INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI....

23
INFORME TECNICO FINAL PROYECTO SIP No. 20070709 “Caracterización de desechos agroindustriales co- mo adsorbentes de compuestos orgánicos tóxicos” ENERO-DICIEMBRE 2007 1

Transcript of INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI....

Page 1: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

INFORME TECNICO FINAL

PROYECTO SIP

No. 20070709

“Caracterización de desechos agroindustriales co-mo adsorbentes de compuestos orgánicos tóxicos”

ENERO-DICIEMBRE 2007

1

Page 2: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Caracterización de desechos agroindustriales como adsorbentes de com-puestos orgánicos tóxicos

Blanca E. Barragán Huerta (1), Refugio Rodríguez Vázquez (2)

(1)Departamento de ISA, escuela Nacional de Ciencias Biológicas. IPN (2)Departamento de Bioingeniería y Biotecnología. Centro de investigación y de Estudios

Avanzados del IPN.

Resumen. La adsorción con carbón puede ser altamente eficiente en la remoción de muchos elementos

traza en el agua, pero su alto costo prohíbe su aplicación a gran escala, además de los pro-

blemas que presenta en cuanto a su disposición una vez que se ha usado. Debido a la crisis

del café, grandes cantidades de grano verde de café son desechadas en la mayoría de los

países productores entre ellos, México, de ahí que es necesario realizar estudios para la uti-

lización de este desecho agrícola. En este trabajo se realizó un estudio para la caracteriza-

ción del grano verde de café como adsorbente siendo el adsorbato el plaguicida organoclo-

rado DDT.

Los granos de café (Coffea arabica) se secaron al aire, se molieron y se tamizaron a través

de las mallas 10-20 (Muestra C20) y mallas 40-180 (Muestra C180), Los experimentos de

adsorción por lote se llevaron a cabo colocando 0.05 g de cada adsorbente en viales de vi-

drio de 30 mL, con 20 mL de solución de DDT a 30°C, a 100rpm. A tiempos predetermi-

nados entre 0 y 360 minutos, las muestras se retiraron del agitador y se analizó la concen-

tración final de DDT Los datos fueron analizados de acuerdo a los modelos de adsorciòn de

Freundlich y Langmuir.

La correlación lineal de los datos obtenidos por la ecuación de Freundlich tienen un valor

de r2 altamente significativo (>0.943), indicando un buen ajuste a este modelo, mientras que

valores más bajos de r2 para la isoterma de Langmuir mostraron un menor ajuste.

De acuerdo con los resultados, el grano de café verde de desecho adsorbe DDT en una can-

tidad similar al carbón activado granular, aunque la adsorción depende del tratamiento que

se le dé al grano y al tamaño de partícula empleado. El grano de café remueve el DDT si-

guiendo una cinética de seudo-segundo orden y los datos de adsorción se ajustan a la ecua-

ción de la isoterma de Freundlich.

2

Page 3: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

I. Introducción. I.1 Eliminación de plaguicidas por adsorción.

I. 1.1 Carbón activado.

El carbón activado comercial se obtiene de la cáscara de coco, la madera, el carbón mineral

y la turba . La capacidad de adsorción depende en gran parte del grado de desarrollo de la

estructura porosa interna, así como de la naturaleza de la superficie química del carbón

(Marczeska et al., 2004). Se ha descubierto que en las aplicaciones de fases líquidas y ga-

seosas los microporos son más efectivos en atrapar moléculas pequeñas. La región del poro

transitorio se ajusta mejor a la adsorción de especies moleculares más grandes como por

ejemplo en las moléculas de color. Varios factores pueden afectar la adsorción: distribución

del tamaño de los poros, tamaño molecular de la impureza, tamaño de la partícula de car-

bón, temperatura del tratamiento del carbón, y el pH de la solución. Cuando estos factores

permanecen constantes, se tiene que la eficiencia de la adsorción aumenta cuando el tamaño

de la partícula de carbón disminuye, la temperatura disminuye, la solubilidad del contami-

nante disminuye ó el tiempo de contacto aumenta.

La presencia grupos como los carbonilos, carboxilos, hidroxilos fenólicos, lactonas y qui-

nonas (Figura 1), influyen en las propiedades de adsorción (László K. et al., 2001).

OO

OOHOH

H

OH

H

OHO

OH

N

N

N

N

N N

O

O

OH

H

O

A B

Figura 1. Representación esquemática de la superficie del carbón con grupos funcionales

conteniendo nitrógeno (A) y oxígeno (B) (Tomada de László K. et al., 2001).

3

Page 4: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

El carbón activado es el principal soporte utilizado para la eliminación de compuestos or-

gánicos (Grasso, 1993). En la tabla 1 se muestra la capacidad de adsorción del

carbón activado para varios compuestos peligrosos (Watts, 1997).

Tabla 1. Adsorción de compuestos orgánicos sobre carbón

Compuesto Capacidad de adsorción (mg/g)

Cloruro de metileno 1,2-dicloroetano Benceno Tolueno Etilbenceno p-xileno Naftaleno Fenol

1.3 3.6 1.0 26. 53 85 132 161

Los modelos de adsorción de Langmuir o Freundlich se aplican para conocer la capacidad

de adsorción de adsorbentes hacia cualquier compuesto que se desee eliminar (Al Duri,

1996 ).

