Esta udd-2012

85
Bioestadística aplicada TM. Pedro Cortes Alfaro Magister en Administración en Salud

Transcript of Esta udd-2012

Page 1: Esta udd-2012

Bioestadística aplicada

TM. Pedro Cortes Alfaro

Magister en Administración en Salud

Page 2: Esta udd-2012

Tema 1: Introdución 2

¿Para qué sirve la estadística?

• La Ciencia se ocupa en general de fenómenos observables

• La Ciencia se desarrolla observando hechos, formulando leyes que los explican y realizando experimentos para validar o rechazar dichas leyes

• Los modelos que crea la ciencia son de tipo determinista o aleatorio (estocástico)

• La Estadística se utiliza como tecnología al servicio de las ciencias donde la variabilidad y la incertidumbre forman parte de su naturaleza

• “La Bioestadística [...] enseña y ayuda a investigar en todas las áreas de las Ciencias de la Vida donde la variablidad no es la excepción sino la regla”Carrasco de la Peña (1982)

Page 3: Esta udd-2012

Tema 1: Introdución 3

DefiniciónLa Estadística es la Ciencia de la

• Sistematización, recogida, ordenación y presentación de los datos referentes a un fenómeno que presenta variabilidad o incertidumbre para su estudio metódico, con objeto de

• deducir las leyes que rigen esos fenómenos,

• poder de esa forma hacer previsiones sobre los mismos, tomar decisiones u obtener conclusiones.

Page 4: Esta udd-2012

Tema 1: Introdución

4

Pasos en un estudio estadístico

• Plantear hipótesis sobre una población

• Los fumadores tienen bajo rendimiento que los no fumadores

• ¿En qué sentido? ¿Mayor número? ¿Tiempo medio?

• Decidir qué datos recoger (diseño de experimentos)

• Qué individuos pertenecerán al estudio (muestras)

• Fumadores y no fumadores en edad laboral.

• Criterios de exclusión ¿Cómo se eligen? ¿Descartamos los que padecen enfermedades crónicas?

• Qué datos recoger de los mismos (variables)

• Número de bajas

• Tiempo de duración de cada baja

• ¿Sexo? ¿Sector laboral? ¿Otros factores?

• Recoger los datos (muestreo)

• ¿Estratificado? ¿Sistemáticamente?

• Describir (resumir) los datos obtenidos

• tiempo medio de baja en fumadores y no (estadísticos)

• % de bajas por fumadores y sexo (frecuencias), gráficos,...

• Realizar una inferencia sobre la población

• Los fumadores están de baja al menos 10 días/año más de media que los no fumadores.

• Cuantificar la confianza en la inferencia

• Nivel de confianza del 95%

• Significación del contraste: p=2%

Page 5: Esta udd-2012

Tema 1: Introdución 5

Plantear

hipótesis

Obtener

conclusiones

Recoger datos

y analizarlos

Diseñar

experimento

Método científico y

estadística

Page 6: Esta udd-2012

Tema 1: Introdución 6

Población y muestra

• Población („population’) es el conjunto sobre el que estamos interesados en obtener conclusiones (hacer inferencia).

• Normalmente es demasiado grande para poder abarcarlo.

• Muestra („sample’) es un subconjunto suyo al que tenemos acceso y sobre el que realmente hacemos las observaciones (mediciones)

• Debería ser “representativo”

• Esta formado por miembros “seleccionados” de la población (individuos, unidades experimentales).

Page 7: Esta udd-2012

Tema 1: Introdución 7

Variables• Una variable es una característica observable que varía entre los

diferentes individuos de una población. La información que

disponemos de cada individuo es resumida en variables.

• En los individuos de la población Chilena, de uno a otro es variable:

• El grupo sanguíneo

• {A, B, AB, O} Var. Cualitativa

• Su nivel de felicidad “declarado”

• {Deprimido, Ni fu ni fa, Muy Feliz} Var. Ordinal

• El número de hijos

• {0,1,2,3,...} Var. Numérica discreta

• La altura

• {1‟62 ; 1‟74; ...} Var. Numérica continua

Page 8: Esta udd-2012

Tema 1: Introdución 8

• CualitativasSi sus valores (modalidades) no se pueden asociar naturalmente a un número (no se pueden hacer operaciones algebraicas con ellos)

• Nominales: Si sus valores no se pueden ordenar

• Sexo, Grupo Sanguíneo, Religión, Nacionalidad, Fumar (Sí/No)

• Ordinales: Si sus valores se pueden ordenar

• Mejoría a un tratamiento, Grado de satisfacción, Intensidad del dolor

• Cuantitativas o NuméricasSi sus valores son numéricos (tiene sentido hacer operaciones algebraicas con ellos)

• Discretas: Si toma valores enteros

• Número de hijos, Número de cigarrillos, Num. de “cumpleaños”

• Continuas: Si entre dos valores, son posibles infinitos valores intermedios.

• Altura, Presión intraocular, Dosis de medicamento administrado, edad

Tipos de variables

Page 9: Esta udd-2012

Tema 1: Introdución 9

• Es buena idea codificar las variables como números para poder procesarlas con facilidad en un ordenador.

• Es conveniente asignar “etiquetas” a los valores de las variables para recordar qué significan los códigos numéricos.

• Sexo (Cualit: Códigos arbitrarios)

• 1 = Hombre

• 2 = Mujer

• Raza (Cualit: Códigos arbitrarios)

• 1 = Blanca

• 2 = Negra,...

