EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p (...

41
4. ÁLGEBRA Y GEOMETRÍA 4.1 Sean los puntos del plano de coordenadas A = (3, 2) y B = (5, 4). i) Dibujar la recta que pasa por ellos y dist (A, B). ii) Calcular el vector y las coordenadas del punto medio del segmento que une A con B. iii) Encontrar el punto del segmento AB que dista de A triple que de B. ¿Hay puntos en la recta que une A con B y fuera del segmento AB que cumplan esta condición? En caso afirmativo, calcúlalos. iv) Sean O = (0, 0) y C el punto del segmento AB que has hallado en iii). Encuentra, si existen, los puntos de la recta que une O con C que equidistan de A y B. v) Dibuja el conjunto M = {P R 2 : dist (P, A) = 2 dist (P, B)} 4.2 Sean A y B puntos del plano y k un número real no negativo. Sea un vector unitario de R 2 . Dibujar los conjuntos siguientes: i) {x R 2 : < x A, x B > = 0} ii) {x R 2 : dist t (x, A) = dist (x , B )} iii) {x R 2 : = 2k} iv) {x R 2 : < x A, > = k} 4.3 () Sean k, m y n números reales. Consideremos la parábola P: x 2 = 4ky, y la recta r: y = mx + n i) Demostrar que la recta r es tangente a P si y sólo si km 2 + n = 0. 1

Transcript of EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p (...

Page 1: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4. ÁLGEBRA Y GEOMETRÍA

4.1 Sean los puntos del plano de coordenadas A = (3, 2) y B = (5, 4).

i) Dibujar la recta que pasa por ellos y dist (A, B).

ii) Calcular el vector y las coordenadas del punto medio del segmento que une A con

B.

iii) Encontrar el punto del segmento AB que dista de A triple que de B. ¿Hay puntos en la

recta que une A con B y fuera del segmento AB que cumplan esta condición? En caso

afirmativo, calcúlalos.

iv) Sean O = (0, 0) y C el punto del segmento AB que has hallado en iii). Encuentra, si

existen, los puntos de la recta que une O con C que equidistan de A y B.

v) Dibuja el conjunto

M = {P R2 : dist (P, A) = 2 dist (P, B)}

4.2 Sean A y B puntos del plano y k un número real no negativo. Sea un vector unitario de

R2. Dibujar los conjuntos siguientes:

i) {x R2 : < x A, x B > = 0}

ii) {x R2 : dist t (x, A) = dist (x , B )}

iii) {x R2 : = 2k}

iv) {x R2 : < x A, > = k}

4.3 () Sean k, m y n números reales. Consideremos la parábola P: x2 = 4ky, y la recta r: y =

mx + n

i) Demostrar que la recta r es tangente a P si y sólo si km2 + n = 0.

ii) Determinar el conjunto de puntos del plano desde los que pueden trazarse dos rectas

tangentes a P perpendiculares entre sí.

4.4 Determinar el área del triángulo cuyos lados se apoyan en las asíntotas de la hipérbola de

ecuación H: b2x2 a2y2 = a2b2 y en la recta tangente a H en uno de sus puntos.

4.5 Sean A, B, C y D cuatro puntos del plano.

i) Probar que ABCD es un paralelogramo si y sólo si para cualquier punto Q del plano se

cumple la igualdad

ii) Probar que si ABCD es un paralelogramo, la suma de los cuadrados de sus diagonales

es la suma de los cuadrados de los lados.

1

Page 2: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

iii) Probar que si ABCD es un paralelogramo, entonces para cualquier punto Q del plano

se cumple que

QA2 + QC2 = QB2 + QD2

iv) Probar que si ABCD es un trapecio en el que los lados AD y BC son paralelos cuyos

puntos medios denotamos por M y N, las rectas AB, CD y MN son concurrentes.

4.6i) Sean A, B y C tres puntos situados en una circunferencia de centro O. Probar que

.

ii) Dados tres puntos A, B y C en el plano demostrar que la circunferencia de diámetro

AC pasa por B si y sólo si el ángulo ABC es recto.

iii) Sean A y C dos puntos del plano no situados en la circunferencia . Construir un

triángulo rectángulo inscrito en , uno de cuyos catetos pasa por A y el otro por C.

iv) Dados los puntos A y B del plano, y una recta r, construir un punto P r tal que

APB sea recto.

4.7

i) ¿Qué relación existe entre el radio de una circunferencia, la longitud de una cuerda y

la distancia del centro de la circunferencia a la cuerda?

ii) Dados en el plano una recta l, un punto P y dos segmentos de longitudes a y b,

construir una circunferencia de radio a que pase por P y determine sobre l una cuerda

de longitud b.

4.8

i) Sean una circunferencia y P un punto exterior a . Demostrar que para cada secante

r a que pasa por P, el producto PM · PN de las longitudes de los segmentos que unen

P con los puntos M y N en que la secante corta a es constante. Esta constante se

llama potencia de P respecto de , Pot (P; ).

ii) Deducir que las dos tangentes trazadas a desde P miden lo mismo, y dicha cantidad

es la raíz cuadrada de Pot (P; ).

iii) Dadas en el plano dos rectas concurrentes r y s y un punto P r s, construir una

circunferencia que pase por P y sea tangente a r y s.