I.1.2 Residuos agroindustriales.

La adsorción con carbón activado puede ser altamente eficiente para la remoción de mu-

chos elementos traza en el agua, pero el alto costo prohíbe su aplicación a gran escala,

además de los problemas que presenta en cuanto a su disposición una vez que ha sido usa-

do. Los desechos agrícolas representan recursos naturales no utilizados y en algunos casos

presentan serios problemas de disposición, de ahí que se busquen alternativas para conver-

tirlos en productos útiles.

Entre ellos el aserrín ha merecido diversos estudios para la remoción de contaminantes

tales como colorantes, sales y metales pesados a partir de agua y efluentes acuosos (Shukla

et al., 2002). Las paredes celulares del aserrín consisten principalmente de celulosa y ligni-

na, además de muchos grupos hidroxilo provenientes de taninos u otros compuestos fenóli-

cos. Esos grupos a un pH apropiado son intercambiadores iónicos efectivos.

4

Page 5: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

La lignina, un componente de la madera es un material polimérico construido de anillos

aromáticos con cadenas laterales de tres carbonos (unidades fenilpropanoides). La interac-

ción con estos compuestos (figura 2) da la capacidad de adsorción de la madera hacia com-

puestos orgánicos (Kubick y Apitz, 1999).

Figura 2. Interacción de la lignina con naftaleno en medio líquido.

En un estudio realizado para la eliminación de cobre con aserrín de mango se encontró que

el tamaño de partícula más apropiado para la adsorción fue de 100 mm, logrando una efi-

ciencia de adsorción del 81% en una solución que contenía 17 mg L-1 de Cu (II) a pH de 6,

25 °C y 50 g L-1 de aserrín (Ajmal et al., 1998). Los parámetros de adsorción fueron calcu-

lados utilizando los modelos de Freundlich y de Langmuir (Al Duri, 1996).

Adachi et al.,(2001a), realizaron un estudio de remoción de 22 diferentes plaguicidas en

concentraciones de 50 μg L-1 utilizando fibra de arroz (1-10g L-1), con eficiencias de re-

moción del 22.2% al 98.8% en un tiempo de contacto de 1.5 h a pH de 7.0. Se observó que

los plaguicidas con alta lipoficidad (baja solubilidad) son más fácilmente removidas por la

fibra de arroz. La capacidad de remoción fue similar a la del carbón aún cuando la superfi-

5

Page 6: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

cie fue considerablemente menor (0.14 m2 g-1 vs 300 m2 g-1. Los autores comprobaron que

la mayor adsorción se debe a la presencia de los cuerpos grasos de la fibra (esferosomas) .

En otro estudio (Adachi, 2001b), se determinó la eficiencia de remoción de bentonita, cao-

lín, tierra de diatomáceas, arcilla ácida japonesa, suelo y fibra de arroz para 12 compuestos

organoclorados. Se determinó que la fibra de arroz era el adsorbente más efectivo.

Gupta et al., (2002), usaron residuos de la industria azucarera (bagasse fly ash), para la re-

moción de lindano y malation. Para un tiempo de contacto de 60 min a pH de 6 la remo-

ción fue de 97-98%. Resultados similares obtuvieron utilizando DDT y DDE. La eficacia

de varios adsorbentes como carbón de madera, gránulos de caucho, y los macrohongos sa-

jor caju y florida fue ensayada para la remoción de los plaguicidas 2,4-D y atrazina a partir

de agua.

Se encontró que en general los tiempos en los cuales se alcanza el equilibrio están entre 60

y 240 minutos. La eficiencia de remoción de 2,4-D y atrazina en una concentración inicial

de 4 mg/L fue de 92% y 95% con carbón, 78.4% y 82.8% con gránulos de caucho y alrede-

dor de 60% para los hongos sajor caju y florida respectivamente (Alam et al., 2000).

Se ha reportado que cuando los soportes se utilizan en procesos biológicos, la eficiencia del

proceso se mejora cuando los contaminantes son adsorbidos reversiblemente (Fava, 1996).

El grano verde del café contiene gran cantidad polisacáridos, entre ellos lignina y celulosa,

además de grasas y proteínas, de ahí que se deduzca que tendrá capacidad de adsorber

substancias orgánicas como los plaguicidas organoclorados .

II. Métodos y materiales.

II.1. Acondicionamiento del grano de café.

El grano de café verde (Coffea arabica) procedente del estado de Veracruz fue donado por

el Consejo Mexicano del Café. Los granos se secaron al aire, se molieron y se tamizaron a

través de las mallas 10-20 (Muestra C20) y mallas 40-180 (Muestra C180), para obtener

dos tamaños de partícula. Cinco gramos de cada una de las muestras se sometieron a ex-

tracción con 200 mL de agua caliente y posteriormente ambas muestras tratadas (C20T y

C180T), se secaron a 60 ° C por 24 h. El plaguicida 4,4’-DDT grado reactivo (98%) se ob-

6

Page 7: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

tuvo de la compañía Chem Service y el carbón activado granular a partir de Sigma. El DDT

y endosulfán grado técnico se obtuvo de la compañía Tekchem S.A de C.V.