• Felicidad Ordinal: Respetar un orden al codificar.

• 1 = Muy feliz

• 2 = Bastante feliz

• 3 = No demasiado feliz

• Se pueden asignar códigos a respuestas especiales como

• 0 = No sabe

• 99 = No contesta...

• Estas situaciones deberán ser tenidas en cuentas en el análisis. Datos perdidos („missing data‟)

Page 10: Esta udd-2012

Tema 1: Introdución 10

• Aunque se codifiquen como números, debemos recordar siempre el verdadero tipo de las variables y su significado cuando vayamos a usar programas de cálculo estadístico.

• No todo está permitido con cualquier tipo de variable.

Page 11: Esta udd-2012

Tema 1: Introdución 11

• Los posibles valores de una variable suelen denominarse modalidades.

• Las modalidades pueden agruparse en clases (intervalos)

• Edades:

• Menos de 20 años, de 20 a 50 años, más de 50 años

• Hijos:

• Menos de 3 hijos, De 3 a 5, 6 o más hijos

• Las modalidades/clases deben forman un sistema exhaustivo y excluyente

• Exhaustivo: No podemos olvidar ningún posible valor de la variable

– Mal: ¿Cuál es su color del pelo: (Rubio, Moreno)?

– Bien: ¿Cuál es su grupo sanguíneo?

• Excluyente: Nadie puede presentar dos valoressimultáneos de la variable

• Estudio sobre el ocio

– Mal: De los siguientes, qué le gusta: (deporte, cine)

– Bien: Le gusta el deporte: (Sí, No)

– Bien: Le gusta el cine: (Sí, No)

– Mal: Cuántos hijos tiene: (Ninguno, Menos de 5, Más de 2)

Page 12: Esta udd-2012

Tema 1: Introdución 12

Presentación ordenada de datos

0

1

2

3

4

5

6

7

Hombre Mujer

• Las tablas de frecuencias y las representaciones gráficas son dos maneras equivalentes de presentar la información. Las dos exponen ordenadamente la información recogida en una muestra.

Género Frec.

Hombre 4

Mujer 6

Page 13: Esta udd-2012

Tema 1: Introdución 13

Tablas de frecuencia

Nivel de felicidad

467 30,8 31,1 31,1

872 57,5 58,0 89,0

165 10,9 11,0 100,0

1504 99,1 100,0

13 ,9

1517 100,0

Muy feliz

Bastante feliz

No demasiado feliz

Total

Válidos

No contestaPerdidos

Total

Frecuencia Porcentaje

Porcentaje

válido

Porcentaje

acumulado

Sexo del encuestado

636 41,9 41,9

881 58,1 58,1

1517 100,0 100,0

Hombre

Mujer

Total

Válidos

Frecuencia Porcentaje

Porcentaje

válido

Número de hijos

419 27,6 27,8 27,8

255 16,8 16,9 44,7

375 24,7 24,9 69,5

215 14,2 14,2 83,8

127 8,4 8,4 92,2

54 3,6 3,6 95,8

24 1,6 1,6 97,3

23 1,5 1,5 98,9

17 1,1 1,1 100,0

1509 99,5 100,0

8 ,5

1517 100,0

0

1

2

3

4

5

6

7

Ocho o más

Total

Válidos

No contestaPerdidos

Total

Frecuencia Porcentaje

Porcentaje

válido

Porcentaje

acumulado

• Exponen la información recogida en la muestra, de forma que no se pierda nada de información (o poca).

• Frecuencias absolutas: Contabilizan el número de individuos de cada modalidad

• Frecuencias relativas (porcentajes): Idem, pero dividido por el total

• Frecuencias acumuladas: Sólo tienen sentido para variables ordinales y numéricas

• Muy útiles para calcular cuantiles (ver más adelante)

– ¿Qué porcentaje de individuos tiene menos de 3 hijos? Sol: 83,8

– ¿Entre 4 y 6 hijos? Soluc 1ª: 8,4%+3,6%+1,6%= 13,6%. Soluc 2ª: 97,3% - 83,8% = 13,5%

Page 14: Esta udd-2012

Tema 1: Introdución 14

Datos desordenados y

ordenados en tablas

• Variable: Género

• Modalidades:

• H = Hombre

• M = Mujer

• Muestra:

M H H M M H M M M H

• equivale aHHHH MMMMMM

Géner

o

Frec. Frec. relat.

porcentaje

Hombr

e

4 4/10=0,4=40%

Mujer 6 6/10=0,6=60%

10=tamañ

o muestral

Page 15: Esta udd-2012

Tema 1: Introdución 15

Número de hijos

419 27,8 27,8

255 16,9 44,7

375 24,9 69,5

215 14,2 83,8

127 8,4 92,2

54 3,6 95,8

24 1,6 97,3

23 1,5 98,9

17 1,1 100,0

1509 100,0

0

1

2

3

4

5

6

7

Ocho+

Total

Frec.

Porcent.

(válido)

Porcent.

acum.

Ejemplo

• ¿Cuántos individuos tienen menos de 2 hijos?

• frec. indiv. sin hijos + frec. indiv. con 1 hijo = 419 + 255= 674 individuos

• ¿Qué porcentaje de individuos tiene 6 hijos o menos?

