por tanto los lados miden:

Área de Matemáticas - Módulo IV

Relación entre los volúmenes de dos figuras semejantes

Los cubos de la figura son semejantes y la razón de semejanza es r = .

Si calculamos los volúmenes de dichos cubos, tendremos:

Si calculamos la razón entre los volúmenes tendremos:

, es decir, la razón de semejanza elevada al cubo.

Por tanto, podemos enunciar:

La razón entre los volúmenes de dos figuras semejantes es igual al cubo de la razón de semejanza.

Ejemplo

Una esfera tiene de radio el triple de otra esfera. ¿Qué relación hay entre susáreas? ¿Y entre sus volúmenes?Si el radio de la primera esfera es 1, el de la segunda será 3, por tanto, la razón

de semejanza es .

La razón de las áreas es el cuadrado de la razón de semejanza por tanto

La razón entre los volúmenes es el cubo de la razón de semejanza por tanto

Autoevaluación

El volumen de un cono de 4 cm de altura es de 60 cm3, ¿Cuánto valdrá el volumende un cono semejante si su altura es de 10 m?

a) 150 m3

b) 375 m3

c) 38,4 m3

d) 937,5 m3

Área de Matemáticas - Módulo IV

Los tres lados de un triángulo se pueden identificar de la siguiente forma:

El lado mayor de este triángulo rectángulo se llama hipotenusa.Y los otros dos, catetos

Se quiere poner un cable que vaya desde la azotea de mi piso a la azotea del piso de enfrente. Sabemos queel otro piso mide seis metros más que el mío y que están separados por ocho metros. ¿Cuánto cablenecesito?

La respuesta es fácil. Como podemos observar el dibujo nos muestra un triángulo rectángulo. Para resolverproblemas con este tipo de está el Teorema de Pitágoras.

El cable que necesito será la hipotenusa y la distancia y la diferencia entre pisos serán los catetos.

El teorema nos dice que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de loscatetos.

Si sustituimos lo que ya conocemos en esta fórmula y realizamos las operaciones obtenemos que el cable quenecesitamos es 10 metros.

Veamos de dónde sale esta fórmula tan útil para los triángulos rectángulos.

Como podemos ver en esta imagen, en un triángulo la suma de las áreas de los cuadrados construidos en loscatetos es igual al área del cuadrado construido sobre la hipotenusa.

Por tanto si los catetos miden: ; y la hipotenusa mide . Se comprueba experimentalmente que

De esta fórmula podemos despejar uno de los catetos, si es lo que buscamos quedando de la siguientemanera:

Ejemplos

En un triángulo rectángulo, los catetos miden 6 y 8 cm.

¿Cuánto mide la hipotenusa?Hipotenusa =

cm.

En un triángulo rectángulo, un cateto mide 10 cm y la hipotenusa 16 cm.

¿Cuánto mide el otro cateto?Cateto 1 =

Autoevaluación

Calcula cuánto vale la apotema de un hexágono de 10 cm de lado.

a) 11,18

b) 8,66

c) 125

d) 75

Los catetos de un triángulo rectángulo miden 16 y 12 cm respectivamente.¿Cuánto mide la hipotenusa?

a) 9

b) 15

c) 20

d) 11,58

Área de Matemáticas - Módulo IV

Consideramos el siguiente triángulo rectángulo. Llamamos:

«h» a la altura correspondiente a la hipotenusa.«m» la proyección del cateto AB sobre la hipotenusa.«n» a la proyección del cateto AC sobre la hipotenusa.

Vemos que en la figura aparecen tres triángulos rectángulos ABC, ACH y AHB que son semejantes ya que susángulos 1 son iguales y sus ángulos 2 también son iguales.

Consideremos los triángulos semejantes ACH y AHB. Sus lados homólogos son proporcionales:

Teorema de la altura:En todo triángulo rectángulo la altura correspondiente a la hipotenusa es media proporcional entre losdos segmentos en que la divide.

Área de Matemáticas - Módulo IV

Consideramos los triángulos semejantes ABC y ADC, sus lados homólogos son proporcionales por tanto,

O bien si consideramos los triángulos ABC y ADB, sus lados homólogos son proporcionales por tanto,

Teorema del cateto:En todo triángulo rectángulo cada cateto es media proporcional entre la hipotenusa y su proyecciónsobre la hipotenusa.

Ejemplos:

En un triángulo rectángulo la hipotenusa mide 16 cm y la altura correspondiente ala hipotenusa mide 3 cm. Calcula los catetos:

Fijándonos en el dibujo tenemos:m = 16 - nAplicando el teorema de la altura tenemos:

por tanto,

Resultando que m = 15,41 y n = 0,59, o viceversa. Y para calcular los catetosaplicamos el teorema del cateto:

Autoevaluación

En un triángulo rectángulo un cateto mide 5 cm y la altura relativa a la hipotenusamide 3 cm. Calcula la hipotenusa y el otro cateto.

a) hipotenusa = 6,25 ; cateto = 3,75

b) hipotenusa = 10 ; cateto = 6

c) hipotenusa = 4 ; cateto = 2

d) hipotenusa = 3,25 ; cateto = 4,25

En el triángulo rectángulo de la figura calcula la altura relativa a la hipotenusa

a) 13,83 m

b) 15 m

c) 24,19 m

d) 39 m

Área de Matemáticas - Módulo IV