UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se...

75
UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES Materia : Medidas Electrónicas II Código Materia: 950458 División: R5053 Grupo Nº: 3 Integrantes del Grupo: 1 – Celery, Alejandro (Leg. 114426-1) 2 – Ceppi, Sebastián (Leg. 107781-8) 3 – Franco, Juan José (Leg. 50911-6) 4 – González, J. Pablo (Leg. 07-1073904) 5 – Repetto, Carla (Leg. 97003-4) 6 – Vidal, Juan Francisco (Leg. 93393-2) Año: 2010 Proyecto Título: Medidor de Potencia de RF Profesor: Ing. Juan Cecconi Ayudantes: Ing. Damián Hidalgo Ing. Augusto Musolino Rev.: 4 Fecha de Realización: 12/2010 al 02/2011 Fecha de Entrega: 22/02/2011 Revisó: JC Aprobó: ……NO…… Rev.: 6 Fecha de Devolución: 23/02/2011 Fecha de Entrega: 24/02/2011 Revisó: JC Aprobó: ……NO…… Rev.: 7 Fecha de Devolución: ??/??/???? Fecha de Entrega: 28/02/2011 Revisó: Aprobó: ……....…… Observaciones: ................................................................................................................ ................................................................................................................ ................................................................................................................

Transcript of UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se...

Page 1: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES

Materia: Medidas Electrónicas II

Código Materia: 950458

División: R5053

Grupo Nº: 3

Integrantes del Grupo: 1 – Celery, Alejandro (Leg. 114426-1) 2 – Ceppi, Sebastián (Leg. 107781-8) 3 – Franco, Juan José (Leg. 50911-6) 4 – González, J. Pablo (Leg. 07-1073904) 5 – Repetto, Carla (Leg. 97003-4) 6 – Vidal, Juan Francisco (Leg. 93393-2) Año: 2010

Proyecto Título: Medidor de Potencia de RF

Profesor: Ing. Juan Cecconi

Ayudantes: Ing. Damián Hidalgo

Ing. Augusto Musolino

Rev.: 4 Fecha de Realización:

12/2010 al 02/2011 Fecha de Entrega:

22/02/2011 Revisó:

JC Aprobó: ……NO……

Rev.: 6 Fecha de Devolución:

23/02/2011 Fecha de Entrega:

24/02/2011 Revisó:

JC Aprobó: ……NO……

Rev.: 7 Fecha de Devolución:

??/??/???? Fecha de Entrega:

28/02/2011 Revisó:

Aprobó: ……....……

Observaciones:

................................................................................................................

................................................................................................................

................................................................................................................

Page 2: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 2 de 75 Repetto y Vidal.

PROYECTO: MEDICIÓN DE POTENCIA EN RF

TABLA DE CONTENIDOS

INTRODUCCIÓN DEL PROYECTO ......................................................................... 3 

INTRODUCCIÓN TEÓRICA DEL DETECTOR DE POTENCIA ........................................ 3 

ESPECIFICACIONES DEL PROYECTO Y CIRCUITO .................................................. 5 

LISTA DE MATERIALES ...................................................................................... 6 

DISEÑO DEL PCB .............................................................................................. 6 

MEDICIONES EFECTUADAS EN LABORATORIO DEL DPTO. DE ELECTRÓNICA UTN ...... 8 

Tensión de Salida VOUT en función de la Frecuencia para una PIN constante. ..................... 9 Tensión de Salida VOUT en función de la PIN para una Frecuencia de 10 MHz. ................... 9 Tensión de Salida VOUT en función de la PIN para una Frecuencia de 50 MHz. ................. 10 Comparación VOUT vs PIN entre mediciones y especificaciones fabricante ....................... 10 Instrumental utilizado .............................................................................................. 11 Imágenes obtenidas en el laboratorio ......................................................................... 11 

MEDICIONES EFECTUADAS EN EL LABORATORIO DEL INTI .................................. 12 

Tensión de Salida VOUT en función de la Frecuencia para una PIN constante .................... 13 Tensión de Salida VOUT en función de la PIN para una Frecuencia de 50 MHz .................. 14 Contraste DUT usando instrumento INTI como patrón ................................................... 15 Medición con VNA y análisis del archivo touchstone ...................................................... 15 Gráfica de ROE en función de la frecuencia entregada por el VNA ................................... 24 Gráfica de S11 en módulo y fase entregada por el VNA ................................................. 24 Gráfica de Smith del dispositivo visto desde la entrada entregada por el VNA ................... 25 Gráfica de Smith del circuito integrado entregada por el fabricante ................................. 26 Instrumental utilizado .............................................................................................. 27 Imágenes obtenidas en el laboratorio ......................................................................... 27 

CÁLCULOS ADICIONALES ................................................................................ 31 

Cálculo del factor de calibración ................................................................................. 31 Comparación de mediciones y cálculo de regresión estimada ......................................... 31 

CONCLUSIONES Y ANÁLISIS DE LOS RESULTADOS OBTENIDOS ........................... 32 

AGRADECIMIENTOS ........................................................................................ 33 

BIBLIOGRAFÍA ............................................................................................... 33 

APÉNDICE ..................................................................................................... 34 

APENDICE A: Archivo Touchstone generado con VNA .................................................... 34 APENDICE B: Hoja de datos del transformador TR1 código TC4-1TG2+ ........................... 40 APÉNDICE C: Hoja de datos del circuito integrado U2 AD8362 ....................................... 42 

NOTAS .......................................................................................................... 75 

Page 3: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 3 de 75 Repetto y Vidal.

INTRODUCCIÓN DEL PROYECTO El proyecto se realiza en el marco del cumplimiento de los objetivos necesario para aprobar la materia Medidas Electrónicas II del 5 nivel de la carrera Ingeniería Electrónica de la Universidad Tecnológica Nacional, Facultad Regional Buenos Aires. La idea transmitida por los profesores es que podamos desarrollar y poner en práctica los conocimientos adquiridos, desde los cálculos y proyección, pasando por la obtención de los materiales y componentes necesarios, fabricación del prototipo y dispositivo final, hasta las mediciones y caracterizaciones de los mismos utilizando el instrumental del departamento de Electrónica u otras entidades, como en nuestro caso, el INTI. El presente proyecto se basa en la medición de potencia de radio frecuencia mediante la utilización de un circuito integrado cuyo principio de funcionamiento se introducirá en el siguiente punto.

INTRODUCCIÓN TEÓRICA DEL DETECTOR DE POTENCIA El proyecto llevado a cabo se basa en la medición de potencia de RF mediante la utilización del circuito integrado AD8362 de Analog Devices. La implementación como detector de potencia se realizó en base a la nota de aplicación del fabricante (D02923-0-6/07(D) Revisión D, se adjunta como apéndice del presente documento). El AD8362 es un convertidor de valor eficaz a continua totalmente calibrado y de alta precisión que proporciona las siguientes características principales:

• Rango Dinámico de entrada > 65 dB:-52 dBm a 8 dBm en 50 Ω.

• Rango de Frecuencias de operación de 50 Hz hasta 3,8 GHz.

A diferencia de anteriores convertidores, el ancho de banda de respuesta es completamente independiente de la magnitud de la señal. El punto de -3 dB se produce en alrededor de 3,5 GHz. La capacidad de este integrado para medir con precisión formas de onda que tienen gran factor de cresta es independiente de la frecuencia de la señal o su magnitud absoluta, en un amplio rango de condiciones. Esta combinación única permite que el AD8362 pueda ser utilizado como:

• Lazos de control/linealización de amplificadores de potencia

• Control de potencia de transmisión

• Indicador de fuerza de la señal del Transmisor (TSSI)

• Instrumentación de RF

El integrado consta de los elementos básicos (ver diagrama en bloques en la próxima página) de un lazo de control automático de ganancia de alto rendimiento recortado con láser durante la fabricación para las pequeñas tolerancias en pleno funcionamiento a una frecuencia de prueba de 100 MHz. El amplificador variable (de banda ancha, lineal) VGA provee la ganancia de tensión general GSET, esta puede ser controlada externamente mediante el pin VSET. La salida del amplificador VSIG es aplicada a un detector cuadrático de banda ancha que proporciona una respuesta de verdadero valor eficaz a esta señal alterna que es esencialmente independiente de la forma de onda. Su salida es una corriente fluctuante ISQU que tiene un valor medio positivo. Esta corriente será integrada por una capacitancia CF que suele ser agrandada por una capacitancia externa CLPF para extender el tiempo promediado. La tensión

Page 4: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 4 de 75 Repetto y Vidal.

resultante es a su vez amplificada por 5 y colocada en el pin VOUT. Esta señal puede ser usada en los dos modos que permite el integrado, control o medición.

El nuestro caso será medición, para el cual, el lazo del control automático de ganancia es cerrado vía VSET por VOUT. El fabricante especifica que para el modo medición debe conectarse VSET con VOUT, como así también, VTGT con VREF (página 19 de la nota de aplicación D02923-0-6/07(D) Revisión D). La señal VTGT es utilizada para aumentar o disminuir la sensibilidad del dispositivo o mejorar la precisión en la medición de señales con factores de cresta elevados. Luego la tensión VOUT será función de la tensión de entrada VIN (INHI-INLO) según: VOUT = VSLP log10 [rms (VIN) / VZ] Dónde VSLP es el voltaje de la pendiente (“slope” en inglés), es decir, el cambio en la tensión de salida para cada década y como cada década corresponde a 20 dB, el valor será de 50 mV/dB. Otro valor que aparece en la expresión es la intersección de la pendiente por 0 llamada VZ que es función de VTGT. Cuando se trabaja en alta frecuencia se suele usar directamente la expresión en dB (PIN y PZ en dBm): VOUT = SLOPE × (PIN − PZ) A continuación puede verse la característica de VOUT en función de rms(VIN):

Page 5: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 5 de 75 Repetto y Vidal.

ESPECIFICACIONES DEL PROYECTO Y CIRCUITO Como se relató en el anterior punto, el AD8362 puede configurarse en modo control o medición, nosotros lo utilizaremos como medidor, para ello se conectará según muestra el siguiente circuito:

El capacitor C8 fue seleccionado según lo indica la nota de aplicación (página 21 de la nota de aplicación D02923-0-6/07(D) Revisión D): “Para operar a frecuencias tan bajas como 100 kHz, utilice CHPF = 8 nF. Para frecuencias superiores a 2 MHz, no necesita capacidad externa porque se adecúa internamente en este pin.” El capacitor C3 fue seleccionado según lo indica la nota de aplicación (página 21 de la nota de aplicación D02923-0-6/07(D) Revisión D): “Para las demoras internas del AGC cuando VSET se conecta con VOUT ajustar este valor al mínimo recomendado de 300 pF.” El transformador TR1 con relación 4:1 se encarga de adaptar los 50 Ω de la señal de entrada a los 200 Ω de la entrada diferencial del circuito integrado. El mismo es de montaje superficial, fabricado por Mini-Circuits (código de parte TC4-1TG2+) y el rango de operación es de 0,5 a 300 MHz, para más información puede consultarse la hoja de datos del apéndice. El código es. El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y C2 de 1 nF cumplen la función de desacople y son colocados son para completar el circuito de entrada diferencial. El valor es el recomendados por la nota de aplicación. Los capacitores C6 y C7 de 100 pF cumplen la función de acople de la señal de entrada. Los valores son los recomendados por la nota de aplicación. Los capacitores C4 y C5 cumplen la función de desacople y filtrado de la fuente. La tensión Vcc 5V será provista por el siguiente circuito:

La alimentación Vcc IN puede ser provista por una fuente externa o por una batería de 9VDC. El sustrato seleccionado para construir la placa es FR4 (fibra de vidrio simple faz) y se utilizaron componentes SMD para las funciones más críticas. El circuito integrado se compró en Estados Unidos y los demás componentes en el mercado local. Cómo apéndice de este documento se encontrará la nota de aplicación y hojas de datos de los componentes.

Page 6: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 6 de 75 Repetto y Vidal.

Finalmente las especificaciones del dispositivo son:

• Rango dinámico: > 60 dB • Rango de frecuencia: 1 a 300 MHz (limitados por el BW del Transformador)

Con las siguientes características:

• Responde a verdadero valor eficaz de potencia. • Independiente de forma de onda y modulación. • Salida lineal respecto entrada logarítmica.

LISTA DE MATERIALES Ref. Dispositivo Valor Montaje Comentarios U1 Circuito Integrado 7805 Through-Hole Regulador de tensión.

U2 Circuito Integrado AD8362 SMD Detector de potencia.

C1 Capacitor 1nF SMD Desacople entrada.

C2 Capacitor 1nF SMD Desacople entrada.

C3 Capacitor 300pF SMD CHLF, para filtro pasa bajo. C4 Capacitor 0.1UF SMD Desacople y filtrado de fuente. C5 Capacitor 1nF SMD Desacople y filtrado de fuente. C6 Capacitor 100pF SMD Acople entrada. C7 Capacitor 100pF SMD Acople entrada. C8 Capacitor 8nF SMD CHPF, para filtro pasa alto. C9 Capacitor 1nF SMD Acople AC entrada. C10 Capacitor 100nF SMD Filtrado de fuente. J1 Jumper --- Through-Hole Cambio de Rango filtro pasa alto.

T1 Conector SMA --- SMD VIN, Señal de entrada RF.

T2 Terminal --- Through-Hole VOUT, Señal de salida DC.

TR1 Transformador TC4-1TG2+ SMD Relación 4:1

DISEÑO DEL PCB El sustrato seleccionado para construir la placa es FR4 (fibra de vidrio simple faz). Se compró en mercado local una placa simple faz fotosensible de 10 cm x 10 cm marca Beska. Para la fabricación se necesitó crear la máscara. Se utilizó el software PCB Wizard v3.5 Professional Edition, a continuación se vé la edición:

Page 7: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 7 de 75 Repetto y Vidal.

Luego se imprimió sobre una hoja A4 (de las utilizadas para proyectar transparencia) con una impresora estándar de chorro de tinta marca HP el archivo generado por el software antes mencionado:

La máscara (transparencia) se montó sobre la placa fotosensible (cortada a la mitad). Presionada por un vidrio con un morseto para evitar movimiento se la expuso durante 15 minutos a la luz de un tubo fluorescente a 7 cm, siguiendo las indicaciones del fabricante de la placa:

Page 8: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 8 de 75 Repetto y Vidal.

Luego se reveló quedando:

Por último fue expuesta a percloruro férrico a 45 grados Celsius durante 25 minutos.

MEDICIONES EFECTUADAS EN LABORATORIO DEL DPTO. DE ELECTRÓNICA UTN Se realizaron 3 tipos de mediciones sobre el prototipo construido:

1. Tensión de Salida VOUT en función de la Frecuencia para una PIN constante. 2. Tensión de Salida VOUT en función de la PIN para una Frecuencia de 10 MHz. 3. Tensión de Salida VOUT en función de la PIN para una Frecuencia de 50 MHz.

A continuación se muestra el setup de pruebas utilizado:

Page 9: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 9 de 75 Repetto y Vidal.

Suponiendo que el spliter se comporta como un divisor perfecto 50/50 y que no existen reflexiones en el AE (Analizador de Espectro) ni en el DUT (“Device Under Test”, dispositivo a ensayar) (están adaptados), la potencia ingresante al AE es la misma que ingresa al DUT. TENSIÓN DE SALIDA VOUT EN FUNCIÓN DE LA FRECUENCIA PARA UNA PIN CONSTANTE.

Con el generador de RF se efectuó un barrido desde 10 MHz hasta 489 MHz, manteniendo la potencia de entrada al DUT constante. Se construye la siguiente dupla de tabla y gráfico:

Tensión de salida vs. Frecuencia de Entrada @ -24 dBm

TENSIÓN DE SALIDA VOUT EN FUNCIÓN DE LA PIN PARA UNA FRECUENCIA DE 10 MHZ.

Con el generador de RF a una frecuencia constante de 10 MHz se procedió a incrementar la potencia de salida de éste desde unos -52 dBm hasta el máximo permitido. Se construye la siguiente dupla de tabla y gráfico:

f[MHz] PIN[dBm] VOUT[mV]

9,99783 -24,30 1,42000

20,00652 -24,16 1,48800

30,00650 -24,54 1,50100

40,00220 -23,50 1,55100

49,98700 -24,26 1,52200

50,00000 -23,40 1,57100

100,00000 -24,24 1,53000

200,00000 -23,98 1,54300

300,00000 -24,06 1,54600

400,00000 -24,33 1,51600

488,86300 -23,94 1,46000

Page 10: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 10 de 75 Repetto y Vidal.

Tensión de salida vs. Potencia de Entrada @ 10 MHz

TENSIÓN DE SALIDA VOUT EN FUNCIÓN DE LA PIN PARA UNA FRECUENCIA DE 50 MHZ.

Con el generador de RF a una frecuencia constante de 50 MHz se procedió a incrementar la potencia de salida de éste desde unos -52 dBm hasta el máximo permitido. Se construye la siguiente dupla de tabla y gráfico:

Tensión de salida vs. Potencia de Entrada @ 50 MHz

COMPARACIÓN VOUT VS PIN ENTRE MEDICIONES Y ESPECIFICACIONES FABRICANTE

En la siguiente gráfica se puede verificar lo especificado por el fabricante (imagen de abajo a la derecha) relativo a la similitud entre las pendientes a distinta frecuencia (imagen de la izquierda es la superposición de la Tensión de salida vs. Potencia de Entrada @20/50 MHz medidas en los puntos anteriores):

f[MHz] PIN[dBm] VOUT[mV]

9,99348 -52,45 0,01970

9,99348 -50,00 0,01980

9,99348 -47,00 0,02900

9,99348 -44,01 0,35800

9,99348 -40,00 0,59600

9,99348 -34,43 0,87400

9,99348 -23,40000 1,44100

9,99348 -19,99000 1,61900

9,99348 -17,00000 1,76500

9,99348 -12,04000 2,01500

f[MHz] PIN[dBm] VOUT[mV]

50,00435 -52,45000 0,02000

50,00435 -50,00 0,32700

50,00435 -47,00000 0,32800

50,00435 -44,01 0,51000

50,00435 -40,00 0,71800

50,00435 -34,43 1,00500

50,00435 -23,40000 1,57100

50,00435 -19,99000 1,74300

50,00435 -17,00000 1,89900

50,00435 -52,45000 0,02000

Page 11: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 11 de 75 Repetto y Vidal.

Tensión de salida vs. Potencia de entrada @ 10MHz y 50 MHz

INSTRUMENTAL UTILIZADO

• Generador de Señales de RF Marconi Instruments • Analizador de Espectro Agilent N9320A • Tester Digital Qsali VC10C

IMÁGENES OBTENIDAS EN EL LABORATORIO

Señal de RF de 50 MHz y -24 dBm

Page 12: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 12 de 75 Repetto y Vidal.

Setup del banco de pruebas

Prototipo del Dispositivo

MEDICIONES EFECTUADAS EN EL LABORATORIO DEL INTI Se realizaron 3 tipos de mediciones sobre el prototipo construido:

1. Tensión de Salida VOUT en función de la Frecuencia para una PIN constante. 2. Tensión de Salida VOUT en función de la PIN para una Frecuencia de 50 MHz. 3. Contraste DUT usando instrumento INTI como patrón. 4. Medición con VNA y análisis del archivo Touchstone.

Page 13: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 13 de 75 Repetto y Vidal.

TENSIÓN DE SALIDA VOUT EN FUNCIÓN DE LA FRECUENCIA PARA UNA PIN CONSTANTE

Se ajustó el generador en PIN = 1 mW, Vg = 0,632 Vpp y se barrió en frecuencia:

OBSERVACIÓN Podemos apreciar, observando la gráfica de abajo, que resulta extraño el comportamiento entre 1 y 40 MHz, ya que si la potencia es la misma y variamos frecuencia la salida debería ser constante y si la transferencia fuese lineal como en el CI debería ser tipo escalón. Esto se deba a que el ROE (relación de onda estacionaria) es pésimo en ese intervalo y en consecuencia parte de la potencia se refleja, vuelve al generador y no es medida.

Tensión de salida vs. Frecuencia de entrada @ 0 dBm

f[MHz] PIN[dBm] VOUT[mV]

70 0 2,8031

80 0 2,8040

90 0 2,8041

100 0 2,8038

150 0 2,8026

200 0 2,7960

250 0 2,8059

300 0 2,7870

350 0 2,7986

400 0 2,7890

450 0 2,7821

500 0 2,7729

550 0 2,7866

600 0 2,7606

f[MHz] PIN[dBm] VOUT[mV]

1 0 1,7470

2 0 2,2459

3 0 2,4191

4 0 2,4964

5 0 2,5464

6 0 2,5843

7 0 2,6147

8 0 2,6397

9 0 2,6602

10 0 2,6774

20 0 2,7560

30 0 2,7793

40 0 2,7912

50 0 2,7985

60 0 2,7997

Page 14: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 14 de 75 Repetto y Vidal.

TENSIÓN DE SALIDA VOUT EN FUNCIÓN DE LA PIN PARA UNA FRECUENCIA DE 50 MHZ

OBSERVACIÓN Lo que podemos apreciar observando la gráfica de abajo es:

• En la hoja de datos dice que el CI llega hasta 52 dBm, pero a partir de 51,5 dBm nuestro

DUT no responde más. • Se observa que a diferencia de la curva del fabricante no obtuvimos una recta lineal con una

única pendiente sino que es una función definida en 2 rectas con diferentes pendientes. • Queda pendiente más adelante en este informe superponer ambas curvas y observar si

aplicando cuadrados mínimos nos aproximamos a la curva del fabricante.

Tensión de salida vs. Potencia de entrada @ 50 MHz

f[MHz] PIN[dBm] VOUT[mV]

50 -4,5 2,5520

50 -3,5 2,6050

50 -2,5 2,6550

50 -1,5 2,7010

50 -0,5 2,7530

50 0,5 2,7990

50 1,5 2,8620

50 2,5 2,9640

50 3,5 2,9650

50 4,5 3,0130

50 5,5 3,0620

50 6,5 3,1110

50 7,5 3,1660

50 8,5 3,2210

f[MHz] PIN[dBm] VOUT[mV]

50 -54,5 0,0194

50 -51,5 0,0194

50 -49,5 0,0400

50 -44,5 0,4790

50 -39,5 0,7440

50 -34,5 1,0000

50 -29,5 1,2590

50 -24,5 1,5160

50 -19,5 1,7690

50 -14,5 2,0210

50 -9,5 2,2990

50 -8,5 2,3460

50 -7,5 2,3970

50 -6,5 2,4480

50 -5,5 2,5030

Page 15: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 15 de 75 Repetto y Vidal.