• 97,3%

• ¿Qué cantidad de hijos es tal que al menos el 50% de la población tiene una cantidad inferior o igual?

• 2 hijos

≥50%

Page 16: Esta udd-2012

Tema 1: Introdución 16

Gráficos para v. cualitativas

• Diagramas de barras

• Alturas proporcionales a las frecuencias (abs. o rel.)

• Se pueden aplicar también a variables discretas

• Diagramas de sectores (tartas, polares)

• No usarlo con variables ordinales.

• El área de cada sector es proporcional a su frecuencia (abs. o rel.)

• Pictogramas

• Fáciles de entender.

• El área de cada modalidad debe ser proporcional a la frecuencia. ¿De los dos, cuál es incorrecto?.

Page 17: Esta udd-2012

Tema 1: Introdución 17

Gráficos diferenciales para variables

numéricas

• Son diferentes en función de que

las variables sean discretas o

continuas. Valen con frec. absolutas

o relativas.

• Diagramas barras para v. discretas

• Se deja un hueco entre barras para

indicar los valores que no son posibles

• Histogramas para v. continuas

• El área que hay bajo el histograma

entre dos puntos cualesquiera indica la

cantidad (porcentaje o frecuencia) de

individuos en el intervalo.

0 1 2 3 4 5 6 7 Ocho o más

Número de hijos

100

200

300

400

Rec

uen

to

419

255

375

215

127

54

24 23 17

20 40 60 80

Edad del encuestado

50

100

150

200

250

Rec

uen

to

Page 18: Esta udd-2012

Tema 1: Introdución 18

Diagramas integrales

• Cada uno de los anteriores diagramas tiene su correspondiente diagrama integral. Se realizan a partir de las frecuencias acumuladas. Indican, para cada valor de la variable, la cantidad (frecuencia) de individuos que poseen un valor inferior o igual al mismo. No los construiremos en clase. Se pasan de los diferenciales a los integrales por integración y a la inversa por derivación (en un sentido más general del que visteis en bachillerato.)

Page 19: Esta udd-2012

Tema 1: Introdución 19

¿Qué hemos visto?

• Definición de estadística

• Población

• Muestra

• Variables

• Cualitativas

• Numéricas

• Presentación ordenada de datos

• Tablas de frecuencias

• absolutas

• relativas

• acumuladas

• Representaciones gráficas

• Cualitativas

• Numéricas

– Diferenciales

– Integrales

Page 20: Esta udd-2012

Tema 2: Modelos probabilísticos20

Bioestadística

• Tema 2: Modelos probabilísticos

Page 21: Esta udd-2012

Tema 2: Modelos probabilísticos 21

Variable aleatoria

• El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

• En estos casos aparece la noción de variable aleatoria

• Función que asigna a cada suceso un número.

• Las variables aleatorias pueden ser discretas o continuas (como en el primer tema del curso).

• En las siguientes transparencias vamos a recordar conceptos de temas anteriores, junto con su nueva designación. Los nombres son nuevos. Los conceptos no.

Page 22: Esta udd-2012

Tema 2: Modelos probabilísticos 22

Función de probabilidad (V. Discretas)

• Asigna a cada posible valor

de una variable discreta su

probabilidad.

• Recuerda los conceptos de

frecuencia relativa y diagrama

de barras.

• Ejemplo

• Número de caras al lanzar 3

monedas.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3

Page 23: Esta udd-2012

Tema 2: Modelos probabilísticos 23

Función de densidad (V. Continuas)

• Definición

• Es una función no negativa de integral

1.

• Piénsalo como la generalización del

histograma con frecuencias relativas

para variables continuas.

• ¿Para qué lo voy a usar?

• Nunca lo vas a usar directamente.

• Sus valores no representan

probabilidades.

Page 24: Esta udd-2012

Tema 2: Modelos probabilísticos 24

¿Para qué sirve la f. densidad?

• Muchos procesos aleatorios vienen descritos por variables de forma que son conocidas las probabilidades en intervalos.

• La integral definida de la función de densidad en dichos intervalos coincide con la probabilidad de los mismos.

• Es decir, identificamos la probabilidad de un intervalo con el área bajo la función de densidad.

Page 25: Esta udd-2012

Tema 2: Modelos probabilísticos 25

Función de distribución

• Es la función que asocia a cada valor de una variable, la probabilidad acumuladade los valores inferiores o iguales.

• Piénsalo como la generalización de lasfrecuencias acumuladas. Diagrama integral.

• A los valores extremadamente bajos les corresponden valores de la función de distribución cercanos a cero.

• A los valores extremadamente altos les corresponden valores de la función de distribución cercanos a uno.

• Lo encontraremos en los artículos y aplicaciones en forma de “p-valor”, significación,…

Page 26: Esta udd-2012

Tema 2: Modelos probabilísticos 26

¿Para qué sirve la f. distribución?

• Contrastar lo anómalo de una observación concreta.

• Sé que una persona de altura 210cm es “anómala” porque la función de distribución en 210 es muy alta.

• Sé que una persona adulta que mida menos de 140cm es “anómala” porque la función de distribución es muy baja para 140cm.

• Sé que una persona que mida 170cm no posee una altura nada extraña pues su función de distribución es aproximadamente 0,5.

• Relaciónalo con la idea de cuantil.

• En otro contexto (contrastes de hipótesis) podremos observar unos resultados experimentales y contrastar lo “anómalos” que son en conjunto con respecto a una hipótesis de terminada.