4.9 Encontrar el punto P de la recta l que hace mínima la suma de distancias AP + PB.

2

Page 3: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.10 ()i) Probar que las diagonales de un paralelogramo son perpendiculares si y sólo si el

paralelogramo es un rombo.

ii) Probar que las diagonales de un paralelogramo miden lo mismo si y sólo si el

paralelogramo es un rectángulo.

iii) Sean ABCD un cuadrilátero convexo y ' el paralelogramo que tiene por vértices

los puntos medios de los lados de . Caracterizar los cuadriláteros para los que '

es un rectángulo y aquellos para los que ' es un rombo.

iv) Demostrar que si los puntos medios de los lados de dos cuadriláteros convexos

coinciden, ambos tienen igual área.

v) Probar que si P es un punto interior al paralelogramo ABCD, la suma de las áreas de

los triángulos ABP y PCD coinciden, es decir, no dependen de P.

4.11

i) Sea P un punto de la región encerrada por el triángulo equilátero ABC. Probar que la

suma de las distancias de P a los lados del triángulo es una cantidad que no depende

de P.

ii) Sea P un punto del lado desigual de un triángulo isósceles. Demostrar que la suma de

distancias de P a los otros dos lados es una cantidad que no depende de P.

4.12 Demostrar que si ABCD es un cuadrado, el triángulo APB de la figura es equilátero.

4.13 Para cada punto P en la hipérbola xy a2 se considera el triángulo que tiene por lados a

los ejes de coordenadas y a la tangente en P a la hipérbola. Demostrar que el área de

dicho triángulo es independiente del punto P escogido.

4.14 Demostrar que si las longitudes a, b y c de los lados de un triángulo cumplen que a2 + b2

5c2. entonces el ángulo que forman las medianas que inciden en los lados a y b es recto.

3

A B

CD

P

15º15º

Page 4: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.15 Las rectas r y s, que se cortan en C, son tangentes en los puntos A y B a la parábola y

x2. Determinar el área del triángulo AB

C en función de la longitud m de su mediana

trazada desde C.

4.16 La figura representa tres cuadrados iguales. Calcular la suma + + .

4.17

i) Sea (a, b) un punto de la recta x + y 2. Prueba que a2 + b2 2.

ii) Sea (a, b, c) un punto del plano x + y + +z 3. Prueba que a2 + b2 + c2 3.

4.18 Dados los puntos del espacio de coordenadas A = (4, 8, 11), B = (3, 1, 4) y C = (2, 3, 3),

se pide:

i) ¿Cuánto miden los lados del triángulo AB

C? Calcular los puntos medios de los

lados.

ii) Comprobar que es el vector nulo.

iii) ¿En qué puntos corta la recta AB a los planos coordenados?

iv) ¿Cuánto mide la altura del triángulo AB

C que pasa por B? Calcular el área del

triángulo.

v) ¿Cuánto mide el ángulo del vértice C? ¿Y la bisectriz interior de dicho ángulo?

vi) Calcular el centro y el radio de la circunferencia circunscrita al triángulo AB

C.

vii) Encontrar las coordenadas de aquellos puntos D tales que el cuadrilátero ABCD es un

paralelogramo.

viii) Encontrar las coordenadas del punto P tal que A es el punto medio del segmento BP.

4.19 Representar de forma esquemática los siguientes subconjuntos de R3.

R ;

R

R ;

R3 : .

4.20

i) ¿Qué figura es la definida por R ?

4

Page 5: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Encuentra dos puntos en M y describe M por ecuaciones implícitas. Acabas de

describir M como intersección de dos figuras; ¿de qué naturaleza son?

ii) ¿Qué figura es la definida por

R ?

Encuentra 3 puntos en N y descríbelo por una ecuación implícita.

4.21 Determinar los valores que deben tomar los números reales a y b para que los planos

i) Tengan un único punto común.

ii) Tengan una única recta común.

iii) Se corten dos a dos.

4.22 () En el espacio afín se consideran las rectas

;

donde a y b son números reales. Discutir, según los valores de a y b la posición relativa

de r y s.

4.23

i) Escribe las ecuaciones de una recta contenida en el plano : x + y + z = 1.

ii) Y que además pase por el punto P = (1, 0, 0).

iii) Y que además sea perpendicular al plano ’: x 2y + z = 3.

iv) Escribe la ecuación de un plano que corte a en la recta que has obtenido en iii).

4.24 ¿Son ciertas o falsas las siguientes afirmaciones?

i) La condición necesaria y suficiente para que dos rectas de R3 se corten en un punto es

que sean coplanarias.

ii) Si dos planos 1 y 2 son perpendiculares, entonces toda recta contenida en 1 es

perpendicular a toda recta contenida en 2.

iii) Si la recta r es perpendicular al plano , entonces es perpendicular a toda recta

contenida en .

iv) Si los planos 1 y 2 se cortan a lo largo de una recta, entonces no existen rectas

paralelas r1 1 y r2 2.

5

Page 6: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.25 Discutir, según la posición relativa de las rectas r y s de R3 y el punto P R3 de una recta

que pase por P y corte a r y s.

4.26 Una matriz cuadrada se llama antisimétrica si sumada con su traspuesta da la matriz nula.

Calcular el determinante de una matriz antisimétrica de orden 3 y de orden 5.

4.27

i) ¿Es cierto que si la matriz cuadrada A no es nula tampoco lo es A2?

ii) Demostrar que si A es una matriz cuadrada de orden 3, entonces el producto A · At es

una matriz simétrica.

