simulación numérica de flujos reactivos

204
 « An introduct ion to the numeric al si mulati on of reacting fl ows » Pascal Bruel Laboratoire de Mathématiques et de leurs Applications – CNRS - Pau University France (Cordoba 08/2007) 1 « An introduction to the numeric al simulation of reacting flo ws  Pascal BRUEL LABORATOIRE DE MATHÉMATIQUES APPLIQUÉES UMR 5142 CNRS- UPPA Pau – Fr ance. [email protected]

description

Introducción a la simulación numérica de flujos reactivos

Transcript of simulación numérica de flujos reactivos

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)1

    An introduction to the numerical simulation of reacting flows

    Pascal BRUEL

    LABORATOIRE DE MATHMATIQUES APPLIQUES UMR 5142 CNRS-UPPA Pau France.

    [email protected]

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)2

    Main objectives

    Understanding where do the zero Mach number Navier-Stokes (NS) equations come from.

    Understanding the basic structure of an isobaric planarpremixed laminar flame.

    Being able to construct and understand a diagram ofturbulent premixed combustion.

    Understanding a simple model of turbulent premixedcombustion.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)3

    Main objectives (continued)

    Understanding a numerical method specificallydeveloped to deal with zero Mach number reacting flows.

    Miscellaneous: 1. Other jet engine related situations for which the zero

    Mach NS equations cannot be used: the accidental boringof a combustion chamber.

    2. On the need of experimental data to compare with: presentation of an experiment dedicated to the test ofnumerical simulations.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)4

    INTRODUCTION

    Why it is important to improve the predictivecapabilities of numerical simulations ofreacting flows: an example for jet propulsion.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)5

    PROPULSION DEVICES: challenges

    FOR MORE ENVIRONMENTALLY FRIENDLY AIRCRAFT'S

    CLEANER ENGINES ARE NEEDED

    AIRBUS A380

    CFM56-5B

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)6

    PROPULSION DEVICES: challenges

    CLEANER ENGINES: how ?

    Fuel replacement : may be in the long term !

    With fossil fuels: Better efficiency and new combustor design.

    EXAMPLES OF NEW TECHNOLOGIES ALREADY IN OPERATION

    DOUBLE ANNULAR COMBUSTOR (DAC) PROPOSED BY CFM INTERNATIONAL SINCE 1995 (CFM56-5B for A320 and CFM56-7B for

    B737): reduction of 40 % of Nox (Responsible in particular of theproduction of ozone through a photolytic reaction ).

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)7

    Examples of ICAO engine exhaust emission for the clean enginesof today (source: www.qinetiq.com/aviation_emission_databank/index.asp)

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)8

    CLEANER ENGINES: what is under development ?

    Improvement of the injection system (Twin-annular Pre-Swirl by CFMI) to optimize the premixing air-fuel in any situation in order to control the combustion regime. Basically, one tries to burn in a lean premixed prevaporised regime.

    LPP concepts

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)9

    CLEANER ENGINES: what is under development ?

    LPP concepts: problems

    Mixing hot air + fuel can not be perfect because of risk of auto-ignition: there still exists inhomogeneities of equivalenceratio.

    Combustion instabilities are more likely to occur.

    Where do they come from ?

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)10

    A source of coherent motion: the thermo-acoustic instability( Reference: G. Searby, Ecole de combustion 2002, La Londe les Maures, France)

    Consider a combustion chamber of volume V. By combining the various governing equations (continuity, momentum, energy and equation of state) and by using a linear development around a mean state (index 0), it is then possible to obtain the following equation:

    tn

    np

    tqpc

    tp

    +

    = && 022

    2

    2 ')1(''

    ===

    =

    ==

    i0

    02

    v

    p

    i

    0

    0

    ; c ; CC

    production mole n

    number mole nnfluctuatio releaseheat '

    nfluctuatio pressure '

    ii

    i

    i

    hqp

    W

    qqqppp

    &&

    &&

    &&&

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)11

    A source of coherent motion: the thermo-acoustic instability( Reference: G. Searby, Ecole de combustion 2002, La Londe les Maures, France)

    If we can neglect the second term in the right hand side (diluted reactants for instance) then the equation reads as:

    tqpc

    tp

    =

    ')1('' 2222 &

    Using the linearised momentum equation, the above equation can be rewritten as:

    tq

    tuc

    tp

    =

    ')1('.' 202

    2 &

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)12

    A source of coherent motion: the thermo-acoustic instability( Reference: G. Searby, Ecole de combustion 2002, La Londe les Maures, France)

    Integrating once, multiplying by

    and adding the linearised momentum equation multiplied by uyields:

    '')1()''.()'21'

    21( 2

    0

    202

    0

    2qp

    cupu

    cp

    t&

    =++

    The first term represents the time derivative of the acoustic energy E, the second is its flux divergence and the third one is a source term.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)13

    A source of coherent motion: the thermo-acoustic instability( Reference: G. Searby, Ecole de combustion 2002, La Londe les Maures, France)

    Integrating over the chamber volume V delimited by the surface Aand over one acoustic period T:

    '')1(. 20

    qpc

    nFEdtd

    TVAV

    & =+ If the flux through A is zero, one recovers the well-known Rayleigh criterion: depending on the sign of the integral of the RHS, the energy can be amplified. If there exists a relation between the pressure fluctuation and the heat release fluctuations one may have an unstable unstable systemsystem.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)14

    Understanding some aspects of the asymptoticbehavior of the Navier-Stokes (NS) equations: wheredo the zero Mach number NS equations come from ?

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)15

    Zero Mach number N-S equations

    In many systems of practical interest, the pressure is said to bethermodynamically constant e.g. the density variations are thenunivoquely linked to the temperature variations, namely:

    Example: Imagine a system in which a plane reacting wavepropagates at speed Vf with respect to a reactants medium andwhich converts them into products

    cstT =

    VfProducts

    Temperature Tp

    Reactants R

    Temperature Tr

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)16

    Zero Mach number N-S equations

    r f rr rp p

    2an d is th e so u n d sp eed in th e reactan ts : r rRa T

    War =

    fr

    r

    VM

    a=

    The pressure change through the wave can be evaluated from the momentum equation (neglecting the diffusive terms) by:

    22 2and so r f

    Vpp V M =

    where Mr is the Mach number defined by:

    As a consequence, the equation of state leads to:

    In the case Vf

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)17

    Zero Mach number N-S equations

    There exists a more formal way to deal with this kind of flow, based on the regular pertubation of the Navier-Stokes equations. We shall address that in the way proposed by Mller (Mller, B., Low Mach number asymptotics of the Navier-Stokes equations and numerical implications, von Karman Institute for Fluid Dynamics, Lecture Series 1999-03, March 1999).

    Beforehands, it is necessary to introduce the notion of the asymptotic development of a function (taken from Joulin, G., Mthodes asymptotiques, Ecole de Combustion, Collonges, France, May 1994).

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)18

    Zero Mach number N-S equations

    0lim

    C onsider the real function ( ; ) ( ) o f real variab le x param eterized by .

    G iven a series o f N +1 functions ( ) such that:

    (0 ) (1) (N )( ) ( ) ...... ( ) w hen 0

    (i+1or equ ivalen tly:

    f x f x

    =

    0 (or ) (i+1) (i)( ), Landau no tation)(i)

    (0) ( )If there ex ists a series of functions ( ), ......... ( ) such that:N (i) ( ) (N )( ; ) ( ) ( ) ( ( )), w hen 0

    0

    o

    Nf x f x

    if x f x oi

    = =

    = =

    (n )

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)19

    Zero Mach number N-S equations

    Note that

    ) /

    )

    N (i) ( )Then, ( ) ( ) is said to be an asymptotic development of ( ; )0

    (N)at order ( ) and for 0.