• Intenta comprender la explicación de clase si puedes. Si no, ignora esto de momento. Revisita este punto cuando hayamos visto el tema de contrastes de hipótesis.

Page 27: Esta udd-2012

Tema 2: Modelos probabilísticos 27

Valor esperado y varianza de una v.a. X

• Valor esperado

• Se representa mediante E[X] ó μ

• Es el equivalente a la media

• Varianza

• Se representa mediante VAR[X] o σ2

• Es el equivalente a la varianza

• Se llama desviación típica a σ

Page 28: Esta udd-2012

Tema 1: Introdución 28

Page 29: Esta udd-2012

29

Es la razón entre la desviación típica y la media. Mide la desviación típica en forma de

“qué tamaño tiene con respecto a la media” También se la denomina variabilidad relativa. Es frecuente mostrarla en porcentajes

Si la media es 80 y la desviación típica 20 entonces CV=20/80=0,25=25% (variabilidad relativa)

Es una cantidad adimensional. Interesante para comparar la variabilidad de diferentes variables. Si el peso tiene CV=30% y la altura tiene CV=10%, los individuos presentan más

dispersión en peso que en altura.

No debe usarse cuando la variable presenta valores negativos o donde el valor 0 sea una cantidad fijada arbitrariamente Por ejemplo 0ºC ≠ 0ºF

Los ingenieros electrónicos hablan de la razón ‘señal/ruido’ (su inverso).

x

SCV

Coeficiente de variación

Page 30: Esta udd-2012

Tema 2: Modelos probabilísticos 30

Algunos modelos de v.a.

• Hay v.a. que aparecen con frecuencia en las Ciencias de la Salud.

• Experimentos dicotómicos.

• Bernoulli

• Contar éxitos en experimentos dicotómicos repetidos:

• Binomial

• Poisson (sucesos raros)

• Y en otras muchas ocasiones…

• Distribución normal (gaussiana, campana,…)

• El resto del tema está dedicado a estudiar estas distribuciones especiales.

Page 31: Esta udd-2012

Tema 2: Modelos probabilísticos 31

Distribución binomial

• Función de probabilidad

• Problemas de cálculo si n es grande y/o p cercano a 0 o 1.

• Media: μ =n p

• Varianza: σ2 = n p q

nkqpk

nkXP knk 0 ,][

Page 32: Esta udd-2012

Tema 2: Modelos probabilísticos 32

Distribución Binomial

• Si se repite un número fijo de veces, n, un experimento de Bernoulli con parámetro p, el número de éxitos sigue una distribución binomial de parámetros (n,p).

• Lanzar una moneda 10 veces y contar las caras.

– Bin(n=10,p=1/2)

• Lanzar una moneda 100 veces y contar las caras.

– Bin(n=100,p=1/2)

– Difícil hacer cálculos con esas cantidades. El modelo normal será más adecuado.

• El número de personas que enfermará (en una población de 500.000 personas) de una enfermedad que desarrolla una de cada 2000 personas.

– Bin(n=500.000, p=1/2000)

» Difícil hacer cálculos con esas cantidades. El modelo de Poisson será más adecuado.

Page 33: Esta udd-2012

Tema 2: Modelos probabilísticos 33

“Parecidos razonables”

• Aún no conoces la distribución normal, ni de Poisson.

• De cualquier forma ahí tienes la comparación entre valores de p no muy extremos y una normal de misma media y desviación típica, para tamaños de n grandes (n>30).

• Cuando p es muy pequeño es mejor usar la aproximación del modelo de Poisson.

Page 34: Esta udd-2012

Tema 2: Modelos probabilísticos 34

Distribución de Poisson

• También se denomina de sucesos raros.

• Se obtiene como aproximación de una

distribución binomial con la misma

media, para „n grande‟ (n>30) y „p pequeño‟

(p<0,1).

• Queda caracterizada por un único

parámetro μ (que es a su vez su media y

varianza.)

• Función de probabilidad: ,...2,1,0 ,!

][ kk

ekXPk

Page 35: Esta udd-2012

Tema 2: Modelos probabilísticos 35

Ejemplos de variables de Poisson

• El número de individuos que será atendido un día cualquiera en el servicio de urgencias del hospital clínico universitario.

• En Málaga hay 500.000 habitantes (n grande)

• La probabilidad de que cualquier persona tenga un accidente es pequeña, pero no nula. Supongamos que es 1/10.000

• Bin(n=500.000,p=1/10.000) ≈ Poisson(μ=np=50)

• Sospechamos que diferentes hospitales pueden tener servicios de traumatología de diferente “calidad” (algunos presentan pocos, pero creemos que aún demasiados, enfermos con secuelas tras la intervención). Es dificilcompararlos pues cada hospital atiende poblaciones de tamaños diferentes (ciudades, pueblos,…)

• Tenemos en cada hospital n, nº de pacientes atendidos o nº individuos de la población que cubre el hospital.

• Tenemos p pequeño calculado como frecuencia relativa de secuelas con respecto al total de pacientes que trata el hospital, o el tamaño de la población,…

• Se puede modelar mediante Poisson(μ=np)

Page 36: Esta udd-2012

Tema 2: Modelos probabilísticos 36

Distribución normal o de Gauss

• Aparece de manera natural:

• Errores de medida.

• Distancia de frenado.