4.28

i) Encontrar una matriz cuadrada X de orden 2 tal que

ii) Encontrar un número real x y una matriz cuadrada A de orden 2 tal que A no sea la

matriz

iii) ¿Es invertible la matriz cuadrada de orden 4 tal que ?

4.29 () Sean A y B matrices con coeficientes reales, A con 3 filas y dos columnas y B con dos

columnas y tres filas. Calcular det (AB). ¿Coincide necesariamente con det (BA)? Busca

alguna explicación.

4.30

i) Sea A una matriz con coeficientes reales con 2 filas y 2 columnas. ¿Cuánto vale det

(A · At)?

ii) Sean , y tres vectores de R2 y el producto escalar de por .

Sea la matriz dada por . Calcular det A.

6

Page 7: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.31 Sean , y tres vectores de R3, A la matriz cuyas columnas son las coordenadas de

, y respecto de la base canónica de R3 y donde

. Comparar det A y det G.

4.32 Sean y .

i) Calcular, para cada n N, las potencias An y Bn.

ii) ¿Existe alguna matriz P de orden 2 con determinante no nulo tal que PA = BP?

iii) Encontrar todas las matrices P de orden 2 tales que PA = BP.

4.33 Un niño tiene 455 pesetas en monedas de 10 y 25 pesetas ¿cuáles son los números

máximo y mínimo de monedas que puede tener?

4.34 Colocamos de forma arbitraria 10 puntos en una circunferencia y los numeramos al azar

con los números 1, 2, ..., 10. Probar que hay 3 consecutivos que suman más que 16.

4.35 () Sean N un número natural y A un subconjunto con N +1 elementos de {1, 2, ..., 2N}.

Probar que existen x, y A tales que x divide a y.

4.36 Demuestra que si p es un número primo, p 5, 2, entonces p2 1 o p2 + 1 es múltiplo de

10.

4.37 ()i) Calcula el resto de la división entre 13 de 100, 103 y 106.

ii) Demuestra que si p > 3 es un número primo, entonces M 102p 10p + 1 es múltiplo

de 13.

4.38 () Sea P(x) x3 + 6x2 + 11x + 6

i) Demostrar que para cada número natural n, P(n) es múltiplo de 6 y P(n) + 6 lo es de

n + 4.

ii) Probar que si n > 2, entonces no es primo.

7

Page 8: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.39 () Un movimiento del plano R2 es una aplicación f: R2 R2 que conserva la distancia,

esto es, para cada par de puntos P y Q en R2,

dist dist (P, Q).

i) Demuestra que los movimientos son aplicaciones inyectivas.

ii) Demuestra que la composición de dos movimientos es otro movimiento.

iii) Se llama giro de centro el punto C R2 y ángulo [0, 2) a la aplicación

gC, : R2 R2

que deja fijo C y transforma cada punto P C en el único punto P R2 que cumple

las condiciones:

dist t (C, P) = dist (C, P); PCP = .

Demostrar que gC, es un movimiento.

iv) Se llama simetría respecto de la recta r R2 a la aplicación

Sr : R2 R2

que fija los puntos de r y transforma cada punto P r en el único punto P R2 que

cumple las condiciones:

dist (P, r) = dist (P, r); PP r.

Demostrar que Sr es un movimiento.

v) Se llama traslación de vector R2 a la aplicación

R2 R2 : P .

Demostrar que es un movimiento

4.40 ()i) Sean P y Q puntos del plano. ¿Qué figura es el conjunto

R = {tP + (1 t) · Q : t R}?

Para cada punto de R, determina su posición respecto de P y Q en función de t.

ii) Demuestra que si f : R2 R2 es un movimiento, y t R,

.

iii) ¿Cuál es la imagen por f de una recta de R2? ¿Y de un segmento?

iv) Demuestra que la imagen por un movimiento f del triángulo de vértices P1, P2 y P3 es

el triángulo de vértices f (P1), f (P2) y f (P3) y que ambos triángulos comparten sus

ángulos.

8

Page 9: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

4.41

i) Sea f : R2 R2 un movimiento que deja fijo el origen de coordenadas O = (0, 0).

Demuestra que existe una matriz M(f) de orden 2 con coeficientes en R tal que para

cada punto P = (x, y) R2 las coordenadas de f (P) = (u, v) cumplen que

ii) Con las notaciones del ejercicio 39, calcula M(gO,) y M(Sr) siendo r la recta

r: ax + by = 0.

iii) Demuestra que M(f) es una matriz ortogonal, es decir, el producto M(f) · M(f)t es la

matriz identidad.

iv) Demuestra que los movimientos que dejan fijo el origen de coordenadas son

biyecciones.

4.42 Sea f : R2 R2 un movimiento.

i) Demuestra que existen un vector y un movimiento g : R2 R2 que fija el origen

tales que . Demuestra que y g son únicos con esta propiedad.

ii) Demuestra que f es biyectiva.

iii) Demuestra que la inversa : R2 R2 de f es también un movimiento.

iv) Demuestra que la aplicación identidad de R2

1R2 = R2 R2 : P P

es un movimiento y que para cada movimiento f : R2 R2 se cumple que

f 1R2 = 1R

2 f = f.

v) Demuestra que el conjunto M( R2) de los movimientos de R2 con la operación

composición

o : M( R2) M( R2) M( R2) : (f, g) f g

es un grupo, es decir, se cumplen las propiedades

Asociativa: f (g h) = (f g) h.

Existencia de elemento neutro: 1R2 f = f 1R

2 = f.