    (0) (0)( ) lim ( ; ( )0

    (1) (0) (0) (1)( ) lim ( ( ; ( ) ( ))/ ( ),.........0

    if x f xi

    f x f x

    f x f x f x

    =

    = =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)20

    Zero Mach number N-S equations

    (i)

    (i)

    For a given series , the AD of ( ; ) does not necessarily exists, so all the difficulty is to guess at

    the form of the !

    f x

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)21

    Zero Mach number N-S equations

    2

    0

    (0)

    (1)

    (2)

    (0) (1) (2)

    Exercise 1: Consider the following series( ) log( )( ) 1( )

    we have log( ) 1 when 0

    determine ( ), ( ) and ( ) such that(i) ( )( ) ( ) is an asymptotic expansion o

    i

    i

    f x f x f xif x

    ==

    = ==

    >> >>

    xf log(1+ )

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)22

    Zero Mach number N-S equations

    Regular and singular perturbationsConsider two "problems" P(y,x, ) and P(y,x,0) and their related solutions y(x, ) and y(x,0). If there exists an asymptotic expansion of y(x, )of the form y(x,0) (1) when 0, valid for all x, then y(o

    + x, ) y(x,0)

    is said to be a regular perturbation of y(x,0) when 0.Sometimes it is said that P(y,x, ) is a regular perturbation of P(y,x,0).A perturbation which is not regular is said to be singular,

    for instance, when there is no single asymptotics expansions valid for the entire domain of x.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)23

    Zero Mach number N-S equations

    Example of regular perturbation: the low Mach numberasymptotic analysis of the Navier-Sokes equations. They read(perfect gas, no buoyancy forces, no chemical reactions):

    2 2

    .( ) 0

    .( ) .

    .( ) .( .( )

    1 1 ;2 2v

    t

    ptE H + T qt

    pE e c T H = E

    p RT

    .

    + = + = + + = +

    = + = + +=

    u

    u u u

    u u)

    u u

    ( ) ( ) ( )2with (newtonian fluid) : .3

    T = + u u u I

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)24

    Zero Mach number N-S equations

    In dimensionless form (Mller, 1999):*

    * **

    * ** * * * *

    * 2

    * * 2* * * * * * * *

    * * * * *

    *

    .( ) 0

    1 1.( ) . Re

    .( ) .( .( )Re 1 Pr Re

    :

    / ; / ; / ; / ; / ;

    /( / );ref ref ref ref ref ref

    ref ref

    t

    pt ME MH + T qt

    with

    p p p u L

    t t L u E

    .

    + = + = + 1+ = +

    = = = = = ==

    u

    u u u

    u u )

    u u

    * * *

    *2* * 2 * * * * * * * * **

    /( / ); /( / ); /( / )

    1 ; ; ; ( 1) ; /( )2

    Re ;Pr ;/

    ref ref ref ref ref ref

    ref ref

    ref ref

    ref ref ref ref p refref

    ref ref ref ref

    E p e e p H H p

    u ppE e M H = E p T T e Q QL

    u L c uM M

    p

    = = =

    = + + = = =

    = = = =

    u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)25

    Zero Mach number N-S equations

    From now on, we shall drop the superscript * for denoting the dimensionless variables and it is assumed that the low Mach number asymptotic analysis can be considered as a regular perturbation.

    (i) So each independent variables is expanded in terms of a series ( )where is the small parameter, for instance:

    MM

    (0) (0) (1) (1) (2) (2)

    (0) (0) (1) (1) (2) (2)

    (0) (0) (1) (1) (2) (2)

    ( , ; ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ...... ( , ; ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ..... ( , ; ) ( ) ( , ) ( ) ( , ) ( ) ( ,

    p t M M p x t M p x t M p x t

    u t M M u x t M u x t M u x t

    t M M x t M x t M x

    = + + += + + += + +

    x

    x

    x

    ( )

    ) ......the scaling functions are chosen such that:

    ( )i i

    t

    M M

    +

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)26

    Zero Mach number N-S equations

    0 1 2

    (0) (0) (0)

    (1) (0) (1) (1) (0)

    (2) (0) (2) (1) (1) (2) (0)

    (0)(0)

    (0)

    Exercise 2: if one retains an AD with three terms in M namely, M 1, M and M , show that:

    (

    (

    (

    )

    )

    )

    pT

    =

    == += + +

    =

    u u

    u u u

    u u u u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)27

    Zero Mach number N-S equations

    (0)(0) (0)

    (1)(1) (1)

    (2)(2) (2)

    If one proceeds similarly for the governing equations.The continuity equation yields:

    .( ) 0

    .( ) 0

    .( ) 0

    t

    t

    t

    + = + = + =

    u

    u

    u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)28

    Zero Mach number N-S equations

    (0) (0) (0)

    (1) (1) (1)

    (0) (0)(0) (0) (0) (2)

    Exercise 3: Show that the expansion of the momentum equation yields:

    ( , ) 0 e.g. ( , ) ( )( , ) 0 e.g. ( , ) ( )

    1.( ) .Re

    with:

    p x t p x t p tp x t p x t p t

    pt

    (0)

    (0) (0)

    = == =

    + = +=

    u u u

    ( ) ( ) ( )2 .3T(0) (0) (0) + u u u I

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)29

    Zero Mach number N-S equations

    (0)(0) (0) (0) (0)

    (1)(1) (1) (1) (1)

    (2)(2) (0) (0) (2) (2) (2)

    For the energy equation, we have:( ) .( ) .( )

    1 Pr Re( ) .( ) .( )

    1 Pr Re( ) 1.( ) .( .( )

    Re 1 Pr Re

    E H T qtE H T qtE H T qt

    .

    1+ = + 1+ = + 1+ = +

    u

    u

    u u )+

    (0) (0) (0) (0) (0)

    (1) (0) (1) (1) (0) (1) (1)

    the following relations also hold:

    ( ) ( ) with ( )1

    ( ) ( ) ( ) with ( )1

    H H H p

    H H H H p

    = = = + =

    u u

    u u u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)30

    Zero Mach number N-S equations

    (0)(0) (0) (0) (0) (0)

    (1)(0) (1) (1) (0) (1) (1) (1)

    Thus, at orders 0 and 1, the energy equations read:

    . .( ) ( 1)Pr Re

    . . .( ) ( 1)Pr Re

    by employing the continuity equation

    dp p T qdt

    dp p p T qdt

    1+ = + 1+ + = +

    u

    u u

    (0) (0)(0) (0) (0) (0) (0) (0)

    and the state equation at order 0, the energy equation at order 0 can be expressed as:

    . . .( )1 1 Pr Re

    T dpT T qt dt

    1+ = +

    u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)31

    Zero Mach number N-S equations

    (0)(0) (0)

    (0) (0)(0) (0) (0) (2)

    (0) (0)(0) (0) (0) (0)

    Thus, the system of zeroth-order Navier-Stokes equations reads as follows:

    .( ) 0

    1.( ) .Re

    . . .( )1 Pr Re

    t

    pt

    T dpT Tt dt

    (0)

    + = + = +

    1+ =

    u

    u u u

    u

    (0) (0)

    (0) (0) (0)

    (2)

    ( , ) ( , ) ( )Since the second order pressure is decoupled from the density and temperature fluctuations, acoustic waves are absent from the flow described by such a system.

    q

    x t T x t p tp

    +=

    It is such a system that we shall consider in the following unless stated explicitly otherwise.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)32

    Asymptotics of the N-S equations

    But if one is interested in the acoustics for slow flows two-timescale development. One time scale (fast) is related to acoustics while the second (slow) is, as before, related to the reference conv

    * *

    *

    ective time scale, ie:Reference flow time scale: ( / )

    Reference acoustic time scale: /( )

    The dimensionless acoustic time scale is defined by / /

    where is the d

    ref ref ref

    refref ref

    ref

    ref

    t L u

    pL

    t t M

    t

    =

    =

    = =imensionless flow time scale used previously.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)33

    Asymptotics of the N-S equations

    The asymptotic expansion of the NS equations in terms of the Mach number is carried out by considering a single space scale and the two time scales defined above, for instance for the pressure (dropp

    (0) (1) 2 (2)

    ,

    ing the * as before):

    ( , ; ) ( , , ) ( , , ) ( , , ) .....