• Altura, peso, propensión al crimen…

• Distribuciones binomiales con n grande (n>30) y „p ni

pequeño‟ (np>5) „ni grande‟ (nq>5).

• Está caracterizada por dos parámetros: La

media, μ, y la desviación típica, σ.

• Su función de densidad es:

2

2

1

2

1)(

x

exf

Page 37: Esta udd-2012

Tema 2: Modelos probabilísticos 37

N(μ, σ):

Interpretación

geométrica

• Pudes interpretar la

media como un

factor de traslación.

• Y la desviación

típica como un

factor de escala,

grado de

dispersión,…

Page 38: Esta udd-2012

Tema 2: Modelos probabilísticos 38

N(μ, σ): Interpretación probabilista

• Entre la media y una

desviación típica

tenemos siempre la

misma probabilidad:

aprox. 68%

• Entre la media y dos

desviaciones típicas

aprox. 95%

Page 39: Esta udd-2012

Tema 2: Modelos probabilísticos 39

Algunas características• La función de densidad es simétrica, mesocúrtica y unimodal.

• Media, mediana y moda coinciden.

• Los puntos de inflexión de la fun. de densidad están a distancia σ de μ.

• Si tomamos intervalos centrados en μ, y cuyos extremos están…

• a distancia σ, tenemos probabilidad 68%

• a distancia 2 σ, tenemos probabilidad 95%

• a distancia 2‟5 σ tenemos probabilidad 99%

• No es posible calcular la probabilidad de un intervalo simplemente usando la primitiva de la función de densidad, ya que no tiene primitiva expresable en términos de funciones „comunes‟.

• Todas las distribuciones normales N(μ, σ), pueden ponerse mediante una traslación μ, y un cambio de escala σ, como N(0,1). Esta distribución especial se llama normal tipificada.

• Justifica la técnica de tipificación, cuando intentamos comparar individuos diferentes obtenidos de sendas poblaciones normales.

Page 40: Esta udd-2012

Tema 2: Modelos probabilísticos 40

Tipificación

• Dada una variable de media μ y desviación típica σ, se denomina valor tipificado,z, de una observación x, a la distancia (con signo) con respecto a la media, medido en desviaciones típicas, es decir

• En el caso de variable X normal, la interpretación es clara: Asigna a todo valor de N(μ, σ), un valor de N(0,1) que deja exáctamente la misma probabilidad por debajo.

• Nos permite así comparar entre dos valores de dos distribuciones normales diferentes, para saber cuál de los dos es más extremo.

xz

Page 41: Esta udd-2012

Tema 2: Modelos probabilísticos 41Bioestadística. U.

Málaga.

Tabla N(0,1)Z es normal tipificada.

Calcular P[Z<1,85]

Solución: 0,968 = 96,8%

Page 42: Esta udd-2012

Tema 2: Modelos probabilísticos 42Bioestadística. U.

Málaga.

Tabla N(0,1) Z es normal tipificada.

Calcular P[Z<-0,54]

Solución: 1-0,705 = 0,295

Page 43: Esta udd-2012

Tema 2: Modelos probabilísticos 43

Tabla N(0,1)Z es normal tipificada.

Calcular P[-0,54<Z<1,85]

Solución: 0,968-0,295= 0,673

Page 44: Esta udd-2012

Tema 2: Modelos probabilísticos 44

Ejemplo: Cálculo con probabilidades

normales

• El colesterol en la población tiene

distribución normal, con media 200 y

desviación 10.

• ¿Qué porcentaje de indivíduos tiene

colesterol inferior a 210?

• Qué valor del colesterol sólo es superado

por el 10% de los individuos.

Page 45: Esta udd-2012

Tema 2: Modelos probabilísticos 45

• Todas las distribuciones normales son similares salvo traslación y cambio de escala: Tipifiquemos.

110

200210xz

841,0)ver tabla(]00,1[ZP

Page 46: Esta udd-2012

Tema 5: Modelos probabilísticos 46Bioestadística. U.

Málaga.

8,21228,110200

10

20028,1

x

x

• El valor del colesterol que sólo supera el 10% de los individuos es el percentil 90. Calculemos el percentil 90 de la N(0,1) y deshacemos la tipificación.

xz

Page 47: Esta udd-2012

Tema 2: Modelos probabilísticos 47

Ejemplo: Tipificación

• Se quiere dar una beca a uno de dos estudiantes de

sistemas educativos diferentes. Se asignará al que

tenga mejor expediente académico.

• El estudiante A tiene una calificación de 8 en un sistema

donde la calificación de los alumnos se comporta como

N(6,1).

• El estudiante B tiene una calificación de 80 en un sistema

donde la calificación de los alumnos se comporta como

N(70,10).

• Solución

• No podemos comparar directamente 8 puntos de A frente a

los 80 de B, pero como ambas poblaciones se comportan de

modo normal, podemos tipificar y observar las puntuaciones

sobre una distribución de referencia N(0,1)

Page 48: Esta udd-2012

Tema 2: Modelos probabilísticos 48

110

7080

21

68

B

BBB

A

AAA

xz

xz

Como ZA>ZB, podemos decir que el

porcentaje de compañeros del mismo

sistema de estudios que ha superado

en calificación el estudiante A es mayor

que el que ha superado B.

Podríamos pensar en principio que A

es mejor candidato para la beca.

Page 49: Esta udd-2012

Tema 2: Modelos probabilísticos 49

¿Por qué es importante la distribución normal?

