Avances en poscosecha de frutas y...

11
Avances en poscosecha de frutas y hortalizas I. Recasens, J. Graell, G. Echeverría (editores) Edicions de la Universitat de Lleida Lleida, 2012 Proceedings.indb 5 20/09/2012 08:52:41

Transcript of Avances en poscosecha de frutas y...

Page 1: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

Avances en poscosecha de frutas y hortalizas

I. Recasens, J. Graell, G. Echeverría (editores)

Edicions de la Universitat de LleidaLleida, 2012

Proceedings.indb 5 20/09/2012 08:52:41

Page 2: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

DL: L-1.128-2012ISBN: 978-84-695-4683-3

© Edicions de la Universitat de Lleida, 2012© del texto: los autores

Maquetación: Edicions i Publicacions de la UdLDiseño de portada: La Gràfica

Impresión: Service Point

Proceedings.indb 6 20/09/2012 08:52:41

Page 3: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

Índice

Presentación ...........................................................................................................17

I. AplIcAcIones de 1-mcp y otros trAtAmIentos poscosechA

Effects of 1-MCP on Apple Fruit Physiological Disorders: Genomic and Metabolomic ApproachesC.B.Watkins, D.R. Rudell y J. Lee .........................................................................21

Physiology and key mechanisms related to physiological disorders in 1-MCP treated fruitsC. Larrigaudière, J. Giné, A.P. Candan y I. Recasens ..........................................25

Optimización del uso postcosecha del 1-Metilciclopropeno (1-MCP) en frutos de aguacate ‘Hass’ cultivados en MéxicoJ.A. Osuna García, M.H. Pérez Barraza, A.K. Gómez Talavera, L.G. Zamora Navarro, O.H. Santiz Jiménez y R. Goenaga ..................................31

Evolução do amadurecimento de peras ‘Rocha’ em resposta à aplicação conjunta de 1-metilciclopropeno e etilenoP. Gonçalves, J. Franco, M. Salazar, C. Neto, S. Mendes y E. Dupille ................41

Requerimiento energético y ‘Colapso de la Corteza’ en naranjas del grupo NavelB. Establés-Ortíz, P. Romero, F. Alférez y M.T. Lafuente .....................................47

Efecto del etileno y 1-MCP sobre la calidad postcosecha y los daños por frío en los frutos de distintas variedades de calabacínZ. Megías, C. Martínez, S. Manzano, J.L. Valenzuela, D. Garrido y M. Jamilena ........................................................................................................53

Tratamientos naturales con oxálico y salicílico para mantener la calidad y seguridad de alcachofa ‘Blanca de Tudela’ J.M. Ruiz-Jiménez, F. Guillén, S. Castillo, D. Martínez-Romero, M. Serrano, D. Valero y P.J. Zapata .....................................................................59

Alternativas prácticas a la maduración controlada del banano (Musa AAA) en zonas de producciónC. Demerutis .........................................................................................................65

An attempt to induce artificially superficial scald in ‘Rocha’ pear by ethephon spraying A.M. Cavaco, M.G., Barreiro, S. Nunes, I.V. Gardé, R. Guerra y M.D. Antunes ......................................................................................................71

Proceedings.indb 7 20/09/2012 08:52:41

Page 4: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

Aplicación de recubrimientos comestibles para la conservación y comercialización de la ciruela ‘Reina Claudia Verde’G. Alcusón, D. Redondo, R. Oria y M.E. Venturini ..............................................77

Aplicación postcosecha del Fenotiol para el control de las alteraciones del cáliz asociadas al desverdizado en cítricosS. Sdiri, C. Besada, P. Navarro y A. Salvador ......................................................83

Edible coatings enriched with essential oil constituents: effect on the storage ability of Arbutus unedo L. fresh fruit C. Gago, A. Guerreiro, G. Miguel, A. Cavaco y D. Antunes ................................89

Modificación del estatus oxidativo del calabacín durante su conservación en frio P. Sánchez-Bel, I. Egea, C. Romojaro, M.C. Martínez-Madrid, M.V. Ruiz, A.V. Martínez y M.T. Pretel ..................................................................95

II. FIsIologíA y bIoquímIcA de lA poscosechA

Regulation of postharvest fruit softening: taking pictures off the wallL.F. Goulao .........................................................................................................101