Existencia de elemento inverso: f = f = 1R2 .

4.43

i) Demostrar que el único movimiento que deja fijos tres puntos no alineados es la

identidad.

9

Page 10: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

ii) Demostrar que si dos movimientos toman los mismos valores en tres puntos no

alineados, entonces coinciden.

iii) Sean r y s dos rectas que se cortan en el punto P formando ángulo . Comprobar que

.

iv) Sean r y s rectas paralelas, P r, P S tales que la recta que une P con P es

perpendicular a r y . Demostrar que .

4.44 Sea f : R2 R2 un movimiento que deja fijos los puntos P y Q.

i) Demostrar que f deja fijos todos los puntos de la recta que une P con Q, a la que

llamamos r.

ii) Demostrar que f es la identidad o la simetría respecto de r.

4.45 Sea f : R2 R2 un movimiento que deja fijo un único punto P. Demostrar que f es un giro

de centro P.

4.46 Sea f : R2 R2 un movimiento. Demostrar que f es composición de, a lo sumo, tres

simetrías en rectas.

4.47 Para cada número natural n denotamos por Pn un polígono regular de n vértices inscrito

en la circunferencia de centro el origen O = (0, 0) de R2 y radio 1, cuyos vértices

denotamos por Vn = {v1, ... , vn}. Se llama n-ésimo grupo diedral al conjunto

Dn = {f M (R2) : f (Pn) = Pn}

i) Demuestra que si f D3, su restricción es una biyección y que para

cada biyección b : V3 V3 existe f D3, tal que b = fV3. ¿Cuántos elementos hay en

D3? ¿Cuáles son?

ii) Demuestra que si f D4, su restricción es una biyección pero existen

biyecciones b : V4 V4 que no son la restricción de ningún f D4.

iii) Demuestra que si f D4 y los vértices Vi y Vj son contiguos, también lo son f (Vi) y

f (Vj). Deduce que D4 tienen a lo sumo 8 elementos.

iv) Sea el giro de centro O y ángulo y r la simetría respecto de la recta que une O

con V1. Demuestra que , r D4, que D4 es un grupo, que los elementos

1R2, , 2, 3, r, r, 2r, 3r

pertenecen a D4 y que son todos distintos. ¿Cuántos elementos tiene D4?

10

Page 11: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

v) Demuestra que r = r y que para cada k N, krk = r

vi) Un grupo se dice abeliano si sus elementos conmutan, esto es, fg = gf para

cualesquiera elementos f y g en el grupo. ¿Es D4 abeliano? ¿Lo es D3?

vii) ¿Existe f D3 que conmute con todos los elementos de D3, f 1R2?

viii) ¿Existe f D4, f 1R2, que conmute con todos los elementos de D4?

4.48 () Sean n N, n 3, Pn el polígono regular de n vértices inscrito en la circunferencia

de centro el origen y radio 1 y Vn el conjunto de sus vértices.

i) Comprobar que si vi, vj Vn son contiguos, también lo son f (vi) y f (vj) para cada

f  Dn. Deducir que Dn tiene a lo sumo 2n elementos.

ii) Demostrar que si es el giro de centro O y ángulo y r la simetría respecto de la

recta que une O con V1, entonces

Dn = {1R2, , 2, ... , r-1, r, r, ..., r-1r}

iii) Demostrar que para cada k N, k r k = r.

iv) Estudiar, en función de la paridad de n cuántos elementos de Dn conmutan con todos

los elementos de Dn.

v) ¿Es Dn abeliano para algún valor de n?

4.49 Sean n 3 un número natural y Dn el n-ésimo grupo diedral. Para cada f Dn se llama

orden de f al número

O(f) = mín {k N : f k = f f ... f = 1R2}

i) Calcular O() y O(r) para y r la simetría respecto de la recta que une O con

v1.

ii) Para cada 0 i n 1 y cada 0 j 1 calcular el orden de i r j.

iii) Calcular el orden de todos los elementos de D3, D5, y D6.

iv) Demostrar que si f Dn entonces .

4.50

i) Sean M un conjunto finito y f : M M una aplicación. Demostrar que las siguientes

afirmaciones son equivalentes:

1. f es inyectiva; 2. f es sobreyectiva; 3. f es biyectiva.

11

Page 12: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

ii) Probar que el conjunto B(M) de las biyecciones de M con la operación composición es

un grupo.

iii) Si M tiene m elementos, ¿cuántos tiene B(M)?

4.51 Determinar el valor de a para que:

i) Las raíces x1 y x2 de la ecuación x3 (3a + 2) x + a2 0 cumplan que x1 9x2.

ii) Las raíces de la ecuación x2 (2 a a2) x a2 0 sean opuestas.

iii) Las raíces de la ecuación x2 + ax + a + 2 0 están en relación 1:2

4.52 Determinar a y b para que las soluciones de la ecuación x2 + ax + b + 2 0 sean a y b.

4.53 Hallar algún valor de a para que la ecuación a3 + a2 |a + x| + |a2x + 1| 1 tenga al menos

4 soluciones enteras distintas.