    The time derivative at constant and yields:1

    M

    p t M p x t M p x t M p x t

    x M

    t t M

    = + + +

    +

    x

    x

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)34

    Asymptotics of the N-S equations

    (0)(0) (0)

    (1) (0)(0)

    (2) (1)(1)

    (0) (0) (

    If one proceeds similarly as before, the zeroth, first and second order equations yields:Continuity

    0 ( , )

    .( ) 0

    .( ) 0

    Momentum0

    t

    t

    t

    p p p

    = = + = + =

    = =

    +

    +

    x

    u

    u

    0)

    (0) (0)(1) (1)

    (0)

    (1) (0)(0) (2)

    ( , )( 1

    ( ( 1.( ) .Re

    t) p p

    ) ) pt

    (0)

    = = + + = +

    xu u

    u u u u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)35

    Asymptotics of the N-S equations

    (0)

    (1) (0)(0) (0) (0)

    (2) (1)(1) (1) (1)

    (0) (0) (0)

    (0)

    Energy equation( ) 0

    ( ) ( ) .( ) .( ) ( )1 Pr Re

    ( ) ( ) .( ) .( ) ( )1 Pr Re

    State equations( , ) ( , ) ( )( ) ( 1

    E

    E E H T qt

    E E H T qt

    t x T t x p tp t

    = 1+ = + 1+ = +

    ==

    +

    +

    u

    u

    (0))( ) ( )E t

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)36

    Asymptotics of the N-S equations

    (1) (0)(0) (0) (0) (0)

    (0)

    The first order energy equation can be also expressed as:

    .( ) .( ) ( 1)( )Pr Re

    Deriving the above equation with respect to and substracting timesthe diverg

    p dpp T qdt

    p

    1+ = + u

    2 22 (1) (0) (0)

    (0) (1) (0) (0)2 (0)

    ence of the first order momentum equation yields:( ) ( ).( ) ( 1) with

    ( , )This is a wave equation and its source is to the change over acoustic time ofth

    p q p tc p ct

    = = x

    (0)e leading order heat release rate. If one approximates by the ambient speed of sound taken as reference one recoves the equation presented in the introduction !

    c

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)37

    Understanding the basic structure of an isobaric planarpremixed laminar flame.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)38

    Premixed laminar flame: chemical kinetics

    Some (rapid) reminders To have chemical reactions, molecules have to collide.

    But even if they do collide, there is not necessarilychemical reactions.

    So this the probability of collision times the probabibilityof success of the collision which controls the rate ofproduction of species (Svante Arrhenius, Nobel Prize, 1903).

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)39

    Premixed laminar flame: chemical kinetics

    2

    1 , molecule mean free path ie mean distance covered by a molecule 2

    between two successive collisions.with : effective collision cross section (d is the "diameter" of a molecule) and the

    cl n

    d n

    =

    =7

    00

    -23 -1 0

    averagenumber of molecules per unit volume (typically 10 )

    8 , average thermal velocity, with mass of the individual molecule and

    Boltzmann constant ( 1,3806 10 J.K ). But

    c

    T

    l m

    k Tv m km

    k R

    =

    =N23

    where is the Avogadro number ( 6,022 10 ) and R perfect gas constant ( 8,314472 J/ mole/K), so

    8=

    Note: the ratio between the thermal velocity and the sound speed is of order one:

    c8

    T

    T

    RTvM

    RTM

    v RT

    =

    N

    8

    M

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)40

    Premixed laminar flame: chemical kinetics

    -9

    It is then possible to define an average collision time ie the average time between two successive collisions by:

    (typically 10 )

    Notes: These average quant

    cc

    T

    lt sv

    =

    ities results from the statistical analysis of the behavior of a large number of molecules (Maxwell-Boltzmann statistics).

    When establishing the (macroscopic) governing equations describing a fluid evolution (Navier-Sokes equations), the fluid is supposed to be continuous and the scales and of space and time variations that these equations can "capture" is such that:

    L t

    L and t .c cl t

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)41

    Premixed laminar flame: chemical kinetics

    ' ", ,

    1 1

    Considering now a chemical system involving species reacting according to elementary reactions:

    , 1, (1)j N j N

    j jj r j r

    j j

    NM

    v A v A r M= =

    = = =

    ,1

    3

    ,

    For each species , the following relation holds:

    o

    : molecular mass of species [kg/mole]

    : molar concentration of species [mole/m ]

    : mass production of spec

    j

    j j j

    j

    j

    j

    j

    r MA

    A A A rr

    jA

    jA

    A r

    AdC

    M W Wdt

    M A

    C A

    W

    =

    == =

    3ies due to reaction [kg/m /s]jA r

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)42

    Premixed laminar flame: chemical kinetics

    For each elementary reaction, the changes of concentration of the involvedspecies are related one to each other. Indeed, consider two species and ,their changes of concentration are such that:

    k lA A

    " ', ," ' " ' " ', , , , , ,

    " ', , ,

    and in mass : ( )

    k k l

    l

    j j

    k r k rA A Ar

    l r l r k r k r l r l rA

    A r A j r j r r

    C C CC

    W M

    = = = =

    ' ", ,

    1 1

    is given by:

    where quantify the "efficiency" of the collisions and thus are function of the temperature.

    direct inversej r j r

    j j

    direct inverse

    rj N j N

    v vr r A r A

    j j

    r r

    K C K C

    K et K

    = =

    = ==

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)43

    Premixed laminar flame: chemical kinetics

    " ', ,

    ,

    1

    For instance: ( ) exp

    If equilibrium is reached for reaction : 0

    Then: / ( )

    is th

    direct

    j

    direct inversej r j r

    j

    directdirect

    r

    A r r

    j Nv v equil

    r r A rj

    equilr

    EK B TRTr

    W

    K K C K T

    K

    =

    =

    =

    = =

    = =e equilibrium constant of the elementary reaction .r

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)44

    Premixed laminar flame: chemical kinetics

    is called the activation energy of the reaction, not to be confused with the energy released bythe reaction. How can we evaluate the latter ?Consider an isolated system containing initially re

    directE

    actants at temperature T whichundergo complete chemical reactions and yields products which are brought back to the initial temperature either by cooling or heating the system. The amount of energy Q requiredby this process (heating or cooling) is called the heat of reaction.The first law of thermodynamic states that:

    where is the total internal energy, the pressure, the sys

    dQ dU PdV dH VdP UP V

    = + = tem volume and its enthalpy.

    If combustion is isobaric, then

    If combustion develops at constant volume, then

    finalfinal

    initialinitial

    finalfinal

    initialinitial

    H U PV

    Q dH H

    Q dU U

    = +

    = =

    = =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)45

    Premixed laminar flame: chemical kinetics

    Exercise 4: Consider a one-step irreversible exothermic reaction irrversible R P at constant pressure, with no heat and mass exchange with the surrounding environment, suppose that the heat capaciti

    es are similar

    and do not depend on temperature ie ( ) ( ) . Calculate the

    final temperature of the products as a function of the heat of reaction .