• Las propiedades que tiene la distribución normal son interesantes, pero todavía no hemos habladode por qué es una distribución especialmente importante.

• La razón es que aunque una v.a. no posea distribución normal, ciertos estadísticos/estimadores calculados sobre muestras elegidas al azar sí que poseen una distribución normal.

• Es decir, tengan las distribución que tengan nuestros datos, los „objetos‟ que resumen la información de una muestra, posiblemente tengan distribución normal (o asociada).

Page 50: Esta udd-2012

Tema 2: Modelos probabilísticos 50

Aplic. de la normal: Estimación en muestras

• Como ilustración mostramos una variable que presenta valores distribuidos de forma muy asimétrica. Claramente no normal.

• Saquemos muestras de diferentes tamaños, y usemos la media de cada muestra para estimar la media de la población.

Page 51: Esta udd-2012

Tema 2: Modelos probabilísticos 51

Aplic. de la normal: Estimación en muestras

• Cada muestra ofrece un resultado diferente: La media muestral es variable aleatoria.

• Su distribución es más parecida a la normal que la original.

• También está menos dispersa. A su dispersión („desv. típica del estimador media muestral‟… ¿os gusta el nombre largo?) se le suele denominar error típico.

Page 52: Esta udd-2012

Tema 2: Modelos probabilísticos 52

Aplic. de la normal: Estimación en muestras

• Al aumentar el

tamaño, n, de la

muestra:

• La normalidad de las

estimaciones mejora

• El error típico

disminuye.

Page 53: Esta udd-2012

Tema 2 Modelos probabilísticos 53

Aplic. de la normal: Estimación en muestras

• Puedo „garantizar‟ medias muestrales tan cercanas como quiera a la verdadera media, sin más que tomar „n bastante grande‟

• Se utiliza esta propiedad para dimensionar el tamaño de una muestra antes de empezar una investigación.

Page 54: Esta udd-2012

Tema 2: Modelos probabilísticos 54

Resumen: Teorema del límite central• Dada una v.a. cualquiera, si extraemos muestras de

tamaño n, y calculamos los promedios muestrales, entonces:

• dichos promedios tienen distribuciónaproximadamente normal;

• La media de los promedios muestraleses la misma que la de la variable original.

• La desviación típica de los promedios disminuye en un factor “raíz de n” (error estándar).

• Las aproximaciones anteriores se hacen exactas cuando n tiende a infinito.

• Este teorema justifica la importancia de la distribución normal.

• Sea lo que sea lo que midamos, cuando se promedie sobre una muestra grande (n>30) nos va a aparecer de manera natural la distribución normal.

Page 55: Esta udd-2012

Tema 2: Modelos probabilísticos 55

Distribuciones asociadas a la normal

• Cuando queramos hacer inferencia estadística hemos visto que la distribución normal aparece de forma casi inevitable.

• Dependiendo del problema, podemos encontrar otras (asociadas):

• X2 (chi cuadrado)

• t- student

• F-Snedecor

• Estas distribuciones resultan directamente de operar con distribuciones normales. Típicamente aparecen como distribuciones de ciertos estadísticos.

• Veamos algunas propiedades que tienen (superficialmente). Para más detalles consultad el manual.

• Sobre todo nos interesa saber qué valores de dichas distribuciones son “atípicos”.

• Significación, p-valores,…

Page 56: Esta udd-2012

Tema 2: Modelos probabilísticos 56

Chi cuadrado

• Tiene un sólo parámetro denominado grados de libertad.

• La función de densidad es asimétrica positiva. Sólo tienen densidad los valores positivos.

• La función de densidad se hace más simétrica incluso casi gausiana cuando aumenta el número de grados de libertad.

• Normalmente consideraremos anómalos aquellos valores de la variable de la “cola de la derecha”.

Page 57: Esta udd-2012

Tema 2 : Modelos probabilísticos 57

T de student

• Tiene un parámetro denominado grados de libertad.

• Cuando aumentan los grados de libertad, más se acerca a N(0,1).

• Es simétrica con respecto al cero.

• Se consideran valores anómalos los que se alejan de cero (positivos o negativos).

Page 58: Esta udd-2012

Tema 2: Modelos probabilísticos 58

F de Snedecor

• Tiene dos parámetros denominados grados de libertad.

• Sólo toma valores positivos. Es asimétrica.

• Normalmente se consideran valores anómalos los de la cola de la derecha.

Page 59: Esta udd-2012

Tema 2: Modelos probabilísticos 59

¿Qué hemos visto?• En v.a. hay conceptos equivalentes a los de temas anteriores

• Función de probabilidad Frec. Relativa.

• Función de densidad histograma

• Función de distribución diagr. Integral.

• Valor esperado media, …

• Hay modelos de v.a. de especial importancia:

• Bernoulli

• Binomial

• Poisson

• Normal

• Propiedades geométricas

• Tipificación

• Aparece tanto en problemas con variables cualitativas (dicotómicas, Bernoulli) como numéricas

• Distribuciones asociadas

– T-student

– X2

– F de Snedecor

Page 60: Esta udd-2012

Tema 3: Muestreo 60

Bioestadística

• Tema 3: Muestreo

Page 61: Esta udd-2012

Tema 3: Muestreo 61

• Parte de los conceptos de la teoría del muestreo han sido discutidos con anterioridad. Aquí los repasaremos y ampliaremos. Por ejemplo, hemos mencionado que las poblaciones están formadas por individuos, pero sería mejor denominarlas unidades de muestreo o unidades de estudio:

• Personas, células, familias, hospitales, países…

• La población ideal que se pretende estudiar se denomina población objetivo.