12

Page 13: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

SOLUCIONES A LOS EJERCICIOS CON ASTERISCO ()

4.3

i) La recta r es tangente a P si la corta en un único punto, es decir, si la ecuación de

segundo grado

x2 = 4k (mx + n)

tiene una única solución. Reordenando la ecuación,

x2 4kmx 4kn = 0,

ésta tiene una sola solución si y solo si es nulo su discriminante

= 16k2m2 + 16kn = 16k (km2 + n)

Como P es una parábola, k 0, luego

r es tangente a P = 0 km2 + n = 0.

ii) Desde el punto A = (u, v) se pueden trazar dos tangentes a P perpendiculares entre sí

si por A pasan dos rectas perpendiculares

r1: y = mx + n; r2: (1)

tangentes a P. Que r1 y r2 pasen por A significa que

v = mu + n y (2)

y que r1 y r2 sean tangentes a P es, por el primer apartado, lo mismo que

km2 + n = 0; (3)

Reemplazando en (3) los valores de n y q que se obtienen en (2) resulta

km2 mu + v = 0; vm2 + mu + k = 0 (4)

y sumando ambas condiciones,

(k + v) (1 + m2) = 0.

Como 1 + m2 0, ha de ser v = k, es decir, el punto A está en la recta horizontal

H: {(u, v) R2 : v = k}

No hemos considerado la posibilidad de que alguna de las rectas r1 y r2 sea vertical

pues aunque {x = u} corta a P en un único punto , no es tangente a P, como

muestra la figura

13

A = (u, v)

(u, u2/4k)

{x = u}

Page 14: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Recíprocamente, vamos a estudiar desde qué puntos A = (u,k) de la recta H se pueden

trazar dos tangentes r1 y r2 a P perpendiculares. Escribiendo r1 y r2 como en (1) y

puesto que ahora v = k, la pendiente m de r1 ha de cumplir las condiciones (4), que

son:

km2 um k = 0 ; km2 + um + k = 0.

Estas dos condiciones coinciden y para que exista una solución real m, es necesario y

suficiente que

= u2 + 4k2 0,

lo cual sucede sea cual sea u R. Por lo tanto, el conjunto de puntos buscado es la

recta horizontal H.

4.10

i) Supongamos que se trata de un rombo

Sea S el punto medio de la diagonal AC.

Como el triángulo ABC es isósceles,

BS es perpendicular a AC

Por la misma razón, DS es perpendicular a AC

{B, S, D} alineados y BD es perpendicular a AC

Recíprocamente, supongamos que las diagonales AC y BD del paralelogramo ABCD

son perpendiculares, y sea S su punto de corte, que es punto medio de ambas.

Así, CS es la mediatriz de BD, luego

dist (C, B) = dist (C, D)

Por la misma razón, dist (A, B) = dist (A,D)

Pero al ser paralelogramo,

dist (A, B) = dist (C, D) y

dist (B, C) = dist (A, D)

14

A C

B

S

D

Page 15: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

luego los 4 lados miden lo mismo y se trata de un rombo.

ii) Supongamos que se trata de un rectángulo

Por el teorema de Pitágoras

AC2 = d2 + l2 = BD2.

Recíprocamente, supongamos que las diagonales AC y BD del paralelogramo ABCD

miden los mismo

Así d2 +l2 2dl cos = AC2 = BD2 = d2 + l2 2dl cos , luego

cos = cos .

Pero 2 + 2 = 2, es decir, + = , luego

cos = cos

Así 2 cos = 0, luego = 2 = 2 = y se trata de un rectángulo.

iii)

' rectángulo PQ QM BD AC

' rombo NP = PQ.

15

A

C

B

l

D

l

d

d

A

C

B

l

D

l

d

d

A

C

B

N

D Q

M

P

Page 16: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Como y resulta que

' es rombo AC = BD.

iv) No hace falta comparar dos de tales cuadriláteros, sino sólo probar que somos capaces

de expresar el área de un cuadrilátero a partir de los puntos medios de sus lados. Pero

empleando la figura de iii)

Área =

v)

Área AP

B + Área DP

C

= .

4.22.

Estudiamos en primer lugar la intersección r s, que será bien vacío, bien un punto, bien

una recta (este último caso cuando r s). Para ello calculamos los rangos de las matrices

y

Intercambiando las filas 2ª y 3ª y las columnas 2ª y 3ª, el problema es equivalente al de

calcular los rangos de

y

Restando a la segunda fila 3 veces la primera, a la tercera 2 veces la primera y a la cuarta 5

veces la primera, se trata de calcular los rangos de

16

A

C

B

d

D

r

l

ly

x

P

Page 17: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

y

Restando la segunda fila a la tercera y 2 veces la segunda a la cuarta, todo se reduce a

estudiar los rangos de

y

Es obvio que rg D = 2 + rg

Por lo tanto:

i) Si a 4 y b 3, entonces rg D 2

ii) Si a 4 o a 4 y b 3, entonces rg D 3.

En el primer caso, luego rg D rg D* 2y,

así el sistema de ecuaciones inicial es compatible e indeterminado. Por tanto r s consta

de más de un punto, luego es una recta, esto es, r s r s.

Distinguimos varios subcasos en el caso ii).