Apocarotenoides en frutos cítricos: su relevancia en la coloración del fruto y modificaciones durante la postcosecha M.J. Rodrigo, L. Carmona, V. Medina, B. Alquézar, E. Alós y L. Zacarías ....................................................................................................... 115Cambios fisiológicos y estructurales de cerezas recolectadas sin pediceloJ. Alonso y R. Alique ...........................................................................................121

Characterization of fructans in response to high CO2 treatments in strawberries (Fragaria vesca cv. Mara de Bois)M.Blanch, M.T. Sanchez-Ballesta, M.I. Escribano y C. Merodio .......................127

Molecular analysis of rachis browning in table grapes during storage at 0 ºC: beneficial effect of pretreatments with high levels of CO2R. Rosales, I. Romero, M.I. Escribano, C. Merodio y M.T. Sanchez-Ballesta .........................................................................................135

Cambios en el metabolismo fenólico durante la conservación en frutos de calabacín (Cucurbita pepo L.)F. Carvajal, F. van de Velde, V. López-Cadenas, M.E. Pirovani, D.R. Güemes, M. Jamilena y D. Garrido............................................................143

Actividad antioxidante y compuestos bioactivos en varias de las especies florales comestibles más utilizadas en la restauración españolaF. Guillén, I. Hernández-Arce, M. Serrano, H.M. Díaz-Mula, S.Castillo, D. Valero y P.J. Zapata........................................................................................151

Proceedings.indb 8 20/09/2012 08:52:41

05364115d
Resaltado
Page 5: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

Characterization of fructans in response to high Co2 treatments in strawberries (Fragaria vesca cv. Mara de Bois)

M. Blanch, M.T. Sanchez-Ballesta, M.I. Escribano and C. Merodio1

ABStRACt

We analysed the effect of different high CO2 treatments (20% or 40% CO2 for 3 days) on the turnover of non-structural carbohydrates (glucose, fructose and sucrose), fructans (FOS) and on the ion balance in strawberries Fragaria vesca L. cv. Mara de Bois during low temperature storage. To do this we used high-performance anion-exchange chromatography (HPAEC) and atomic absorption spectrometry. We observed that treatment with 20% CO2 induced selective FOS in strawberries during storage at 0 ºC. 20% CO2-treated fruit with higher levels of FOS also maintained the K+/Na+ ratio at similar values to those found in freshly harvested fruit. However, treatment with 40% CO2 modified the K+/Na+ ratio, and the levels of the protective FOS did not increase. Moreover, the changes in free soluble Ca2+ in 40% CO2-treated strawberries were the reverse of those in 20% CO2-treated fruit. These results confirm the beneficial effect of 20% CO2 for preventing damage caused by low temperature.

INtRoDuCtIoN

Strawberries (Fragaria vesca L.) are highly perishable fruit susceptible to water loss and pathogen attack. Short-term high CO2 treatment controlled weight loss and retained cell structure (Blanch et al., 2012a). High CO2 treatments also effectively increased strawberry fruit firmness (Harker et al., 2000). However, higher CO2 levels can cause an accumulation of fermentation products that negatively affect fruit acceptability (Watkins et al., 1999). It has been reported that in other highly perishable fruit such as grapes, high CO2 levels induced the accumulation of FOS during low temperature storage (Blanch et al., 2011). There are many positive aspects related to the presence of fructans in plants. Indeed, FOS have been implicated in abiotic stress-tolerance and they might provide protection from damage to cytosolic proteins and cellular structure (Valluru and Van den Ende, 2008). This protection could be explained in part by their sharp water-binding capacity (Blanch et al., 2012b).

1. Department of Characterization, Quality and Security. Institute of Food Science Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, E-28040 Madrid, Spain.

Proceedings.indb 127 20/09/2012 08:52:51

Page 6: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

128 M. Blanch, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio

In the present study, our principal aims were to analyse how different high CO2 treatments during low temperature storage improve: (1) the turnover of nonstructural carbohydrates (glucose, fructose and sucrose) and FOS, using high-performance anion-exchange chromatography with integrated pulsed amperometric detection (HPAEC-PAD), (2) to analyse the ion balance (cations and anions) in untreated and 20% or 40% CO2 treated fruit.