    R Pp p PC T C T C

    Q= =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)46

    The importance of mixing

    To have combustion, one has to bring together reactants and products, how ?: I put the species ( , ) in a box and I mix:

    1- perfectly

    2- partially

    3- not at all!

    Premixed flame

    Diffusion flame

    Partially premixedflame

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)47

    Premixed laminar flame: the basic planar structure

    0lS

    flPerfectlypremixed mixture for exampleair+propane

    products

    x

    0Rl

    P

    S

    p

    Hypotheses: planar wave, stationary in the laboratory coordinate systemirreversible reaction R P, large activation energy / 1C , and constant.

    E RTD

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)48

    Premixed laminar flame: the basic planar structure

    2

    2

    2

    p 2

    Governing equationsu = cst =

    dY du ( , ) (Y is the mass fraction of propane)dx dx

    dT d TuC ( , )dx dx

    = cstwith ( , ) ( ) exp( / ), / 1

    ( ) ; ( ) ; ( ) 0, ( )

    R R P P

    R R P

    u uYD w T Y

    Qw T Y

    Tw T Y B T Y E RT E RT

    T T Y Y Y T T

    ==

    = +

    = = = + = + =

    Estimation of the flame thickness and flame speed?

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)49

    Premixed laminar flame: the basic planar structure

    Corresponding profiles

    T Yp

    0 0

    Yp

    T

    TpTp

    TRX (-) X (+)

    0l

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)50

    Premixed laminar flame: the basic planar structure

    2p R

    p R2

    Eliminating between the energy equation and the species equation yields:

    1d C (T-T ) ( )d C (T-T ) ( )u

    dx dx

    /( )where the Lewis is defined by , ratio of the thermal

    RR

    p

    p

    w

    Q Y YQ Y Y LeC

    CLe Le

    D

    + + =

    =

    p R p

    diffusivity

    anf the species diffusion coefficient.If 1,C (T-T ) ( ) can be cast under the form a + bexp( uC / ) but

    since T et Y are bounded and because of the boundary conditions in the reactanRLe Q Y Y x = +

    ts,-a and b are equal to zero. So, for 1, one obtains 1-

    with .

    R

    P R P

    P R Rp

    T T YLeT T Y

    QT T YC

    = =

    = +

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)51

    Premixed laminar flame: the basic planar structure2

    p 2

    p 0 0 2

    dT d TuC ( ) exp( / )dx dx

    In terms of order of magnitude, one can write that:

    uC ( ) exp( / )( )

    P R P RP R P

    l l

    QB T Y E RT

    T T T T QB T Y E RT

    = +

    00l

    R l pS C

    0

    0R

    0

    0 6 2.11

    exp( / )

    The rate of conversion of reactants into products is therefore

    given by .

    Methane+air: For an initial temperature between 150 and 600 K: 0.08 1.610

    l PR p

    l

    l

    l R

    S B E RTC

    S

    S T

    +

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)52

    Premixed planar laminar flame: detailed structure

    SL0

    Tp

    TR

    Reaction rate

    TemperatureFlamethickness

    Reactants Products

    Preheating zone Reactionzone

    For the detail of the asymptotic analysis seeClavin (1985)

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)53

    Flame stability

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)54

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    Wave length of front perturbation

    b

    '

    '

    '

    ( , , ) ( , , )

    ( , , ) ( , , )

    ( , , ) ( , , )

    unpP p

    unpP p

    unpP p

    P

    u x z t u u x z t

    v x z t v v x z t

    p x z t p p x z t

    = += += +

    0

    unp Rp l

    Punp

    p

    unpP

    unpP

    u u S

    v v

    p p

    = == ===

    '

    '

    '

    ( , , ) ( , , )

    ( , , ) ( , , )

    ( , , ) ( , , )

    unpR R

    unpR R

    unpR r

    R

    u x z t u u x z tv x z t v v x z tp x z t p p x z t

    = += += +

    0lS

    0lS

    x

    z

    x

    Reactantsside

    Productsside

    Productsside

    Reactantsside z

    Pertubated flamefront xf=F(z,t)

    0lS

    0

    0

    unpR l

    unpp

    unpR

    unpR

    u u Sv v

    p p

    = == ===

    0lS

    x=0 x=0

    Perturbed state flame front witha small periodic corrugation >> flame thickness

    Unpertubed state (unp): Planar flame at xf=0

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)55

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    x=0

    x

    ( )Front location : , . 0 corresponds to the location of the unperturbed front.x F t z F= =

    2

    ,1 Unit tangent vector to F curve

    1

    TFz

    Fz

    = +

    t

    2

    1, Unit normal vector to F curve

    1

    TFz

    Fz

    = +

    n

    tn

    z-

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)56

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    ( , ) Flow velocity vectoru v=U

    ( ,0) Absolute front velocity vector ( projected on the x direction):Ft

    = D

    2. Flow velocity component normal to the front

    1

    Fu vzFz

    = +

    U n

    2. Absolute front velocity component normal to the front

    1

    FtD

    Fz

    = =

    +

    D n

    2. Relative flow-front velocity component normal to the front

    1

    F Fu vt z

    Fz

    = +

    U n D.n

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)57

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    Hypotheses:1 The front is considered as a discontinuity2 The perturbations are of small amplitude and of large wave length (with respect to the flame thickness) and F(z,t) exp( t i

    = + ) with 1, initial amplitude of the perturbation3 . for any front shape F4 remains piecewise constant ( or )5 Euler equations on both sides of the front ie:

    .( ) 0 ;

    l

    u b

    kz

    S

    =

    =

    U n D.n

    uu 1.( ) ;p T cstt

    + = = u u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)58

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    such that:( , , ) '( , , )( , , ) '( , , )( , , ) '( , , )

    unp

    unp

    unp

    (u,v)u x z t u u x z tv x z t v v x z tp x z t p p x z t

    = += += +

    T

    We shall seek solutions of the form :u =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)59

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    By injecting the sought form of solution in the Euler equations and dropping the quadratic terms, one gets:

    ' 1 '

    ' 1 '

    ' ' 0

    valid on both sides, wit

    unpunp

    unpunp

    u' u put x xv' v put x z

    u vx z

    + = + =

    + = h matching of the solution at the pertubed flame front.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)60

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    2 2

    2 2

    0 0

    ' 1 '' ' ' ' 1 ' '

    ' 1 '

    Thus, the field of pressure per

    unpunp

    unpunp

    unpunp

    u' u pux t x x u v u v p psum u

    t x z x x z x zv' v puy t x z

    + = + + + = + + = 14243 14243

    2 2

    2 2

    turbation satisfies a Laplace equation:' ' 0

    The solution is sought under the form: ' exp( )exp: growth rate of the perturbation in tim

    p px z

    p A t ikz nx

    + = = +

    2 2

    e (unstable if Re( ) 0)( 0) : wave number of the perturbation along the z axis: growth rate of the perturbation in space.