II. 2 Análisis de la superficie del grano de café

El área superficial de Brunauer-Emmett-Teller (BET) (SBET, m2g-1) y el volumen total de

poro (Vt, cm3g-1) de las muestras de grano de café de los dos tamaños de partícula, tratadas

y sin tratar se calcularon a partir de los datos de adsorción-desorción de nitrógeno obtenidos

–196°C en un aparato Gemini 2360 V3.03.

La textura porosa del café se examinó por microscopía electrónica de barrido (MEB). La

superficie de las muestras se cubrió con una fina película de oro y posteriormente se analizó

en un microscopio electrónico marca JEOL modelo JSM-5800LV operado a un potencial

de aceleración de 15 kV.

II.3. Análisis químico del grano de café

Para las cuatro muestras de café preparadas se determinó humedad por métodos gravimétri-

cos, el fósforo asimilable se determinó por el método de Bray y Kurt (1945), el nitrógeno

total por el método de Kjendahl y el carbono orgánico total con el analizador TOC.

II.4. Análisis por espectroscopia de infrarrojo de transformada de Fourier (FTIR).

La espectroscopía FTIR ha sido usada para el análisis de grupos funcionales de la superficie

de materiales de desecho como por ejemplo el cascarón de huevo (Tsai et al., 2006) y el

grano de café tostado (Minamisawa et al, 2004). Para este análisis, las muestras C180T y

C180 que corresponden a grano de café tratado y sin tratar con el menor tamaño de partícu-

la, se homogenizaron con KBr grado espectroscópico. El espectro determinó de 500 a 4000

cm-1 en un espectrómetro Perkin Elmer Co modelo system 2000 FTIR.

II.5. Experimentos de adsorción de DDT sobre grano de café

II.5.1 Análisis de DDT por microextracción en fase sólida y cromatografía de gases.

7

Page 8: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

El método más usado para separar compuestos orgánicos a partir de matrices acuosas es la

extracción líquido-líquido (LLE), usando un solvente orgánico (Icheda et al., 2001, Alam et

al ., 2000). Esta técnica requiere grandes cantidades de disolventes costosos, tóxicos y peli-

grosos para el ambiente. Este método consume mucho tiempo, es tedioso y frecuentemente

requiere la preconcentración de las muestras. Para resolver estos inconvenientes se han des-

arrollado técnicas como la microextracción en fase sólida (SPME) que es una técnica libre

de disolventes y significativamente más rápida que la técnica de LLE. La eficiencia del

método depende de las propiedades del analito y la matriz en la que se encuentra éste.

La optimización de la técnica involucra varias etapas, entre ellas la selección apropiada del

tipo de fibra, la optimización de la extracción del analito de la solución donde se encuentra

y finalmente la optimización de la desorción del analito de la fibra. La extracción depende

no solo de la polaridad y el grosor de la fase estacionaria de la fibra sino también del tiem-

po de extracción y de la concentración del analito en la muestra. Se debe considerar tam-

bién el pH, la temperatura, cantidad de sales presentes en el medio y la agitación. Aunque

la SPME tiene su máxima sensibilidad en el punto de equilibrio, una total equilibración no

es necesaria para un análisis preciso y exacto, debido a que hay una relación lineal entre la

cantidad de analito adsorbido por la fibra y la concentración en la matriz de la muestra en

condiciones de no equilibrio (Katoaka et al., 2000). Sin embargo es importante determinar

cuidadosamente los tiempos de extracción y las condiciones de transferencia de masa en

todas las determinaciones.

La eficiencia de la desorción térmica del analito en el puerto de inyección es dependiente

de la volatilidad del analito, el espesor del recubrimiento de la fibra, la temperatura del in-

yector y el tiempo de exposición.

Generalmente la optimización de la técnica se lleva a cabo utilizando un procedimiento de

paso por paso (modificando una variable a la vez), aunque se ha descrito la optimización

trabajando simultáneamente con 6 variables experimentales en 16 experimentos ( Batlle et

al., 1999). Se han publicado diversos trabajos sobre la aplicación de la técnica en el análi-

sis de plaguicidas organoclorados en diferentes matrices (Magdic and Pawliszyn, 1996,

Katoaka et al., 2000, López- Blanco et al., 2002), sin embargo para cada caso particular es

conveniente determinar las temperaturas y tiempos de las etapas de extracción y desorción

donde las determinaciones son exactas y reproducibles.

8

Page 9: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Para determinar las mejores condiciones de análisis de DDT residual en las soluciones

acuosas utilizadas en este trabajo se realizaron ensayos variando un parámetro a la vez

(tiempo y temperatura). Esquemáticamente el método utilizado se presenta en la figura

b

c a

Figura 3. Procedimiento de SPME para la determinación de DDT. Condiciones: Extracción

(b): 1 mL solución, 60°C, 15 min; Desorción (c): 250°C, 5 min.

Se seleccionó una fibra de silica fundida de 1 cm de longitud cubierta de 100 �m de poli-

dimetilsiloxane (PDMS). A una alícuota de 1 mL de agua conteniendo DDT (Fig. 3a) se le

colocó en un vial de 22 mL. El vial se sello con un tapón recubierto con teflón y una cubier-

ta de aluminio. La fibra se colocó en el espacio de cabeza del vial (HS) sobre la solución

acuosa después se sumergió en un baño de etilenglicol a 60° C por 15 min (Fig. 3 b) y fi-

nalmente se desorbió térmicamente en el puerto de inyección del cromatógrafo de gases

(GC) a 250 ° C por 5 min. (Fig. 3c).