• No es fácil estudiarla por completo. Aproximamos mediante muestras que den idealmente la misma probabilidad a cada individuo de ser elegido.

• Tampoco es fácil elegir muestras de la población objetivo:

• Si llamamos por teléfono excluimos a los que no tienen.

• Si elegimos indiv. en la calle, olvidamos los que están trabajando...

• El grupo que en realidad podemos estudiar (v.g. los que tienen teléfono) se denomina población de estudio.

Page 62: Esta udd-2012

Tema 3: Muestreo 62

Fuentes de sesgo

• Las poblaciones objetivo y de estudio pueden diferir en cuanto a las variables que estudiamos.

• El nivel económico en la población de estudio es mayor que en la objetivo,...

• Los individuos que se eligen en la calle pueden ser de mayor edad (mayor frecuencia de jubilados p.ej.)…

• En este caso, diremos que las muestras que se elijan estarán sesgadas. Al tipo de sesgo debido a diferencias sistemáticas entre población objetivo y población de estudio se denomina sesgo de selección.

• Hay otras fuentes de error/sesgo

• No respuesta a encuestas embarazosas

• Consumo de drogas, violencia doméstica, prácticas poco éticas,…

• Mentir en las preguntas “delicadas”.

• Para evitar este tipo de sesgo se utilizan la técnica de respuesta aleatorizada.

Page 63: Esta udd-2012

Tema 3: Muestreo 63

Técnicas de respuesta aleatorizada

• Reducen la motivación para mentir (o no responder) a las encuestas.

• ¿Si digo la verdad, se me verá el plumero…?

• ¿Cómo se hace?Pídele que lance una moneda antes de responder y…

• Si sale cara que diga la “opción compremetida”

• (no tiene por qué avergonzarse, la culpa es de la moneda)

• Si sale cruz que diga la verdad

• (no tiene por qué avergonzarse, el encuestador no sabe si ha salido cara o cruz)

• Aunque no podamos saber cuál es la verdad en cada individuo, podemos hacernos una idea porcentual sobre la población, viendo en cuánto se alejan las respuestas del 50%.

Page 64: Esta udd-2012

Tema 3: Muestreo 64

Ejemplo: ¿Ha tomado drogas alguna vez?

100% No Insinseros!!

40% No

60% Sí

Con respuesa

aleatorizada

Sin respuesta

aleatorizada

¡No son mitad y mitad!

El porcentaje estimado de ind. que tomó drogas

es:

%202,05,01

5,06,0*p

Los que deben decir la verdad

Diferencia entre los que han dicho sí y los que debían hacerlo

por que así lo indicaba la moneda

Page 65: Esta udd-2012

Tema 3: Muestreo 65

Estimación• Un estimador es una cantidad numérica calculada sobre una

muestra y que esperamos que sea una buena aproximaciónde cierta cantidad con el mismo significado en la población (parámetro).

• En realidad ya hemos trabajado con estimadores cada vez que hacíamos una práctica con muestras extraídas de una población y suponíamos que las medias, etc… eran próximas de las de la población.

• Para la media de una población:

• “El mejor” es la media de la muestra.

• Para la frecuencia relativa de una modalidad de una variable:

• “El mejor” es la frecuencia relativa en la muestra.

Page 66: Esta udd-2012

Tema 3: Muestreo 66

¿Es útil conocer la distribución de un

estimador?

• Es la clave para hacer inferencia. Ilustrémoslo con un ejemplo que

ya tratamos en el tema anterior (teorema del límite central).

• Si de una variable conocemos μ y σ, sabemos que para muestras

“grandes”, la media muestral es:

• aproximadamente normal,

• con la misma media y,

• desviación típica mucho menor (error típico/estándar)

• Es decir si por ejemplo μ=60 y σ=5, y obtenemos muestras de

tamaño n=100,

• La desv. típica de la media muestral (error estándar) es

EE=5/raiz(100)=0,5

• como la media muestral es aproximadamente normal, el 95% de los

estudios con muestras ofrecerían estimaciones entre 60 1

• Dicho de otra manera, al hacer un estudio tenemos una confianza del

95% de que la verdadera media esté a una distancia de 1.

nEE

Page 67: Esta udd-2012

Tema 3: Muestreo 67

• En el ejemplo anterior la situación no era muy realista, pues como de todas maneras no conozco σ desconoceré el intervalo exacto para μ.

• Sin embargo también hay estimadores para σ y puedo usarlo como aproximación.

• Para tener una idea intuitiva, analicemos el siguiente ejemplo. Nos servirá como introducción a la estimación puntual y por intervalos de confianza.

Page 68: Esta udd-2012

Tema 3: Muestreo 68

• Ejemplo: Una muestra de n=100 individuos de una población tiene media de peso 60 kg y desviación 5kg.

• Dichas cantidades pueden considerarse como aproximaciones (estimaciones puntuales)

• 60 kg estima a μ

• 5 kg estima a σ

• 5/raiz(n)= 0,5 estima el error estándar (típico) EE

– Estas son las llamadas estimaciones puntuales: un número concreto calculado sobre una muestra es aproximación de un parámetro.