CONTRASTE DUT USANDO INSTRUMENTO INTI COMO PATRÓN

Se ajustó el generador en PIN = 1 mW, Vg = 0,632 Vpp y frecuencia en 50 MHz y se contrastó la medición del DUT usando como patrón el instrumento del INTI: OBSERVACIÓN Error de nuestro dispositivo en relación al patrón es 0,3%. MEDICIÓN CON VNA Y ANÁLISIS DEL ARCHIVO TOUCHSTONE

Con el VNA barrimos de 1 MHz a 100 MHz. Se observa que a bajas frecuencias el ROE es pésimo (pico máximo de 5). El ROE empieza a mejorar a partir de 20 MHz. Para el caso de ROE=2 se calcula el coeficiente de reflexión y es igual a 1/3 Trabajando con el archivo touchstone que entrega el VNA, se puede calcular lo siguiente:

DUT

f[MHz] PIN[dBm] VOUT[mV]

50 0,013 2,7985

INTI – Instrumento Temtek

f[MHz] PIN[dBm] VOUT[mV]

50 0 2,7978

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

1 -5,579 -23,705 0,526078 3,220102215 0,723242

1,24812 -6,154 -12,309 0,49238 2,939951529 0,757562

1,49624 -5,492 -6,778 0,531374 3,267792291 0,717642

1,74436 -5,091 -2,167 0,556481 3,509385237 0,690329

1,992481 -4,324 -3,67 0,607855 4,1001544 0,630512

2,240601 -4,032 -5,981 0,628637 4,385567426 0,604815

2,488721 -3,825 -7,077 0,643799 4,614800412 0,585523

2,736842 -3,891 -8,976 0,638925 4,539018111 0,591775

2,984962 -3,845 -11,847 0,642318 4,591556841 0,587428

3,233082 -3,591 -14,059 0,661378 4,906297577 0,562579

3,481203 -3,746 -15,557 0,649681 4,709078248 0,577915

3,729323 -3,653 -18,15 0,656674 4,825371726 0,568779

3,977443 -3,71 -18,939 0,652379 4,753393023 0,574402

4,225563 -3,72 -20,984 0,651628 4,740996011 0,57538

4,473684 -3,705 -22,37 0,652755 4,759617005 0,573911

4,721804 -3,807 -24,099 0,645134 4,635931815 0,583802

4,969924 -3,851 -25,508 0,641874 4,58463161 0,587997

5,218045 -3,957 -26,774 0,634089 4,465805211 0,597932

5,466165 -4,034 -28,137 0,628492 4,383469311 0,604997

5,714285 -4,056 -29,836 0,626902 4,360529048 0,606993

5,962406 -4,186 -30,925 0,61759 4,22998379 0,618583

6,210526 -4,276 -32,42 0,611223 4,14434305 0,626406

6,458646 -4,347 -33,758 0,606248 4,079333537 0,632464

6,706766 -4,485 -35,167 0,596692 3,958985524 0,643959

6,954887 -4,563 -36,651 0,591357 3,894251754 0,650296

7,203007 -4,657 -37,684 0,584992 3,819185351 0,657784

7,451127 -4,779 -38,988 0,576833 3,726265009 0,667264

Page 16: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 16 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

7,699248 -4,852 -40,645 0,572005 3,672954303 0,67281

7,947368 -4,947 -41,832 0,565783 3,605993398 0,679889

8,195488 -5,063 -43,122 0,558277 3,527727866 0,688326

8,443609 -5,163 -43,986 0,551887 3,463157884 0,695421

8,691729 -5,271 -45,023 0,545067 3,396253098 0,702902

8,939849 -5,359 -46,397 0,539573 3,343791456 0,708861

9,187969 -5,462 -47,037 0,533212 3,284601251 0,715685

9,43609 -5,557 -48,143 0,527412 3,232015973 0,721837

9,68421 -5,67 -48,69 0,520595 3,171838084 0,728981

9,93233 -5,769 -49,209 0,514695 3,121120218 0,735089

10,18045 -5,873 -50,397 0,508569 3,069748454 0,741357

10,42857 -5,991 -50,906 0,501707 3,013701288 0,74829

10,67669 -6,083 -51,97 0,496421 2,971570183 0,753566

10,92481 -6,195 -52,977 0,490061 2,922036502 0,75984

11,17293 -6,321 -53,956 0,483003 2,868495831 0,766708

11,42105 -6,377 -55,203 0,479899 2,845408216 0,769697

11,66917 -6,505 -56,032 0,472879 2,794195042 0,776385

11,91729 -6,633 -56,965 0,465961 2,745048083 0,78288

12,16541 -6,732 -57,986 0,460681 2,708378189 0,787773

12,41353 -6,807 -59,147 0,45672 2,68134274 0,791407

12,66165 -6,934 -60,361 0,450091 2,636963134 0,797418

12,90977 -7,006 -61,511 0,446375 2,612554541 0,800749

13,15789 -7,14 -62,197 0,439542 2,568507591 0,806803

13,40602 -7,214 -63,221 0,435813 2,544922795 0,810067

13,65414 -7,339 -64,44 0,429586 2,506224577 0,815456

13,90226 -7,432 -65,305 0,425011 2,478326402 0,819366

14,15038 -7,537 -66,281 0,419904 2,44770514 0,823681

14,3985 -7,584 -67,047 0,417638 2,43428997 0,825579

14,64662 -7,758 -68,002 0,409355 2,386128187 0,832429

14,89474 -7,821 -68,762 0,406397 2,369252589 0,834842

15,14286 -7,928 -69,578 0,401421 2,341246062 0,838861

7,699248 -4,852 -40,645 0,572005 3,672954303 0,67281

7,947368 -4,947 -41,832 0,565783 3,605993398 0,679889

8,195488 -5,063 -43,122 0,558277 3,527727866 0,688326

8,443609 -5,163 -43,986 0,551887 3,463157884 0,695421

8,691729 -5,271 -45,023 0,545067 3,396253098 0,702902

8,939849 -5,359 -46,397 0,539573 3,343791456 0,708861

9,187969 -5,462 -47,037 0,533212 3,284601251 0,715685

9,43609 -5,557 -48,143 0,527412 3,232015973 0,721837

9,68421 -5,67 -48,69 0,520595 3,171838084 0,728981

9,93233 -5,769 -49,209 0,514695 3,121120218 0,735089

10,18045 -5,873 -50,397 0,508569 3,069748454 0,741357

10,42857 -5,991 -50,906 0,501707 3,013701288 0,74829

10,67669 -6,083 -51,97 0,496421 2,971570183 0,753566

10,92481 -6,195 -52,977 0,490061 2,922036502 0,75984

11,17293 -6,321 -53,956 0,483003 2,868495831 0,766708

11,42105 -6,377 -55,203 0,479899 2,845408216 0,769697

11,66917 -6,505 -56,032 0,472879 2,794195042 0,776385

11,91729 -6,633 -56,965 0,465961 2,745048083 0,78288

12,16541 -6,732 -57,986 0,460681 2,708378189 0,787773

12,41353 -6,807 -59,147 0,45672 2,68134274 0,791407

12,66165 -6,934 -60,361 0,450091 2,636963134 0,797418

12,90977 -7,006 -61,511 0,446375 2,612554541 0,800749

Page 17: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 17 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

13,15789 -7,14 -62,197 0,439542 2,568507591 0,806803 13,40602 -7,214 -63,221 0,435813 2,544922795 0,810067 13,65414 -7,339 -64,44 0,429586 2,506224577 0,815456 13,90226 -7,432 -65,305 0,425011 2,478326402 0,819366 14,15038 -7,537 -66,281 0,419904 2,44770514 0,823681 14,3985 -7,584 -67,047 0,417638 2,43428997 0,825579

14,64662 -7,758 -68,002 0,409355 2,386128187 0,832429 14,89474 -7,821 -68,762 0,406397 2,369252589 0,834842 15,14286 -7,928 -69,578 0,401421 2,341246062 0,838861 15,39098 -8,062 -69,967 0,395276 2,307291686 0,843757 15,6391 -8,162 -70,982 0,390751 2,282729574 0,847314

15,88722 -8,256 -71,605 0,386545 2,260222552 0,850583 13,15789 -7,14 -62,197 0,439542 2,568507591 0,806803 13,40602 -7,214 -63,221 0,435813 2,544922795 0,810067 13,65414 -7,339 -64,44 0,429586 2,506224577 0,815456 13,90226 -7,432 -65,305 0,425011 2,478326402 0,819366 14,15038 -7,537 -66,281 0,419904 2,44770514 0,823681 14,3985 -7,584 -67,047 0,417638 2,43428997 0,825579

14,64662 -7,758 -68,002 0,409355 2,386128187 0,832429 14,89474 -7,821 -68,762 0,406397 2,369252589 0,834842 15,14286 -7,928 -69,578 0,401421 2,341246062 0,838861 15,39098 -8,062 -69,967 0,395276 2,307291686 0,843757 15,6391 -8,162 -70,982 0,390751 2,282729574 0,847314

15,88722 -8,256 -71,605 0,386545 2,260222552 0,850583 16,13534 -8,374 -71,998 0,381329 2,232736737 0,854588 16,38346 -8,492 -72,374 0,376184 2,206072161 0,858486 16,63158 -8,614 -73,055 0,370937 2,17933113 0,862406 16,8797 -8,674 -73,523 0,368383 2,166477671 0,864294

17,12782 -8,812 -74,05 0,362577 2,137632846 0,868538 17,37594 -8,897 -74,603 0,359046 2,120348357 0,871086 17,62406 -8,988 -75,271 0,355304 2,102236953 0,873759 17,87218 -9,099 -75,724 0,350792 2,080677988 0,876945 18,1203 -9,18 -76,275 0,347536 2,065303978 0,879219

18,36842 -9,287 -76,764 0,343281 2,045443427 0,882158 18,61654 -9,372 -77,477 0,339938 2,030019416 0,884442 18,86466 -9,515 -78,069 0,334387 2,004751143 0,888185 19,11278 -9,592 -78,545 0,331436 1,991487326 0,89015 19,3609 -9,688 -79,234 0,327793 1,975275071 0,892552

19,60902 -9,833 -79,626 0,322367 1,951448254 0,89608 19,85714 -9,839 -80,544 0,322144 1,950479006 0,896223 20,10526 -10,004 -80,974 0,316082 1,924327918 0,900092 20,35338 -10,092 -81,416 0,312896 1,910767477 0,902096 20,6015 -10,181 -81,959 0,309706 1,897317356 0,904082

20,84962 -10,322 -82,303 0,304719 1,876536163 0,907146 21,09774 -10,433 -82,869 0,30085 1,860616418 0,909489 21,34586 -10,494 -83,327 0,298745 1,85202777 0,910752 21,59398 -10,584 -83,586 0,295665 1,839558109 0,912582 21,84211 -10,727 -84,045 0,290837 1,820227013 0,915414 22,09023 -10,842 -84,27 0,287012 1,805096156 0,917624 22,33835 -10,936 -84,326 0,283923 1,792994259 0,919388 22,58647 -11,038 -84,974 0,280608 1,780125318 0,921259 22,83459 -11,144 -85,596 0,277204 1,767033708 0,923158 23,08271 -11,199 -86,039 0,275455 1,760351454 0,924125

Page 18: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 18 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

23,33083 -11,321 -86,287 0,271613 1,745791799 0,926227 23,57895 -11,398 -86,527 0,269215 1,73678478 0,927523 23,82707 -11,52 -86,842 0,265461 1,722794558 0,929531 24,07519 -11,619 -87,284 0,262452 1,711688169 0,931119 24,32331 -11,689 -87,968 0,260345 1,703964997 0,93222 24,57143 -11,798 -88,249 0,257099 1,692147921 0,9339 24,81955 -11,885 -88,727 0,254536 1,682894458 0,935211 25,06767 -12,002 -88,977 0,251131 1,670693401 0,936933 25,31579 -12,089 -89,85 0,248628 1,661797278 0,938184 25,56391 -12,155 -90,205 0,246746 1,655146627 0,939116 25,81203 -12,257 -90,858 0,243865 1,645031352 0,94053 26,06015 -12,324 -91,415 0,241991 1,638492624 0,94144 26,30827 -12,436 -91,923 0,238891 1,627744917 0,942931 26,55639 -12,516 -92,524 0,236701 1,620205015 0,943973 26,80451 -12,596 -93,31 0,234531 1,612776794 0,944995 27,05263 -12,637 -94,051 0,233426 1,609012414 0,945512 27,30075 -12,755 -94,443 0,230277 1,598336316 0,946973 27,54887 -12,862 -95,096 0,227457 1,588853876 0,948263 27,79699 -12,906 -95,606 0,226308 1,58500815 0,948785 28,04511 -13,055 -96,083 0,222459 1,572211659 0,950512 28,29323 -13,099 -96,574 0,221335 1,568498489 0,951011 28,54135 -13,166 -97,169 0,219634 1,562900685 0,951761 28,78947 -13,218 -97,404 0,218323 1,558602409 0,952335 29,03759 -13,344 -97,758 0,215179 1,548351975 0,953698 29,28571 -13,439 -98,161 0,212838 1,54077437 0,9547 29,53383 -13,498 -98,256 0,211398 1,536132194 0,955311 29,78195 -13,572 -98,675 0,209604 1,530377848 0,956066 30,03008 -13,674 -98,881 0,207157 1,522568107 0,957086 30,2782 -13,752 -99,18 0,205305 1,516689502 0,95785

30,52632 -13,876 -99,138 0,202395 1,507507172 0,959036 30,77444 -13,929 -99,403 0,201164 1,503642419 0,959533 31,02256 -14,02 -99,23 0,199067 1,497088812 0,960372 31,27068 -14,094 -99,604 0,197379 1,491834789 0,961042 31,5188 -14,123 -99,999 0,196721 1,489793937 0,961301

31,76692 -14,244 -99,84 0,193999 1,481387199 0,962364 32,01504 -14,253 -100,61 0,193798 1,480768821 0,962442 32,26316 -14,32 -100,238 0,192309 1,476195015 0,963017 32,51128 -14,537 -100,208 0,187564 1,461733043 0,96482 32,7594 -14,599 -100,63 0,18623 1,457697354 0,965318

33,00752 -14,664 -101,015 0,184842 1,453511236 0,965834 33,25564 -14,715 -101,307 0,18376 1,45025848 0,966232 33,50376 -14,771 -101,321 0,182579 1,446718585 0,966665 33,75188 -14,882 -101,78 0,18026 1,439798767 0,967506

34 -14,942 -101,936 0,179019 1,436111039 0,967952 34,24812 -15,009 -102,013 0,177644 1,432036076 0,968443 34,49624 -15,124 -102,31 0,175307 1,425145753 0,969267 34,74436 -15,158 -102,342 0,174622 1,423133419 0,969507 34,99248 -15,301 -102,893 0,171771 1,414791258 0,970495 35,2406 -15,297 -103,011 0,17185 1,415021968 0,970468

35,48872 -15,376 -103,194 0,170294 1,410493136 0,971 35,73684 -15,475 -103,531 0,168364 1,404899154 0,971653 35,98496 -15,69 -103,808 0,164248 1,393054301 0,973023

Page 19: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 19 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

36,23308 -15,613 -103,983 0,16571 1,397249366 0,97254

36,4812 -15,664 -104,274 0,16474 1,39446502 0,972861

36,72932 -15,754 -104,519 0,163042 1,389606711 0,973417

36,97744 -15,798 -104,595 0,162218 1,387256892 0,973685

37,22556 -15,84 -104,8 0,161436 1,385029235 0,973938

37,47368 -15,932 -105,459 0,159735 1,380201394 0,974485

37,7218 -15,98 -106,272 0,158855 1,377710415 0,974765

37,96992 -16,112 -106,509 0,156459 1,370957108 0,975521

38,21805 -16,12 -106,658 0,156315 1,370552328 0,975566

38,46617 -16,224 -106,964 0,154454 1,36533637 0,976144

38,71429 -16,267 -107,558 0,153692 1,363204583 0,976379

38,96241 -16,31 -107,373 0,152933 1,361087134 0,976612

39,21053 -16,335 -107,921 0,152493 1,359862604 0,976746

39,45865 -16,457 -108,33 0,150366 1,3539551 0,97739

39,70677 -16,455 -108,642 0,150401 1,35405104 0,97738

39,95489 -16,514 -108,646 0,149383 1,351233338 0,977685

40,20301 -16,595 -109,518 0,147996 1,347406841 0,978097

40,45113 -16,609 -109,764 0,147758 1,346750334 0,978168

40,69925 -16,699 -110,569 0,146235 1,342563763 0,978615

40,94737 -16,746 -110,555 0,145445 1,340400493 0,978846

41,19549 -16,825 -110,903 0,144129 1,336799512 0,979227

41,44361 -16,855 -111,63 0,143632 1,335443486 0,97937

41,69173 -16,895 -111,74 0,142972 1,333645152 0,979559

41,93985 -16,915 -111,883 0,142643 1,33275012 0,979653

42,18797 -16,966 -112,266 0,141808 1,330480176 0,979891

42,43609 -17 -112,249 0,141254 1,328976703 0,980047

42,68421 -17,006 -112,631 0,141156 1,328712196 0,980075

42,93233 -17,082 -112,774 0,139927 1,325382681 0,980421

43,18045 -17,096 -113,032 0,139701 1,324773553 0,980484

43,42857 -17,152 -113,244 0,138803 1,322349998 0,980734

43,67669 -17,178 -113,875 0,138388 1,321231783 0,980849

43,92481 -17,236 -113,913 0,137467 1,318753177 0,981103

44,17293 -17,262 -113,859 0,137057 1,317649146 0,981215

44,42105 -17,315 -115,685 0,136223 1,315412057 0,981443

44,66917 -17,363 -115,154 0,135472 1,313401452 0,981647

44,91729 -17,376 -115,068 0,13527 1,31285942 0,981702

45,16541 -17,362 -115,407 0,135488 1,313443191 0,981643

45,41353 -17,47 -116,188 0,133814 1,308971624 0,982094

45,66165 -17,496 -116,625 0,133414 1,307905971 0,982201

45,90977 -17,541 -116,904 0,132724 1,3060714 0,982384

46,15789 -17,609 -117,352 0,131689 1,303322599 0,982658

46,40602 -17,616 -117,76 0,131583 1,303041224 0,982686

46,65414 -17,664 -118,074 0,130858 1,301119733 0,982876

46,90226 -17,71 -118,773 0,130167 1,299291223 0,983057

47,15038 -17,759 -119,06 0,129434 1,297357253 0,983247

47,3985 -17,804 -119,608 0,128766 1,295593583 0,983419

47,64662 -17,771 -119,253 0,129256 1,296885782 0,983293

47,89474 -17,831 -119,892 0,128366 1,294541051 0,983522

48,14286 -17,88 -120,246 0,127644 1,292641682 0,983707

48,39098 -17,901 -120,763 0,127336 1,291831898 0,983786

48,6391 -17,905 -120,543 0,127277 1,29167794 0,983801

48,88722 -17,969 -120,458 0,126343 1,28922702 0,984038

49,13534 -18,005 -120,946 0,12582 1,287858578 0,984169

Page 20: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 20 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

49,38346 -18,03 -121,586 0,125458 1,286912559 0,98426

49,63158 -18,049 -122,184 0,125184 1,286195925 0,984329

49,8797 -18,06 -122,036 0,125026 1,285781953 0,984369

50,12782 -18,1 -121,573 0,124451 1,284282266 0,984512

50,37594 -18,111 -122,224 0,124294 1,283871405 0,984551

50,62406 -18,114 -122,645 0,124251 1,283759468 0,984562

50,87218 -18,16 -122,846 0,123595 1,282049297 0,984724

51,1203 -18,186 -123,129 0,123225 1,281087804 0,984816

51,36842 -18,179 -123,017 0,123325 1,281346305 0,984791

51,61654 -18,234 -123,787 0,122546 1,279322395 0,984982

51,86466 -18,269 -124,208 0,122053 1,278042965 0,985103

52,11278 -18,247 -124,236 0,122363 1,278846409 0,985027

52,3609 -18,51 -126,587 0,118713 1,269409474 0,985907

52,60902 -18,334 -125,016 0,121143 1,275684285 0,985324

52,85714 -18,349 -124,985 0,120934 1,275143166 0,985375

53,10526 -18,376 -125,572 0,120559 1,274172149 0,985466

53,35338 -18,406 -125,675 0,120143 1,273097743 0,985566

53,6015 -18,46 -126,052 0,119399 1,271175674 0,985744

53,84962 -18,472 -126,847 0,119234 1,270750607 0,985783

54,09774 -18,463 -127,838 0,119358 1,271069337 0,985754

54,34586 -18,504 -127,811 0,118796 1,269620737 0,985888

54,59398 -18,566 -128,038 0,117951 1,267446591 0,986088

54,84211 -18,61 -128,398 0,117355 1,26591554 0,986228

55,09023 -18,621 -128,621 0,117206 1,265534309 0,986263

55,33835 -18,64 -129,141 0,11695 1,264877257 0,986323

55,58647 -18,65 -129,306 0,116815 1,26453217 0,986354

55,83459 -18,681 -129,697 0,116399 1,263465586 0,986451

56,08271 -18,654 -130,545 0,116762 1,264394276 0,986367

56,33083 -18,704 -130,101 0,116091 1,262677352 0,986523

56,57895 -18,748 -130,323 0,115505 1,261176749 0,986659

56,82707 -18,743 -130,411 0,115571 1,261346789 0,986643

57,07519 -18,769 -130,734 0,115226 1,260463925 0,986723

57,32331 -18,729 -130,876 0,115758 1,26182356 0,9866

57,57143 -18,776 -131,088 0,115133 1,260226799 0,986744

57,81955 -18,814 -131,341 0,11463 1,258943739 0,98686

58,06767 -18,845 -131,249 0,114222 1,257902254 0,986953

58,31579 -18,883 -131,526 0,113723 1,256631956 0,987067

58,56391 -18,887 -131,615 0,113671 1,256498646 0,987079

58,81203 -18,913 -132,183 0,113331 1,255634011 0,987156

59,06015 -18,961 -132,159 0,112707 1,254046273 0,987297

59,30827 -18,994 -132,105 0,112279 1,252961069 0,987393

59,55639 -18,988 -132,368 0,112357 1,253157994 0,987376

59,80451 -19,022 -132,612 0,111918 1,252044332 0,987474

60,05263 -19,102 -133,807 0,110892 1,249445372 0,987703

60,30075 -19,088 -133,477 0,111071 1,249898032 0,987663

60,54887 -19,131 -133,794 0,110522 1,248510614 0,987785

60,79699 -19,107 -134,156 0,110828 1,249283929 0,987717

61,04511 -19,191 -134,515 0,109761 1,246588955 0,987952

61,29323 -19,2 -135,103 0,109648 1,246302131 0,987977

61,54135 -19,207 -135,455 0,109559 1,246079302 0,987997

61,78947 -19,267 -136,017 0,108805 1,244178485 0,988161

62,03759 -19,245 -136,618 0,109081 1,244873554 0,988101

62,28571 -19,316 -137,003 0,108193 1,242638225 0,988294

Page 21: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 21 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