Se utilizó un cromatógrafo Perkin-Elmer equipado con una columna capilar DB-35, 30 m x

0.25 mm, nitrógeno como gas acarreador y el detector de captura de electrones (ECD). El

programa de temperaturas que se utilizó en la columna fue de 200 ° C por 2 min, seguida

por una rampa de 5 ° C min-1 hasta 230 ° C y mantenida a 230 ° C por 10 min., la tempera-

tura en el detector fue de 350 ° C, y el flujo de gas acarreador de 1 mL min-1 .

II.5.2. Estudios de adsorción de DDT sobre grano de café y carbón activado

Se analizó el efecto de tamaño de partícula y el efecto de los componentes solubles del gra-

no sobre las propiedades de adsorción de DDT utilizando las muestras C20, C20T, C180 y

9

Page 10: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

C180T. Las soluciones de plaguicida se prepararon en agua destilada, adicionando la can-

tidad apropiada de 4,4’-DDT disuelta en metanol para alcanzar concentraciones de 5 mg L-

1 en los experimentos con C20 y C20T, de 10 mg L-1 para las muestras C180 y C180T y

15 mg L-1 para carbón activado granular (GAC).

Los experimentos de adsorción por lote se llevaron a cabo colocando 0.05 g de cada adsor-

bente en viales de vidrio de 30 mL, con 20 mL de solución de DDT a 30° C , a 100rpm

(Figura 4)

Figura 4. Preparación de muestras para los experimentos de adsorción

A tiempos predeterminados entre 0 y 360 min., las muestras se retiraron del agitador y la

concentración final de DDT en la solución se analizó usando la técnica SPME-GC-ECD

como se detalló anteriormente. Todos los experimentos se hicieron por duplicado. El com-

portamiento de adsorción de las muestras de café con diferentes concentraciones iniciales

de plaguicidas se llevaron a cabo utilizando el método antes descrito.

En cada experimento 0.05 g de las muestras C180 y C180T con 20mL de solución de DDT

a concentraciones iniciales de 15, 16,17 19 y 20 mg L-1 ; 0.2g de GAC y 0.05 g de las

muestras de C20 y C20T con 20 mL de solución de DDT a concentraciones iniciales de

5,6,7,8 y 10 mg L-1 se equilibraron por 4 h a 30° C y 100rpm. La concentración final del

plaguicida en la solución se determinó usando SPME-GC-ECD.

II.5.3 Modelos de adsorción en un sistema en lote.

Con el fin de examinar el mecanismo de adsorción los modelos cinéticos de adsorción de

pseudo-primer-orden y pseudo-segundo-orden se usan generalmente para analizar los datos

10

Page 11: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

experimentales asumiendo que las concentraciones medidas son iguales a las concentracio-

nes en la superficie (Parab et al., 2006).

La mejor correlación de los datos experimentales para la remoción de contaminantes orgá-

nicos y metales a partir de soluciones acuosas por adsorbentes naturales y carbón activado

(Ho and McKay, 1999) se ajusta a la cinética de reacción de pseudo-segundo orden (Eq 1).

tqqkq

t

ee,ads

112

2

+= (1)

donde q (mg g-1) es la cantidad de contaminante adsorbido sobre el adsorbente al tiempo t,

qe es la cantidad adsorbida en el equilibrio y k2, ads (g mg-1 min-1) es la constante de velo-

cidad de adsorción de segundo orden.

La estimación de las capacidades de adsorción a diferentes concentraciones iniciales de

DDT se realizó utilizando los dos modelos de adsorción más usados para tal fin Langmuir

and Freundlich DDT (Al Duri, 1996).

La forma linear de la ecuación de isoterma de Langmuir se representa en la ecuación (2)

ebKCbq111

+= (2)

donde q es la cantidad adsorbida en el equilibrio (mg g-1), Ce la concentración en equilibrio

(mg L-1), b la masa de soluto adsorbido requerido para saturar una unidad de masa del ad-

sorbente (mg g-1) y K es la constante de adsorción en el equilibrio (L mg-1). El modelo de

la isoterma de Freundlich (Eq 3), que es un modelo empírico usado para describir la adsor-

ción en sistemas acuosos, se usó también para interpretar el proceso de adsorción observado

de DDT sobre los granos de café.

ef Cn

Kmx

log1loglog +=⎟

⎠⎞

⎜⎝⎛

(3)

Donde Ce es la concentración en equilibrio de la solución (mg L-1), x/m es la cantidad ad-

sorbida por unidad de masa del adsorbente (mg g-1), m es la masa del adsorbente (g), Kf es

una constante que representa la capacidad de adsorción y 1/n es una medida de la intensi-

dad de la adsorción.

11

Page 12: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

III. Resultados y discusión

III.1 Caracterización fisicoquímica del grano de café.

La textura de las muestras de café puede se observa mediante las microfotografías de mi-

croscopía electrónica de barrido. El tamaño de partícula para la muestra de café con molido

grueso (C20) es de 1 a 4 mm y para la muestra con molido fino (C180) es de 0.025 a 0.3

mm. Se puede observar claramente la presencia de cavidades en la superficie de la muestra

C20 (Fig. 5a), con tamaño de macroporos entre 10-50μm.