    Injecting this in the Laplace equation yields The damping of the pertu

    kn

    n k n k

    >>

    = = bation at infinity in space implies that:

    reactants side: x0n k n k = + =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)61

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    ' exp( )exp( )

    ' exp( )exp( )

    Convention: the upper (resp. lower) sign is for the reactants (resp. products) side Solution to this is obtained

    unpunp

    unpunp

    u' u ku A t ikz kxt xv' v iku A t ikz kxt x

    + = + + = +

    m

    by i) solving the homogeneous system and ii) adding a particular solution

    exp( ) exp exp( )( )

    exp( ) exp exp( )( )

    unp unp unp

    unp unp unp

    Aku'(x,z,t)= B x kx t ikzu u k

    iAkv'(x,z,t)= C x kx t ikzu u k

    + +

    m

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)62

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    An unstable solution corresponds to Re( )>0. In such a case, the solution has still to satisfy the condition that there is no perturbation at infinity so the integration constant and must be set tB C

    o zero in the reactants

    side ie for x

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)63

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    Consequently, there are four unknowns which are , , and . To determine them, one has to use the matching at the front between the gasdynamicspertubations in the reactants and in the products. T

    R P Pa a b

    -

    2

    he pertubed flame front is supposed to propagate normally to itself at the same speedas the plane flame At the reactants side of the flame front ie for x=0

    .

    1l

    F Fu vt z cst S

    Fz

    = = = +

    U n D.n

    +

    linearization ' (1)

    Doing the same at the products side of the flame front ie for x=0 yields ' = (2)

    l R

    P

    F Fu S u Ft t

    Fu Ft

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)64

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    2

    The velocity component tangential to the front must besimilar on both sides of the flame front

    1

    ' ' (3)Finally, since the flame propagation thro

    l R l P

    Fu v Fz u vzF

    zS ikF v ES ikF v

    + = + +

    + = +

    u.t

    ugh the reactants isconstant, so is the pressure drop through the front

    ' ' (4)

    R Pp p

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)65

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    Injecting the solutions into Eqs. (1)-(4) yields an homogeneous systemin , , and . To get a non trivial solution, the determinant of that systemhas to be equal to zero. After (long !) calculati

    R P Pa a b

    2 2

    - +

    ons yields the following dispersion relation:

    1 1 2 (1 )( ) 0

    there exists two real roots, one negative and one positive the front is (always

    l lS k E S kE

    + + + =

    1/ 22+

    ) unstable !

    1( ) with ( ) 11l

    E E EkS E EE E

    + = = +

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)66

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    z

    x=0

    Products

    p-

    p-

    p+

    p+

    p-

    p-

    p+

    p+

    lu S>

    lu S

    lu S >

    Reactants

    x

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)67

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis)

    But we know by experience that there exists stable premixed flames ! there exists stabilizing phenomena

    Drawback of the Darrieus-Landau model: it is not valid for the shor

    0l

    t wavelength perturbations.For these short wavelengths ( ), the diffusional-thermal structure of the flame is affectedand so is the flame propagation velocity in the reactants.

    Reactants Products

    0l

    concentration

    temperatureProduction term

    Reaction zone

    Heat flux

    Reactants flux

    0l

    0l

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)68

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction)

    The front structure is affected by the result of a competition between the transverse fluxes of heat and species (Lewis number).Markstein proposed to account for this through a dependency of thepropag

    020 0 0

    2

    ation velocity of the curved front to its curvature radius :

    (1 ) (1 ) (1 )

    is called the Markstein number. By carrying out the same kind of analysis as DL, one obtains t

    ll l l l

    RFS S S S Ma

    z R RMa

    = = + = +LL

    20 0 0

    he following expression for :

    1( ) ( 2 ) 11

    1Using asymptotic analysis in the joint limit (1- ) (1) and , the expressionLe

    of the Markstein number is give

    l l lE E EE Ma k Ma k E Ma k

    E E

    O

    + = + +

    n by:

    2 1 2 2 1(1- )Le 1 21 1

    E EMa LogEE E

    += + + +

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)69

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction)

    Curves corresponding to the dispersion relation for the growth rate of the perturbation

    Ma = 0Ma < 0

    Ma > 0

    kn0 'kmax

    '0

    Wave number

    17

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)70

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction+gravity effects)

    Rayleigh-Taylor instability comes into play!

    Reactants

    Upwards propagation: destabilizing effect

    SL0SL0g

    Products

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)71

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction+gravity effects)

    Reactants

    g SL0SL0

    ProductsDownwards propagation: stabilizing effect

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)72

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction+gravity effects)

    20 0

    By carrying out the same kind of analysis as DL+Markstein, and taking into account the boyancy effect at the font, one obtains the following expression for :

    1( ) ( 2 )1 l l

    E E EE Ma k Ma k EE E

    + = + +

    2

    20

    0

    0

    0

    1 1 1

    where the Froude number is defined by:

    g is taken positive (resp. negative) for a downwards (resp. upwards) flame propagation.

    lr l

    lr

    l

    E Ma kE F k

    SFg

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)73

    Premixed laminar flame:hydrodynamic instability(Darrieus-Landaus analysis+Marksteins correction+gravity effects)

    Ma > 0

    0

    Fr < 0| Fr |

    Markstein(| Fr | )

    kn0

    Darrieus-Landau

    increases

    0

    kn1'

    Ma > 0

    0

    Fr > 0Markstein(Fr )

    kn0'

    Darrieus-Landau

    kn2'

    kn1'

    Zoom

    increases

    Upwards propagation Downwards propagation

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)74

    Diagram of turbulent premixed combustion

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)75

    Diagram of turbulent premixed combustion: turbulence scales

    uA(t) uB(t)| |A B

    d

    '

    ( ) '( ), ( ) '( ), with '( ) '( ) 0

    denotes the time (Reynolds) average of . For flow with variable density

    one introduces the density weighted (Favre) average .

    we call ,

    A A A B B B A B

    d

    U t U u t U t U u t u t u t

    u

    = + = + = =

    =

    '

    the average of the velocity difference at scale

    ie ( ) ( )d A B

    d

    u U t U t

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)76

    Diagram of turbulent premixed combustion: turbulence scales

    ( ) ( )2 2A B

    A one-time two-point correlation coefficient can also be defined as:

    ' 'r( )u' u'

    if the two signals are perfectly correlated r( ) 1 and perfectly uncorrelated r( ) 0.

    The integral length scale

    A Bu u=

    = =

    d

    d d

    0'

    can therefore be defined as: r( )

    Thus, will designate the average velocity fluctuations at the integral length scale

    l dl

    u

    +

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)77

    Diagram of turbulent premixed combustion: turbulence scales

    There exists in a turbulent flow a spectrum of scales of fluctuation from the integral length scale to the Kolmogorov length scale at whichfluctuation cannot "survive" because of the viscous di

    d

    ssipation.

    )1(Re'

    Ou =

    Scale at which the kineticenergy of the velocityfluctuations is transformedinto heat chaleur

    4/3Re

    =Ideal energy cascade: transfer without losses)//()//( '2''2' uuuu

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)78

    Diagram of turbulent premixed combustion: premixed flame scales0 0

    00

    Velocity scale: time scale , transit time through

    Space scale: the flame front ie. the time required by the flame front to propagate over a distance equal to its thickness.

    The dia

    l lf

    ll

    SS

    =

    gram is established by comparing the time scales of turbulence and the transit time through the premixed flame.

    premixed flame one time scaletwo dimensionless numbers, th

    Turbulence two time scales

    e Damkhler

    number and the Karlovitz number ff

    Da Ka

    = =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)79

    Diagram of turbulent premixed combustion: premixed flame scales

    These two numbers are supplemented by the turbulent Reynolds number'Re . If Re (1), we are back to a laminar flow !