62,53383 -19,356 -137,528 0,107696 1,241388851 0,988402

62,78195 -19,395 -138,326 0,107214 1,240177569 0,988505

63,03008 -19,431 -138,602 0,10677 1,239065433 0,9886

63,2782 -19,487 -138,424 0,106084 1,237346755 0,988746

63,52632 -19,492 -139,401 0,106023 1,237193968 0,988759

63,77444 -19,505 -139,819 0,105864 1,236797229 0,988793

64,02256 -19,722 -140,818 0,103252 1,230281874 0,989339

64,27068 -19,608 -140,772 0,104616 1,233679646 0,989055

64,5188 -19,641 -140,968 0,10422 1,232690423 0,989138

64,76692 -19,651 -141,527 0,1041 1,232391572 0,989163

65,01504 -19,701 -141,964 0,103502 1,230903659 0,989287

65,26316 -19,71 -142,223 0,103395 1,230636953 0,989309

65,51128 -19,743 -142,457 0,103003 1,229661935 0,98939

65,7594 -19,754 -142,449 0,102873 1,22933794 0,989417

66,00752 -19,821 -142,549 0,102082 1,227375367 0,989579

66,25564 -19,836 -142,831 0,101906 1,226938525 0,989615

66,50376 -19,863 -142,992 0,10159 1,22615454 0,98968

66,75188 -19,925 -143,446 0,100867 1,224365542 0,989826

67 -19,965 -143,587 0,100404 1,223219621 0,989919

67,24812 -20,022 -143,02 0,099747 1,221597796 0,990051

67,49624 -19,991 -143,672 0,100104 1,222478227 0,989979

67,74436 -20,047 -144,096 0,09946 1,220890561 0,990108

67,99248 -20,111 -144,036 0,09873 1,219091322 0,990252

68,2406 -20,219 -144,218 0,09751 1,216091502 0,990492

68,48872 -20,14 -144,192 0,098401 1,218281348 0,990317

68,73684 -20,226 -144,547 0,097432 1,215898631 0,990507

68,98496 -20,247 -144,48 0,097196 1,215321152 0,990553

69,23308 -20,285 -145,118 0,096772 1,214280491 0,990635

69,4812 -20,36 -145,034 0,09594 1,212242705 0,990796

69,72932 -20,446 -145,219 0,094995 1,209932143 0,990976

69,97744 -20,447 -145,823 0,094984 1,209905438 0,990978

70,22556 -20,477 -146,135 0,094656 1,209106032 0,99104

70,47368 -20,614 -146,807 0,093175 1,205497514 0,991318

70,7218 -20,542 -146,697 0,093951 1,207385393 0,991173

70,96992 -20,628 -146,855 0,093025 1,205132613 0,991346

71,21805 -20,621 -147,272 0,0931 1,205314975 0,991332

71,46617 -20,635 -147,921 0,09295 1,204950428 0,99136

71,71429 -20,748 -148,246 0,091749 1,202033774 0,991582

71,96241 -20,73 -149,344 0,091939 1,202495322 0,991547

72,21053 -20,798 -148,82 0,091222 1,200757709 0,991679

72,45865 -20,955 -149,636 0,089588 1,196807678 0,991974

72,70677 -20,921 -149,748 0,089939 1,197655855 0,991911

72,95489 -20,972 -150,23 0,089413 1,196385077 0,992005

73,20301 -20,996 -151,016 0,089166 1,195790147 0,992049

73,45113 -21,095 -151,828 0,088156 1,19335672 0,992229

73,69925 -21,157 -151,56 0,087529 1,191849529 0,992339

73,94737 -21,207 -151,982 0,087026 1,190643358 0,992426

74,19549 -21,22 -152,831 0,086896 1,190331106 0,992449

74,44361 -21,333 -153,328 0,085773 1,187640204 0,992643

74,69173 -21,283 -153,759 0,086268 1,188825736 0,992558

74,93985 -21,454 -154,08 0,084586 1,184804518 0,992845

75,18797 -21,427 -154,734 0,08485 1,18543322 0,992801

75,43609 -21,414 -156,115 0,084977 1,185736756 0,992779

Page 22: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 22 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

75,68421 -21,555 -155,911 0,083608 1,182473123 0,99301

75,93233 -21,57 -156,279 0,083464 1,182129603 0,993034

76,18045 -21,592 -156,555 0,083253 1,181627041 0,993069

76,42857 -21,531 -157,523 0,08384 1,183024215 0,992971

76,67669 -21,772 -157,953 0,081546 1,177571126 0,99335

76,92481 -21,651 -158,442 0,082689 1,180286662 0,993162

77,17293 -21,66 -158,669 0,082604 1,180083141 0,993177

77,42105 -21,846 -159,344 0,080854 1,175932211 0,993463

77,66917 -21,862 -159,693 0,080705 1,175580006 0,993487

77,91729 -21,826 -160,248 0,08104 1,176373542 0,993433

78,16541 -21,912 -160,592 0,080242 1,174484265 0,993561

78,41353 -21,982 -160,81 0,079598 1,17296262 0,993664

78,66165 -22,118 -161,132 0,078361 1,17004707 0,99386

78,90977 -21,966 -161,554 0,079744 1,173309157 0,993641

79,15789 -22,187 -162,168 0,077741 1,168588165 0,993956

79,40602 -22,318 -162,207 0,076577 1,165855335 0,994136

79,65414 -22,328 -162,679 0,076489 1,165648691 0,994149

79,90226 -22,262 -162,682 0,077073 1,167017683 0,99406

80,15038 -22,484 -163,811 0,075128 1,162460661 0,994356

80,3985 -22,379 -163,417 0,076041 1,164599107 0,994218

80,64662 -22,394 -164,159 0,07591 1,16429177 0,994238

80,89474 -22,426 -164,198 0,075631 1,163638178 0,99428

81,14286 -22,417 -164,601 0,075709 1,163821718 0,994268

81,39098 -22,585 -164,538 0,074259 1,160431842 0,994486

81,6391 -22,658 -165,733 0,073638 1,158982421 0,994577

81,88722 -22,648 -165,935 0,073722 1,159180138 0,994565

82,13534 -20,109 132,902 0,098753 1,219147303 0,990248

82,38346 -22,816 -165,82 0,07231 1,155893227 0,994771

82,63158 -22,792 -167,379 0,07251 1,156358294 0,994742

82,8797 -23,004 -167,926 0,070762 1,152301095 0,994993

83,12782 -22,887 -167,95 0,071722 1,154526068 0,994856

83,37594 -22,996 -167,859 0,070827 1,152452132 0,994984

83,62406 -22,999 -169,026 0,070803 1,152395474 0,994987

83,87218 -23,108 -169,896 0,06992 1,150352129 0,995111

84,1203 -23,105 -169,8 0,069944 1,150407974 0,995108

84,36842 -23,179 -169,218 0,069351 1,149036924 0,99519

84,61654 -23,245 -170,476 0,068826 1,147825368 0,995263

84,86466 -23,263 -171,381 0,068683 1,147496773 0,995283

85,11278 -23,385 -171,717 0,067725 1,145290102 0,995413

85,3609 -23,332 -170,547 0,06814 1,146244375 0,995357

85,60902 -23,377 -172,041 0,067788 1,145433716 0,995405

85,85714 -23,409 -172,874 0,067538 1,144860168 0,995439

86,10526 -23,497 -172,875 0,066857 1,143295323 0,99553

86,35338 -23,631 -172,831 0,065834 1,140947028 0,995666

86,6015 -23,629 -174,376 0,065849 1,140981774 0,995664

86,84962 -23,496 -173,483 0,066865 1,143313004 0,995529

87,09774 -23,568 -174,627 0,066313 1,142045924 0,995603

87,34586 -23,689 -174,248 0,065396 1,139943354 0,995723

87,59398 -23,652 -175,295 0,065675 1,140582745 0,995687

87,84211 -23,696 -175,787 0,065343 1,139822737 0,99573

88,09023 -23,727 -176,161 0,06511 1,139289905 0,995761

88,33835 -23,667 -175,136 0,065562 1,140323158 0,995702

88,58647 -23,806 -178,037 0,064521 1,137941796 0,995837

Page 23: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 23 de 75 Repetto y Vidal.

f[MHz] PIN[dBm] Ángulo[°] G ROE=(1+ G)/(1- G) PENT/PINC=(1-G 2)

88,83459 -23,743 -178,231 0,064991 1,139015742 0,995776

89,08271 -23,703 -178,071 0,065291 1,13970223 0,995737

89,33083 -23,679 -178,306 0,065471 1,140115856 0,995714

89,57895 -23,702 -178,993 0,065298 1,139719439 0,995736

89,82707 -23,688 -179,321 0,065403 1,139960594 0,995722

90,07519 -23,587 179,708 0,066168 1,141713552 0,995622

90,32331 -23,383 179,163 0,067741 1,145325991 0,995411

90,57143 -23,633 177,535 0,065819 1,140912291 0,995668

90,81955 -23,47 175,928 0,067066 1,143773519 0,995502

91,06767 -23,509 176,733 0,066765 1,143083337 0,995542

91,31579 -23,106 176,385 0,069936 1,150389357 0,995109

91,56391 -23,376 175,493 0,067795 1,145451679 0,995404

91,81203 -23,329 175,105 0,068163 1,14629859 0,995354

92,06015 -23,264 174,408 0,068675 1,147478541 0,995284

92,30827 -22,841 174,998 0,072102 1,15541036 0,994801

92,55639 -23,232 173,366 0,068929 1,148063172 0,995249

92,80451 -23,082 172,358 0,070129 1,150836855 0,995082

93,05263 -23,146 172,182 0,069615 1,149646679 0,995154

93,30075 -22,586 173,194 0,074251 1,160411891 0,994487

93,54887 -23,078 172,006 0,070162 1,150911577 0,995077

93,79699 -23,092 171,714 0,070049 1,150650225 0,995093

94,04511 -23,137 171,662 0,069687 1,149813439 0,995144

94,29323 -22,48 173,28 0,075162 1,162541576 0,994351

94,54135 -23,136 172,017 0,069695 1,14983198 0,995143

94,78947 -23,16 170,975 0,069502 1,14938767 0,995169

95,03759 -23,222 170,903 0,069008 1,148246377 0,995238

95,28571 -22,341 172,759 0,076375 1,165380467 0,994167

95,53383 -23,268 170,195 0,068644 1,147405636 0,995288

95,78195 -23,148 171,193 0,069599 1,149609649 0,995156

96,03008 -22,633 171,503 0,07385 1,159477208 0,994546

96,2782 -22,233 173,273 0,07733 1,167623059 0,99402

96,52632 -23,295 170,186 0,068431 1,146914532 0,995317

96,77444 -23,264 170,867 0,068675 1,147478541 0,995284

97,02256 -23,464 170,564 0,067112 1,143880016 0,995496

97,27068 -22,311 172,66 0,076639 1,166000151 0,994126

97,5188 -23,702 169,809 0,065298 1,139719439 0,995736

97,76692 -23,587 170,307 0,066168 1,141713552 0,995622

98,01504 -23,703 170,122 0,065291 1,13970223 0,995737

98,26316 -22,313 173,195 0,076621 1,165958761 0,994129

98,51128 -24,159 169,477 0,061951 1,132085329 0,996162

98,7594 -24,069 169,977 0,062596 1,13355293 0,996082

99,00752 -24,135 170,472 0,062123 1,132475007 0,996141

99,25564 -22,624 173,373 0,073926 1,159655736 0,994535

99,50376 -24,641 168,887 0,058607 1,124511385 0,996565

99,75188 -25,077 168,012 0,055738 1,11805582 0,996893

100 -24,837 168,274 0,057299 1,121564343 0,996717

Page 24: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 24 de 75 Repetto y Vidal.

OBSERVACIÓN En esta tabla confeccionada a partir del archivo touchstone podemos ver lo que mencioná-bamos antes en relación al ROE y las reflexiones. GRÁFICA DE ROE EN FUNCIÓN DE LA FRECUENCIA ENTREGADA POR EL VNA

Tabla de valores de los markers.

OBSERVACIÓN La conclusión que sacamos de esta figura es que las reflexiones empiezan a desaparecer a partir de frecuencias superiores de 20 Mhz y en consecuencia la potencia entregada por el generador entra realmente al circuito integrado, por lo que responder más acorde con las hojas de datos.

GRÁFICA DE S11 EN MÓDULO Y FASE ENTREGADA POR EL VNA

Tabla de valores de los markers.

f[MHz] ROE

10 3,1

20 1,92

50 1,28

100 1,12

Page 25: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 25 de 75 Repetto y Vidal.

GRÁFICA DE SMITH DEL DISPOSITIVO VISTO DESDE LA ENTRADA ENTREGADA POR EL VNA

Tabla de valores de los markers. OBSERVACIÓN La imagen de abajo muestra el ábaco de Smith de nuestro DUT, se ve que para bajas frecuencias el circuito empieza desadaptado para viajar por esa especie de espiral a altas frecuencias adaptado en 50 ohms.

f[MHz] S11 – Mód.[dB] S11 - Fase[°] Z{Real} Z{Imaginaria}

10 -5,8 -49,1 62,4 -j65,4

20 -10 -81 45 -j31,2

50 -18,1 -122,1 42,9 -j9,2

100 -24 -167,9 44,7 j1,1

f[MHz] S11 – Mód.[dB] S11 - Fase[°] ROE Z{Real} Z{Imaginaria}

10 -5,7 -49,5 3,16 61,3 -j66,4

20 -10,0 -80,9 1,92 45 -j31,2

50 -18,1 -122,0 1,29 42,9 -j9,2

100 -24,8 -168,0 1,12 44,6 j1,1

Page 26: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 26 de 75 Repetto y Vidal.

GRÁFICA DE SMITH DEL CIRCUITO INTEGRADO ENTREGADA POR EL FABRICANTE

OBSERVACIÓN Se puede concluir que la diferencia entre los ábacos de Smith es que el transformador de entrada y el circuito de entrada hacen que el comportamiento reactivo varíe.

Page 27: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 27 de 75 Repetto y Vidal.

INSTRUMENTAL UTILIZADO

• Multímetro Fluke 8840A • Calibrador Fluke 5500A • Generador de Señales de RF 9khz-3Ghz Agilent N9310A • Temtek Banco de Medición de Potencia

IMÁGENES OBTENIDAS EN EL LABORATORIO

VNA para medir en nuestro caso el parámetro S11

Setup de medición

Page 28: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 28 de 75 Repetto y Vidal.

Medición de VOUT con Multímetro HP

Banco de prueba Temtek para circuitos de RF

Page 29: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 29 de 75 Repetto y Vidal.

Preparando medición en banco de prueba Temtek para circuitos de RF

Setup de medición armado en banco de prueba Temtek para circuitos de RF

Page 30: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 30 de 75 Repetto y Vidal.

Generador de Señales de RF

Generador de Señales de RF

Page 31: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 31 de 75 Repetto y Vidal.

CÁLCULOS ADICIONALES CÁLCULO DEL FACTOR DE CALIBRACIÓN

De la hoja de datos del fabricante VOUT=3,2 V para PIN=0dbm @ 100 MHz.

COMPARACIÓN DE MEDICIONES Y CÁLCULO DE REGRESIÓN ESTIMADA

En el siguiente gráfico se observan las diferentes curvas obtenidas en las mediciones del laboratorio del INTI (INTI), su correspondiente recta de regresión estimada, la curva del laboratorio de la UTN (UTN), y la provista por el fabricante en su nota de aplicación. El error cuadrático medio s2 de la recta de regresión estimada es de un 1,2%, y el valor de la recta:

Entonces:

f[MHz] VOUT[V] VOUTREF[V] CF[%]

1 1,747 3,2 54,59375

2 2,2459 3,2 70,18438

3 2,4191 3,2 75,59688

4 2,4964 3,2 78,0125

5 2,5464 3,2 79,575

6 2,5843 3,2 80,75938

7 2,6147 3,2 81,70938

8 2,6397 3,2 82,49063

9 2,6602 3,2 83,13125

10 2,6774 3,2 83,66875

20 2,756 3,2 86,125

30 2,7793 3,2 86,85313

40 2,7912 3,2 87,225

50 2,7985 3,2 87,45313

60 2,7997 3,2 87,49063

70 2,8031 3,2 87,59688

80 2,804 3,2 87,625

90 2,8041 3,2 87,62813

100 2,8038 3,2 87,61875

150 2,8026 3,2 87,58125

200 2,796 3,2 87,375

250 2,8059 3,2 87,68438

300 2,787 3,2 87,09375

350 2,7986 3,2 87,45625

400 2,789 3,2 87,15625

450 2,7821 3,2 86,94063

500 2,7729 3,2 86,65313

550 2,7866 3,2 87,08125

600 2,7606 3,2 86,26875

Page 32: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 32 de 75 Repetto y Vidal.

Adicionalmente también se incluye la recta D proporcional a la diferencia de tensión entre la curva del fabricante y la obtenida en el laboratorio del INTI. En ella se observa que la diferencia es máxima para los valores de potencia más bajos, 33 mV aproximadamente, reduciéndose a medida que la potencia a medir se acerca a los valores máximos, siendo esta diferencia de 26 mV aproximadamente.

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

-55 -53 -51 -49 -47 -45 -43 -41 -39 -37 -35 -33 -31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9

P(dBm)

Vout

(V)

INTI INTI (Regresión estimada) Analog Device UTN D

CONCLUSIONES Y ANÁLISIS DE LOS RESULTADOS OBTENIDOS

1. La falta del plano de tierra y un acortamiento de pistas en la entrada del circuito integrado debería mejorar el ROE en bajas frecuencias.

2. Una cosa es el circuito integrado en vacío y otra es implementado en un DUT, se debe ver cómo afectan los distintos elementos al mismo.

3. Tener instrumental adecuado y patrones es indispensable.

4. Investigar los detalles es inevitable para poder armar una especificación del producto.

5. La realización del proyecto nos sirvió para comprobar la incidencia de parámetros

estudiados en la teoría durante el año, como la incidencia del coeficiente de reflexión en la medición. Por otro lado vimos la aparición de efectos no tenidos en cuenta por falta de experiencia, como la previsión que nos faltó al diseñar las pistas del PCB (distancias). Creemos que fue muy positivo y valió el esfuerzo.

Page 33: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 33 de 75 Repetto y Vidal.

AGRADECIMIENTOS Queremos agradecer al profesor Juan y los ayudantes Augusto, Damián y Federico, por el empuje e incentivo. Al Ing. Alejandro Henze por su tiempo y por darnos la posibilidad de concurrir al INTI para poder contrastar el equipo con un patrón. Como así también la oportunidad de utilizar el VNA, como ya se dijo en las conclusiones contar con instrumental adecuado y patrones es indispensable. Al personal del laboratorio del Departamento de Electrónica y a la entidad en sí, por la disponibilidad de equipos.

BIBLIOGRAFÍA

• Fundamentals of Engineering Electromagnetics de David K. Cheng.

• Apuntes de la cátedra sobre Parámetros S y Circuitos de Micro-Ondas.

• Apuntes de la cátedra sobre Medición de potencia en microondas.

Page 34: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 34 de 75 Repetto y Vidal.

APÉNDICE

APENDICE A: ARCHIVO TOUCHSTONE GENERADO CON VNA

! Vector Network Analyzer VNA R2 ! Tucson Amateur Packet Radio ! viernes, 18 de febrero de 2011 11:01:56 a.m. ! Frequency S11 S21 S12 S22 # HZ S DB R 50 001000000 -5,579 -23,705 -85,597 141,391 -79,672 146,208 -5,692 -22,496 001248120 -6,154 -12,309 -82,366 143,776 -81,695 134,476 -6,023 -11,954 001496240 -5,492 -6,778 -84,800 141,797 -84,656 133,719 -5,883 -6,155 001744360 -5,091 -2,167 -84,287 138,473 -82,615 163,370 -5,022 -4,332 001992481 -4,324 -3,670 -80,837 165,269 -81,562 153,870 -4,375 -5,138 002240601 -4,032 -5,981 -80,390 172,544 -79,830 172,873 -4,102 -5,782 002488721 -3,825 -7,077 -83,603 163,478 -84,803 164,228 -3,822 -6,874 002736842 -3,891 -8,976 -82,423 168,110 -85,342 168,952 -3,669 -10,028 002984962 -3,845 -11,847 -79,785 -177,610 -80,867 167,389 -3,647 -11,510 003233082 -3,591 -14,059 -80,233 157,931 -81,461 -173,539 -3,637 -13,213 003481203 -3,746 -15,557 -82,332 -162,982 -85,336 -168,828 -3,624 -15,556 003729323 -3,653 -18,150 -80,456 162,991 -87,561 -173,283 -3,703 -17,881 003977443 -3,710 -18,939 -82,047 -110,123 -80,772 -167,223 -3,656 -18,828 004225563 -3,720 -20,984 -82,623 -137,637 -82,015 128,428 -3,666 -20,741 004473684 -3,705 -22,370 -85,762 -89,475 -83,984 156,644 -3,689 -22,516 004721804 -3,807 -24,099 -85,132 -174,970 -80,478 154,201 -3,788 -23,903 004969924 -3,851 -25,508 -87,940 -155,470 -81,210 -179,092 -3,833 -25,355 005218045 -3,957 -26,774 -81,061 -171,512 -82,867 -163,256 -3,903 -26,522 005466165 -4,034 -28,137 -82,091 -172,911 -82,606 -171,568 -4,033 -28,013 005714285 -4,056 -29,836 -80,953 168,260 -80,953 -143,911 -4,073 -29,788 005962406 -4,186 -30,925 -80,645 -157,894 -84,962 -164,161 -4,220 -30,893 006210526 -4,276 -32,420 -82,492 -164,986 -78,767 -166,896 -4,259 -32,369 006458646 -4,347 -33,758 -87,133 -173,186 -83,789 -161,888 -4,380 -33,546 006706766 -4,485 -35,167 -82,446 -126,994 -81,744 -179,754 -4,468 -35,084 006954887 -4,563 -36,651 -84,678 179,235 -83,090 -165,916 -4,546 -36,544 007203007 -4,657 -37,684 -79,889 -151,150 -81,166 -168,245 -4,640 -37,719 007451127 -4,779 -38,988 -82,895 -151,785 -86,207 -143,155 -4,746 -38,927 007699248 -4,852 -40,645 -82,300 -163,910 -80,905 -162,090 -4,852 -40,645 007947368 -4,947 -41,832 -83,333 -139,636 -81,896 -159,260 -4,947 -41,944 008195488 -5,063 -43,122 -82,959 -160,941 -82,843 -175,460 -5,046 -43,014 008443609 -5,163 -43,986 -82,129 -169,672 -83,904 -153,100 -5,163 -44,053 008691729 -5,271 -45,023 -82,017 -164,913 -85,212 -161,924 -5,239 -45,172 008939849 -5,359 -46,397 -81,571 -165,282 -85,474 -153,765 -5,374 -46,161 009187969 -5,462 -47,037 -82,564 -156,131 -79,808 -161,929 -5,462 -47,159 009436090 -5,557 -48,143 -83,280 -144,495 -82,684 -152,267 -5,540 -48,114 009684210 -5,670 -48,690 -83,220 -143,284 -79,054 -102,658 -5,686 -48,749 009932330 -5,769 -49,209 -82,978 -150,517 -81,496 -155,798 -5,850 -49,015 010180451 -5,873 -50,397 -80,329 -136,226 -78,419 -125,988 -5,905 -50,344 010428571 -5,991 -50,906 -81,759 -133,209 -81,959 -124,524 -5,975 -51,015 010676691 -6,083 -51,970 -78,115 -136,413 -81,361 -134,750 -6,067 -52,336 010924812 -6,195 -52,977 -79,480 -131,799 -81,547 -91,939 -6,195 -52,919 011172932 -6,321 -53,956 -82,438 -144,386 -84,073 -145,672 -6,321 -53,845 011421052 -6,377 -55,203 -83,164 -108,881 -84,833 -115,739 -6,393 -55,175 011669172 -6,505 -56,032 -80,458 -158,363 -83,331 -112,380 -6,521 -56,042 011917293 -6,633 -56,965 -81,497 -148,874 -82,864 -125,144 -6,617 -56,994 012165413 -6,732 -57,986 -80,439 -76,955 -79,017 177,455 -6,748 -57,989 012413533 -6,807 -59,147 -85,821 -36,799 -83,163 -61,431 -6,823 -59,227 012661654 -6,934 -60,361 -81,645 -28,751 -82,152 -58,504 -6,918 -60,413 012909774 -7,006 -61,511 -80,615 -22,805 -81,028 -58,659 -7,023 -61,227 013157894 -7,140 -62,197 -79,262 -127,857 -79,500 -107,932 -7,140 -62,258 013406015 -7,214 -63,221 -81,877 -114,573 -83,224 -120,507 -7,229 -63,339 013654135 -7,339 -64,440 -79,804 -137,765 -81,103 -109,421 -7,339 -64,377 013902255 -7,432 -65,305 -78,427 -120,441 -83,465 -135,085 -7,432 -65,284 014150375 -7,537 -66,281 -80,663 -132,682 -80,828 -146,079 -7,521 -66,296 014398496 -7,584 -67,047 -82,927 -131,752 -80,898 -131,199 -7,647 -67,075 014646616 -7,758 -68,002 -82,324 -104,047 -78,221 -115,095 -7,758 -67,853 014894736 -7,821 -68,762 -83,196 -119,392 -79,534 -119,040 -7,852 -68,778 015142857 -7,928 -69,578 -79,624 -130,017 -79,692 -118,422 -7,960 -69,447 015390977 -8,062 -69,967 -84,482 -143,303 -83,083 -118,310 -8,062 -69,978

Page 35: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 35 de 75 Repetto y Vidal.