En el grano de café con tamaño de partícula más pequeño, algunas cavidades son rotas de-

bido al proceso de molienda (Fig 5b) y aparentemente no se observan grandes cambios en

la estructura celular debido al tratamiento de extracción con agua caliente (Fig 5c).

Respecto al contenido de C, N y P se presentan cambios en la composición de las muestras

tratadas con agua caliente (Tabla 2), el contenido de nitrógeno y fósforo disminuye en las

muestras lavadas tratadas, lo cual sugiere que el tratamiento disuelve ciertos componentes

solubles del grano de café verde (por ejemplo azúcares, aminoácidos, minerales, vitaminas,

etc) de la superficie de la partícula de café.

Tabla 2. Composición elemental del grano de café verde (Peso seco).

Muestra N (%) C (%) P (%)

C20 5.26±0.32 48.94±1.23 0.058±0.016

C20T 4.06±0.06 53.68 ±1.19 0.000±0.000

C180 5.32±0.11 52.45±0.34 0.123±0.013

C180T 3.09± 0.05 53.90±0.80 0.001±0.000

En la tabla 3 se indican los valores de área superficial de BET y el volumen total de poro de

las muestras de café analizadas. De acuerdo con esto, las propiedades de poro en las mues-

tras de café con diferentes tamaños, ya sea con tratamiento o sin tratamiento con agua ca-

liente son muy similares.

El área superficial de adsorbentes naturales es comparativamente mucho menor a la del

carbón activado. La superficie de varios desechos naturales usados para remover compues-

tos orgánicos ha sido determinada entre 1.023 to 15.2 m2g-1 (Figuereido et al., 2005, Tsai et

12

Page 13: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

al, 2006) y se ha observado que el área total se incrementa cuando las muestras han tenido

algún tratamiento físico o químico.

a

b

m

c

Figura 5. Fotografías de microscopía electrónica de barrido de café molido malla 10/20 (a),

malla 40/180 sin tratamiento (b), y malla 40/180 con tratamiento.

13

Page 14: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

En este caso, el área superficial del café está entre 0.171 y 1.011 m2g-1 . Aún cuando en

promedio se tiene un incremento en el área superficial con el tamaño de partícula y después

del tratamiento con agua caliente, las diferencias en adsorción de éstos materiales no pue-

den atribuirse a cambios en el área puesto que las diferencias no son significativas.

Tabla 3. Principales propiedades de poro de las partículas de café.

Muestra C20 C20T C180 C180T GAC

SBET (a) (m2g-1) 0.171±0.112 0.289±0.0807 0.26±0.1393 1.01135±0.656 600-800

Vt(b) (cm3g-1) 0.0003 0.0002 0.0009 0.0008 N.D (a) Área superficial de BET (b) Volumen total de poro

III.2 Análisis por espectroscopia de infrarrojo de transformada de Fourier (FTIR)

Los grupos funcionales en la superficie del café se muestran en el espectro de infrarrojo de

la figura 6.

cm-1

4000.0 3000 2000 1500 1000 50065.0

70

80

90.

%T C180T

C180

3292

31861698

1652

15411576 10621457

669

2918

2850

cm-1

4000.0 3000 2000 1500 1000 50065.0

70

80

90.

%T C180T

C180

3292

31861698

1652

15411576 10621457

669

2918

2850

4000.0 3000 2000 1500 1000 50065.0

70

80

90.

%T C180T

C180

3292

31861698

1652

15411576 10621457

669

2918

2850

Figure 6. Espectro de infrarrojo en KBr del grano de café molido malla 40/180 sin trata-

miento (C180) y con tratamiento (C180T)

14

Page 15: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Señales débiles cerca de 4000 cm-1 indican las bandas de tensión simétrica y antisimétricas

del grupo NH2. En el espectro del café con tratamiento, la banda de absorción a 3400 y la

fuerte banda en 3292 cm-1 son asignadas a enlaces de O-H de asociación intermolecular y

vibraciones de tensión respectivamente. Evidentemente, la mayor absorción a estas fre-

cuencias representan la diferencia más significativa entre las muestras tratadas y sin tratar,

lo que indica la exposición en la superficie de grupos oxhidrilo, provenientes probablemen-

te de algunos componentes insolubles del grano de café. La banda observada a 1062 cm-1 es

característica de la vibración de flexión C-OH son observadas, y una banda pronunciada a

1541 cm -1 se atribuye a la deformación del grupo OH. La absorción débil por arriba de

2918 cm-1 indica C=C absorciones de tensión para compuestos aromáticos que se confirma

con los picos de flexión fuera del plano observadas en el rango de 1700 y 1900 cm-1. Las

señales agudas a 2850 and 2918 cm-1 son asignadas a bandas de tensión de enlaces CH y

CH2 de cadenas hidrocarbonadas saturadas. La evidencia para grupo carbonilo se observa

en las absorciones centradas a 1698 y 1652 cm-1 en ambas muestras de café.

III.3 Adsorción del DDT.