MAtERIAL AND MEthoDS

Plant material

Organic strawberries (Fragaria vesca cv. Mara de Bois) harvested from the first flowering from Monjarama orchard, San Sebastian de los Reyes, Madrid (Spain) were stored at 0 ºC (±0.5) in three sealed containers with a capacity of 1 m3. Fifteen plastic boxes containing approximately 0.5 kg of strawberries per box were stored in each container for 3 days and exposed to a continuous flow of air (untreated fruit) or a gas mixture containing 20% CO2 + 20% O2 + 60% N2 or 40% CO2 + 20% O2 + 40% N2. Initially and at the end of the 3-day sampling period, 45 strawberries were taken for quality analysis, and another 45 were removed at random from each of the treatment groups and divided into three batches of 15 berries, frozen in liquid nitrogen and then stored at -80 ºC for further analysis.

Extraction and chromatographic determination of sugars and fructo-oligosaccharides

To determine sugars (glucose, fructose and sucrose), 1 g of each sample was homogenised in 5 mL of ultra-pure water and centrifuged at 30,000g for 20 min, after which the supernatants were filtered through a 0.45 µm pore size membrane. The determination of these compounds was carried out by HPAEC-PAD, as described by Bodelón et al. (2010). The content of each sugar was expressed as mg/g fresh weight (FW) of the sample, and the data produced were the means of the three replicates, two different measurements being made. The quantification of nystose, nystose b and kestopentaose and that of 1-kestose and neokestose, which required pre-treatment with an activated carbon Darco G60, 100 mesh (Sigma, Steinheim, Germany) to remove the mono- and disaccharides, was determined following the method of Blanch et al. (2011).

Ion analysis

A frozen fruit sample (1 g) was homogenized for 5 minutes in 10 mL of ultra-pure water (for Na+ and K+) or 10 mL of ultra-pure water slightly acidified with 5 mM chloridric acid (for Ca2+) and analyzed as described previously (Cataldi et al., 2003). Samples were centrifuged at 2,000 x g for 20 min, after which the levels of soluble ions were

Proceedings.indb 128 20/09/2012 08:52:51

Page 7: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

129Avances en poscosecha de frutas y hortalizas

determined in the supernatants. Atomic emission spectrometry was used to determine K+, using a 5100PC atomic absorption spectrometer (Perkin-Elmer, Norwalk, CT, USA) with an air-acetylene flame. Levels of Ca2+ and Na+ were determined by atomic absorption spectrometry with the same instrument, using a multi element (Ca-Mg-Zn) hollow-cathode lamp. Data represent the means of the three replicates, two different measurements being made.

Statistical analysis

One- or two-way ANOVA and correlational analyses were employed using SPSS ver. 19.0. The multicomparison of means was assessed by Bonferroni’s test, to determine the level of significance at p < 0.05. The main effects of CO2 treatment, time of storage, and treatment x time interaction were analyzed.

RESuLtS

The sugar concentrations assessed in air-stored (3 days) strawberries or treated with 20% and 40% CO2 for 3 days are compared with non-stored (day 0, freshly harvested) fruit in Table 1. It can be seen that the values of the monosaccharides in Fragaria vesca cv. Mara de Bois were similar to those found for the disaccharide sucrose. The sucrose concentration in this variety of strawberries is high and can reach values of 20 mg/g FW. The content of sucrose significantly decreased in air-stored strawberries but, the proportion of sucrose, as a percentage of the total sugar, was the lowest in 40% CO2-treated fruit, being only when 27% compared with the non-stored 34%. Furthermore, in these treated fruits the highest levels of fructose was quantified. Since the decrease in 40% CO2-treated fruit resulted in an increase in the content of monosaccharides, mainly of fructose we suggest that the synthesis of fructose-polymers could be prevented by the effect of 40% CO2.

The content of identified FOS is shown in Table 2. Levels of 43.85 µg kestose/g FW were reached in freshly harvested fruit, and these levels were maintained in 40% CO2- treated fruit but increased significantly, reaching the highest amounts, in 20% CO2-treated strawberries. The neokestose content was approximately a quarter of the 1-kestose content. Moreover no significant changes were observed in fruit during storage at 0 ºC with and without CO2 treatments. With respect to nystose levels, we also observed a significant increase in 20% CO2-treated strawberries, which was the highest compared with air-stored and 40% CO2-treated fruit. The levels of nystose b followed the same pattern as neokestose, consistent with the activation of the inulin-series synthesis pathway. The highest levels of kestopentaose were also quantified in 20% CO2-treated strawberries and increased in air-stored fruit but maintaining the initial levels in 40% CO2-treated fruit.