Subcaso ii. 1) a 4, b 3

Así rg D 3 mientras que

y como la tercera fila es nula, rg D* 3. Por ello el sistema es compatible y

determinado, es decir, r s es un punto. Para calcularlo resolvemos el sistema

ó sea (12, 8,

1)

17

Page 18: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Subcaso ii. 2) a 4, b 3

También en este caso rg D 3, pero mientras que

por lo que rg D* = 2 + rg . Así, también en este caso r s es un

punto, que se obtiene al resolver el sistema

(5, 2, 0)

Por último analizaremos el último

Subcaso ii. 3) a 4, b 3

Mientras que rg D = 3, , por lo que

rg D* = 2 + rg ya que det (4 a) (b 3) 0. Se

trata por tanto de un sistema incompatible por lo que r s es vacío. Debemos decidir si r y

s son paralelas o se cruzan. Ahora bien, un vector director de r es

y otro de s es

Las rectas r y s son paralelas si y solo si los vectores w1 y w2 son proporcionales, es decir,

w1 w2 (pues comparten la segunda coordenada). Esta condición es:

, y esta opción ya había sido

descartada. Por tanto, en este subcaso ii. 3) las rectas r y s se cruzan.

4. 29.

Escribamos y , por lo que

18

Page 19: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Los vectores columna de esta matriz se pueden expresar como

w1 = b11 u1 + b21 u2 ; w2 = b12 u1 + b22 u2 ; w3 = b13 u1 + b23 u2 siendo u1 y u2 los vectores columna

de A. Por tanto, w1, w2, w3 son combinaciones lineales de {u1, u2} y por ello son linealmente

dependientes, luego det (AB) = 0.

Sin embargo, si elegimos por ejemplo, , y al multiplicar resulta

por lo que det (BA) = 1

La “conocida fórmula”: determinante del producto = producto de los determinantes sólo es

válida para matrices cuadradas A y B. En ese caso sí se tiene

det (AB) = det (A) · det (B) = det (B) · det (A) = det (B · A).

4.35.

Escribamos A = {x1, ... , xN+1} y factorizamos cada

con bk impar. Los N + 1 números impares b1, ..., bN+1 están en {1, 2, ..., 2N}, que sólo contiene N

números impares

1, 3, ..., 2N 1,

luego existen j, k tales que j k pero bj = bk .

Como xk xj resulta

luego y así mk mj, por ejemplo mj < mk.

En consecuencia, y = xk y x = xj cumplen

Z , es decir, x divide a y.

4.37

i) Como 100 = 7 · 13 + 9, el resto de la división de 100 entre 13 es 9. Multiplicando por

10.

103 =10 · 100 = 10 (7 · 13 + 9) = 70 · 13 + 90 = 70 · 13 + 6 · 13 + 12,

19

Page 20: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

luego 103 = 76 · 13 + 12, y así el resto de la división de 103 entre 13 es 12.

Podemos reescribir lo anterior como

103 = 76 · 13 + 13 1 = 77 · 13 1

y elevando al cuadrado,

106 = (77 · 13 1)2 = 772 · 132 2 · 77 · 13 +1 = 13 · q + 1

por lo que el resto de la división de 106 entre 13 es 1.

ii) Por supuesto, todo consiste en demostrar que el resto de la división entre 13 de

M 1 = 10p(10p 1)

es 12.

Al dividir p entre 6 se obtiene

p = 6a + r, con 0 r 5

Como p es impar al ser primo, p > 3, también r es impar. Si fuese r = 3, sería

10 = 3(2a + 1) múltiplo de 3, lo cual es falso.

En consecuencia, r = 1 ó 5.

Sustituyendo, para cierto b N. Por tanto,

para cierto c N.

Distinguiendo casos,

Si r = 1,

Si r = 5,

En ambos casos, para cierto u N, luego

M 1 = 13(c + u) + 12

como queríamos demostrar.

4.38.

i) P(n) = n3 + 6 (n2 + 1) + 12n n = 6 (n2 + 2n + 1) + n3 n = 6 (n + 1)2 + (n 1) n (n + 1)

El producto de (n 1) n (n + 1) es múltiplo de 2 y de 3, luego de 6, al ser tres números

consecutivos, luego 6 P(n).

Además, P(x) + 6 = x3 + 6x2 + 11x + 12 y dividiendo por Ruffini entre x + 4,

1 6 11 12

4 4 8 12

20

Page 21: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

1 2 3 0

luego P(n) + 6 = (n + 4)(n2 + 2n +3)

ii) Hemos probado que 6 P(n), luego también 6 P(n) +6 y si definimos

Z,

debemos probar que si n > 2, f (n) no es primo.

Si definimos g(n) = n2 + 2n +3 resulta:

6 · f (n) = P(n) + 6 = (n + 4) · g (n)

Supongamos por reducción al absurdo que f (n) es primo.

Como f (n) (n + 4) g(n) y f (n) es primo,

bien f (n) n + 4, bien f (n) g (n).

Si f (n) (n + 4), entonces 6 · f(n) 6 (n + 4), luego

P (n) + 6 6 (n +4)

es decir,

(n + 4) (n2 + 2n + 3) 6 (n + 4)

o sea,

n2 + 2n + 3 6

lo cual es falso ya que al ser n > 2, n2 + 2n + 3 > 15 > 6.

En consecuencia, f (n) g (n). Pero entonces

6 f (n) 6 g (n), o sea

(n + 4) g (n) 6 g (n), esto es, n + 4 6, lo cual es falso porque n + 4 > 6.