Se considera que un adsorbente no convencional de bajo costo que puede ser aplicado con-

venientemente para remover contaminantes debe tener alta capacidad y velocidad de adsor-

ción (Crini, 2005). Para algunos bioadsorbentes (biomasa) o residuos agrícolas de desecho,

se han reportado tiempos de equilibración desde unos cuantos minutos hasta 24 horas para

la remoción de compuestos orgánicos (Deval et al., 2005; Aksu, 2005). En este trabajo, se

determinó que el tiempo de equilibración para la remoción de DDT tanto para todas las

muestras de café como para el carbón activado granular se alcanzó después de las 2 horas

de contacto (Figura 7), lo cual adecuado para un material que se pretende sea usado como

adsorbente. Debido a que el área superficial de diversos desechos agrícolas es mucho más

bajo que las carbón activado, se han propuesto otros mecanismos de adsorción de los con-

taminantes sobre la superficie de estos desechos. Así, algunos autores consideran que la alta

adsorción que presentan algunos desechos se debe a interacciones hidrofóbicas ó a enlaces

por puentes de hidrógeno de los contaminantes con las moléculas de lignina (Kubicki,

1999), a la absorción de los contaminantes (por ejemplo plaguicidas organoclorados o di-

solventes) por partículas intracelulares llamadas esferosomonas (Adachi et al., 2001a) ó por

15

Page 16: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

intercambio iónico de metales con moléculas de celulosa lignina (Minamisawa, 2004). En

todos los casos, el intercambio ó compartición de electrones y fuertes interacciones dipolo-

dipolo interacciones se involucran entre el adsorbente y el adsorbato.

0

40

80

120

0 100 200 300tiempo (min)

DD

T re

sidu

al (%

)

C20 C180 C20L C180L

Figura 7 Curvas de equilibrio del proceso de adsorción sobre grano de café y carbón acti-

vado. Condiciones: 30°C, 100 rpm, 20 mL solución.

0

50

100

150

200

250

0 100 200 300

tiempo (min)

t/(qt

)

C20 C180 C20T C180T

Figure 8. Cinética adsorción de pseudo-segundo orden del DDT sobre grano de café verde

y GAC. Condiciones: 30°C, 100 rpm, 20 mL solución.

16

Page 17: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Este hecho esta de acuerdo con la cinética de pseudo-segundo orden que se determinó para

la remoción de DDT por los granos de café verde (Figure8). Como puede verse en la Fig. 8

la relación de t/q contra t para la remoción de DDT por grano de café y el GAC es una

línea recta con coeficientes de correlación mayores que 0.951 para todos los sistemas. Este

hecho sugiere fuertes interacciones entre los sitios adsortivos activos de los granos del café

(grupos alifáticos, aromáticos, carbonílicos o fenólicos) y el DDT.

Los valores para los diferentes parámetros determinados a partir del modelo cinético de

pseudo-segundo orden para todos los materiales son presentados en la tabla 4. De acuerdo

con estos resultados la cantidad de DDT adsorbida en el equilibrio sobre la muestra de café

C180, fue muy similar a la adsorbida sobre carbón activado granular. La remoción de DDT

se incrementó cuando el tamaño de partícula es más pequeño y después de que el café ha

sido tratado. Esto puede explicarse debido a la mayor exposición de grupos activos princi-

palmente OH (probaba lente provenientes de la celulosa o lignina) después del tratamiento,

como fue mostrado en el espectro de IR. Se ha reportado (Crini, 2005) que la adición de

sólidos con propiedades adsorbentes en procesos combinados de adsorción-biodegradación

mejora la degradación de compuestos xenobióticos.

Tabla 4. Parámetros cinéticos usando el modelo de pseudo-segundo orden para la adsor-

ción de DDT.

Condiciones: 30°C, 100 rpm

Muestra GAC C180 C180T C20 C20T

k2 (Kg/g min) 0.0157 0.0158 0.0053 0.0834 0.0179

qe (g/kg) 4.482 4.480 5.473 1.302 2.663

r 2 0.995 0.992 0.951 0.997 0.984

Con lo anterior se deduce que en los tratamientos de biodegradación donde se usaron 50

mL de medio conteniendo 50 mg L-1 de DDT y 2 g L-1 de grano de café molido malla 20

sin tratamiento (30°C, 100rpm), se eliminan por adsorción sobre la superficie del grano,

0.1302 mg de los 2.5 mg de DDT presentes en el medio (5.2%).

Recientemente se ha sugerido (Barragán et al, 2006) que la presencia de macroporos en

tales sólidos genera condiciones microambientales, con las cuales micronichos anaerobios y

aerobios se desarrollan y coexisten dentro de una simple biopartícula, de tal forma que acti-

17

Page 18: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

vidades oxidativas y reductivas pueden llevarse a cabo simultáneamente. Además de la

textura, la capacidad adsorptiva del adsorbente es importante ya que asegura la disponibili-

dad de nutrientes para los microorganismos que se encuentran unidos a las partículas. To-

mando en cuenta que el grano de café con tamaño de partícula entre 1 y 4 mm presenta gran

cantidad de cavidades y que tiene una capacidad de adsorción para DDT similar a carbón

activado, se puede proponer al café de desecho como adsorbente o como un soporte conve-

niente para microorganismos en los procesos de adsorción-biodegradación de productos

orgánicos tóxicos. Las gráficas de Langmuir (1/q= 1/b + 1/bKCeq) y Freundlich (log x/m =

log k + 1/n log C) para la adsorción de DDT sobre las muestras de café y GAC se muestran

en las Figs. 9 a 14 respectivamente..