Proceedings.indb 129 20/09/2012 08:52:51

Page 8: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

130 M. Blanch, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio

Treatment with 20% CO2 maintained a K+/Na+ ratio similar to that found in freshly harvested fruit, whereas a significant decrease in this ratio was observed in 40% CO2-treated fruit (Table 3). This contrasts with the significantly increased K+/Na+ ratio observed at low temperature (0 ºC) in the absence of CO2 treatment. In the present study we observed a significant increase in free soluble Ca2+ in 40% CO2-treated fruit whereas tissues from 20% CO2-treated fruit showed the lowest free soluble levels of Ca2+ values (Table 3).

DISCuSSIoN

In Fragaria vesca cv. Mara de Bois the sucrose content is present in similar high concentrations to that of reducing sugars, and the FOS values were higher than those reported for other vegetables and fruit (Muir et al., 2007). Several studies have reported that the metabolism of carbohydrates is involved in protecting plants against cold stress. The observed sucrose decrease in air-stored fruits could be due to a possible breakdown into simple sugars but, such a decrease was not concomitant with an increase in glucose and fructose, it could suggest its preferential utilisation for respiration instead of for sugar interconversion. However, in the case of 40% CO2 treated fruit, the slight decrease in sucrose content was associated with a significant increase in monosaccharides, mainly fructose. This fact makes us think that high CO2 level modifies fructose-polymer metabolism. Consistent with this, an increase in 1-kestose, nystose and kestopentaose would confirm that fructose is further metabolised into FOS in fruit treated with 20% CO2 for 3 days. By contrast such an increase in FOS was not observed in fruit treated with 40% CO2 for 3 days. An increase in inulin-type fructans was also observed in 20% CO2-table grapes (Blanch et al., 2011). It is worth noting that despite the differences between these two types of fruit, there is a common response in this carbon metabolism pathway, suggesting that beneficial high CO2 treatment could produce a similar FOS response in different types of fruit.

Additionally, high CO2 (20%) prevented alterations in ion homeostasis, although the underlying mechanism remains unclear. Several stressors significantly decreased K+ concentrations in plants (You et al., 2011) and mitigation of K+ loss was strongly correlated with salt tolerance (Shabala and Cuin, 2007). Our results suggest that treatment with 20% CO2 maintains a K+/Na+ ratio similar to that found in freshly harvested fruit, whereas a significant decrease in this ratio was provoked when fruit was treated with 40% CO2. Cation levels play an important role in cross-linking with cell-wall polysaccharides and by extension, in determining fruit tissue integrity (Tieman and Handa, 1994). The reduction of the free soluble Ca2+ in the 20% CO2-treated fruit led us to suggest its involvement in cross-linked structures via calcium bridges and may contribute to greater cell wall stability.

Proceedings.indb 130 20/09/2012 08:52:51

Page 9: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

131Avances en poscosecha de frutas y hortalizas

ACKNowLEDGEMENtS

The authors wish to thank the Spanish Ministry of Economy and Competitiveness (Project AGL2008-02949/ALI) for financial support and the CSIC for the JAEDoc contract to M. Blanch.

REFERENCES

Blanch, M., Sanchez-Ballesta, M. T., Escribano, M. I. and Merodio, C. 2011. Fructooligosaccharides in table grapes and response to storage. Food Chem. 129: 724-730.

Blanch, M., Sanchez-Ballesta, M. T., Escribano, M. I. and Merodio, C. 2012a.Water distribution and ionic balance in response to high CO2 treatments in strawberries

(Fragaria vesca L. cv Mara de Bois). Postharvest Biol. Technol. 10.1016/j.postharvbio.2012.06.003.

Blanch, M., Goñi, O., Sanchez-Ballesta, M. T., Escribano, M. I. and Merodio, C. 2012b. Characterisation and functionality of fructo-oligosaccharides affecting water status of strawberry fruit (Fragraria vesca cv. Mara de Bois) during postharvest storage. Food Chem. 134: 912-919.