    Exercise 5: show that the following expression holds:

    u O

    =

    1

    0 0

    3/ 2 1/ 2

    0 0

    1

    0 0

    '

    '

    ' Re

    and plot the

    l l

    l l

    l l

    uDaS

    uKaS

    uS

    = = =

    0 0

    'iso-curves of , and Re in the plane , and in log-log coordinatesl l

    uDa KaS

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)80

    Thickened wrinkled flamesPreheating zone

    SL0

    Reaction zone

    Preheating zone

    SL0 SL0

    reactants products

    SL0

    Wrinkled flame, small vortex

    reactants products

    Preheating zone

    Reaction zone

    reactants

    Wrinkled flame, larger vortex

    products

    Reaction zone

    reactants products

    Reaction zonePreheatingzone

    Diagram of turbulent premixed combustion: schematic of flame-vortex interaction

    Thickened flames

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)81

    Diagram of turbulent premixed combustion

    0

    Exercise 6: show that the line 1 corresponds to the situationwhere .l

    Ka

    ==

    Now we shall consider an example of estimation of the regimesof combustion potentially present in a nuclear reactor, in case of

    hydrogen release

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)82

    Diagram of turbulent premixed combustion: practical application

    Hydrogen risk in a PWR in case of water leakage in the primary water circuit of the reactor

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)83

    Diagram of turbulent premixed combustion: practical application

    If H2 gets into the confinement.

    Radioactive products release in the

    atmosphere

    Energy deposit, spark,

    Mixture H2/Air/H2O in the confinement

    Damage to the airtightness of the confinement

    Pressure

    Combustion

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)84

    Diagram of turbulent premixed combustion: practical application

    28 March 1979 : Three Mile Island accident

    Between 100 et 174 : the reactor core wasuncovered

    Between 174 et 200 : emergency cooling systemsstopped the uncovering process

    Between 200 et 930 : the water level was back to normal

    320 kg H2 (8 % in volume) releasedPressure rise of 2 bars due to a deflagration

    2 2 22 2586,6 /

    Zr H O ZrO H QQ kJ mole

    + + +=

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)85

    Diagram of turbulent premixed combustion: practical application

    Two preliminary steps are necessary:

    The determination of the basic properties of lean H2-Air mixtures (laminar flame speed).

    the determination of the turbulence length scales in the reactor.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)86

    Diagram of turbulent premixed combustion: practical application

    Laminar flame speed ? Collecting data in the litterature.

    Calculations with Chemkin II (1986) / Premix (1985) withdetailed chemistry or global scheme.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)87

    Diagram of turbulent premixed combustion: practical application

    Reactants

    Flame front

    electrodes

    Flamefront

    reactants

    Spheric bomb(Dowdy et al, Lamoureux et al)

    Double kernels(Andrews et Bradley, Koroll et al)

    Bunsen burner(Liu et MacFarlane, Lewis et von Elbe)

    Opposed jets(Egolfopoulos et Law)

    reactants

    reactants

    Flame front

    electrodes

    Flame front

    reactants

    Experimental set-up s to determine the laminar flame velocity

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)88

    Diagram of turbulent premixed combustion: practical application

    *

    *

    *

    Concentration en hydrogne [%]

    V

    i

    t

    e

    s

    s

    e

    d

    e

    f

    l

    a

    m

    m

    e

    l

    a

    m

    i

    n

    a

    i

    r

    e

    [

    c

    m

    /

    s

    ]

    8 10 12 14 16 18 20 22 24 26 28 300

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250 Andrews et Bradley (1973)Liu et MacFarlane (1983)Lewis et von Elbe (1987)Egolfopoulos et Law (1990)Dowdy et al (1990)Law (1992)Koroll et al (1993)Lamoureux et al (2000)

    *

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)89

    Diagram of turbulent premixed combustion: practical application

    +

    +

    +

    +

    ++

    x xxxxx xx

    x

    x

    x

    x

    C o n cen tra tio n en h y d ro g n e [% ]

    V

    i

    t

    e

    s

    s

    e

    d

    e

    f

    l

    a

    m

    m

    e

    l

    a

    m

    i

    n

    a

    i

    r

    e

    [

    c

    m

    /

    s

    ]

    8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 00

    2 5

    5 0

    7 5

    1 0 0

    1 2 5

    1 5 0

    1 7 5

    2 0 0

    2 2 5

    2 5 0 K ee e t a l (1 9 8 5 )W es tb ro o k e t D ry e r (1 9 8 4 )M aas e t W arn a tz (1 9 8 8 )B a lak ris h n an e t W illiam s (1 9 9 4 )G as R es ea rch In s titu te (1 9 9 9 )R ac tio n g lo b a le (1 q u a tio n )G ttg en s , M au ss e t P e te rs (1 9 9 2 )L am o u reu x e t a l (2 0 0 0 )

    +x

    calculations

    In thelitterature

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)90

    Diagram of turbulent premixed combustion: practical application

    Comparison between experiments and numerical results

    *

    *

    *

    +

    +

    +

    +

    ++

    x xxxxx xx

    x

    x

    x

    x

    C o n ce n tra tio n en h y d ro g n e [% ]

    V

    i

    t

    e

    s

    s

    e

    d

    e

    f

    l

    a

    m

    m

    e

    l

    a

    m

    i

    n

    a

    i

    r

    e

    [

    c

    m

    /

    s

    ]

    8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 00

    2 5

    5 0

    7 5

    1 0 0

    1 2 5

    1 5 0

    1 7 5

    2 0 0

    2 2 5

    2 5 0

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)91

    Diagram of turbulent premixed combustion: practical application

    Plausible domain

    Concentration en hydrogne [% ]

    V

    i

    t

    e

    s

    s

    e

    d

    e

    f

    l

    a

    m

    m

    e

    l

    a

    m

    i

    n

    a

    i

    r

    e

    [

    c

    m

    /

    s

    ]

    8 10 12 14 16 18 20 22 24 26 28 300

    20406080

    100120140160180200220240260 V itesse moyenne numrique

    V itesse moyenne exprimentale

    Concentration en hydrogne [%]

    V

    i

    t

    e

    s

    s

    e

    d

    e

    f

    l

    a

    m

    m

    e

    l

    a

    m

    i

    n

    a

    i

    r

    e

    [

    c

    m

    /

    s

    ]

    8 9 10 11 12 13 14 15 160

    10

    20

    30

    40

    50

    60

    70

    80

    90 Average numerical valuesAverage experimental values

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)92

    Diagram of turbulent premixed combustion: practical application

    Overall view of the reactor

    0 m

    6

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)93

    Diagram of turbulent premixed combustion: practical application Generic flow configuration retained

    Jet Grid turbulenceWake

    0.03 - 10.02 - 0.05Grid0.22 - 5.60.05 - 2Wake

    1 - 150.05 - 0.8Jet

    [m/s][m]Configuration 'u

    0.02 2 m0.03 15 m /s

    'u

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)94

    Resulting estimated locations of the related regimes ofturbulent premixed combustion

    10-2 10-1 100 101 102 103 104 105 106 10710-2

    10-1

    100

    101

    102

    103

    104

    105u' /SL

    0

    lt / L0

    Ret = 1

    Ka = 1

    Ka = 100

    Da = 1 Da = 100

    Ret = 0.01

    Ret = 100

    Da < 1Ka > 100

    Ka < 1Da >> 1

    Da >> 1Ka > 1

    Flamelet regime

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)95

    A minimal model of turbulent combustion in the

    Flamelet regime

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)96

    Premixed flamelet model

    Pioneered by Bray-Moss-Libby in the 1980 sDa>>1, Ret>>1, Ka

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)97

    Premixed flamelet model

    R

    P R

    T TcT T

    = Progress variable

    0 1

    P(c;x,t)

    (x,t) (x,t)

    cP(c;x,t) = (x,t)(c)+(x,t)(1-c) + f(c) [H(c)-H(1-c)]