Isoterma F café sin lavar 180

y = 0.3301x + 0.8703R2 = 0.994

0

0.2

0.4

0.6

0.8

1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

log Ceq

log

x/m

Isoterma L café sin lavar 180

y = 0.026x + 40073R2 = 0.9467

0

20000

40000

60000

80000

0 500000 1000000 1500000

Ceq -1

q -1

Fig 9. Modelo de Freundlich (F) y Langmuir (L) de café 180 lavado.

Fig 10. Modelo de Freundlich (F) y Langmuir L) de café 180 sin lavar.

Isoterma L café lavado 20

y = 0.0609x + 52848R2 = 0.9103

0

50000

100000

150000

200000

0 500000 1000000 1500000 2000000

1/Ceq

1/q

Isoterma F café lavado 20

y = 0.6107x + 0.7618R2 = 0.9425

00.10.20.30.40.50.60.7

-0.8 -0.6 -0.4 -0.2 0

log Ceq

log

x/m

18

Page 19: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Isoterma F café sin lavar 20

y = 0.2151x + 0.4494R2 = 0.9953

0

0.1

0.2

0.3

0.4

0.5

-1.5 -1 -0.5 0 0.5

log Ceq

log

x/m

Isoterma L café sin lavar 20

y = 0.0181x + 134536R2 = 0.8913

0

50000

100000

150000

200000

250000

0 2000000 4000000 6000000

C eq - 1

.

a

Fig 11. Modelo de Freundlich (F) y Langmuir (L) de café 20 lavado

Fig 12. Modelo de Freundlich (F) y L ngmuir (L) de café 20 lavado.

Isoterma F PAC

y = 0.0532x + 2.0534

R2 = 0.9894

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

log Ceq

log

x/m

2.09

isoterma L PAC

y = 0.0003x + 2985.3

R2 = 0.7247

2800

2900

3000

3100

3200

3300

3400

3500

0 500000 1000000 1500000

1/Ce

1/q

Fig 13. Modelo de Freundlich (F) y Langmuir (L) de café 20 lavado.

isoterma F GAC 20 mg

y = 0.134x + 0.9179R2 = 0.9624

00.20.40.60.8

11.2

-1.5 -1 -0.5 0 0.5

log Ceq

log

x/m

Isoterma L GAC

y = 0.0049x + 40991R2 = 0.8873

010000200003000040000500006000070000

0 1E+06 2E+06 3E+06 4E+06 5E+061/ C eq

19

Page 20: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Fig 14. Modelo de Freundlich (F) y L

Las constantes de adsorción de las isotermas y los factores de correlación r2 se presentan en la tabla 5.

modelos de Langmuir y Freundlich.

indicando un buen ajuste a este modelo, mientras que

más bajos de r so Lan ostraron un menor ajuste con los

. La ad apli os al modelo de Fr rm ten-

s n én re la e og quí-

e los funci de l ulas adem nsiderac ulti-

n es o exp lta ad de ión de l.

Freundlich Langmuir

angmuir (L) de café 180 lavado.

Tabla 5 Parámetros de adsorción de DDT sobre las partículas del café, determinados por los

Condiciones: 30°C, 100 rpm.

La correlación lineal de los datos obtenidos por la ecuación de Freundlich tienen un valor

de r2 altamente significativo (>0.943),2valores para la i terma de gmuir m

datos ecuada cabilidad de los dat eundlich confi a la exis

cia de sitio de adsorció he gtero eos s bo superficie, d bid o a la heter eneidad

mica d grupos onales as partíc de café, ás la co ión de m

capas e te model lica la a capacid adsorc l materia

Muestra K (mg/g) 1/n r2 b (mg g-1) k (L mg-1) r2

GAC 8.278 0.134 0.9622 8.803 22.719 0.8455

C180 7.4182 0.3301 0.994 8.881 4.1704 0.9612

C180T 10.310 0.3138 0.9842 10.101 8.3898 0.9568

C20 2.815 0.215 0.994 2.749 18.9463 0.8137

C20T 76 5.778 0.6107 0.943 6.757 2.1925 0.7

Isoterma F café lavado 180

y = 0.314x + 1.0133R2 = 0.9842

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0

log Ce

log

x/m

Isoterma Langmuir Cafe lavado 180

y = 0.0133x + 32489R2 = 0.8923

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

0.E+00 5.E+05 1.E+06 2.E+06 2.E+06 3.E+06

Ceq -1

q -1

20

Page 21: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

De acuerdo con este cuadro se muestra que la adsorción del grano de café está entre 2.749

10.101 mg de DDT adsorbidos por gramo de muestra. Se observa también que la cantidad

DDT en una can-

ión sobre la superficie del café y la formación de multi-

apas de contaminante adsorbido. La aplicación del grano de café verde como adsorbente

mas relativos a su disposición final y se aplica como un material de bajo

osto en un proceso de eliminación de contaminantes.

a

adsorbida se incrementa de 30% a 50% con el tratamiento con agua caliente y que las capa-

cidades adsortivas en las muestras C180 y C180T son ligeramente mayores que en GAC, a

pesar de la baja superficie del café.