015639097 -8,162 -70,982 -79,456 -115,494 -81,709 -123,357 -8,147 -70,755 015887218 -8,256 -71,605 -78,357 -135,172 -79,440 -119,378 -8,256 -71,497 016135338 -8,374 -71,998 -78,509 -123,550 -80,276 -114,787 -8,390 -71,975 016383458 -8,492 -72,374 -83,433 -109,356 -82,811 -111,380 -8,476 -72,448 016631578 -8,614 -73,055 -80,574 -123,413 -80,495 -121,961 -8,614 -73,104 016879699 -8,674 -73,523 -81,086 -108,315 -83,324 -131,980 -8,721 -73,636 017127819 -8,812 -74,050 -80,528 -116,044 -81,199 -111,492 -8,812 -74,086 017375939 -8,897 -74,603 -81,985 -108,601 -84,617 -108,516 -8,896 -74,666 017624060 -8,988 -75,271 -83,621 -104,147 -79,617 -110,258 -9,004 -75,307 017872180 -9,099 -75,724 -83,626 -120,221 -80,950 -116,848 -9,083 -75,794 018120300 -9,180 -76,275 -79,261 -105,294 -81,311 -115,621 -9,179 -76,325 018368421 -9,287 -76,764 -81,982 -112,052 -82,870 -112,010 -9,318 -76,788 018616541 -9,372 -77,477 -79,671 -111,015 -81,574 -108,002 -9,387 -77,544 018864661 -9,515 -78,069 -82,625 -100,938 -78,645 -111,242 -9,500 -77,953 019112781 -9,592 -78,545 -80,439 -98,298 -83,608 -100,004 -9,576 -78,517 019360902 -9,688 -79,234 -79,378 -106,413 -82,099 -89,160 -9,688 -79,178 019609022 -9,833 -79,626 -80,292 -114,932 -82,399 -103,960 -9,817 -79,577 019857142 -9,839 -80,544 -81,026 -115,905 -82,633 -107,528 -9,886 -80,477 020105263 -10,004 -80,974 -82,304 -95,834 -78,555 -113,348 -10,004 -81,023 020353383 -10,092 -81,416 -84,323 -99,193 -81,023 -93,305 -10,092 -81,369 020601503 -10,181 -81,959 -80,759 -83,122 -82,287 -116,353 -10,181 -82,017 020849624 -10,322 -82,303 -83,238 -103,504 -81,384 -100,861 -10,291 -82,234 021097744 -10,433 -82,869 -80,008 -102,422 -79,236 -99,675 -10,403 -82,643 021345864 -10,494 -83,327 -82,624 -104,752 -81,966 -105,036 -10,496 -82,862 021593984 -10,584 -83,586 -82,637 -70,718 -81,201 -97,799 -10,584 -83,597 021842105 -10,727 -84,045 -78,293 -113,565 -82,520 -104,830 -10,727 -84,068 022090225 -10,842 -84,270 -80,202 -100,803 -78,615 -101,363 -10,842 -84,198 022338345 -10,936 -84,326 -79,768 -98,463 -81,459 -97,209 -10,921 -84,263 022586466 -11,038 -84,974 -80,734 -88,758 -79,624 -87,116 -11,022 -85,001 022834586 -11,144 -85,596 -82,860 -106,279 -81,182 -110,990 -11,144 -85,595 023082706 -11,199 -86,039 -79,445 -86,005 -80,122 -102,352 -11,199 -86,039 023330827 -11,321 -86,287 -84,054 -107,163 -81,013 -87,932 -11,321 -86,349 023578947 -11,398 -86,527 -79,098 -92,418 -81,577 -56,586 -11,429 -86,622 023827067 -11,520 -86,842 -78,920 -92,080 -78,007 -82,259 -11,536 -86,878 024075187 -11,619 -87,284 -77,715 -67,740 -79,294 -74,075 -11,620 -87,257 024323308 -11,689 -87,968 -80,836 -94,004 -81,767 -86,099 -11,689 -87,990 024571428 -11,798 -88,249 -79,760 -92,931 -80,827 -68,741 -11,798 -88,301 024819548 -11,885 -88,727 -82,183 -67,206 -79,900 -68,553 -11,901 -88,723 025067669 -12,002 -88,977 -81,947 -64,525 -80,894 -72,015 -11,987 -89,058 025315789 -12,089 -89,850 -81,451 -92,609 -80,815 -78,550 -12,090 -89,620 025563909 -12,155 -90,205 -81,262 -51,103 -79,954 -69,006 -12,154 -90,238 025812030 -12,257 -90,858 -79,951 -43,841 -81,850 -76,247 -12,256 -90,992 026060150 -12,324 -91,415 -77,688 -83,442 -79,421 -54,568 -12,340 -91,426 026308270 -12,436 -91,923 -81,355 -52,324 -83,113 -56,813 -12,405 -91,865 026556390 -12,516 -92,524 -80,042 -57,583 -79,369 -55,606 -12,516 -92,548 026804511 -12,596 -93,310 -81,970 -43,901 -78,677 -39,714 -12,580 -93,250 027052631 -12,637 -94,051 -79,366 -49,986 -81,770 -171,072 -12,653 -94,127 027300751 -12,755 -94,443 -81,005 -40,700 -79,823 -33,420 -12,755 -94,326 027548872 -12,862 -95,096 -83,530 -42,565 -78,677 -18,596 -12,862 -95,180 027796992 -12,906 -95,606 -82,104 -21,132 -81,205 -49,825 -12,906 -95,724 028045112 -13,055 -96,083 -80,844 -5,591 -79,906 -23,864 -13,040 -96,098 028293233 -13,099 -96,574 -82,002 -9,688 -84,561 -25,538 -13,099 -96,595 028541353 -13,166 -97,169 -79,695 -30,382 -79,562 -2,382 -13,197 -96,884 028789473 -13,218 -97,404 -81,381 9,347 -82,204 -8,568 -13,249 -97,305 029037593 -13,344 -97,758 -79,776 6,559 -80,363 -7,886 -13,329 -97,902 029285714 -13,439 -98,161 -84,433 -5,598 -79,714 4,917 -13,439 -98,228 029533834 -13,498 -98,256 -80,777 4,592 -82,234 -14,188 -13,482 -98,364 029781954 -13,572 -98,675 -80,080 4,776 -80,462 -10,423 -13,588 -98,703 030030075 -13,674 -98,881 -81,240 -24,009 -82,367 24,977 -13,721 -98,963 030278195 -13,752 -99,180 -84,167 23,679 -80,794 14,590 -13,767 -98,964 030526315 -13,876 -99,138 -81,929 25,445 -82,834 17,048 -13,845 -99,102 030774436 -13,929 -99,403 -81,323 3,488 -79,919 1,331 -13,898 -99,329 031022556 -14,020 -99,230 -81,921 6,362 -81,816 17,837 -14,005 -99,187 031270676 -14,094 -99,604 -80,957 40,576 -83,214 32,759 -14,079 -99,585 031518796 -14,123 -99,999 -79,514 43,167 -81,938 42,479 -14,139 -99,969 031766917 -14,244 -99,840 -81,330 27,257 -81,142 47,269 -14,229 -99,891 032015037 -14,253 -100,610 -78,332 46,447 -79,337 25,455 -14,345 -100,264 032263157 -14,320 -100,238 -82,148 55,844 -81,324 50,110 -14,366 -100,224 032511278 -14,537 -100,208 -80,864 26,040 -82,374 48,025 -14,522 -100,378 032759398 -14,599 -100,630 -81,239 53,221 -80,963 48,997 -14,584 -100,627 033007518 -14,664 -101,015 -79,850 59,647 -78,897 61,072 -14,664 -100,981

Page 36: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 36 de 75 Repetto y Vidal.

033255639 -14,715 -101,307 -85,507 55,649 -81,841 62,884 -14,730 -101,212 033503759 -14,771 -101,321 -80,127 51,668 -78,991 59,675 -14,756 -101,420 033751879 -14,882 -101,780 -80,524 60,721 -84,689 55,650 -14,882 -101,750 034000000 -14,942 -101,936 -81,642 59,654 -78,770 57,055 -14,942 -101,959 034248120 -15,009 -102,013 -80,613 64,625 -82,880 61,659 -14,980 -102,224 034496240 -15,124 -102,310 -80,279 65,898 -82,168 66,584 -15,108 -102,244 034744360 -15,158 -102,342 -82,875 59,205 -78,914 63,249 -15,158 -102,463 034992481 -15,301 -102,893 -81,149 67,969 -81,640 63,154 -15,317 -102,957 035240601 -15,297 -103,011 -83,542 63,728 -82,762 71,207 -15,327 -102,972 035488721 -15,376 -103,194 -80,873 71,825 -79,613 63,393 -15,404 -103,010 035736842 -15,475 -103,531 -81,962 65,397 -79,896 79,239 -15,476 -103,669 035984962 -15,690 -103,808 -81,467 69,768 -77,911 69,566 -15,630 -103,970 036233082 -15,613 -103,983 -82,193 68,231 -81,349 66,325 -15,582 -103,836 036481203 -15,664 -104,274 -79,272 69,830 -80,277 79,794 -15,679 -104,200 036729323 -15,754 -104,519 -82,301 72,459 -80,271 63,701 -15,709 -104,508 036977443 -15,798 -104,595 -77,549 77,808 -78,410 63,125 -15,800 -104,789 037225563 -15,840 -104,800 -82,424 65,696 -80,780 70,591 -15,860 -105,234 037473684 -15,932 -105,459 -82,423 69,229 -80,958 71,014 -15,918 -105,567 037721804 -15,980 -106,272 -82,556 71,527 -79,816 64,366 -15,974 -105,834 037969924 -16,112 -106,509 -77,616 67,100 -79,398 71,403 -16,051 -106,462 038218045 -16,120 -106,658 -83,468 73,373 -80,121 72,591 -16,179 -106,571 038466165 -16,224 -106,964 -80,456 73,433 -82,001 73,089 -16,242 -107,188 038714285 -16,267 -107,558 -80,366 81,993 -83,345 72,658 -16,267 -107,562 038962406 -16,310 -107,373 -80,528 73,633 -80,792 72,320 -16,294 -107,353 039210526 -16,335 -107,921 -84,509 85,073 -81,768 65,333 -16,363 -107,799 039458646 -16,457 -108,330 -82,341 74,234 -78,883 76,494 -16,429 -108,488 039706766 -16,455 -108,642 -80,194 76,274 -79,384 74,926 -16,501 -108,690 039954887 -16,514 -108,646 -77,470 65,836 -78,885 83,959 -16,550 -108,913 040203007 -16,595 -109,518 -83,027 72,352 -83,027 79,959 -16,562 -109,408 040451127 -16,609 -109,764 -81,367 76,571 -81,367 82,325 -16,608 -109,717 040699248 -16,699 -110,569 -79,703 78,188 -81,428 85,991 -16,655 -110,663 040947368 -16,746 -110,555 -81,275 81,833 -81,686 78,737 -16,767 -110,810 041195488 -16,825 -110,903 -80,651 89,272 -80,396 137,819 -16,763 -110,883 041443609 -16,855 -111,630 -80,627 95,926 -79,063 95,575 -16,806 -111,466 041691729 -16,895 -111,740 -78,847 88,752 -80,945 87,463 -16,880 -111,778 041939849 -16,915 -111,883 -81,481 93,136 -80,281 100,117 -16,930 -111,866 042187969 -16,966 -112,266 -81,134 93,059 -81,748 98,363 -16,979 -112,131 042436090 -17,000 -112,249 -79,816 100,831 -78,534 96,918 -17,019 -112,393 042684210 -17,006 -112,631 -80,337 99,805 -79,787 112,042 -16,977 -112,720 042932330 -17,082 -112,774 -77,692 111,841 -78,807 104,003 -17,095 -112,702 043180451 -17,096 -113,032 -81,862 113,929 -82,934 103,484 -17,116 -113,224 043428571 -17,152 -113,244 -81,585 115,426 -80,362 109,215 -17,145 -113,554 043676691 -17,178 -113,875 -78,951 116,618 -80,656 119,542 -17,210 -113,888 043924812 -17,236 -113,913 -78,404 125,940 -79,722 126,715 -17,235 -113,887 044172932 -17,262 -113,859 -79,910 137,724 -80,066 137,214 -17,233 -113,923 044421052 -17,315 -115,685 -79,239 132,662 -78,343 138,250 -17,344 -115,602 044669172 -17,363 -115,154 -78,870 150,982 -80,290 140,573 -17,331 -115,164 044917293 -17,376 -115,068 -78,339 147,726 -79,354 148,877 -17,348 -115,162 045165413 -17,362 -115,407 -79,262 157,130 -80,557 149,471 -17,377 -115,366 045413533 -17,470 -116,188 -77,185 160,926 -79,776 161,968 -17,469 -116,158 045661654 -17,496 -116,625 -78,744 165,505 -77,772 163,757 -17,491 -116,499 045909774 -17,541 -116,904 -77,245 168,826 -78,114 163,763 -17,540 -116,858 046157894 -17,609 -117,352 -78,671 171,861 -79,941 169,379 -17,594 -117,396 046406015 -17,616 -117,760 -79,741 174,004 -78,358 173,916 -17,626 -117,582 046654135 -17,664 -118,074 -77,787 176,933 -78,429 174,768 -17,610 -117,934 046902255 -17,710 -118,773 -76,997 173,022 -76,962 174,162 -17,692 -118,730 047150375 -17,759 -119,060 -78,117 171,285 -77,697 170,668 -17,736 -119,339 047398496 -17,804 -119,608 -76,997 164,142 -75,972 166,688 -17,757 -119,688 047646616 -17,771 -119,253 -75,790 152,143 -75,992 154,529 -17,778 -119,428 047894736 -17,831 -119,892 -75,058 137,086 -75,315 137,903 -17,878 -119,809 048142857 -17,880 -120,246 -75,616 124,205 -75,546 123,930 -17,882 -119,870 048390977 -17,901 -120,763 -75,948 117,109 -76,213 117,738 -17,915 -120,687 048639097 -17,905 -120,543 -75,895 110,734 -75,845 110,240 -17,917 -120,431 048887218 -17,969 -120,458 -76,233 111,968 -76,098 109,005 -17,936 -120,501 049135338 -18,005 -120,946 -76,640 106,309 -77,342 108,532 -17,983 -120,851 049383458 -18,030 -121,586 -76,941 108,382 -77,951 108,403 -17,993 -121,151 049631578 -18,049 -122,184 -76,587 106,350 -77,677 106,409 -18,028 -122,116 049879699 -18,060 -122,036 -77,317 108,644 -76,591 110,826 -18,043 -122,037 050127819 -18,100 -121,573 -78,319 108,802 -76,957 111,497 -18,068 -121,639 050375939 -18,111 -122,224 -77,314 111,383 -77,088 112,987 -18,097 -122,289 050624060 -18,114 -122,645 -78,207 112,868 -77,516 112,278 -18,159 -122,476

Page 37: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 37 de 75 Repetto y Vidal.

050872180 -18,160 -122,846 -78,306 116,452 -76,703 116,155 -18,199 -122,903 051120300 -18,186 -123,129 -78,752 118,151 -79,322 117,042 -18,186 -123,119 051368421 -18,179 -123,017 -76,996 118,479 -78,193 119,912 -18,199 -123,042 051616541 -18,234 -123,787 -77,543 119,609 -77,220 121,738 -18,218 -123,843 051864661 -18,269 -124,208 -77,543 123,649 -76,787 125,659 -18,238 -124,305 052112781 -18,247 -124,236 -79,667 121,304 -78,859 121,370 -18,280 -124,178 052360902 -18,510 -126,587 -79,840 128,821 -77,592 121,052 -18,225 -127,537 052609022 -18,334 -125,016 -78,191 124,114 -78,514 122,878 -18,368 -124,952 052857142 -18,349 -124,985 -79,378 130,001 -77,880 129,329 -18,354 -125,084 053105263 -18,376 -125,572 -80,297 125,663 -80,834 128,450 -18,395 -125,578 053353383 -18,406 -125,675 -76,680 129,265 -78,436 129,423 -18,417 -125,892 053601503 -18,460 -126,052 -79,239 128,610 -77,641 129,374 -18,389 -126,125 053849624 -18,472 -126,847 -77,856 131,223 -77,808 125,545 -18,462 -126,652 054097744 -18,463 -127,838 -78,147 128,593 -80,291 128,528 -18,480 -127,802 054345864 -18,504 -127,811 -78,146 127,244 -78,094 124,032 -18,524 -127,823 054593984 -18,566 -128,038 -79,364 131,069 -79,809 124,473 -18,547 -128,031 054842105 -18,610 -128,398 -79,230 128,384 -77,531 126,493 -18,596 -128,492 055090225 -18,621 -128,621 -80,842 126,710 -78,952 128,197 -18,606 -128,692 055338345 -18,640 -129,141 -79,278 124,217 -78,343 121,812 -18,647 -129,268 055586466 -18,650 -129,306 -78,864 115,937 -79,335 126,946 -18,668 -129,287 055834586 -18,681 -129,697 -76,961 123,894 -77,624 126,479 -18,663 -129,730 056082706 -18,654 -130,545 -79,413 117,376 -79,712 125,331 -18,715 -130,225 056330827 -18,704 -130,101 -78,551 124,902 -77,752 118,035 -18,745 -130,141 056578947 -18,748 -130,323 -78,863 122,936 -78,003 115,732 -18,741 -130,554 056827067 -18,743 -130,411 -79,707 118,540 -78,549 118,726 -18,746 -130,471 057075187 -18,769 -130,734 -79,392 116,372 -79,109 117,080 -18,784 -130,648 057323308 -18,729 -130,876 -77,781 113,062 -78,911 113,318 -18,763 -130,763 057571428 -18,776 -131,088 -80,023 111,392 -78,536 111,225 -18,765 -130,888 057819548 -18,814 -131,341 -78,835 111,853 -79,848 104,686 -18,807 -131,224 058067669 -18,845 -131,249 -81,236 113,157 -79,614 108,486 -18,826 -131,259 058315789 -18,883 -131,526 -77,755 110,185 -77,804 106,188 -18,856 -131,763 058563909 -18,887 -131,615 -79,030 107,718 -78,518 108,677 -18,883 -131,544 058812030 -18,913 -132,183 -77,928 104,415 -77,224 104,222 -18,891 -132,155 059060150 -18,961 -132,159 -80,526 107,593 -78,614 105,654 -18,949 -132,314 059308270 -18,994 -132,105 -78,925 106,785 -79,655 108,484 -18,937 -132,184 059556390 -18,988 -132,368 -77,750 107,955 -78,175 109,715 -19,005 -132,675 059804511 -19,022 -132,612 -77,542 107,526 -77,943 111,216 -19,045 -132,649 060052631 -19,102 -133,807 -80,997 106,975 -80,319 104,387 -19,065 -133,911 060300751 -19,088 -133,477 -79,252 108,028 -78,448 106,124 -19,113 -133,547 060548872 -19,131 -133,794 -79,647 113,414 -77,995 105,887 -19,154 -133,838 060796992 -19,107 -134,156 -79,032 109,526 -76,712 104,982 -19,176 -134,270 061045112 -19,191 -134,515 -79,801 104,021 -81,120 107,321 -19,159 -134,719 061293233 -19,200 -135,103 -77,911 106,313 -79,633 110,604 -19,193 -134,963 061541353 -19,207 -135,455 -81,215 101,659 -77,677 100,308 -19,215 -135,605 061789473 -19,267 -136,017 -78,430 92,952 -77,962 95,116 -19,228 -135,677 062037593 -19,245 -136,618 -79,886 93,546 -79,634 96,422 -19,263 -136,564 062285714 -19,316 -137,003 -78,458 83,878 -76,755 95,519 -19,291 -136,935 062533834 -19,356 -137,528 -77,982 87,459 -79,077 91,515 -19,396 -137,479 062781954 -19,395 -138,326 -79,956 85,702 -77,444 83,424 -19,341 -138,097 063030075 -19,431 -138,602 -80,609 77,168 -79,059 92,946 -19,427 -138,520 063278195 -19,487 -138,424 -78,764 81,183 -77,517 77,033 -19,494 -139,003 063526315 -19,492 -139,401 -80,308 76,085 -80,120 77,051 -19,495 -139,473 063774436 -19,505 -139,819 -76,856 71,447 -78,054 73,846 -19,522 -139,717 064022556 -19,722 -140,818 -79,581 77,363 -80,803 72,664 -19,276 -139,208 064270676 -19,608 -140,772 -80,137 66,994 -79,690 67,995 -19,586 -140,758 064518796 -19,641 -140,968 -76,611 71,436 -77,794 67,644 -19,556 -141,033 064766917 -19,651 -141,527 -78,607 74,668 -78,676 65,783 -19,710 -141,358 065015037 -19,701 -141,964 -77,790 71,413 -78,022 65,175 -19,701 -141,971 065263157 -19,710 -142,223 -78,406 70,700 -77,970 61,111 -19,717 -142,390 065511278 -19,743 -142,457 -78,452 54,614 -79,944 68,700 -19,765 -142,444 065759398 -19,754 -142,449 -77,088 48,956 -77,595 49,614 -19,811 -142,752 066007518 -19,821 -142,549 -80,234 63,209 -79,768 47,553 -19,822 -142,564 066255639 -19,836 -142,831 -79,094 54,450 -76,633 46,788 -19,837 -142,857 066503759 -19,863 -142,992 -77,858 42,967 -78,708 35,901 -19,903 -142,855 066751879 -19,925 -143,446 -77,250 31,678 -77,200 33,232 -19,896 -143,297 067000000 -19,965 -143,587 -78,837 21,587 -77,834 32,706 -19,898 -143,043 067248120 -20,022 -143,020 -78,990 33,471 -78,762 25,131 -19,982 -143,174 067496240 -19,991 -143,672 -76,785 25,179 -78,329 16,023 -19,994 -143,762 067744360 -20,047 -144,096 -77,579 20,667 -78,529 5,795 -20,050 -144,180 067992481 -20,111 -144,036 -78,507 0,366 -78,099 7,686 -20,086 -143,981 068240601 -20,219 -144,218 -78,886 4,228 -76,933 7,725 -20,214 -143,476

Page 38: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 38 de 75 Repetto y Vidal.