Bodelón, O., Blanch, M., Sanchez-Ballesta, M. T., Escribano, M. I. and Merodio, C. 2010. The effects of high CO2 levels on anthocyanin composition, antioxidant activity and soluble sugar content of strawberries stored at low non-freezing temperature. Food Chem. 122: 673-678.

Cataldi, T.R., Margiotta, G., Del Fiore, A. and Bufo, S.A. 2003. Ionic content in plant extracts determined by ion chromatography with conductivity detection. Phytochem. Anal. 14: 176-83.

Cultivar variation in response of strawberry fruit to high carbon dioxide treatments. J. Sci. Food Agric. 79: 886-890.

Harker, F.R., Elgar, H.J., Watkins, C.B., Jackson, P.J. and Hallet, I.C. 2000. Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biol. Technol. 19: 139-146.

Muir, J. G., Shepherd, S. J., Rosella, O., Barret, J. S. and Gibson, P. R. 2007. Fructan and free fructose content of common Australian vegetables and fruit. J. Agric. Food Chem. 55: 6619-6627.

Shabala, S. and Cuin, T.A. 2007. Potassium transport and plant salt tolerance. Physiol. Plantarum. 133: 651-669.

Tieman, D.M. and Handa, A.K. 1994. Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill) fruits. Plant Physiol. 106: 429-436.

Valluru, R. and Van den Ende, W. (2008). Plant fructans in stress environments: Emerging concepts and future prospects. J. Exp. Bot. 59: 2905-2916.

Watkins, C.B., Manzano-Mendez, J.E., Nock, J.F., Zhang, J., Maloney, K.E., 1999.

Proceedings.indb 131 20/09/2012 08:52:51

Page 10: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

132 M. Blanch, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio

Cultivar variation in response of strawberry fruit to high carbon dioxide treatments. J. Sci. Food Agric. 79: 886-890.

You, M.P., Colmer, T.D. and Barbetti, M.J. 2011. Salinity drives host reaction in Phaseolus vulgaris (common bean) to Macrophomina phaseolina. Funct. Plant Biol. 38: 984-521.

tAble 1. chAnges In sugArs (mg/g Fw), In strAwberrIes FrAgArIA vescA cv. mArA de boIs AFter hArvest (non-stored) And AFter 3 dAys

oF storAge At 0 ºc In AIr (AIr-stored), 20% co2 or 40% co2

Non-stored Air-stored0 day 3 days air 3 days 20% CO2 3 days 40% CO2

19.09±2.17a 18.38±2.07a 23.46±2.75b 23.40±2.38b

19.49±2.26a 19.55±3.03a 23.54±2.61ab 24.72±2.54b

SugarsGlucose (mg/g FW)Fructose (mg/g FW)

Sucrose (mg/g FW) 20.01±2.67b 14.94±1.72a 21.04±2.49b 18.51±2.29ab

CO2-treatedNon-stored Air-stored0 day 3 days air 3 days 20% CO2 3 days 20% CO2 3 days 40% CO23 days 40% CO2

19.09±2.17a 18.38±2.07a 23.46±2.75b 23.40±2.38b

19.49±2.26a 19.55±3.03a 23.54±2.61ab 24.72±2.54b

SugarsGlucose (mg/g FW)Fructose (mg/g FW)

Sucrose (mg/g FW)

SugarsGlucose (mg/g FW)Fructose (mg/g FW)

Sucrose (mg/g FW) 20.01±2.67b 14.94±1.72a 21.04±2.49b 18.51±2.29ab

CO2-treated

Data are presented as the means SE of three replicates (n=6) and the different letters indicate significant differences (p < 0.05).

tAble 2. content oF 1-kestose, neokestose, nystose, nystose b And kestopentAose In strAwberrIes AFter hArvest (non-stored, 0 dAys) And AFter 3 dAys oF storAge At