4.39

i) Nótese que dos puntos son distintos si la distancia entre ellos no es cero. Así, si

P  Q se tiene dist dist (P, Q) 0, luego f (P) f (Q), por lo que f es

inyectiva.

ii) Sean f y g dos movimientos y su composición. Dados puntos P y Q,

dist dist

por ser g un movimiento, esto es,

dist dist

Pero al ser f movimiento

dist dist (P, Q)

21

Page 22: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Por tanto,

dist dist (P, Q)

luego h es un movimiento.

iii) Por la propia definición, si g = gC, , y P C.

dist dist (C, P) = dist ,

luego queda probar que

dist dist (P, Q)

para puntos P y Q distintos de C Miramos la figura

Comparemos los triángulos PC

Q y PC

Q

Como PCQ + QCP = = QCP + PCQ, resulta que

PCQ = PCQ (1)

Además los lados cumplen

PC = PC; QC = QC (2)

De (1) y (2) resulta, por ejemplo por el teorema del coseno,

dist (P, Q) = dist (P, Q)

y así gC, es un movimiento.

iv) Si P y Q son puntos de r, como Sr(P) = P y Sr(Q) = Q,

dist dist (P, Q)

Si P r pero Q r tenemos la figura siguiente:

22

C P

Q

Q = g (Q)

P = g (P)

Fig. 1

P

Q

M

Q = Sr(Q)

r

Fig. 2

Page 23: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Por la definición de Q, dist (Q, M) = dist (Q, M), luego los triángulos rectángulos

PM 

Q y PM

Q tienen iguales los lados PM, que es común, y MQ =MQ, luego

por el teorema de Pitágoras.

dist (P, Q)2 = PM2 + MQ2 = PM2 + M Q2 = dist (P, Q)2. Por tanto,

dist dist (P, Q) = dist (P, Q).

Tomemos por último dos puntos P y Q que no pertenencen a r y sean

y R = PQ r como muestra la figura, N = r  QQ,

M = r  PP,

Hemos distorsionado intencionadamente la posición de Q para no dar por probado

que P, R y Q están alineados. En el caso anterior hemos demostrado que

dist (P, R) = dist (P, R); dist (Q, R) = dist (Q, R)

y como {P, R, Q} están alineados,

dist (P, Q) = dist (P, R) + dist (R, Q) = dist (P, R) + dist (R, Q).

Todo se reduce a comprobar que {P, R, Q} están alineados, pues en tal caso,

dist (P, Q) = dist (P, R) + dist (R, Q) = dist (P, Q)

como debíamos demostrar.

Para ello basta comprobar la igualdad de los ángulos

MRP = NRQ

Ahora bien, como RM es bisectriz en el triángulo PRP por ser éste isósceles,

MRP = MRP = NRQ

luego basta ver que NRQ = NRQ, lo cual es inmediato al ser RN altura, y por

ello bisectriz, en el triángulo isósceles QRQ.

v) Sean P, Q R2. Dibujando,

23

)(QTQW

)(PTPW

P Q

R

P

M r

Fig. 3

Q

N

Q

P

Page 24: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

El cuadrilátero PPQQ es un paralelogramo ya que

y

Por ello,

dist (P, Q) = dist (P, Q)

4.40.

i) Sea x R. Entonces existe t R tal que

x = tP + (1 t) Q = Q + t(P Q)

luego llamando , resulta que por lo que x pertenece a la recta r

que pasa por Q y tiene a por vector director, o sea, la que pasa por P y Q.

Recíprocamente, si x r existe t R tal que

R.

Por tanto R es la recta que une P y Q.

Si , para valores negativos de t resulta que x (t)  Q y

tienen sentidos opuestos, luego x(t) está situado a la izquierda de Q, mientras que si

t > 0, x (t) está situado a la derecha de Q. Como

x (t) P = tP + (1 t) Q P (1 t) (Q P),

si 0 < t < 1 los vectores x (t) P y Q P tienen el mismo sentido, luego

x (t)  [Q, P], segmento de extremos Q y P, mientras que si t 1, x (t) está situado a

la derecha de P. Por último, es obvio que x (0) = Q y x (1) = P

ii) Sea dist (P, Q) dist

24

w

Q

P

r

Q

P

x(t), t < 0

x(t), t [0, 1]0

x(t), t > 1

Page 25: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Estudiamos el caso t [0, 1], dejando el resto al lector.

Como x (t) [P, Q] resulta que

dist dist

dist + dist

De aquí se deduce que [f (Q), f (P)].

Además, como x (t) Q t (P Q), x (t) P (1 t) (Q P),

luego

Así, es el punto del segmento que dista t de f (Q) y (1  t)

de f (P).

Pero el punto y (t) t · f (P) + (1 t) f (Q) está, por el apartado i) en el segmento

y cumple que

;

luego

dist ; dist .

Así pues, los puntos y y(t) pertenecen al segmento y sus

distancias a los extremos coinciden, por lo que y(t) , o sea

iii) Sean P y Q puntos distintos en la recta r.

Por el apartado i),

r {tP + (1 t) Q : t R}.

Así, dado x(t) tP + (1 t) Q r, por el apartado ii),

(1)

luego pertenece a la recta que une f (P) con f (Q). Además, si x(t) [P, Q]

entonces 0 t 1 y por (1), .

Recíprocamente, si y es un punto de la recta que une f (P) con f (Q), existe t  R tal

que

y tf (P) + (1 t) f (Q).

Entonces el punto x tP + (1 t)Q r y f (x) y.

25

Page 26: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Por lo tanto, f (r) es la recta que une f (P) con f (Q) y f ([P, Q]) es el segmento que une

f (P) con f (Q).

iv) Los segmentos [P1, P2], [P1, P3] y [P2, P3], se transforman, por el apartado anterior,

en los segmentos , y , luego el

triángulo de vértices P1, P2, P3, se transforma en el de vértices f (P1), f (P2) y f (P3).