068488721 -20,140 -144,192 -77,132 5,088 -77,677 2,747 -20,166 -144,284 068736842 -20,226 -144,547 -77,665 5,105 -75,434 8,056 -20,231 -144,677 068984962 -20,247 -144,480 -78,094 -1,025 -78,961 2,149 -20,275 -144,630 069233082 -20,285 -145,118 -77,380 0,287 -77,380 0,041 -20,289 -145,234 069481203 -20,360 -145,034 -77,731 8,709 -77,121 0,228 -20,294 -145,124 069729323 -20,446 -145,219 -75,324 -9,292 -78,104 1,435 -20,424 -145,252 069977443 -20,447 -145,823 -77,727 -6,000 -78,673 -9,084 -20,437 -145,534 070225563 -20,477 -146,135 -77,232 -8,636 -78,402 -9,318 -20,495 -145,962 070473684 -20,614 -146,807 -75,887 -0,055 -79,374 0,955 -20,560 -146,562 070721804 -20,542 -146,697 -77,637 -2,539 -77,081 -4,976 -20,568 -146,823 070969924 -20,628 -146,855 -78,814 -6,060 -79,225 -17,187 -20,606 -146,902 071218045 -20,621 -147,272 -76,378 1,427 -76,786 -1,923 -20,666 -147,242 071466165 -20,635 -147,921 -78,918 -3,013 -77,772 -7,495 -20,705 -147,929 071714285 -20,748 -148,246 -76,877 -22,106 -75,338 -9,967 -20,701 -148,253 071962406 -20,730 -149,344 -77,092 -7,752 -78,817 19,646 -20,772 -148,148 072210526 -20,798 -148,820 -77,291 0,678 -76,713 -7,453 -20,775 -148,817 072458646 -20,955 -149,636 -76,219 -15,472 -76,136 7,900 -20,874 -149,168 072706766 -20,921 -149,748 -75,421 -0,146 -76,913 -9,772 -20,922 -149,782 072954887 -20,972 -150,230 -77,071 -17,159 -78,653 -5,538 -20,974 -150,335 073203007 -20,996 -151,016 -77,476 -13,129 -77,995 -11,464 -21,038 -150,794 073451127 -21,095 -151,828 -76,318 -13,157 -76,274 -7,396 -21,086 -151,362 073699248 -21,157 -151,560 -76,862 -8,336 -75,602 -5,904 -21,109 -151,539 073947368 -21,207 -151,982 -76,902 -10,599 -77,541 -16,571 -21,206 -151,957 074195488 -21,220 -152,831 -76,534 -11,362 -75,753 -18,043 -21,245 -152,915 074443609 -21,333 -153,328 -76,493 -11,645 -75,533 -13,536 -21,242 -153,660 074691729 -21,283 -153,759 -75,466 -14,184 -76,552 -9,359 -21,328 -153,565 074939849 -21,454 -154,080 -75,070 -11,852 -76,277 -12,868 -21,478 -154,119 075187969 -21,427 -154,734 -75,839 -13,177 -76,091 -19,083 -21,429 -154,894 075436090 -21,414 -156,115 -75,913 -15,793 -75,673 -15,016 -21,481 -155,572 075684210 -21,555 -155,911 -75,630 -12,130 -76,865 -14,562 -21,554 -155,881 075932330 -21,570 -156,279 -75,952 -7,857 -76,263 -13,906 -21,547 -156,478 076180451 -21,592 -156,555 -75,739 -11,794 -76,814 -9,246 -21,617 -156,655 076428571 -21,531 -157,523 -76,111 -12,228 -77,211 -12,022 -21,579 -157,638 076676691 -21,772 -157,953 -76,147 -10,392 -75,408 -10,445 -21,723 -157,849 076924812 -21,651 -158,442 -77,538 -12,426 -76,866 -6,853 -21,651 -158,427 077172932 -21,660 -158,669 -75,922 -11,375 -75,514 -10,530 -21,660 -158,780 077421052 -21,846 -159,344 -76,380 -9,459 -74,545 -10,176 -21,846 -159,422 077669172 -21,862 -159,693 -75,341 -9,169 -75,304 -7,879 -21,886 -159,868 077917293 -21,826 -160,248 -75,760 -2,490 -75,676 -7,011 -21,850 -160,217 078165413 -21,912 -160,592 -75,487 -3,820 -76,131 -6,164 -21,865 -160,397 078413533 -21,982 -160,810 -75,663 -6,683 -76,729 -3,479 -21,983 -160,746 078661654 -22,118 -161,132 -75,201 -8,463 -74,730 -6,191 -22,117 -161,261 078909774 -21,966 -161,554 -76,057 -3,306 -76,057 -5,682 -22,037 -161,657 079157894 -22,187 -162,168 -74,965 -6,537 -75,034 -7,811 -22,189 -161,963 079406015 -22,318 -162,207 -74,912 -8,494 -76,334 -6,222 -22,271 -162,020 079654135 -22,328 -162,679 -74,830 -6,632 -74,731 -3,508 -22,352 -162,745 079902255 -22,262 -162,682 -75,738 -3,997 -76,264 -8,242 -22,235 -162,956 080150375 -22,484 -163,811 -75,239 -3,899 -75,126 -5,998 -22,437 -163,670 080398496 -22,379 -163,417 -74,744 -5,622 -75,165 -3,363 -22,426 -163,525 080646616 -22,394 -164,159 -74,979 -0,089 -74,909 -5,065 -22,416 -164,296 080894736 -22,426 -164,198 -75,779 -4,475 -76,163 -4,556 -22,447 -164,434 081142857 -22,417 -164,601 -75,597 -4,415 -75,191 -1,256 -22,417 -164,610 081390977 -22,585 -164,538 -75,110 -6,520 -75,593 -9,606 -22,584 -164,599 081639097 -22,658 -165,733 -74,119 -1,887 -74,499 -3,255 -22,658 -165,749 081887218 -22,648 -165,935 -75,859 -6,565 -75,417 -10,936 -22,670 -166,055 082135338 -20,109 132,902 -75,020 -19,635 -75,715 -11,693 -22,780 -166,472 082383458 -22,816 -165,820 -75,231 -26,008 -74,787 -12,794 -22,792 -165,821 082631578 -22,792 -167,379 -75,444 -13,294 -74,659 -26,742 -22,818 -167,325 082879699 -23,004 -167,926 -75,423 -27,021 -75,924 -26,070 -22,902 -168,037 083127819 -22,887 -167,950 -74,697 -36,548 -74,630 -31,419 -22,912 -167,926 083375939 -22,996 -167,859 -74,529 -41,133 -73,655 -46,733 -22,945 -167,947 083624060 -22,999 -169,026 -74,732 -41,918 -73,631 -44,527 -23,023 -169,011 083872180 -23,108 -169,896 -75,672 -48,716 -76,011 -51,906 -23,169 -170,262 084120300 -23,105 -169,800 -74,832 -58,894 -75,341 -56,798 -23,050 -169,973 084368421 -23,179 -169,218 -74,387 -61,696 -75,742 -58,679 -23,223 -169,350 084616541 -23,245 -170,476 -74,509 -68,458 -73,801 -63,014 -23,211 -170,730 084864661 -23,263 -171,381 -75,931 -73,767 -75,081 -66,416 -23,281 -171,564 085112781 -23,385 -171,717 -74,318 -69,260 -74,720 -68,703 -23,354 -171,859 085360902 -23,332 -170,547 -74,787 -77,993 -74,343 -72,417 -23,328 -170,665 085609022 -23,377 -172,041 -73,813 -85,703 -74,750 -87,912 -23,304 -172,027 085857142 -23,409 -172,874 -74,933 -89,699 -75,299 -87,649 -23,387 -172,810

Page 39: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 39 de 75 Repetto y Vidal.

086105263 -23,497 -172,875 -75,047 -92,673 -74,599 -92,186 -23,435 -173,139 086353383 -23,631 -172,831 -74,253 -92,320 -74,481 -95,850 -23,589 -173,181 086601503 -23,629 -174,376 -74,339 -96,484 -74,610 -95,186 -23,599 -174,469 086849624 -23,496 -173,483 -74,146 -99,920 -74,469 -97,584 -23,483 -173,740 087097744 -23,568 -174,627 -74,171 -97,718 -73,138 -98,971 -23,554 -174,896 087345864 -23,689 -174,248 -73,571 -99,283 -73,898 -97,942 -23,684 -173,894 087593984 -23,652 -175,295 -72,682 -99,008 -73,097 -98,121 -23,650 -175,758 087842105 -23,696 -175,787 -73,301 -102,141 -73,135 -102,026 -23,647 -176,179 088090225 -23,727 -176,161 -72,300 -103,968 -72,479 -102,375 -23,730 -176,528 088338345 -23,667 -175,136 -71,681 -106,064 -72,167 -107,770 -23,696 -175,904 088586466 -23,806 -178,037 -71,266 -109,679 -71,302 -108,973 -23,819 -177,840 088834586 -23,743 -178,231 -70,869 -115,427 -70,835 -115,578 -23,802 -178,139 089082706 -23,703 -178,071 -70,006 -124,002 -70,073 -122,389 -23,679 -178,033 089330827 -23,679 -178,306 -69,385 -131,862 -69,689 -132,685 -23,652 -178,310 089578947 -23,702 -178,993 -68,804 -142,482 -68,972 -142,580 -23,684 -178,861 089827067 -23,688 -179,321 -68,273 -154,128 -68,273 -153,221 -23,693 -179,263 090075187 -23,587 179,708 -67,883 -165,260 -67,799 -164,718 -23,602 -179,334 090323308 -23,383 179,163 -67,586 179,389 -67,418 -176,156 -23,432 179,480 090571428 -23,633 177,535 -67,561 172,309 -67,427 173,318 -23,503 177,710 090819548 -23,470 175,928 -67,611 162,576 -67,712 162,897 -23,503 176,708 091067669 -23,509 176,733 -67,695 151,387 -67,863 154,799 -23,423 176,753 091315789 -23,106 176,385 -68,063 144,581 -67,845 143,858 -23,071 176,281 091563909 -23,376 175,493 -68,378 138,068 -68,445 138,477 -23,367 174,998 091812030 -23,329 175,105 -68,851 133,907 -69,053 133,350 -23,365 175,980 092060150 -23,264 174,408 -68,825 131,270 -69,011 127,745 -23,223 173,902 092308270 -22,841 174,998 -69,540 129,911 -69,778 129,724 -22,823 174,390 092556390 -23,232 173,366 -69,862 131,332 -69,811 131,760 -23,267 173,391 092804511 -23,082 172,358 -70,273 133,425 -70,515 134,112 -23,155 172,860 093052631 -23,146 172,182 -70,516 136,002 -70,656 135,845 -23,095 171,968 093300751 -22,586 173,194 -70,798 138,060 -70,727 136,319 -22,588 173,223 093548872 -23,078 172,006 -70,937 140,477 -71,044 138,765 -23,053 171,675 093796992 -23,092 171,714 -71,375 139,816 -71,468 140,454 -23,158 171,611 094045112 -23,137 171,662 -71,936 142,020 -71,680 142,457 -23,103 171,216 094293233 -22,480 173,280 -71,827 142,630 -72,217 143,480 -22,401 173,009 094541353 -23,136 172,017 -71,933 145,275 -72,246 144,785 -23,220 170,957 094789473 -23,160 170,975 -72,246 145,796 -72,356 143,643 -23,137 171,226 095037593 -23,222 170,903 -71,954 147,917 -72,293 141,185 -23,039 171,297 095285714 -22,341 172,759 -72,665 142,212 -72,714 140,922 -22,325 172,996 095533834 -23,268 170,195 -72,369 143,719 -72,170 142,092 -23,271 170,243 095781954 -23,148 171,193 -72,780 141,015 -73,204 140,936 -23,277 170,406 096030075 -22,633 171,503 -72,811 139,044 -73,106 139,892 -22,704 170,746 096278195 -22,233 173,273 -72,671 136,645 -73,195 136,224 -22,251 173,001 096526315 -23,295 170,186 -73,219 136,492 -72,910 136,105 -23,385 170,000 096774436 -23,264 170,867 -73,592 137,004 -73,106 135,768 -23,355 170,702 097022556 -23,464 170,564 -73,263 134,170 -73,744 134,094 -23,719 170,201 097270676 -22,311 172,660 -73,642 132,454 -73,112 134,574 -22,306 172,580 097518796 -23,702 169,809 -73,643 132,018 -73,229 133,589 -23,724 170,170 097766917 -23,587 170,307 -74,525 132,587 -73,431 130,498 -23,537 170,434 098015037 -23,703 170,122 -72,539 129,987 -73,530 129,568 -23,755 169,973 098263157 -22,313 173,195 -73,606 129,293 -73,710 128,988 -22,356 173,237 098511278 -24,159 169,477 -73,476 132,269 -73,254 132,487 -23,985 169,913 098759398 -24,069 169,977 -74,237 130,267 -74,035 129,348 -24,070 169,988 099007518 -24,135 170,472 -74,116 130,797 -73,395 134,324 -24,503 169,548 099255639 -22,624 173,373 -73,097 127,991 -74,139 131,178 -22,547 173,704 099503759 -24,641 168,887 -73,511 132,555 -73,545 135,546 -24,721 168,969 099751879 -25,077 168,012 -73,362 134,762 -74,727 136,473 -24,580 168,768 100000000 -24,837 168,274 -72,959 133,733 -72,789 134,099 -24,971 167,847

Page 40: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 40 de 75 Repetto y Vidal.

APENDICE B: HOJA DE DATOS DEL TRANSFORMADOR TR1 CÓDIGO TC4-1TG2+

A partir de la próxima página. Se envía además en formato electrónico.

Page 41: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

FREQUENCY(MHz)

INSERTIONLOSS(dB)

INPUTR. LOSS

(dB)

0.50 0.51 16.811.00 0.44 20.73

10.00 0.27 30.3150.00 0.30 32.3270.00 0.32 30.95

100.00 0.36 28.39150.00 0.40 24.12200.00 0.45 20.32250.00 0.54 17.09300.00 0.62 14.29

RATIO(Secondary/Primary)

FREQUENCY(MHz)

INSERTION LOSS*

3 dBMHz

2 dBMHz

1 dBMHz

4 0.5-300 — 0.5-300 1.5-100

* Insertion Loss is referenced to mid-band loss, 0.3 dB typ.

ISO 9001 ISO 14001 AS 9100 CERTIFIEDMini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at®

Notes: 1. Performance and quality attributes and conditions not expressly stated in this specification sheet are intended to be excluded and do not form a part of this specification sheet. 2. Electrical specificationsand performance data contained herein are based on Mini-Circuit’s applicable established test performance criteria and measurement instructions. 3. The parts covered by this specification sheet are subject toMini-Circuits standard limited warranty and terms and conditions (collectively, “Standard Terms”); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the StandardTerms and the exclusive rights and remedies thereunder, please visit Mini-Circuits’ website at www.minicircuits.com/MCLStore/terms.jsp.

For detailed performance specs& shopping online see web site

minicircuits.comIF/RF MICROWAVE COMPONENTS

A B C D E F.150 .150 .150 .050 .030 .0253.81 3.81 3.81 1.27 0.76 0.64

G H J K wt.028 .065 .190 .030 grams0.71 1.65 4.83 0.76 0.10

50 0.5 to 300 MHz

RF Transformer TC4-1TG2+

CASE STYLE: AT224-3PRICE: $1.39 ea. QTY (100)

Maximum Ratings

Pin Connections

Operating Temperature -20°C to 85°C

Storage Temperature -55°C to 100°C

RF Power 0.25W

DC Current 30mA

Transformer Electrical Specifications

REV. ORM107839TC4-1TG2+ED-6398/2IG/TD/CP081013

Typical Performance Data

PRIMARY DOT 6

PRIMARY 4

SECONDARY DOT 1

SECONDARY 3

SECONDARY CT 2

Features

usable over 0.2 to 450 MHz

Applications

Surface Mount

Outline Dimensions ( )inchmm

Outline Drawing AT224-3

Config. A

PC B L and Patter n

Suggested L ayout,T olerance to be within ±.002

+ RoHS compliant in accordance with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.

TC4-1TG2+INSERTION LOSS

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300FREQUENCY (MHz)

INS

ER

TIO

N L

OS

S (

dB)

TC4-1TG2+INPUT RETURN LOSS

0

10

20

30

40

50

0 50 100 150 200 250 300

FREQUENCY (MHz)

RE

TU

RN

LO

SS

(dB

)

Page 42: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 42 de 75 Repetto y Vidal.

APÉNDICE C: HOJA DE DATOS DEL CIRCUITO INTEGRADO U2 AD8362

A partir de la próxima página. Se envía además en formato electrónico.

Page 43: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

50 Hz to 3.8 GHz 65 dB TruPwr™ Detector

AD8362

Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2003–2007 Analog Devices, Inc. All rights reserved.

FEATURES Complete fully calibrated measurement/control system Accurate rms-to-dc conversion from 50 Hz to 3.8 GHz Input dynamic range of >65 dB: −52 dBm to +8 dBm in 50 Ω Waveform and modulation independent, such as

GSM/CDMA/TDMA Linear-in-decibels output, scaled 50 mV/dB Law conformance error of 0.5 dB All functions temperature and supply stable Operates from 4.5 V to 5.5 V at 24 mA Power-down capability to 1.3 mW

APPLICATIONS Power amplifier linearization/control loops Transmitter power controls Transmitter signal strength indication (TSSI) RF instrumentation

FUNCTIONAL BLOCK DIAGRAM

BIAS

x2

VOUT

VSET

PWDNCOMM

VREF

AD8362

INHI

INLO

VTGT

VPOS

CLPF

CHPF

x2

ACOM

DECL

02923-001

Figure 1.

GENERAL DESCRIPTION The AD8362 is a true rms-responding power detector that has a 65 dB measurement range. It is intended for use in a variety of high frequency communication systems and in instrumentation requiring an accurate response to signal power. It is easy to use, requiring only a single supply of 5 V and a few capacitors. It can operate from arbitrarily low frequencies to over 3.8 GHz and can accept inputs that have rms values from 1 mV to at least 1 V rms, with large crest factors, exceeding the requirements for accurate measurement of CDMA signals.

The input signal is applied to a resistive ladder attenuator that comprises the input stage of a variable gain amplifier (VGA). The 12 tap points are smoothly interpolated using a proprietary technique to provide a continuously variable attenuator, which is controlled by a voltage applied to the VSET pin. The resulting signal is applied to a high performance broadband amplifier. Its output is measured by an accurate square-law detector cell. The fluctuating output is then filtered and compared with the output of an identical squarer, whose input is a fixed dc voltage applied to the VTGT pin, usually the accurate reference of 1.25 V pro-vided at the VREF pin.

The difference in the outputs of these squaring cells is integrated in a high gain error amplifier, generating a voltage at the VOUT pin with rail-to-rail capabilities. In a controller mode, this low noise output can be used to vary the gain of a host system’s RF

amplifier, thus balancing the setpoint against the input power. Optionally, the voltage at VSET can be a replica of the RF signal’s amplitude modulation, in which case the overall effect is to remove the modulation component prior to detection and low-pass filtering. The corner frequency of the averaging filter can be lowered without limit by adding an external capacitor at the CLPF pin. The AD8362 can be used to determine the true power of a high frequency signal having a complex low frequency modulation envelope, or simply as a low frequency rms volt-meter. The high-pass corner generated by its offset-nulling loop can be lowered by a capacitor added on the CHPF pin.

Used as a power measurement device, VOUT is strapped to VSET. The output is then proportional to the logarithm of the rms value of the input. In other words, the reading is presented directly in decibels and is conveniently scaled 1 V per decade, or 50 mV/dB; other slopes are easily arranged. In controller modes, the voltage applied to VSET determines the power level required at the input to null the deviation from the setpoint. The output buffer can provide high load currents.

The AD8362 has 1.3 mW power consumption when powered down by a logic high applied to the PWDN pin. It powers up within about 20 μs to its nominal operating current of 20 mA at 25°C. The AD8362 is supplied in a 16-lead TSSOP for operation over the temperature range of −40°C to +85°C.

Page 44: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 2 of 32

TABLE OF CONTENTS Features .............................................................................................. 1

Applications....................................................................................... 1

Functional Block Diagram .............................................................. 1

General Description ......................................................................... 1

Revision History ............................................................................... 2

Specifications..................................................................................... 3

Absolute Maximum Ratings............................................................ 6

ESD Caution.................................................................................. 6

Pin Configuration and Function Descriptions............................. 7

Equivalent Circuits ........................................................................... 8

Typical Performance Characteristics ............................................. 9

Characterization Setup .................................................................. 15

Equipment ................................................................................... 15

Analysis........................................................................................ 15

Circuit Description......................................................................... 16

Square Law Detection ................................................................ 16

Voltage vs. Power Calibration ................................................... 17

Offset Elimination...................................................................... 18

Time-Domain Response of the Closed Loop ......................... 18

Operation in RF Measurement Mode.......................................... 19

Basic Connections...................................................................... 19

Device Disable ............................................................................ 19

Recommended Input Coupling................................................ 19

Operation at Low Frequencies.................................................. 20

Choosing a Value for CHPF...................................................... 21

Choosing a Value for CLPF....................................................... 21

Adjusting VTGT to Accommodate Signals with Very High Crest Factors ............................................................................... 22

Altering the Slope....................................................................... 22

Temperature Compensation and Reduction of Transfer Function Ripple .......................................................................... 23

Temperature Compensation at Various WiMAX Frequencies up to 3.8 GHz........................................................................................ 24

Operation in Controller Mode ................................................. 26

RMS Voltmeter with 90 dB Dynamic Range .......................... 27

AD8362 Evaluation Board ............................................................ 28

Outline Dimensions ....................................................................... 31

Ordering Guide .......................................................................... 31

REVISION HISTORY 6/07—Rev. C to Rev. D

Changes to Features, General Description.................................... 1 Changes to Table 1............................................................................ 3 Changes to Table 2............................................................................ 6 Added Figure 21 to Figure 25........................................................ 11 Changes to Equipment Section..................................................... 15 Changes to Circuit Description Section ...................................... 16 Changes to Single-Ended Input Drive Section ........................... 19 Changes to Choosing a Value for CHPF section........................ 21 Changes to Choosing a Value for CLPF section......................... 21 Changes to Figure 57...................................................................... 23 Changes to Figure 58...................................................................... 24 Added Temperature Compensation at Various WiMAX Frequencies up to 3.8 GHz Section .............................................. 24 Changes to Ordering Guide .......................................................... 31

9/05—Rev. B to Rev. C

Changes to Specifications................................................................ 3 Changes to Table 3 ........................................................................... 7 Deleted Figure 16 to Figure 18; Renumbered Sequentially ...... 10 Changes to Figure 32 and Figure 33 ............................................ 13

Replaced Circuit Description Section ......................................... 15 Changes to Operation in RF Measurement Mode Section ...... 18 Deleted Using the AD8362 Section ............................................. 20 Deleted Main Modes of Operation Section................................ 22 Changes to Operation in Controller Mode Section .................. 23 Changes to AD8362 Evaluation Board Section.......................... 25 Deleted General Applications Section......................................... 29

3/04—Rev. A to Rev. B

Updated Format .................................................................Universal Changes to Specifications.................................................................3 Changes to the Offset Elimination Section................................. 16 Changes to the Operation at Low Frequencies Section ............ 17 Changes to the Time-Domain Response of the Closed Loop Section.................................................................................... 17 Changes to Equation 13................................................................. 24 Changes to Table 5 ......................................................................... 31

6/03—Rev. 0 to Rev. A

Updated Ordering Guide .................................................................5 Change to Analysis Section........................................................... 12 Updated AD8362 Evaluation Board Section.............................. 26

2/03—Revision 0: Initial Version

Page 45: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 3 of 32

SPECIFICATIONS VS = 5 V, T = 25°C, ZO = 50 Ω, differential input drive via balun1, VTGT connected to VREF, VOUT tied to VSET, unless otherwise noted.