IV. Impacto.

De acuerdo con los resultados el grano de café verde de desecho adsorbe

tidad similar al carbón activado granular, aunque dependiendo del tratamiento que se le dé

al grano y al tamaño de partícula en cuanto a su capacidad de adsorción. El DDT se re-

mueve por el grano de café siguiendo una cinética de pseudo-segundo orden, y los datos de

adsorción se ajustan a la ecuación de la isoterma de Freundlich, lo cual confirma la presen-

cia de sitios heterogéneos de adsorc

c

resuelve proble

c

21

Page 22: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

V. Bibliografía.

Adachi A., Takagi K y Okano, T. (2001a) Studies on Removal Efficiency of Rice

Bran for Pesticides. J. of Health Science 47(2):94-98.

Adachi A., Takagi, S., Komiyama, T., Tanaka, T., Nakatani, M., Muguruma, R., Oka-

o, T. (2001b). Removal eficiency and mechanism of organochlorine compounds by rice

ran. J. health Sci, 45: P-24.

Ajmal M., Khan A. H., Ahmad S., Ahmad A. (1998). Role of Sawdust In The Remo-

val of Copper(II) From Industrial Wastes. Wat. Res. 32(10): 3085-3091.

005 )Application of biosorption for the removal of organic pollutants: a

view. Process Biochemistry. 40:997-1026.

al nest: The Int J. 2(2):139-148.

edia. Dyes and Pigments 1-9

mentary by-product. Bioresource Technology.

In pre

ow

chlorinated biphenyl by bacterial biofilm

r textile dyestuffs: Batch and continuous studies. Water

research 39: 4142-4152.

n

b

Aksu Z., (2

re

Alam . J. B., Dikshit A.K., Bandyopadhyay H. (2000). Efficacy of adsorbents for 2,4-

D and Atrazina removal from water environment. Glob

Barragán Blanca E., Costa C., Márquez M. C. (2006). Biodegradation of azo dyes by

bacteria inoculated on solid m

Crini G. (2005.) Non-conventional low-cost adsorbents for dye removal: a review.

Bioresource technology. In press

Deval F., Crini G., Vebrel J. (2005). Removal of organic pollutants from aqueous so-

lution by adsorbents prepared from an agroali

ss

Fava F., Gioia D. Marchetti L., Quattroni G. (1996). Aerobic dechlorination of l

s in packed-bed batch bioreactors. Appl Microbiol

Biotechnol 45: 562-568.

Figuereido S. A., Loureiro J.M., Boaventura R.A., (2005) Natural waste materials

containing chitin as adsorbents fo

Grasso D. (1993). Hazardous Waste Site Remediaton -Source Control-.Ed. Lewis

Publishers. USA.

22

Page 23: INFORME TECNICO FINAL PROYECTO SIP No. …sappi.ipn.mx/cgpi/archivos_anexo/20070709_5308.pdfI. Introducción. I.1 Eliminación de plaguicidas por adsorción. I. 1.1 Carbón activado.

Gupta V.K., Jain C.K., Ali I., Chandra S., Agarwal S. (2002). Removal of lindane and

malathion from wastewater using bagasse fly ash--a sugar industry waste. Water Res.

36(10):2483-90.

H

S.E. (1999). Models of natural organic matter and interactions

with

sepovits K., Tombácz E. (2001). Analysis Of Active Sites On Synthetic

Carbo

tion. Journal of chromatography A, 723:111-122.

ithin granules of activated carbon on adsorption of aromatica

from

004). Adsorption Behavior

of h

II), Cr (III) and Ni (II)

ont

water. Journal of Hazardous Materials B95 :

137

d adsorption properties of eggshells and eggshell membrane. Bioresource Technol-

ogy

o Y.S. , G. McKay. (1999). Pseudo-second order model for sorption processes Process

Biochemistry 34: 451–465

Kubicki, J.D.,. Apitz

organic contaminants Organic Geochemistry 30 : 911±927

László K., Jo

n Surfaces By VariousMethods. Analytical Sciences. 17 (1):1741-1744.

Magdic S., Pawliszyn J.B. (1996). Analysis of organochlorine pesticides using solid-

phase microextrac

Marczewska A.D. Goworek J., Swiatkwoski and Buczek B. (2004). Influene of diffe-

rences in porous structure w

aqueous solution. Carbon. 42:301-306.

Minamisawa M., Minamisawa H., Yoshida S., Takai N. (2

eavy metals on Biomaterials. Journal of Agricultural and Food Chemistry. 52: 5606-

5611.

Parab H., Joshi S., Shenoy N., Lali A., Sarma U.S., Sudersanan. (2006). Determination

of kinetic and equilibrium parameters of the batch adsorption of Co (

o coir pith. Process Biochemistry 41:609-615.

Shukla A., Zhang Y., Dubey P., Margrave J.L., Shukla S.. (2002). The role of sawdust

in the removal of unwanted materials from

–152.

Tsai W.T. Yang J.M, Lai C.W. Cheng Y.H., Lin C.C., Yeh C.W. (2006). Characteriza-

tion an

. 97: 488-493.

Watts, R. (1997). Hazardous Wastes: Sources, Pathways, Receptors. Ed. John Wiley

and Sons. New York, USA.

23