• Una estimación por intervalo de confianza es una que ofrece un intervalo como respuesta. Además podemos asignarle una probabilidad aproximada que mida nuestra confianza en la respuesta:

• Hay una confianza del 68% de que μ esté en 60 0,5

• Hay una confianza del 95% de que μ esté en 60 1.

Page 69: Esta udd-2012

Tema 3: Muestreo 69

Estimación puntual y por intervalos

• Se denomina estimación puntual de un parámetro al ofrecido por el estimador sobre una muestra.

• Se denomina estimación confidencial o intervalo de confianzapara un nivel de confianza 1-α dado, a un intervalo que ha sido construido de tal manera que con frecuencia 1-α realmente contiene al parámetro.

• Obsérvese que la probabilidad de error (no contener al parámetro) es α.

• En el siguiente tema se llamará prob. de error de tipo I o nivel de significación.

• Valores típicos: α=0,10 ; 0,05 ; 0,01

• En general el tamaño del intervalo disminuye con el tamaño muestral y aumenta con 1-α.

• En todo intervalo de confianza hay una noticia buena y otra mala:

• La buena: hemos usado una técnica que en % alto de casos acierta.

• La mala: no sabemos si ha acertado en nuestro caso.

Page 70: Esta udd-2012

Tema 3: Muestreo 70

Aplicación• Al final del tema 2 dejamos

sin interpretar parte de los resultados.

• ¿Sabrías interpretar lo que falta por sombrear?

• ¿Puedes dar un intervalo de confianza para la media al 68% de confianza?

• Observa la asimetría. ¿Crees probable que la asimetría en la población pueda ser cero ya que la obtenida en la muestra es aprox. 1?

Descriptivos para Número de hijos

1,90 ,045

1,81

1,99

1,75

2,00

3,114

1,765

0

8

8

3,00

1,034 ,063

1,060 ,126

Media

Límite

inferior

Límite

superior

Intervalo de

confianza para la

media al 95%

Media recortada al 5%

Mediana

Varianza

Desv. típ.

Mínimo

Máximo

Rango

Amplitud intercuarti l

Asimetría

Curtosis

Estadístico Error típ.

Page 71: Esta udd-2012

Tema 3: Muestreo 71

¿Qué hemos visto?

• Sesgo de selección

• Población objetivo

• Población de estudio

• Otros sesgos

• Técnica de respuesta aleatorizada

• Estimación

• Estimador

– Estimación puntual

– Error estándar

• Estimación confidencial

• Nivel de confianza 1-α

Page 72: Esta udd-2012

CONCEPTO DE ESTIMACIÓN

Un estimador puntual… Difiere del verdadero valor

Por lo tanto…Es deseable acompañar la estimación de

alguna medida posible de error

Page 73: Esta udd-2012

DEFINICIÓN DE ERROR ESTÁNDAR

Diferencia entre el valor probable y los valores reales de la variable dependiente

Page 74: Esta udd-2012

EL ERROR ESTÁNDAR ES…

Page 75: Esta udd-2012

TIPOS DE ERROR ESTÁNDAR

El error estándar puede

ser de dos tipos

ALEATORIO

SISTEMÁTICO

Page 76: Esta udd-2012

ESTIMACIÓN POR INTERVALOS

Asociado a cada

estimación siempre

hay

Un intervalo

Una medida de confianza

Page 77: Esta udd-2012

DEFINICIÓN DE INTERVALO DE CONFIANZA

Espacio que tiene una cierta probabilidad de contener el verdadero valor del parámetro desconocido

Page 78: Esta udd-2012

MEDIDA DE CONFIANZA

Coeficiente de

confianza = 1- α

Nivel de

confianza = 100*(1- α)%

Page 79: Esta udd-2012

n

stx

n

stxIC n

nn

n1

11

1%95

Factor relacionado

con la confianzaParámetro: Media Poblacional Error Estándar

Estimo

Nivel de

confianzaLímites de confianza

IC95%

FÓRMULA DEL INTERVALO DE CONFIANZA PARA LA MEDIA

Page 80: Esta udd-2012

Nivel de confianza

Límites de confianza

Parámetro: Prevalencia Poblacional Error Estándar

n

ppzp

n

ppzpIC

)1()1(%95 2/2/IC95%

FÓRMULA DEL INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

Page 81: Esta udd-2012

81

P(Z ≤ a)

P(Z > a) = 1 - P(Z ≤ a)

P(Z ≤ −a) = 1 − P(Z ≤ a)

P(Z > −a) = P(Z ≤ a)

Page 82: Esta udd-2012

82

P(a < Z ≤ b ) = P(Z ≤ b) − P(Z ≤ a)

P(−b < Z ≤ −a ) = P(a < Z ≤ b )

P(−a < Z ≤ b ) = P(Z ≤ b) − [ 1 − P(Z ≤ a)]

Page 83: Esta udd-2012

83

3 Si X es una variable aleatoria distribuida según una distribución

N(µ, σ), hallar:

p(µ−3σ ≤ X ≤ µ+3σ)

p(µ−2σ ≤ X ≤ µ+2σ)

p(µ−σ ≤ X ≤ µ+σ)

Page 84: Esta udd-2012

84

p(µ−3σ ≤ X ≤ µ+3σ)

Page 85: Esta udd-2012

8585

p(µ−3σ ≤ X ≤ µ+3σ)