Table 1. Parameter Conditions Min Typ Max Unit OVERALL FUNCTION

Maximum Input Frequency 3.8 GHz Input Power Range (Differential) dB referred to 50 Ω impedance level, f ≤ 2.7 GHz, into 1:4 balun1

Nominal Low End of Range −52 dBm Nominal High End of Range 8 dBm

Input Voltage Range (Differential) RMS voltage at input terminals, f ≤ 2.7 GHz, into input of the device Nominal Low End of Range 1.12 mV rms Nominal High End of Range 1.12 V rms

Input Power Range (S-Sided) Single-ended drive, CW input, f ≤ 2.7 GHz, into input resistive network2 Nominal Low End of Range −40 dBm Nominal High End of Range 0 dBm

Input Voltage Range (S-Sided) RMS voltage at input terminals, f ≤ 2.7 GHz Nominal Low End of Range 2.23 mV rms Nominal High End of Range 2.23 V rms

Input Power Range (S-Sided) Single-ended drive, CW input, f ≥ 2.7 GHz, into matched input network3 Nominal Low End of Range −35 dBm Nominal High End of Range 124 dBm

Output Voltage Range RL ≥ 200 Ω to ground Nominal Low End of Range 100 mV Nominal High End of Range In general, VS − 0.1 V 4.9 V

Output Scaling (Log Slope) 50 mV/dB Law Conformance Error Over central 60 dB range, f ≤ 2.7 GHz ±0.5 dB

RF INPUT INTERFACE Pin INHI, Pin INLO, ac-coupled, at low frequencies Input Resistance Single-ended drive, with respect to DECL 100 Ω

Differential drive 200 Ω

OUTPUT INTERFACE Pin VOUT Available Output Range RL ≥ 200 Ω to ground 0.1 4.9 V Absolute Voltage Range

Nominal Low End of Range Measurement mode, f = 900 MHz, PIN = −52 dBm 0.32 0.48 V Nominal High End of Range Measurement mode, f = 900 MHz, PIN = +8 dBm 3.44 3.52 V

Source/Sink Current VOUT held at VS/2, to 1% change 48 mA Slew Rate Rising CL = open 60 V/μs Slew Rate Falling CL = open 5 V/μs Rise Time, 10% to 90% 0.2 V to 1.8 V, CLPF = Open 45 ns Fall Time, 90% to 10% 1.8 V to 0.2 V, CLPF = Open 0.4 μs Wideband Noise CLPF = 1000 pF, fSPOT ≤ 100 kHz 70 nV/√Hz

VSET INTERFACE Pin VSET Nominal Input Voltage Range To ±1 dB error 0.5 3.75 V Input Resistance 68 kΩ Scaling (Log Slope) f = 900 MHz 46 50 54 mV/dB Scaling (Log Intercept) f = 900 MHz, into 1:4 balun −64 −60 −56 dBm

−77 −73 −69 dBV

VOLTAGE REFERENCE Pin VREF Output Voltage 25°C 1.225 1.25 1.275 V Temperature Sensitivity −40°C ≤ TA ≤ +85°C 0.08 mV/°C Output Resistance 8 Ω

Page 46: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 4 of 32

Parameter Conditions Min Typ Max Unit RMS TARGET INTERFACE Pin VTGT

Nominal Input Voltage Range Measurement range = 60 dB, to ±1 dB error 0.625 2.5 V Input Bias Current VTGT = 1.25 V −28 μA VTGT = 0 V −52 μA Incremental Input Resistance 52 kΩ

POWER-DOWN INTERFACE Pin PWDN Logic Level to Enable Logic low enables 1 V Logic Level to Disable Logic high disables 3 V Input Current Logic high 230 μA Logic low 5 μA Enable Time From PWDN low to VOUT within 10% of final value, CLPF = 1000 pF 14.5 ns Disable Time From PWDN high to VOUT within 10% of final value, CLPF = 1000 pF 2.5 μs

POWER SUPPLY INTERFACE Pin VPOS Supply Voltage 4.5 5 5.5 V Quiescent Current 20 22 mA Supply Current When disabled 0.2 mA

900 MHz Dynamic Range Error referred to best-fit line (linear regression) ±1.0 dB linearity, CW input 65 dB ±0.5 dB linearity, CW input 62 dB Deviation vs. Temperature Deviation from output at 25°C −40°C < TA < +85°C, PIN = −45 dBm −1.7 dB −40°C < TA < +85°C, PIN = −20 dBm −1.4 dB −40°C < TA < +85°C, PIN = +5 dBm −1.0 dB Logarithmic Slope 46 50 54 mV/dB Logarithmic Intercept −64 −60 −56 dBm Deviation from CW Response 5.5 dB peak-to-rms ratio (IS95 reverse link) 0.2 dB 12.0 dB peak-to-rms ratio (W-CDMA 4 channels) 0.2 dB

18.0 dB peak-to-rms ratio (W-CDMA 15 channels) 0.5 dB

1.9 GHz Dynamic Range Error referred to best-fit line (linear regression) ±1 dB linearity, CW input 65 dB ±0.5 dB linearity, CW input 62 dB Deviation vs. Temperature Deviation from output at 25°C −40°C < TA < +85°C, PIN = −45 dBm −0.6 dB −40°C < TA < +85°C, PIN = −20 dBm −0.5 dB −40°C < TA < +85°C, PIN = +5 dBm −0.3 dB Logarithmic Slope 51 mV/dB Logarithmic Intercept −59 dBm Deviation from CW Response 5.5 dB peak-to-rms ratio (IS95 reverse link) 0.2 dB 12.0 dB peak-to-rms ratio (W-CDMA 4 channels) 0.2 dB 18.0 dB peak-to-rms ratio (W-CDMA 15 channels) 0.5 dB

2.2 GHz Dynamic Range Error referred to best-fit line (linear regression) ±1.0 dB linearity, CW input 65 dB ±0.5 dB linearity, CW input 65 dB Deviation vs. Temperature Deviation from output at 25°C −40°C < TA < +85°C, PIN = −45 dBm −1.8 dB −40°C < TA < +85°C, PIN = −20 dBm −1.6 dB −40°C < TA < +85°C, PIN = +5 dBm −1.3 dB Logarithmic Slope 50.5 mV/dB Logarithmic Intercept −61 dBm Deviation from CW Response 5.5 dB peak-to-rms ratio (IS95 reverse link) 0.2 dB

12.0 dB peak-to-rms ratio (W-CDMA 4 channels) 0.2 dB 18.0 dB peak-to-rms ratio (W-CDMA 15 channels) 0.5 dB

Page 47: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 5 of 32

Parameter Conditions Min Typ Max Unit 2.7 GHz

Dynamic Range Error referred to best-fit line (linear regression) ±1.0 dB linearity, CW input 63 dB ±0.5 dB linearity, CW input 62 dB Deviation vs. Temperature Deviation from output at 25°C −40°C < TA < +85°C, PIN = −40 dBm −5.3 dB −40°C < TA < +85°C, PIN = −15 dBm −5.5 dB −40°C < TA < +85°C, PIN = +5 dBm −4.8 dB Logarithmic Slope 50.5 mV/dB Logarithmic Intercept −58 dBm Deviation from CW Response 5.5 dB peak-to-rms ratio (IS95 reverse link) 0.2 dB

12.0 dB peak-to-rms ratio (W-CDMA 4 channels) 0.2 dB 18.0 dB peak-to-rms ratio (W-CDMA 15 channels) 0.4 dB

3.65 GHz Single-ended drive3

Dynamic Range Error referred to best-fit line (linear regression) ±1.0 dB linearity, CW input 51 dB ±0.5 dB linearity, CW input 50 dB Deviation vs. Temperature Deviation from output at 25°C −40°C < TA < +85°C, PIN = −35 dBm −3 dB −40°C < TA < +85°C, PIN = −15 dBm −3.5 dB −40°C < TA < +85°C, PIN = +10 dBm −3.5 dB Logarithmic Slope 51.7 mV/dB Logarithmic Intercept −45 dBm

1 1:4 balun transformer, M/A-COM ETC 1.6-4-2-3. 2 See Figure 48. 3 See Figure 50. 4 The limitation of the high end of the power range is due to the test equipment not the device under test.

Page 48: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 6 of 32

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage VPOS 5.5 V Input Power (Into Input of Device) 15 dBm Equivalent Voltage 2 V rms Internal Power Dissipation 500 mW θJA 125°C/W Maximum Junction Temperature 125°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Page 49: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 7 of 32

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

CHPF

DECL

INHI

PWDN

DECL

INLO

COMM

VREF

VTGT

VPOS

ACOM

COMM CLPF

VSET

VOUT

ACOM

AD8362TOP VIEW

(Not to Scale)

02923-002

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions Pin No. Mnemonic Description

EquivalentCircuit

1, 8 COMM Common Connection. Connect via low impedance to system common. 2 CHPF Input HPF. Connect to common via a capacitor to determine 3 dB point of input signal high-pass filter. 3, 6 DECL Decoupling Terminals for INHI and INLO. Connect to common via a large capacitance to complete

input circuit.

4, 5 INHI , INLO Differential Signal Input Terminals. Input Impedance = 200 Ω. Can also be driven single-ended, in which case, the input impedance reduces to 100 Ω.

Circuit A

7 PWDN Disable/Enable Control Input. Apply logic high voltage to shut down the AD8362. 9 CLPF Connection for Ground Referenced Loop Filter Integration (Averaging) Capacitor. 10, 16 ACOM Analog Common Connection for Output Amplifier. 11 VSET Setpoint Input. Connect directly to VOUT for measurement mode. Apply setpoint input to this pin for

controller mode. Circuit B

12 VOUT RMS Output. In measurement mode, VOUT is normally connected directly to VSET. Circuit C 13 VPOS Connect to 5 V Power Supply. 14 VTGT The logarithmic intercept voltage is proportional to the voltage applied to this pin. The use of a lower

target voltage increases the crest factor capacity. Normally connected to VREF. Circuit D

15 VREF General-Purpose Reference Voltage Output of 1.25 V. Usually connected only to VTGT. Circuit E

Page 50: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 8 of 32

EQUIVALENT CIRCUITS

INHI

INLO

DECL

DECL

VPOS

COMM

COMM

100

VGA

VPOS

100

02923-003

Figure 3. Circuit A

VSET

ACOM

COMM

VPOS

VSETINTERFACE~35k

~35k

02923-004

Figure 4. Circuit B

VTGT

ACOM

COMM

VPOS

50k

50kVTGT

INTERFACEGAIN = 0.12

02923-005

Figure 5. Circuit C

VOUT

ACOM

COMM

VPOSRAIL-TO-RAILOUTPUT

2k

500CLPF

0.7V

02923-006

Figure 6. Circuit D

VOUT

ACOM

COMM

VPOSSOURCE ONLYREF BUF

13k

5k

~0.35V

02923-007

Figure 7. Circuit E

Page 51: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 9 of 32

TYPICAL PERFORMANCE CHARACTERISTICS

0–60

VOU

T (V

)

1.0

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.5

15

900MHz

100MHz

1900MHz

–10

2200MHz

2700MHz

INPUT AMPLITUDE (dBm) 02923-008

Figure 8. Output Voltage (VOUT) vs. Input Amplitude (dBm),

Frequencies: 100 MHz, 900 MHz, 1900 MHz, 2200 MHz, and 2700 MHz; Sine Wave, Differential Drive

INPUT AMPLITUDE (dBm)

–3.0–60

ERR

OR

IN V

OU

T (d

B)

–1.5

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

15

900MHz

1900MHz

2700MHz

2200MHz

–2.5

3.0

100MHz

–10

0

02923-009

Figure 9. Logarithmic Law Conformance vs. Input Amplitude,

Frequencies: 100 MHz, 900 MHz, 1900 MHz, 2200 MHz, and 2700 MHz; Sine Wave, Differential Drive

INPUT AMPLITUDE (dBm)

0–55

VO

UT

(V)

0.8

–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.2

1.6

2.0

2.4

2.8

3.2

3.6

0.4

15

+25°C

4.0

–40°C

+25°C

+85°C

ER

RO

R IN

VO

UT

(dB

)

+85°C

–40°C

–3.0

–2.4

–1.8

–1.2

0

0.6

1.2

1.8

2.4

3.0

–10

–0.6

02923-010

Figure 10. VOUT and Law Conformance vs. Input Amplitude, Frequency 900 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C

INPUT AMPLITUDE (dBm)

VO

UT

(V)

–40°C

+25°C

ER

RO

R IN

VO

UT

(dB

)

+85°C

–40°C

+85°C

–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10 15–10

0.4

0

0.8

1.2

1.6

2.0

2.4

2.8

3.6

3.2

4.0

–3.0

–1.2

–0.6

0

1.2

1.8

2.4

3.0

–1.8

–2.4

0.6

+25°C

02923-011

Figure 11. VOUT and Law Conformance vs. Input Amplitude, Frequency 1900 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C

INPUT AMPLITUDE (dBm)

0.4

0–60

VO

UT

(V)

0.8

–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.2

1.6

2.0

2.4

2.8

3.6

15

+25°C

–40°C

+25°C

ER

RO

R IN

VO

UT

(dB

)

+85°C

–40°C

3.2

4.0

+85°C

–55 –10–3.0

–1.2

–0.6

0

1.2

1.8

2.4

3.0

–1.8

–2.4

0.6

02923-012

Figure 12. VOUT and Law Conformance vs. Input Amplitude, Frequency 2200 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C

INPUT AMPLITUDE (dBm)

0–60

VOU

T (V

)

1.0

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.5

2.0

2.5

3.0

3.5

4.0

0.5

15

W-CDMA 15-CHANNEL

CW

W-CDMA 8-CHANNEL

–10

IS95 REVERSE LINK

02923-013

Figure 13. VOUT vs. Input Amplitude with Different Waveforms, CW, IS95

Reverse Link, W-CDMA 8-Channel, W-CDMA 15-Channel, Frequency 900 MHz

Page 52: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 10 of 32

INPUT AMPLITUDE (dBm)

–3.0–60

ERR

OR

IN V

OU

T (d

B)

–1.5

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

15

–2.5

3.0

W-CDMA 15-CHANNEL

CW

W-CDMA 8-CHANNEL

–10

0

IS95 REVERSE LINK

02923-014

Figure 14. Output Error from CW Linear Reference vs. Input Amplitude with Different Waveforms, CW, IS95 Reverse Link, W-CDMA 8-Channel,

W-CDMA 15-Channel, Frequency 900 MHz, VTGT = 1.25 V

INPUT AMPLITUDE (dBm)

–3.0

ERR

OR

IN V

OU

T (d

B)

–1.5

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

W-CDMA 15-CHANNEL

CW

W-CDMA8-CHANNEL

W-CDMA4-CHANNEL

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10–10

0

02923-015

Figure 15. Output Error from CW Linear Reference vs. Input Amplitude with Different W-CDMA Channel Loading, 4-Channel, 8-Channel,

15-Channel, Frequency 2200 MHz, VTGT = 1.25 V

INPUT AMPLITUDE (dBm)

0

VOU

T (V

)

1.0

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.5

2.0

2.5

3.0

3.5

4.0

0.5

–10

02923-016

Figure 16. VOUT vs. Input Amplitude, 3 Sigma to Either Side of Mean, Sine Wave, Frequency 900 MHz, Part-to-Part Variation

INPUT AMPLITUDE (dBm)

0

VOU

T (V

)

1.0

–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

1.5

2.0

2.5

3.0

3.5

4.0

0.5

–10

02923-017

Figure 17. VOUT vs. Input Amplitude, 3 Sigma to Either Side of Mean, Sine Wave, Frequency 1900 MHz, Part-to-Part Variation

INPUT AMPLITUDE (dBm)

–3.0–55

ERR

OR

IN V

OU

T (d

B)

–1.5

–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

–10

0

–40°C

+25°C +85°C

02923-018

Figure 18. Logarithmic Law Conformance vs. Input Amplitude, 3 Sigma to Either Side of Mean, Sine Wave, Frequency 900 MHz,

Temperatures: −40°C, +25°C, and +85°C

INPUT AMPLITUDE (dBm)

–3.0–55

ERR

OR

IN V

OU

T (d

B)

–1.5

–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

–10

0

–45°C

+85°C+25°C

02923-019

Figure 19. Logarithmic Law Conformance vs. Input Amplitude, 3 Sigma to Either Side of Mean, Sine Wave, Frequency 1900 MHz,

Temperatures: −40°C, +25°C, and +85°C

Page 53: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 11 of 32

INPUT AMPLITUDE (dBm)

–3.0–55

ERR

OR

IN V

OU

T (d

B)

–1.5

–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

–10

0

–40°C

+85°C +25°C

02923-020

Figure 20. Logarithmic Law Conformance vs. Input Amplitude, 3 Sigma to Either Side of Mean, Sine Wave, Frequency 2200 MHz,

Temperatures: −40°C, +25°C, and +85°C

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T(V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

ERR

OR

(dB

)

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-021

Figure 21. VOUT and Law Conformance vs. Input Amplitude for 15 Devices, Frequency 2350 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C,

No Temperature Compensation, Single-Ended Drive, See Figure 50

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

ERR

OR

(dB

)

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-022

Figure 22. VOUT and Law Conformance vs. Input Amplitude for 15 Devices, Frequency 2600 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C,

No Temperature Compensation, Single-Ended Drive, See Figure 50

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T(V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

ERR

OR

(dB

)

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-023

Figure 23. VOUT and Law Conformance vs. Input Amplitude for 15 Devices, Frequency 2800 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C,

No Temperature Compensation, Single-Ended Drive, See Figure 50

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

ERR

OR

(dB

)

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-024

Figure 24. VOUT and Law Conformance vs. Input Amplitude for 15 Devices, Frequency 3450 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C,

No Temperature Compensation, Single-Ended Drive, See Figure 50

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

02923-025

Figure 25. VOUT and Law Conformance vs. Input Amplitude for 15 Devices, Frequency 3650 MHz, Sine Wave, Temperatures: −40°C, +25°C, and +85°C,

No Temperature Compensation, Single-Ended Drive, See Figure 50

Page 54: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 12 of 32

FREQUENCY (MHz)

49.0

900

SLO

PE (m

V)

49.5

1000

1100

1200

1300

1400

1500

1600

1700

1800

2000

2100

2200

50.0

51.0

51.5

2300

52.0

1900

50.5

2400

2500

2600

2700

+85°C

+25°C

–40°C

02923-026

Figure 26. Logarithmic Slope vs. Frequency, Temperatures: −40°C, +25°C, and +85°C

FREQUENCY (MHz)

–63

900

INTE

RC

EPT

(dB

m)

–58

1000

1100

1200

1300

1400

1500

1600

1700

1800

2000

2100

2200

–57

–55

–54

2300

–53

1900

–56

2400

2500

2600

2700

+85°C

+25°C

–40°C

–62

–60

–59

–61

02923-027

Figure 27. Logarithmic Intercept vs. Frequency, Temperatures: −40°C, +25°C, and +85°C

TEMPERATURE (°C)

–3.0–40

CH

AN

GE

IN S

LOPE

(mV)

–1.5

–30 –20 –10 0 10 20 30 40 50 70 80 90

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

60

0

1900MHz

900MHz

2200MHz

02923-028

Figure 28. Change in Logarithmic Slope vs. Temperature, 3 Sigma to Either Side of Mean, Frequencies: 900 MHz, 1900 MHz, and 2200 MHz

TEMPERATURE (°C)

–2.0–40

CH

AN

GE

IN IN

TER

CEP

T (d

B)

–1.5

–30 –20 –10 0 10 20 30 40 50 70 80 90

–1.0

–0.5

0.5

1.0

1.5

2.0

60

0

900MHz1900MHz

2200MHz

02923-029

Figure 29. Change in Logarithmic Intercept vs. Temperature, 3 Sigma to Either Side of Mean, Frequencies: 900 MHz, 1900 MHz, and 2200 MHz

SLOPE (mV/dB)

0

HIT

S

40

60

80

100

20

48 5349 50 51 52

02923-030

Figure 30. Slope Distribution, Frequency 900 MHz

INTERCEPT (dBm)

0

HIT

S

40

60

70

80

20

50

30

10

–61.0 –58.0–60.5 –60.0 –59.5 –59.0 –58.5

02923-031

Figure 31. Logarithmic Intercept Distribution, Frequency 900 MHz

Page 55: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 13 of 32

TIME (μs)

00

3.0

2 10 14 2

4.0

4.5

5.0

0

2.0

3.5

2.5

1.5

1.0

0.5

–14

RF

BU

RST

EN

AB

LE (V

)

–2

2

4

6

–6

0

–4

–8

–10

–12

8 12 1816

VOU

T (V

)

4 6

–30dBm

+2dBm

–10dBm

–20dBm

2V/DIV

0.5V/DIV

RF BURSTENABLE

VOUT

02923-032

Figure 32. Output Response to RF Burst Input for Various RF Input Levels, Carrier Frequency 900 MHz, CLPF = Open

TIME (ms)

00

3.0

2 10 14 2

4.0

4.5

5.0

0

2.0

3.5

2.5

1.5

1.0

0.5

–14

RF

BU

RST

EN

AB

LE (V

)

–2

2

4

6

–6

0

–4

–8

–10

–12

8 12 1816

VOU

T (V

)

4 6

0.5V/DIV

2V/DIV

–30dBm

+2dBm

–10dBm

–20dBm

RF BURSTENABLE

VOUT

02923-033

Figure 33. Output Response to RF Burst Input for Various RF Input Levels, Carrier Frequency 900 MHz, CLPF = 0.1 μF

TIME (μs)

00

3.0

2 10 14 2

4.0

4.5

5.0

0

2.0

3.5

2.5

1.5

1.0

0.5

–14

POW

ER-D

OW

N P

IN (V

)

–2

2

4

6

–6

0

–4

–8

–10

–12

8 12 1816

VOU

T (V

)

4 6

–30dBm

+2dBm

–10dBm

–20dBm

2V/DIV

0.5V/DIV

POWER-DOWN

PIN

VOUT

02923-034

Figure 34. Output Response Using Power-Down Mode for Various RF Input Levels, Carrier Frequency 900 MHz, CLPF = 0

TIME (ms)

00

3.0

2 10 14 2

4.0

4.5

5.0

0

2.0

3.5

2.5

1.5

1.0

0.5

–14

POW

ER-D

OW

N P

IN (V

)

–2

2

4

6

–6

0

–4

–8

–10

–12

8 12 1816

VOU

T (V

)

4 6

2V/DIV

–30dBm

+2dBm

–10dBm

–20dBm

0.5V/DIV

02923-035

Figure 35. Output Response Using Power-Down Mode for Various RF Input Levels, Carrier Frequency 900 MHz, CLPF = 0.1 μF

TIME (ms)

00

3.5

2 10 14 2

4.5

5.0

5.5

0

2.5

4.0

3.0

2.0

1.5

1.0

–14

POW

ER-D

OW

N P

IN (V

)

–2

2

4

6

–6

0

–4

–8

–10

–12

8 12 1816

VOU

T (V

)

4 6

VPOS 2V/DIV

1V/DIV +2dBm–10dBm–20dBm–30dBm

02923-036

Figure 36. Output Response to Gating on Power Supply for Various RF Input Levels, Carrier Frequency 900 MHz, CLPF = 0

100MHz

3GHz

02923-037

Figure 37. INHI, INLO Differential Input Impedance, 100 MHz to 3 GHz

Page 56: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 14 of 32

TEMPERATURE (°C)

–30–40

CH

AN

GE

IN V

REF

(mV)

–15

–30 –20 –10 0 10 20 30 40 50 70 80 90

–10

–5

–20

–25

60

0

5

02923-038

Figure 38. Change in VREF vs. Temperature, 3 Sigma to Either Side of Mean

VREF (V)

0

HIT

S

200

300

100

250

150

50

1.230 1.2701.235 1.240 1.245 1.250 1.2601.255 1.265

02923-039

Figure 39. VREF Distribution

Page 57: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 15 of 32

CHARACTERIZATION SETUP EQUIPMENT The general hardware configuration used for most of the AD8362 characterization is shown in Figure 40. The signal source is a Rohde & Schwarz SMIQ03B. A 1:4 balun transformer is used to transform the single-ended RF signal to differential form. For frequencies above 3.0 GHz, an Agilent 8521A signal source was used. For the response measurements in Figure 32 and Figure 33, the configuration shown in Figure 41 is used. For Figure 34 and Figure 35, the configuration shown in Figure 42 is used. For Figure 36, the configuration shown in Figure 43 is used.