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)98

    Premixed flamelet model: equations for a planar 1D turbulent flame

    ( )1 1uE c = + %

    productsreactants

    0

    4 '' '' 03

    '' ''

    ut x

    u u u p u u ut x x x

    c u c cD u ct x x

    + = + + = + =

    %

    % % %

    % % % &

    +

    Closure

    required

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)99

    Premixed flamelet model: ?Under the model hypotheses, the signal c(t) at a given

    point has the following shape (telegraphic signal)

    c

    Flamelet crossings

    1 1 with ,

    i i

    i N i NP

    P p R Ri iR P

    tc t t t tt t

    = =

    = =< >= = =+

    fw iR

    tiP

    t1iP

    t + 2iPt +

    Average reaction rate per flamelet crossing

    1iRt + Mean crossing frequency

    2Exercise 7: show that R Pt t

    = +

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)100

    Premixed flamelet model: ?c

    c

    Pt

    RtReconstructed regular instantaneous signalof same duration, same number of crossingsobtained by duplicating the same pattern

    Instantaneous signal

    Two crossings for a 2duration P R

    P R

    t tt t

    + = +

    Pt Pt Pt

    Rt Rt Rt

    Solution Ex. 7:

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)101

    Premixed flamelet model: ?Let us call p0(x,t) the probability that

    c(x,t)=0,

    and derive a differential equation for it.

    (we drop out the x for convenience)We have:

    p0(t+dt)= P(c(t)=0).P(c remains at 0 during dt) + P(c(t)=1).P(c switches from 1 to 0 during dt)

    So:

    p0(t+dt)= p0(t) . P(c remains at 0 during dt) + (1- p0(t)).(1- P(c remains at 1 during dt))

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)102

    Suppose that the statistics of tr and tbfollow a Poisson law namely:

    P(c remains at 0 during dt)= e-adt=

    P(c remains at 1 during dt)= e-dt=

    rtdte /btdte /

    Premixed flamelet model: ?

    p0(t+dt)= p0(t) . e-adt +(1- p0(t)).(1- e- dt)

    in the limit dt tends to 0: p0(t)=-(a+ ) p0(t)+ and the solution is given by:

    tt etpetp )(0)(

    0 )0(]1[)(

    ++ =++=

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)103

    Premixed flamelet model: ?

    and

    +==+= )(1)()( 010 tptptpFor +t

    It is now possible to calculate the auto-correlation signal of c, namely R()= to extract its

    integral time scale

    ))1(/1)(()1)(()()()1)()((1)()(

    ==+=>=+=+=+=+>==+

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)105

    Premixed flamelet model: ?>>=+

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)106

    Premixed flamelet model: ? is the statistical average carried out over a large

    number of flamelet crossings. Each flamelet is characterized

    by its conversion rate given by and by its crossing time

    at the point of observ

    f

    lc

    l

    w

    S t

    flamelets

    00 0

    flamelets

    ation, so its related production rate is

    If are supposed to be statistically independent, then:

    (with 1)l

    R lc

    l

    R lf c

    l

    l

    R l c cf c R l R

    l l l

    S t

    Sw t

    S

    S t tw t S S I I

    =

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)107

    Premixed flamelet model: ?0

    01For low turbulence intensity can be considered as a

    constant (Bray et al., 1988). Non constant expressions have been also proposedby Bray (1990). Thus, the mean reaction rate can be writ

    l

    cR

    l

    tS It

    00

    00 2

    ten as:

    (1- )2

    (1 )since (two-delta pdf) it can be reexpressed in Favre average:1

    (1 )2 (1 ) (1 )

    with

    l

    l

    cR

    l

    cR

    l

    P R

    R

    t c cS It

    ccc

    t c cS Ic

    T TT

    < > < >+< >= +

    + +=

    %%

    % %%

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)108

    Premixed flamelet model: ?This demonstrates the proportionality of the

    mean reaction rate to (1-) that reads in the end:

    )~1(~),,,,,( ccITSf ooLf = L

    This typically the source term considered by Kolmogorov, Petrovskii and Piskounov (KPP,1937) but for

    a constant density - constant diffusion case.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)109

    Premixed flamelet model: " " and " " ?u u u c The simplest approach gradient approximations

    2" "3

    " " (no possibility of so-called counter-gradient diffusion)

    where the turbulent

    ji li j t t ij

    j i l

    ti

    t j

    uu uu u kx x x

    cu cSc x

    = + + + =

    %% %

    %

    dynamic viscosity has to be calculated by useof a turbulence model ( - model for instance) and the turbulentSchmidt number has to be set. More elaborated approaches rely on the resolution of dedicat

    k

    ed

    equations for either " " or " " or both. (See Pope, 2000)i j iu u u c

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)110

    Premixed flamelet model: propagation properties ?We use the KPP technique to analyse the propagation properties of an 1-D

    turbulent planar flame modelled as (frozen turbulence):

    0

    2 4( ) 03 3

    ( )

    with a "generic" source term given by:(1 ) where is the heat release parameter

    (1 )

    and

    w

    rt

    t

    w D

    b r

    r

    ut x

    ku uu p ut x t x x xc uc uD

    t x x x

    c cAc

    T TT

    + = + + + =

    + =

    = +=

    %

    % % % %

    % % % %

    % %%

    is the turbulence kinetic energy

    prevailing in the reactants.

    rk

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)111

    Premixed flamelet model: propagation properties ?

    We consider two different situations:

    Variable density Constant Dt Regular mean reaction rate

    Situation 1

    0 10

    =c(1-c)

    c

    Situation 2

    10

    (c)

    cc*0

    Or Variable density Constant Dt Quenched mean reaction rate

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)112

    Premixed flamelet model: propagation properties ?

    In both situations one can use the KPP

    technique to study the steady regime of propagation

    = 21

    ~ PcddPP

    0

    1

    tf DAm =

    Dimensionless velocity:

    with cstSmdxcd

    mcDcP trt ===

    ~)~()~(

    :as written be can equation- steady The c~

    )0~(*~0

    *~)~1(

    )~1(~)~()~(

    0

    01

    ==

    >+

    = +

    cDDcc

    ccc

    ccD

    cDc

    tt

    Dt

    tw

    No quenching: 0* =c

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)113

    Premixed flamelet model: propagation properties ?

    Without quenching c*=0: KPP scenarioCharacteristic equation near the singular points:

    Reactants side:

    Products side:

    (node) )0('2 if

    roots real ,0)0('122

    KPP

    ss

    =>=+

    point) (saddle roots real

    ,0)1('122

    =++ ss

    There exists a continuous spectrum of

    propagation velocity limited from below by

    KPPt

    r

    twt S

    DAS =

    )0('2 0

    0 0.2 0.4 0.6 0.8 10

    0.01

    0.02

    0.03

    0.04

    0.05

    < KPPKPP = 2 > KPP

    P(c)

    c

    noeud

    pointdeselle

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)114

    Premixed flamelet model: propagation properties ?

    ),

    ~)~(~

    ],0[

    **

    *

    cc

    ccPPcd

    dPP

    c

    (at branchlinear above the intersectsthat one

    the is trajectory selected the ,1],[c interval the On

    is solution the and

    :to reduced is equation-P the interval the On

    *

    ==

    There is only one possible trajectory and consequently only one propagation velocity which

    is smaller than !KPP

    tS

    Integration from the vicinity of the saddle point in the direction of the point (c*, c*) yields the trajectory in the phase space usable to get the flame structure in the physical space (Sabelnikov et al., 1998). Then, the resulting profiles can be compared with those produced by simulations in the physical space.

    With quenchingc*0

    Tangent to PKPP

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)115

    Premixed flamelet model: propagation properties ?