0 ºc In AIr (AIr-stored), 20% co2 or 40% co2. Data are expresseD as µg/g Fw

non-stored Air-stored

0d 3d air 2

CO -treated

INULIN TYPE

1-kestose

nystose

kestopentaose

INULIN NEOSERIES TYPE

neokestose

nystose b

3d 20% CO2

3d 40% CO2

43.85±8.64

4.68±0.53

2.55±0.29

12.75±1.06

0.81±0.10

a

a

a

a

a

53.96±6.52ab

5.10±0.68a

4.29±0.17b

a15.85±2.48

1.02±0.29ab

64.26±6.09

7.23±0.68

5.42±0.39

15.65±2.79

1.28±0.22

b

b

c

a

b

46.90±2.55

4.89±0.80

2.86±0.29

14.88±1.00

1.15±0.25

a

a

a

a

ab

non-stored Air-stored

0d 3d air 2

CO -treated

INULIN TYPE

1-kestose

nystose

kestopentaose

INULIN NEOSERIES TYPE

neokestose

nystose b

INULIN TYPE

1-kestose

nystose

kestopentaose

INULIN NEOSERIES TYPE

neokestose

nystose b

3d 20% CO2

3d 40% CO2

43.85±8.64

4.68±0.53

2.55±0.29

12.75±1.06

0.81±0.10

a

a

a

a

a

53.96±6.52ab

5.10±0.68a

4.29±0.17b

a15.85±2.48

1.02±0.29ab

64.26±6.09

7.23±0.68

5.42±0.39

15.65±2.79

1.28±0.22

b

b

c

a

b

46.90±2.55

4.89±0.80

2.86±0.29

14.88±1.00

1.15±0.25

a

a

a

a

ab

43.85±8.64

4.68±0.53

2.55±0.29

12.75±1.06

0.81±0.10

a

a

a

a

a

43.85±8.64

4.68±0.53

2.55±0.29

12.75±1.06

0.81±0.10

a

a

a

a

a

a

a

a

a

a

53.96±6.52ab

5.10±0.68a

4.29±0.17b

a15.85±2.48

1.02±0.29ab

53.96±6.52ab

5.10±0.68a

4.29±0.17b

a15.85±2.48

1.02±0.29ab

64.26±6.09

7.23±0.68

5.42±0.39

15.65±2.79

1.28±0.22

64.26±6.09

7.23±0.68

5.42±0.39

15.65±2.79

1.28±0.22

b

b

c

a

b

b

b

c

a

b

46.90±2.55

4.89±0.80

2.86±0.29

14.88±1.00

1.15±0.25

a

a

a

a

ab

a

a

a

a

ab

The data are presented as the means ± SE of three replicates (n = 6) and the different letters indicate significant differences (p < 0.05).

The data are presented as the means ± SE of three replicates (n = 6) and the different letters indicate significant differences (p < 0.05).

Proceedings.indb 132 20/09/2012 08:52:51

Page 11: Avances en poscosecha de frutas y hortalizasdigital.csic.es/bitstream/10261/92504/4/Characterization_of_fructans... · Avances en poscosecha de frutas y hortalizas 129 determined

133Avances en poscosecha de frutas y hortalizas

tAble 3. chAnges oF the content oF totAl soluble Ions oF strAwberry AFter hArvest (non-stored, 0 dAys) And AFter 3 dAys oF storAge At 0 ºc In AIr (AIr-stored),

20% co2 or 40% co2. dAtA Are expressed per 100g oF Fresh weIght (cA2+)

non-stored Air-stored0d 3d air 3d 20% CO2 3d 40% CO2

K+/Na+[ratio] 59.22±8.41b 78.19±6.50c 62.83±4.04b 40.72±3.17a

CO2-treated

Ca2+[mg] 11.01±0.26b 10.81±0.32b 9.47±0.27a 11.93±0.27c

non-stored Air-stored0d 3d air 3d 20% CO2 3d 40% CO2

K+/Na+[ratio] 59.22±8.41b 78.19±6.50c 62.83±4.04b 40.72±3.17aK+/Na+[ratio] 59.22±8.41b 78.19±6.50c 62.83±4.04b 40.72±3.17a

CO2-treated

Ca2+[mg] 11.01±0.26b 10.81±0.32b 9.47±0.27a 11.93±0.27cCa2+[mg] 11.01±0.26b 10.81±0.32b 9.47±0.27a 11.93±0.27c

The data are presented as the means ± SE of the three replicates (n=6) and the different letters within rows indicate significant differences at (p< 0.05).

Proceedings.indb 133 20/09/2012 08:52:52