AD8362CHARACTERIZATION

BOARDRFIN3dB VOUTSMIQ03B

RF SOURCE

PCCONTROLLER

MULTIMETERHP34401A

02923-040

Figure 40. Primary Characterization Setup

ANALYSIS The slope and intercept are derived using the coefficients of a linear regression performed on data collected in its central operating range. Error is stated in two forms: error from the linear response to the CW waveform and output delta from 25°C performance.

The error from linear response to the CW waveform is the decibel difference in output from the ideal output defined by the conversion gain and output reference. This is a measure of the linearity of the device response to both CW and modulated waveforms. The error in dB is calculated by

SlopePPSlopeVOUT

Error ZINdB (1)

where PZ is the x intercept, expressed in dBm.

Error from the linear response to the CW waveform is not a measure of absolute accuracy because it is calculated using the slope and intercept of each device. However, it verifies the linearity and the effect of modulation on the device response. Error from the 25°C performance uses the performance of a given device and waveform type as the reference; it is predomi-nantly a measurement of output variation with temperature.

C1

C2C3

C4

BALUN3dB

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

RF 50

HPE3631APOWERSUPPLYSMT03

SIGNALGENERATOR

TEK P5050VOLTAGE PROBE

TEK TDS5104SCOPE

02923-041

Figure 41. Response Measurement Setup for Modulated Pulse

C1

C2C3

C4

BALUN3dB

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

RF 50

TEK TDS5104SCOPE

TEK P5050VOLTAGE PROBE

HP8112APULSE

GENERATOR

SMT03SIGNAL

GENERATOR

HPE3631APOWERSUPPLY

02923-042

Figure 42. Response Measurement Setup for Power-Down Step

TEK P5050VOLTAGEPROBE

C1

C2C3

C4

BALUN3dB

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

RF 50

732

0.01μF 100pF

50

AD811

TEK TDS5104SCOPE

HP8112APULSE

GENERATOR

SMT03SIGNAL

GENERATOR

02923-043

Figure 43. Response Measurement Setup for Gated Supply

Page 58: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 16 of 32

CIRCUIT DESCRIPTION The AD8362 is a fully calibrated, high accuracy, rms-to-dc converter providing a measurement range of over 65 dB. It is capable of operating from signals as low in frequency as a few hertz to at least 3.8 GHz. Unlike earlier rms-to-dc converters, the response bandwidth is completely independent of the signal magnitude. The −3 dB point occurs at about 3.5 GHz. The capacity of this part to accurately measure waveforms having a high peak-to-rms ratio (crest factor) is independent of either the signal frequency or its absolute magnitude, over a wide range of conditions.

This unique combination allows the AD8362 to be used as a calibrated RF wattmeter covering a power ratio of >1,000,000:1, a power controller in closed-loop systems, a general-purpose rms-responding voltmeter, and in many other low frequency applications.

The part comprises the core elements of a high performance AGC loop (see Figure 44), laser-trimmed during manufacturing to close tolerances while fully operational at a test frequency of 100 MHz. Its linear, wideband VGA provides a general voltage gain, GSET; this can be controlled in a precisely exponential (linear-in-dB) manner over the full 68 dB range from −25 dB to +43 dB by a voltage, VSET. However, to provide adequate guardbanding, only the central 60 dB of this range, from −21 dB to +39 dB, is normally used. The Adjusting VTGT to Accommodate Signals with Very High Crest Factors section shows how this basic range can be shifted up or down.

VGAINHI

INLO

CHPF

VSET

VREF1.25V

× 0.06ACOM

VTGT

X2 X2VSIG VATG

CF

CLPF

VOUT

ACOM

ISQU ITGT

–25dB TO +43dB

GSETOFFSETNULLING

SETPOINTINTERFACE

INTERNALRESISTORSSET BUFFERGAIN TO 5

AMPLITUDE TARGETFOR VSIG

MATCH WIDE-BAND SQUARERS

OUTPUTFILTER

BAND GAPREFERENCE

CLPFEXTERNAL

02923-044

Figure 44. Basic Structure of the AD8362

The VGA gain has the form

GSET = GO exp(−VSET/VGNS) (2)

where: GO is a basic fixed gain. VGNS is a scaling voltage that defines the gain slope (the dB change per volt). Note that the gain decreases with VSET.

The VGA output is

VSIG = GSETVIN = GOVIN exp(VSET/VGNS) (3)

where VIN is the ac voltage applied to the input terminals of the AD8362.

As explained in the Recommended Input Coupling section, the input drive can either be single-sided or differential, although dynamic range is maximized with a differential input drive. The effect of high frequency imbalances when using a single-sided drive is less apparent at low frequencies (from 50 Hz to 500 MHz), but the peak input voltage capacity is always halved relative to differential operation.

SQUARE LAW DETECTION The output of the variable gain amplifier (VSIG) is applied to a wideband square law detector, which provides a true rms response to this alternating signal that is essentially independent of waveform. Its output is a fluctuating current (ISQU) that has a positive mean value. This current is integrated by an on-chip capacitance (CF), which is usually augmented by an external capacitance (CLPF) to extend the averaging time. The resulting voltage is buffered by a gain of 5, dc-coupled amplifier whose rail-to-rail output (VOUT) can be used for either measurement or control purposes.

In most applications, the AGC loop is closed via the setpoint interface pin, VSET, to which the VGA gain control voltage on VOUT is applied. In measurement modes, the closure is direct and local by a simple connection from the output of the VOUT pin to the VSET pin. In controller modes, the feedback path is around some larger system, but the operation is the same.

The fluctuating current (ISQU) is balanced against a fixed setpoint target current (ITGT) using current mode subtraction. With the exact integration provided by the capacitor(s), the AGC loop equilibrates when

MEAN(ISQU) = ITGT (4)

The current, ITGT, is provided by a second-reference squaring cell whose input is the amplitude-target voltage VATG. This is a fraction of the voltage VTGT applied to a special interface, which accepts this input at the VTGT pin. Because the two squaring cells are electrically identical and are carefully imple-mented in the IC, process and temperature-dependent variations in the detailed behavior of the two square-law functions cancel. Accordingly, VTGT (and its fractional part VATG) determines the output that must be provided by the VGA for the AGC

Page 59: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 17 of 32

loop to settle. Because the scaling parameters of the two squarers are accurately matched, it follows that Equation 4 is satisfied only when

MEAN(VSIG2) = VATG

2 (5)

In a formal solution, extract the square root of both sides to provide an explicit value for the root-mean-square (rms) value. However, it is apparent that by forcing this identity through varying the VGA gain and extracting the mean value by the filter provided by the capacitor(s), the system inherently establishes the relationship

rms(VSIG) = VATG (6)

Substituting the value of VSIG from Equation 3,

rms[GOVIN exp(−VSET/VGNS)] = VATG (7)

As a measurement device, VIN is the unknown quantity and all other parameters can be fixed by design. To solve Equation 7,

rms[GOVIN/VATG] = exp(VSET/VGNS) (8)

therefore,

VSET = VGNS log[rms(VIN)/VZ] (9)

The quantity VZ = VATG/GO is defined as the intercept voltage because VSET must be 0 when rms (VIN) = VZ.

When connected as a measurement device, the output of the buffer is tied directly to VSET, which closes the AGC loop. Making the substitution VOUT = VSET and changing the log base to 10, as needed in a decibel conversion,

VOUT = VSLP log10[rms(VIN)/VZ] (10)

where VSLP is the slope voltage, that is, the change in output voltage for each decade of change in the input amplitude. Note that VSLP = VGNS log (10) = 2.303 VGNS.

In the AD8362, VSLP is laser-trimmed to 1 V using a 100 MHz test signal. Because a decade corresponds to 20 dB, this slope can also be stated as 50 mV/dB. The Altering the Slope section explains how the effective value of VSLP can be altered by the user. The intercept, VZ, is also laser-trimmed to 224 μV (−60 dBm relative to 50 Ω). In an ideal system, VOUT would cross zero for an rms input of that value. In a single-supply realization of the function, VOUT cannot run fully down to ground; here, VZ is the extrapolated value.

VOLTAGE VS. POWER CALIBRATION The AD8362 can be used as an accurate rms voltmeter from arbitrarily low frequencies to microwave frequencies. For low frequency operation, the input is usually specified either in volts rms or in dBV (decibels relative to 1 V rms).

At high frequencies, signal levels are commonly specified in power terms. In these circumstances, the source and termina-tion impedances are an essential part of the overall scaling. For this condition, the output voltage can be expressed as

VOUT = SLOPE × (PIN − PZ) (11)

where PIN and the intercept PZ are expressed in dBm.

In practice, the response deviates slightly from the ideal straight line suggested by Equation 11. This deviation is called the law conformance error. In defining the performance of high accuracy measurement devices, it is customary to provide plots of this error. In general terms, it is computed by extracting the best straight line to the measured data using linear regression over a substantial region of the dynamic range and under clearly specified conditions.

INPUT AMPLITUDE (dBm)

0.2

VO

UT

(V)

0.8

1.1

1.4

1.7

2.0

2.3

2.9

3.5

0.5

3.8

ER

RO

R IN

VO

UT

(dB

)

–3.0

–1.5

–1.0

–0.5

0.5

1.0

1.5

2.0

2.5

–2.0

–2.5

3.0

2.6

3.2

–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10 15–10

0

–40°C

+25°C+85°C

+25°C

+85°C

–40°C

02923-045

Figure 45. Output Voltage and Law Conformance Error

@ TA = −40°C, +25°C, and +85°C

Figure 45 shows the output of the circuit of Figure 47 over the full input range. The agreement with the ideal function (law conformance) is also shown. This was determined by linear regression on the data points over the central portion of the transfer function for the +25°C data.

The error at −40°C, +25°C, and +85°C was then calculated by subtracting the ideal output voltage at each input signal level from the actual output and dividing this quantity by the mean slope of the regression equation to provide a measurement of the error in decibels (scaled on the right-hand axis of Figure 45).

The error curves generated in this way reveal not only the devia-tions from the ideal transfer function at a nominal temperature, but also the additional errors caused by temperature changes. Notice that there is a small temperature dependence in the intercept (the vertical position of the error plots).

Figure 45 further reveals a periodic ripple in the conformance curves. This is due to the interpolation technique used to select the signals from the attenuator, not only at discrete tap points, but anywhere in between, thus providing continuous attenua-tion values. The selected signal is then applied to the 3.5 GHz, 40 dB fixed gain amplifier in the remaining stages of the VGA of the AD8362.

Page 60: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 18 of 32

An approximate schematic of the signal input section of the AD8362 is shown in Figure 46. The ladder attenuator is com-posed of 11 sections (12 taps), each of which progressively attenuates the input signal by 6.33 dB. Each tap is connected to a variable transconductance cell whose bias current determines the signal weighting given to that tap. The interpolator determines which stages are active by generating a discrete set of bias currents, each having a Gaussian profile. These are arranged to move from left to right, thereby determining the attenuation applied to the input signal as the gain is progressively lowered over the 69.3 dB range under control of the VSET input. The detailed manner in which the transconductance of adjacent stages varies as the virtual tap point slides along the attenuator accounts for the ripple observed in the conformance curves. Its magnitude is slightly temperature dependent and also varies with frequency (see Figure 10, Figure 11, and Figure 12). Notice that the system’s responses to signal inputs at INHI and INLO are not completely independent; these pins do not constitute a fully floating differential input.

TO FIXEDGAIN STAGEgm gm gm gm

ATTENUATIONCONTROLGAUSSIAN INTERPOLATOR

STAGE 16.33dB

STAGE 116.33dB

INHI

STAGE 26.33dB

DECL

INLO

02923-046

Figure 46. Simplified Input Circuit

OFFSET ELIMINATION To address the small dc offsets that arise in the VGA, an offset-nulling loop is used. The high-pass corner frequency of this loop is internally preset to 1 MHz, which is sufficiently low for

most high frequency applications. When using the AD8362 in low frequency applications, the corner frequency can be reduced as needed by the addition of a capacitor from the CHPF pin to ground having a nominal value of 200 μF/Hz. For example, to lower the high-pass corner frequency to 150 Hz, a capacitance of 1.33 μF is required. The offset voltage varies depending on the actual gain at which the VGA is operating, and thus on the input signal amplitude.

Baseline variations of this sort are a common aspect of all VGAs, but they are more evident in the AD8362 because of the method of its implementation, which causes the offsets to ripple along the gain axis with a period of 6.33 dB. When an exces-sively large value of CHPF is used, the offset correction process can lag the more rapid changes in the VGA’s gain, which in turn can increase the time required for the loop to fully settle for a given steady input amplitude.

TIME-DOMAIN RESPONSE OF THE CLOSED LOOP The external low-pass averaging capacitance (CLPF) added at the output of the squaring cell is chosen to provide adequate filtering of the fluctuating detected signal. The optimum value depends on the application; as a guideline, a value of roughly 900 μF/Hz should be used. For example, a capacitance of 5 μF provides adequate filtering down to 180 Hz. Note that the fluctuation in the quasi-dc output of a squaring cell operating on a sine wave input is a raised cosine at twice the signal frequency, easing this filtering function.

In the standard connections for the measurement mode, the VSET pin is tied to VOUT. For small changes in input ampli-tude (a few decibels), the time-domain response of this loop is essentially linear, with a 3 dB low-pass corner frequency of nominally fLP = 1/(CLPF × 1.1 kΩ). Internal time delays around this local loop set the minimum recommended value of this capacitor to about 300 pF, resulting in fLP = 3 MHz.

When large and abrupt changes of input amplitude occur, the loop response becomes nonlinear and exhibits slew rate limitations.

Page 61: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 19 of 32

OPERATION IN RF MEASUREMENT MODE BASIC CONNECTIONS Basic connections for operating the AD8362 in measurement mode are shown in Figure 47. While the AD8362 requires a single supply of nominally 5 V, its performance is essentially unaffected by variations of up to ±10%.

The supply is connected to the VPOS pin using the decoupling network also displayed in Figure 47. The capacitors used in this network must provide a low impedance over the full frequency range of the input and should be placed as close as possible to the VPOS pin. Two different capacitors are used in parallel to reduce the overall impedance because these have different reso-nant frequencies. The measurement accuracy is not critically dependent on supply decoupling because the high frequency signal path is confined to the relevant input pins. Lead lengths from both DECL pins to ground and from INHI/INLO to the input coupling capacitors should be as short as possible. All COMM pins should also connect directly to the ground plane.

To place the device in measurement mode, connect VOUT to VSET and connect VTGT directly to VREF.

DEVICE DISABLE The AD8362 is disabled by a logic high on the PWDN pin, which can be directly grounded for continuous operation. When enabled, the supply current is nominally 20 mA and essentially independent of supply voltage and input signal strength. When powered down by a logic low on PWDN, the supply current is reduced to 230 μA.

RECOMMENDED INPUT COUPLING The full dynamic range of the AD8362, particularly at very high frequencies (above 500 MHz), is realized only when the input is presented to it in differential (balanced) form. In Figure 47, a transmission line balun is used at the input. Having a 1:4 impedance ratio (1:2 turns ratio), the 200 Ω differential input resistance of the AD8362 becomes 50 Ω at the input to the balun.

1 16

2 15

3 14

4 13

5 12

6 11

7 10

8 9

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

C41nF

C81000pF

C71nF

T1ETC1.6-4-2-3

C101000pF

SIGNALINPUT

Z = 50

C6100pF

C5100pF

C30.1μF

VOUT

C21nF

C10.1μF

VS5V @ 24mA

1:4 Z-RATIO

02923-047

Figure 47. Basic Connections for RF Power Measurement

The balun outputs must be ac-coupled to the input of the AD8362. The balun used in this example (M/A-COM ETC 1.6-4-2-3) is specified for operation from 0.5 GHz to 2.5 GHz.

If a center-tapped, flux-coupled transformer is used, connect the center tap to the DECL pins, which are biased to the same potential as the inputs (~3.6 V).

At lower frequencies where impedance matching is not neces-sary, the AD8362 can be driven from a low impedance differential source, remembering the inputs must be ac-coupled.

Choosing Input Coupling Capacitors

As noted, the inputs must be ac-coupled. The input coupling capacitors combine with the 200 Ω input impedance to create an input high pass corner frequency equal to

fHP = 1/(200 × π × CC) (12)

Typically, fHP should be set to at least one tenth the lowest input frequency of interest.

Single-Ended Input Drive

As previously noted, the input stages of the AD8362 are optimally driven from a fully balanced source, which should be provided wherever possible. In many cases, unbalanced sources can be applied directly to one or the other of the two input pins. The chief disadvantage of this driving method is a 10 dB to 15 dB reduction in dynamic range at frequencies above 500 MHz.

Figure 48 illustrates one of many ways of coupling the signal source to the AD8362. Because the input pins are biased to about 3.6 V (for VS = 5 V), dc-blocking capacitors are required when driving from a grounded source. For signal frequencies >5 MHz, a value of 1 nF is adequate. While either INHI or INLO can be used, INHI is chosen here.

1 16

2 15

3 14

4 13

5 12

6 11

7 10

8 9

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

1nF

1nF

1nF

0.01μF

1nFRF INPUT100

02923-048

Figure 48. Input Coupling from a Single-Ended 50 Ω Source

Page 62: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 20 of 32

An external 100 Ω shunt resistor combines with the internal 100 Ω single-ended input impedance to provide a broadband 50 Ω match. The unused input (in this case, INLO) is ac-coupled to ground. Figure 49 shows the transfer function of the AD8362 at various frequencies when the RF input is driven single-ended. The results show that transfer function linearity at the top end of the range is degraded by the single-ended drive.

PIN (dBm)

0 –2.0–55 10

4.0 2.0

ERR

OR

(dB

)

VOU

T (V

)

3.5 1.5

3.0 1.0

2.5 0.5

2.0 0

1.5 –0.5

1.0 –1.0

0.5 –1.5

–50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5

450MHz1900MHz2500MHz900MHz2140MHz

02923-049

Figure 49. Transfer Function at Various Frequencies when the

RF Input is Driven Single-Ended

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

0.01μF

1nF

1nF

1nF

1nF

RF INPUT 2.7nH

4.7nH

02923-050

Figure 50. Input Matching for Operation at Frequencies ≥2.7 GHz

For operation at frequencies ≥2.7 GHz, some additional components are required to match the AD8362 input to 50 Ω (see Figure 50). As the operating frequency increases, there is also corresponding shifting in the operating power range (see Figure 51).

3.00

0–60 –55 –45 –35 –25 –15 –5 5 15

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

–50 –40 –30 –20 –10 0 10

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

3.0

–3.0

2.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5

2.8GHz3.45GHz3.65GHz

02923-051

Figure 51. Transfer Function at Various Frequencies ≥2.7 GHz when

the RF Input is Driven Single-Ended

OPERATION AT LOW FREQUENCIES In conventional rms-to-dc converters based on junction tech-niques, the effective signal bandwidth is proportional to the signal amplitude. In contrast, the 3.5 GHz VGA bandwidth in the AD8362 is independent of its gain. Because this amplifier is internally dc-coupled, the system is also used as a high accuracy rms voltmeter at low frequencies, retaining its temperature-stable, decibel-scaled output (for example, in seismic, audio, and sonar instrumentation).

While the AD8362 can be operated at arbitrarily low frequencies, an ac-coupled input interface must be maintained. In such cases, the input coupling capacitors should be large enough so that the lowest frequency components of the signal to be included in the measurement are minimally attenuated. For example, for a 3 dB reduction at 1.5 kHz, capacitances of 1 μF are needed because the input resistance is 100 Ω at each input pin (200 Ω differentially), and the calculation is 1/(2π × 1.5 kΩ × 100) = 1 μF. In addition, to lower the high-pass corner frequency of the VGA, a large capaci-tor must be connected between the CHPF pin and ground (see the Choosing a Value for CHPF section).

More information on the operation of the AD8362 and other RF power detectors at low frequency is available in Application Note AN-691: Operation of RF Detector Products at Low Frequency.

Page 63: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 21 of 32

CHOOSING A VALUE FOR CHPF The 3.5 GHz VGA of the AD8362 includes an offset cancel-lation loop, which introduces a high-pass filter effect in its transfer function. To properly measure the amplitude of the input signal, the corner frequency (fHP) of this filter must be well below that of the lowest input signal in the desired measurement bandwidth frequency. The required value of the external capacitor is given by

CHPF = 200 μF/2(π)fHP (fHP in Hz) (13)

For operation at frequencies as low as 100 kHz, set fHP to approximately 25 kHz (CHPF = 8 nF). For frequencies above approximately 2 MHz, no external capacitance is required because there is adequate internal capacitance on this node.

CHOOSING A VALUE FOR CLPF In the standard connections for the measurement mode, the VSET pin is tied to VOUT. For small changes in input ampli-tude such as a few decibels, the time-domain response of this loop is essentially linear with a 3 dB low-pass corner frequency of nominally fLP = 1/(CLPF × 1.1 kΩ). Internal time delays around this local loop set the minimum recommended value of this capacitor to about 300 pF, making fLP = 3 MHz.

For operation at lower signal frequencies, or whenever the averaging time needs to be longer, use

CLPF = 900 μF/2(π)fLP (fLP in Hz) (14)

When the input signal exhibits large crest factors, such as a CDMA or W-CDMA signal, CLPF must be much larger than might seem necessary. This is due to the presence of significant low frequency components in the complex, pseudorandom

modulation, which generates fluctuations in the output of the AD8362. Increasing CLPF also increases the step response of the AD8362 to a change at its input.

Table 4 shows recommended values of CLPF for popular modulation schemes. In each case, CLPF is increased until residual output noise falls below 50 mV. A 10% to 90% step response to an input step is also listed. Where the increased response time is unacceptably high, CLPF must be reduced. If the output of the AD8362 is sampled by an ADC, averaging in the digital domain can further reduce the residual noise.