Como 1 i, j 3, los lados de ambos triángulos son

dos iguales, y por ello también lo son sus ángulos.

4.48

i)

Es evidente que la menor distancia entre vértices es el lado de Pn, y ésta se da si y solo

si los lados son contiguos. Llamando pues al lado de Pn, si vi y vj son contiguos

luego f (vi) y f (vj) son contiguos.

Sea ahora f Dn arbitrario y vk f (v1). A priori existen n posibles valores para

k : 1, 2, ... , n. Como v1 y v2 son contiguos han de serlo vk f (v1) y f (v2), luego f (v2)

solo puede ser uno de los dos vértices contiguos a vk. Tenemos pues dos opciones

para definir f (v2).

También vn es contiguo a v1, luego f (vn) lo es a vk y como vn v2, entonces

f (vn)  f (v2), luego no hay posible elección para f (vn) : es el vértice contiguo a vk y

distinto de f (v2). Como v1, v2 y vn no están alineados, y un movimiento queda

determinado por la imagen de tres puntos (ejercicio 43) no alineados, la imagen f (vi)

está ya determinada para cada vi Vn. Tenemos pues n opciones para definir f (v1) y 2

para definir f (v2), luego a lo sumo Dn tiene 2n elementos.

26

v1

v2vn

Page 27: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

ii) Es claro que (v1) vn y (vi) vi1 para cada índice 2 i n, luego por el

ejercicio 40, transforma cada lado del polígono Pn en un lado de Pn, por lo que

 (Pn)  Pn y así Dn.

La simetría cumple que

(v1) v1, (vk) vn+2k

y repitiendo el argumento precedente, también Dn.

Ahora bien, si f, g Dn, también ya que

En consecuencia, como , Dn cada k y cada k pertenecen a Dn. Por tanto,

{1R2, , 2, ..., n1, , , ... , n1} Dn. (1)

Los miembros del conjunto de la izquierda son todos distintos. En efecto, si i j

para los exponentes 1 i < j n 1, resulta que

i (vn) j (vn)

luego vni vnj, esto es n i n j, lo cual es absurdo porque i j. Así

{1R2, , 2, ..., n1} son n elementos distintos en Dn.

Por otro lado también son distintos entre si los n elementos {, , ... , n1} porque si

i j para dos exponentes 0 i < j n1, componiendo con ambos miembros

se obtiene

Pero º 1R2, luego i j, y ya hemos visto que esto no es posible, sólo falta

comprobar que

i j

para cada 0 i n1 y cada 0 j n1. Pero aplicando ambos miembros sobre v1

se tiene , si i j,

i(v1) j(v1) j(v1)

por lo que vn(i1) vn(j1), luego n i + 1 n j + 1, esto es, i j. Pero entonces sería i i y aplicando ambos miembros sobre v2,

i(v2) i(v2) i(vn)

o sea, i2(vn) i(vn), es decir, vn(i2) vni; esto es falso pues i 2 i.

Hemos demostrado que los 2n elementos del miembro de la izquierda de (1) son

distintos. Pero en el apartado anterior demostramos que Dn tiene a lo sumo 2n

elementos, lo que prueba la igualdad

Dn {1R2, , 2, ..., n1, , , ... , n1}

27

Page 28: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

iii) Razonamos por inducción sobre k. Para k 0 es obvio y para k 1 calculamos

(v1) (vn) (v2) v1 (v1)

(v2) (v1) (v1) vn (v2)

(vn) (vn1) (v3) v2 (vn)

Como y coinciden en tres puntos no alineados, se deduce del ejercicio 43 que

Supongamos ya probado que kk , k 1.

Entonces,

k+1k+1 (kk)

Como queríamos demostrar.

iv) Sea f Dn un elemento que conmuta con todos . Por el apartado ii) se escribirá

f i j para ciertos 0 i n1, 0 j ***

Como f f , también if if, o sea,

i i j i i j,

luego por el apartado iii),

j 2i j,

y si k j + 1, k 2ik, luego kk 2ikk,

y como kk 1R2, 2i 1R

2. Como , al componer,

1R2, ,

luego 2i n ó 0.

En consecuencia, si n es impar, i 0, por lo que f j. Si fuere j 1, f y como

f  f se tendrá

Componiendo con por la izquierda,

2

y componiendo con por la derecha, 2 , o sea 2 1R2. Pero esto es falso, ya

que .

Así pues, si n es impar ha de ser i j 0, luego f 1R2. Si n es par, el único

candidato a conmutar con todos los elementos de Dn, distinto de la identidad es, por lo

ya visto,

f n/2

28

Page 29: EJERCICIOS DE ÁLGEBRA Y GEOMETRÍA€¦  · Web viewDemuestra que si p es un número primo, p ( 5, 2, entonces p2 ( 1 o p2 + 1 es múltiplo de 10. (() i) Calcula el resto de la

Es evidente que f f. Además, como kk 1R2, resulta que

1R2 ff, ff n/2n/2 n 1R

2,

luego f fff f f.

Como f f y f f se deduce que para cada g lm Dn,

fg flm lfm lmf gf

En consecuencia, si n es par, los elementos de Dn que conmutan con todos los

elementos de Dn son {1R2, n/2}.

v) Se deduce del apartado anterior que la simetría no conmuta con todos los elementos

de Dn, luego Dn no es abeliano.

29