Figure 52 shows how residual ripple and rise/fall time vary with filter capacitance when the AD8362 is driven by a single carrier W-CDMA signal (Test Model 1-64) at 2140 MHz.

FILTER CAPACITANCE (μF)

RES

IDU

AL

RIP

PLE

(mV

p-p)

RIS

E/FA

LL T

IME

(ms)

170 17180 18

160 16150 15140 14130 13120 12110 11100 10

90 980 870 760 650 540 430 320 210 10 0

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RESIDUAL RIPPLE (mV p-p)

RISE TIME (ms)

FALL TIME (ms)

02923-052

Figure 52. Residual Ripple, Rise and Fall Time vs. Filter Capacitance,

Single Carrier W-CDMA Input Signal, Test Model 1-64

Table 4. Recommended CLPF Values for Various Modulation Schemes

Modulation Scheme/Standard Crest Factor CLPF Residual Ripple Response Time (Rise/Fall) 10% to 90%

W-CDMA , Single-Carrier, Test Model 1-64 12.0 dB 0.1 μF 28 mV p-p 171 μs/1.57 ms W-CDMA 4-Carrier, Test Model 1-64 11.0 dB 0.1 μF 20 mV p-p 162 μs/1.55 ms CDMA2000, Single-Carrier, 9CH Test Model 9.1 dB 0.1 μF 38 mV p-p 179 μs /1.55 ms CDMA2000, 3-Carrier, 9CH Test Model 11.0 dB 0.1 μF 29 mV p-p 171 μs/1.55 ms WiMAX 802.16 (64QAM, 256 Subcarriers, 10 MHz Bandwidth) 14.0 dB 0.1 μF 30 mV p-p 157 μs/1.47 ms

Page 64: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 22 of 32

ADJUSTING VTGT TO ACCOMMODATE SIGNALS WITH VERY HIGH CREST FACTORS An external direct connection between VREF (1.25 V) and VTGT sets up the internal target voltage, which is the rms voltage that must be provided by the VGA to balance the AGC feedback loop.

In the default scheme, the VREF of 1.25 V positions this target to 0.06 × 1.25 V = 75 mV. In principle, however, VTGT can be driven by voltages that are larger or smaller than 75 mV. This technique can be used to move the intercept, which increases or decreases the input sensitivity of the device, or to improve the accuracy when measuring signals with large crest factors.

For example, if this pin is supplied from VREF via a simple resistive attenuator of 1 kΩ:1 kΩ, the output required from the VGA is halved to 37.5 mV rms. Under these conditions, the effective headroom in the signal path that drives the squaring cell is doubled. In principle, this doubles the peak crest factor that can be handled by the system.

Figure 53 and Figure 54 show the effect of varying VTGT on measurement accuracy when the AD8362 is swept with a series of signals with different crest factors, varying from CW with a crest factor of 3 dB, to a W-CDMA carrier (Test Model 1-64) with a crest factor of 10.6 dB. The crest factors of each signal are listed in the plots. In Figure 53, VTGT is set to its nominal value of 1.25 V, while in Figure 54, it is reduced to 0.625 V.

PIN (dBm)

–2.0–65 10

2.0

ERR

OR

(dB

)

1.5

1.0

0.5

0

–0.5

–1.0

0

4.0

VOU

T (V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5 –1.5

–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5

VOUT CWVOUT 64QAMVOUT WCDMA TM1-64VOUT QPSKVOUT 256QAM

ERROR QPSK 4dB CFERROR 256QAM 8.2dB CFERROR CWERROR 64QAM 7.7dB CFERROR WCDMA TM1-64 10.6dB CF

02923-053

Figure 53. Transfer Function and Law Conformance for Signals with

Varying Crest Factors, VTGT = 1.25 V

PIN (dBm)

–2.0–65 10

2.0

ERR

OR

(dB

)

1.5

1.0

0.5

0

–0.5

–1.0

0

4.0

VOU

T (V

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5 –1.5

–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 5

VOUT CWVOUT 64QAMVOUT WCDMA TM1-64VOUT QPSKVOUT 256QAM

ERROR QPSK 4dB CFERROR 256QAM 8.2dB CFERROR CWERROR 64QAM 7.7dB CFERROR WCDMA TM1-64 10.6dB CF

02923-054

Figure 54. Transfer Function and Law Conformance for Signals with

Varying Crest Factors, VTGT = 0.625 V, CLPF = 0.1 μF

Reducing VTGT also reduces the intercept. More significant in this case, however, is the behavior of the error curves. Note that in Figure 54 all of the error curves sit on one another, while in Figure 53, there is some vertical spreading. This suggests that VTGT should be reduced in those applications where a wide range of input crest factors are expected. As noted, VTGT can also be increased above its nominal level of 1.25 V. While this can be used to increase the intercept, it would have the undesir-able effect of degrading measurement accuracy in situations where the crest factor of the signal being measured varies significantly.

ALTERING THE SLOPE None of the changes in operating conditions discussed so far affects the logarithmic slope (VSLP) in Equation 10. This can readily be altered by controlling the fraction of VOUT that is fed back to the setpoint interface at the VSET pin. When the full signal from VOUT is applied to VSET, the slope assumes its nominal value of 50 mV/dB. It can be increased by including a voltage divider between these pins, as shown in Figure 55.

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

VOUTR1

R2

02923-055

Figure 55. External Network to Raise Slope

Page 65: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 23 of 32

Moderately low resistance values should be used to minimize scaling errors due to the 70 kΩ input resistance at the VSET pin. This resistor string also loads the output, and it eventually reduces the load-driving capabilities if very low values are used. To calculate the resistor values, use

R1 = R2' (SD/50 − 1) (15)

where: SD is the desired slope, expressed in mV/dB. R2' is the value of R2 in parallel with 70 kΩ.

For example, using R1 = 1.65 kΩ and R2 = 1.69 kΩ (R2' = 1.649 kΩ), the nominal slope is increased to 100 mV/dB. Note, however, that doubling the slope in this manner reduces the maximum input signal to approximately −10 dBm because of the limited swing of VOUT (4.9 V with a 5 V power supply).

TEMPERATURE COMPENSATION AND REDUCTION OF TRANSFER FUNCTION RIPPLE The transfer function ripple and intercept drift of the AD8362 can be reduced using two techniques detailed in Figure 57. CLPF is reduced from its nominal value. For broadband-modulated input signals, this results in increased noise at the output that is fed back to the VSET pin.

The noise contained in this signal causes the gain of the VGA to fluctuate around a central point, moving the wiper of the Gaussian Interpolator back and forth on the R-2R ladder.

Because the gain-control voltage is constantly moving across at least one of taps of the Gaussian Interpolator, the relationship between the rms signal strength of the VGA output and the VGA control voltage becomes independent of the VGA gain control ripple (see Figure 56). The signal being applied to the squaring cell is now lightly AM modulated. However, this does not change the peak-to-average ratio of the signal.

VOU

T (V

)

ERR

OR

(dB

)

2

1

0

–1

–2

ERROR (dB –40°C)

ERROR (dB +25°C)

ERROR (dB +85°C)VOUT (+25°C)VOUT (–40°C)VOUT (+85°C)

PIN (dBm)–60 –40–50 –30 –20 –10 0 10

4.0

3.5

2.5

3.0

2.0

0.5

0

1.5

1.0

02923-056

Figure 56. Transfer Function and Linearity with Combined Ripple Reduction

and Temperature Compensation Circuits, Frequency = 2.14 GHz, Single-Carrier W-CDMA, Test Model 1-64

Because of the reduced filter capacitor, the rms voltage appearing at the output of the error amplifier now contains significant peak-to-peak noise. While it is critical to feed this signal back to the VGA gain control input with the noise intact, the rms voltage going to the external measurement node can be filtered using a simple filter to yield a largely noise-free rms voltage.

The circuit shown in Figure 57 also incorporates a temperature sensor that compensates temperature drift of the intercept. Because the temperature drift varies with frequency, the amount of compensation required must also be varied using R1 and R2.

These compensation techniques are discussed in more detail in Application Note AN-653: Improving Temperature, Stability, and Linearity of High Dynamic Range RMS RF Power Detectors.

5V

0.1μF

FREQUENCY (MHz) R1 (k ) R2 (k )900 1.02 25.51900 1 82.52200 1 19.1

VPOS

VSET

VOUTAD8031

VREF

VTGT

CLPF 440pFACOM

1ADDITIONAL PINSOMITTED FOR CLARITY.

R1

R2 5V

VOUT_COMP

1μF

5V

0.1μF1nF

TMP36F

0.1μF

1

2

5

VTEMP

COMM

AD83621

1

7

54

2

3

6

1k

02923-057

Figure 57. Temperature Compensation and Reduction of Transfer Function Ripple

Page 66: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 24 of 32

TEMPERATURE COMPENSATION AT VARIOUS WiMAX FREQUENCIES UP TO 3.8 GHz

The AD8362 is ideally suited for measuring WiMAX type signals because crest factor changes in the modulation scheme have very little affect on the accuracy of the measurement. However, at higher frequencies, the AD8362 drifts more over temperature often making temperature compensation necessary. Temperature compensation is possible because the part-to-part variation over temperature is small, and temperature change only causes a shift in the AD8362’s intercept. Typically, users choose to compensate for temperature changes digitally. How-ever, temperature compensation is possible using an analog temperature sensor. Because the drift of the output voltage is due mainly to intercept shift, the whole transfer function tends to drop with increasing temperature, while the slope remains quite stable. This makes the temperature drift independent of input level. Compensating the drift based on a particular input level (for example, −15 dBm), holds up well over the dynamic range.

Figure 59 through Figure 63 show these results. The compensa-tion is simple and relies on the TMP36 precision temperature sensor driving one side of the resistor divider as the AD8362 drives the other side. The output is at the junction of the two resistors (see Figure 58). At 25°C, TMP36 has an output voltage of 750 mV and a temperature coefficient of 10 mV/°C. As the temperature increases, the voltage from the AD8362 drops and the voltage from the TMP36 rises. R1 and R2 are chosen so the voltage at the center of the resistor divider remains steady over temperature. In practice, R2 is much larger than R1 so that the output voltage from the circuit is close to the voltage of the VOUT pin. The resistor ratio R2/R1 is determined by the temperature drift of the AD8362 at the frequency of interest. To calculate the values of R1 and R2, first calculate the drift at a particular input level, −15 dBm in this case. To do this, calculate the average drift over the temperature range from 25°C to 85°C. Using the following equation, the average drift in dB/°C is obtained.

eTemperaturError

ΔdBCdB/ (16)

In this example, the drift of the AD8362 from 25°C to 85°C is −2.07 dB and the temperature delta is 60°C, which results in −0.0345 dB/°C drift. This temperature drift in dB/°C is con-verted to mV/°C through multiplication by the logarithmic slope (51 mV/dB at 2350 MHz). The result is −1.76 mV/°C. The following equation calculates the values of R1 and R2:

C)(mV/CmV/10

DriftAD8362R1R2 (17)

Table 5 shows the resultant values for R2 and R1 for frequen- cies ranging from 2350 MHz to 3650 MHz. Figure 59 through Figure 63 show the performance over temperature for the AD8362 with temperature compensation at frequencies across the WiMAX band. The compensation factor chosen optimizes temperature drift in the 25°C to 85°C range. This can be altered depending on the temperature requirements for the application.

Table 5. Recommended Resistor Values for Temperature Compensation at Various Frequencies

Freq. (MHz)

Average Drift @ −15 dBm (dB/°C)

Slope (mV/dB)

Average Drift @ −15 dBm (mV/°C)

R1 (kΩ)

R2 (kΩ)

2350 −0.0345 51 −1.7600 4.99 28 2600 −0.0440 51.45 −2.2639 4.99 22.1 2800 −0.0486 51.68 −2.5102 4.99 20 3450 −0.0531 51.61 −2.7402 4.99 18.2 3650 −0.0571 51.73 −2.9544 4.99 16.9

INHI

INLOCLPF

VSET

VOUT

VOUT

0.1μFVTGT VREF

0.1μF

R1 R2

5V

AD83621nF2.7nH

4.7nH 1nF TMP36F5

2

1VTEMP

02923-058

Figure 58. AD8362 with Temperature Compensation Circuit

Page 67: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 25 of 32

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-059

Figure 59. AD8362 VOUT and Error with Linear Temperature

Compensation at 2350 MHz

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-060

Figure 60. AD8362 VOUT and Error with Linear Temperature Compensation at 2600 MHz

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-061

Figure 61. AD8362 VOUT and Error with Linear Temperature

Compensation at 2800 MHz

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)

ERR

OR

(dB

)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+85°C+25°C–40°C

02923-062

Figure 62. AD8362 VOUT and Error with Linear Temperature Compensation at 3450 MHz

4.0

0–60 20

INPUT AMPLITUDE (dBm)

VOU

T (V

)3.5

3.0

2.5

2.0

1.5

1.0

0.5

8

–8

ERR

OR

(dB

)

6

4

2

0

–2

–4

–6

–50 –40 –30 –20 –10 0 10

+125°C+105°C+85°C+25°C–40°C

02923-063

Figure 63. AD8362 VOUT and Error with Linear Temperature Compensation at 3650 MHz, Temperature Compensation is Optimized for 85°C

Page 68: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 26 of 32

OPERATION IN CONTROLLER MODE The AD8362 provides a controller mode feature at the VOUT pin. Using VSET for the setpoint voltage, it is possible for the AD8362 to control subsystems such as power amplifiers (PAs), VGAs, or variable voltage attenuators (VVAs), which have output power that decreases monotonically with respect to their (increasing) gain control signal.

1 16

2 15

3 14

4 13

5 12

6 11

7 10

8 9

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

C71nF

T1ETC1.6-4-2-3

C101000pF

C6100pF

C5100pF

C3(SEE TEXT)

SETPOINTVOLTAGEINPUT0V TO 3.5V

C21nF

C10.1μF

VS

1:4 Z-RATIO

OUTPUT CONTROL VOLTAGE0.1V TO 4.9V

CONTROLLED SYSTEM(OUTPUT POWERDECREASES AS

VAPC INCREASES)

INPUTOUTPUT VAPC PINPOUT

ATTN

C41nF

C81000pF

02923-064

Figure 64. Basic Connections for Controller Mode Operation

To operate in controller mode, the link between VSET and VOUT is broken. A setpoint voltage is applied to the VSET input, while VOUT is connected to the gain control terminal of the VGA, and the AD8362 RF input is connected to the out-put of the VGA (generally using a directional coupler or power splitter and some additional attenuation). Based on the defined relationship between VOUT and the RF input signal when the device is in measurement mode, the AD8362 adjusts the voltage on VOUT (VOUT is now an error amplifier output) until the level at the RF input corresponds to the applied VSET. For example, in a closed loop system, if VSET is set to 3 V, VOUT increases or decreases until the input signal is equal to 0 dBm. This relationship follows directly from the measurement mode transfer function (see Figure 10, Figure 11, and Figure 12). Therefore, when the AD8362 operates in controller mode, there is no defined relationship between VSET and VOUT. VOUT settles to a value that results in balance between the input signal levels appearing at INHI/INLO and VSET.

For this output power control loop to be stable, a ground-referenced capacitor must be connected to the CLPF pin. This capacitor integrates the internal error current that is present when the loop is not balanced.

Increasing VSET, which corresponds to demanding a higher signal from the VGA, tends to decrease VOUT. The VGA or VVA therefore must have a negative sense. In other words, increasing the gain control voltage decreases gain. If this is not the case, an op amp, configured as an inverter with suitable level shifting, can be used to correct the sense of the VOUT signal.

Page 69: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 27 of 32

6

RMS VOLTMETER WITH 90 dB DYNAMIC RANGE The 65 dB range of the AD8362 can be extended by adding a standalone VGA as a preamplifier whose gain control input is derived directly from VOUT. This extends the dynamic range by the gain control range of this second amplifier. When this VGA also provides a linear-in-dB (exponential) gain control function, the overall measurement remains linearly scaled in decibels. The VGA gain must decrease with an increase in its gain bias in the same way as the AD8362. Alternatively, an inverting op amp with suitable level shifting can be used. It is convenient to select a VGA needing only a single 5 V supply and capable of generating a fully balanced differential output. All of these conditions are met by the AD8330. Figure 66 shows the schematic. Also, note that the AD8131 is used to convert a single-ended input into the differential-ended input needed by the AD8330. The AD8131’s gain of 2 does create a dc offset on the output of the AD8362, but this is removed by connecting 0.5 V to the VMAG on AD8330.

Using the inverse gain mode (MODE pin low) of the AD8330, its gain decreases on a slope of 30 mV/dB to a minimum value of 3 dB for a gain voltage (VDBS) of 1.5 V. VDBS is 40% of the output of the AD8362. Over the 3 V range from 0.5 V to 3.5 V, the gain of the AD8330 varies by (0.4 × 3 V)/(30 mV/dB), or 40 dB. Combined with the 65 dB gain span of the AD8362, this results in a 100 dB variation for a 3 V change in VOUT. Due to the noise generated from the AD8330, the dynamic range is

limited to approximately 90 dB. This can only be achieved when a band-pass filter is used at the operating frequency between the AD8330 and AD8362.

Figure 65 shows data results of the extended dynamic range at 70 MHz with error in VOUT.

INPUT (dBm)

INPUT (dBV)

0 ––90

–103

20

73.0 6

ERR

OR

IN V

OU

T (d

B)

OU

TPU

T (V

)

2.5 4

2.0 2

1.5 0

1.0 –2

0.5 –4

–80

–93

–70

–83

–60

–73

–50

–63

–40

–53

–30

–43

–20

–33

–10

–23

0

–13

10

–3

02923-065

Figure 65. Output and Conformance for the AD8330/AD8362

Extended Dynamic Range Circuit

OFSTENBL CNTRVPOS

VPS1 VPSO

INHI OPHI

INLO OPLO

MODE CMOP

VMAGCOMMCMGNVDBS

AD8330

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

1

2

3

4

5

6

7

8

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

16

15

14

13

12

11

10

9

AD8362

VOUT

+5V

2k

2k

0.1μF0.1μF

0.1μF

10μF

10μF

0.1μF

BAND-PASS@ 70MHz

0.1μF

0.1μF

0.1μF

0.01μF

0.01μF

–5V

29.9

49.9INPUT

AD81318

2

1

6

3

5

4

GAIN OF 2

0.1μF

0.1μF

+0.5V

02923-066

Figure 66. RMS Voltmeter with 90 dB Dynamic Range

Page 70: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 28 of 32

AD8362 EVALUATION BOARDThe AD8362 evaluation board provides for a number of dif-ferent operating modes and configurations, including many described in this data sheet. The measurement mode is set up by positioning SW2 as shown in Figure 67. The AD8362 can be operated in controller mode by applying the setpoint voltage to the VSET connector, and flipping SW2 to its alternate position.

The internal voltage reference is used for the target voltage when SW1 is in the position shown in Figure 67. This voltage may optionally be reduced via a voltage divider implemented with R4 and R5, with LK1 in place, and SW1 switched to its alternate position. Alternatively, an external target voltage may be used

with SW1 switched to its alternate position, LK1 removed, and the external target voltage applied to the VTGT connector.

In measurement mode, the slope of the response at VOUT may be increased by using a voltage divider implemented with resis-tors in Position R17 and Position R9, and with SW2 switched to its alternate position.

The AD8362 is powered up with SW3 in the position shown in Figure 67 and connector PWDN open. The part can be powered down by either connecting a logic high voltage to a connector, PWDN, with SW3 in the position, or by switching SW3 to its alternate position.

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

COMM

CHPF

DECL

INHI

INLO

DECL

PWDN

COMM

ACOM

VREF

VTGT

VPOS

VOUT

VSET

ACOM

CLPF

AD8362

C6100pF

C5100pF

C71000pF

C41000pF

R150

R14OPEN

C81000pF

SW3

R16OPEN

C101000pF

RFIN

PWDNR1310k

R17OPEN

SW2

C30.1μF

C9OPEN

R910k

R510k

R40

R60

R70

LK1

VREF

VTGT

VOUT

VSET

SW1

R100

R80

VPOS

R10

C2100pF

C10.1μF

AGND

T1

02923-067

Figure 67. Evaluation Board Schematic

Page 71: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 29 of 32

02923-068

Figure 68. Component Side Metal of Evaluation Board

02923-069

Figure 69. Component Side Silkscreen of Evaluation Board

Page 72: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 30 of 32

Table 6. Bill of Materials Designator Description Part Number Default Value T1 ETC 1.6-4-2-3

(M/A-COM)

C1 Supply filtering/decoupling capacitor 0.1 μF C2 Supply filtering/decoupling capacitor 100 pF C3, C9 Output low-pass filter capacitor C3 = 0.1 μF, C9 = open C4, C7, C10 Input bias-point decoupling capacitors 1000 pF C5, C6 Input signal coupling capacitors 100 pF C8 Input high-pass filter capacitor 1000 pF DUT AD8362 AD8362ARU LK1 Use to reduce VTGT or to externally apply a voltage to VTGT LK1 = open R1, R6, R7, R8, R10, R15 Jumpers 0 Ω R4, R5 Use to reduce VTGT or to externally apply a voltage to VTGT R4 = 0 Ω, R5 = 10 kΩ R9, R17 Slope adjustment resistors (see the Altering the Slope section) R9 = 10 kΩ, R17 = open R13 Power-up terminating resistor R13 = 10 kΩ R16 Not installed Open SW1 Use to reduce VTGT or to externally apply a voltage to VTGT SW1 connects VREF to VTGT SW2 Measurement mode/controller mode selector SW2 connects VSET to VOUT SW3 Power-down/power-up or external power-down selector SW3 connects PWDN to R13

Page 73: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 31 of 32

OUTLINE DIMENSIONS

16 9

81

PIN 1

SEATINGPLANE

8°0°

4.504.404.30

6.40BSC

5.105.004.90

0.65BSC

0.150.05

1.20MAX

0.200.09 0.75

0.600.45

0.300.19

COPLANARITY0.10

COMPLIANT TO JEDEC STANDARDS MO-153-AB Figure 70. 16-Lead Thin Shrink Small Outline Package [TSSOP]

(RU-16) Dimensions shown in millimeters

ORDERING GUIDE Model Temperature Range Package Description Package Option AD8362ARU −40°C to +85°C 16-Lead TSSOP, Tube RU-16 AD8362ARU-REEL −40°C to +85°C 16-Lead TSSOP, 13" Tape and Reel RU-16 AD8362ARU-REEL7 −40°C to +85°C 16-Lead TSSOP, 7" Tape and Reel RU-16 AD8362ARUZ1 −40°C to +85°C 16-Lead TSSOP, Tube RU-16 AD8362ARUZ-REEL71 −40°C to +85°C 16-Lead TSSOP, 7" Tape and Reel RU-16 AD8362-EVALZ1 Evaluation Board 1 Z = RoHS Compliant Part.

Page 74: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

AD8362

Rev. D | Page 32 of 32

NOTES

©2003–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02923-0-6/07(D)

Page 75: UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL … · 2015-04-29 · El capacitor C9 se selecciona para acoplamiento de la señal de entrada en alterna. Los capacitores C1 y

UNIVERSIDAD TECNÓLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES MEDIDAS ELECTRÓNICAS II

Proyecto: Medición de Potencia de RF Grupo Nº 3: Celery, Ceppi, Franco, González, Hoja 75 de 75 Repetto y Vidal.

NOTAS