    Asymptotic behavior of the P-equation when * 0c

    Development at first order

    *

    ~

    cc=c~Outer solution : Inner solution :

    )0('2lim )0('2lim

    matching

    )0('2lim =

    So when c* 0 (c*) min

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)116

    A numerical method for Mach zero reacting flows: the artificialcompressibility method

    (in cooperation with Catherine Corvellec, Wladimyr Dourado Vladimir Sabelnikov)

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)117

    Artificial compressibility approach

    Developing a numerical method to deal with unsteadyreacting flows at "zero" Mach number

    This method should:

    be simple, versatile and easy to implement

    lead to a program structure familiar to people usuallycalculating inert compressible flows (unlike specificschemes as SIMPLE(R) or PISO approaches )

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)118

    Artificial compressibility approach

    Basic idea: introducing a finite-sound speed in the systemContinuity equation equation for the pressure

    Proposed by Chorin (1967) for inert flows Unsteady inert flows (Soh et al. 1988, McHugh et al. 1995 Extended to steady zero Mach number reacting flows by Bruel et al. (1996). Extended to unsteady zero Mach number reacting flows by Corvellec et al. (1999).

    It is well suited to transform a compressible solver based code intoa code able to deal with zero Mach number reacting flows

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)119

    Artificial compressibility approach

    artificial compressibility factor: controls the magnitude of the artificial sound speed that distributes the pressure throughout the computational domain

    pseudo-time term: is brought to zerobetween two physical time steps

    1 .( ) 0pt

    + + = U original equation

    real unsteady term: treated as a source term during convergence loop in pseudo-time.

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)120

    Artificial compressibility approach

    2c

    c 2

    The artificial sound speed is given by a

    and the pseudo-Mach number is M 1

    but its value can be controlled through the setting of .

    u

    uu

    = +

    =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)121

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    2

    ( )

    regroups the convective terms and the other fluxes.is the source vector, namely:

    02 4;3 3

    i v

    i v

    i vR t

    t

    t x

    uuu u p kx

    c uc cDx

    + =

    = + + =

    %%% %

    % % % %

    q F F S

    F FS

    q = ; F F ;

    (1 )with a generic flamet model source term ie: (1 ) ww D

    00

    c cAc

    = +% %

    %

    S =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)122

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    2

    ( )

    / 0 0 0 0with: ; and with: 0 1 0 ; 0 1 0

    0 0 1 0 0 1

    giving:

    ac v

    ac i

    ac

    t xp

    upu u u pc c

    + + = = = = =

    = + +

    %

    % % %M% %

    ac

    ac2 1 2 1 2

    ac

    q q F F S

    q = I q q I q F I F I I

    q = q = F 23

    Since we deal with both the physical time t and the pseudo-time ,there are two nested loops, that we shall index by n (physical time) and (pseudo time,so from the solution at

    Rk

    uc

    % %

    1

    1, 1 1, 1 1, 11, 1

    physical time , the solution at time is obtained

    when the term tends to zero. The corresponding system reads as:

    ( )

    n n n

    n n nac vn

    t t t t

    x t

    +

    + + + + + ++ +

    = +

    + =

    ac

    ac

    q

    q F F qS

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)123

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    1, 1 1, 1 1, 11, 1

    1, 1 11, 12

    1,

    Discretisation of the physical time deivative and treatment of the source term:

    ( )

    3 ( )

    2 2

    The term

    n n nac vn

    n n n nn

    n

    x t

    O tt t t

    + + + + + +

    + +

    + + + +

    + +

    + =

    = +

    acq F F qS

    q q q qq

    q

    1,

    1,

    1

    1,1, 1 1,

    1, 1 1,

    is treated implicitly in pseudo time ie:

    .

    with: is the increment brought to zero during the

    iteration cyle in . Thus:

    n

    nn

    n n

    n n

    t

    +

    +++ + +

    + + +

    = + =

    acac

    ac ac ac

    qq q qq

    q q q

    q 1,1, 11,1, 1

    2 3 . 3 ( )2 2 2

    nn n n nnn

    O tt t t

    + + ++ + = + + ac

    ac

    q q q qq qq

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)124

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    1, 1 1, 1 1, 1

    The source term is decomposed into its positive and negative contribution. The former istreated explicitly in pseudo-time while the latter is treated implicitly, namely:

    win n n + + + + + += +- +S S S

    1,1, 1 1, 2

    1, 1 1,

    1, 1 1,1, 1

    1,

    th:

    ( )

    ( )

    The unsteady terms in pseudo-time is expressed with an implicit Euler expression, ie:

    (

    nn n

    n n

    n nn

    nO

    O

    O

    ++ + +

    + + +

    + + ++ +

    + = + + = +

    = +

    ac-- - ac

    + +

    ac acac

    SS S qq

    S S

    q qq

    .

    )

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)125

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    1, 1 1, 1,2

    1,

    An implicit treatment in pseudo-time is applied for the convective and diffusive terms

    ( ) ( ) ( ) ( )

    So, the system of equation c

    n n nac v ac v ac vac

    ac

    nO

    x x x

    + + + ++ = + +

    F F F F F Fqq

    .

    1,1,1,

    1

    1,

    an be written as:

    1 3 ( )+ - +2

    3

    nn ac vnac

    n

    n

    x x t x

    ++

    +

    +

    + = +

    F FI A P C G q S

    q

    . . . . .

    , 1

    1, 1, 1, 1,1, 1, 1, 1,

    2 2

    The different matrices are defined by:

    n n n

    n n n nac vn n n n

    t t

    + + + ++ + + +

    = = -

    ac ac ac ac

    q q q

    SF F qA = P C = Gq q q q

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)126

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    1,

    1, 1,

    I is the 3x3 unit matrix and after some algebra (long but not difficult), one gets for theother matrices:

    0 0 0 0 021 2 0 0 03

    (2 (2 ) )0 (1 ) 0 0(1

    n

    n nR

    w w

    R

    u u kA c D cc c u

    +

    + +

    + + +

    % %% %% % %

    %

    A = C =

    1,

    1

    1,

    1,

    1, 1,

    1,

    )

    0 0 00

    4 1 4 0 0 1 0 3 3

    0 0 110 0

    In , the indicates that the derivative ha

    w

    n

    D

    n

    n

    n nt t

    t

    t

    n

    c

    ux x

    cSc x

    +

    +

    +

    + +

    +

    = = +

    %

    %

    P G

    P

    . .

    .

    . s to be made performing the matrix productafter .

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)127

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    Mesh stencil and spatial discretisation

    1,

    and n

    ac

    i

    up

    c

    + = %%q

    x( 1)ux i ( )px i ( )ux i ( 1)px i +( 1)px i ( 2)px i +( 1)ux i +

    Non uniform physicalmesh

    ( 1)i + ( 2)i + Uniform computational mesh( 3)i +( )i( 3)i ( 2)i ( 1)i

    1 =

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)128

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    [ ][ ][ ]

    1,

    1,1,1/ 21/ 2

    notation 1,1,

    1, 1,

    The numbering for the unknowns on a -node mesh is such that:

    =

    with

    n

    nacn1 ii

    nnac ac2ii i

    n naci 3 i

    nx

    p

    u

    c

    +

    ++++

    + +

    =

    %%

    M

    q

    q q

    q

    2, -1 , the boundary conditions are applied at nodes 1 and .The space derivatives will involve the jacobian of the mesh transformation ie:

    For and derivatives at a pressure

    i nx i i nx

    x x

    u c

    = = =

    % % 2node: ( )( ) ( 1)

    2For derivatives at a velocity/scalar node: ( )( 1) ( )

    4For and derivatives at a velocity/scalar node: ( )( 1) ( 1)

    p

    u

    xu u

    xp p

    xu u

    ix x i x i

    p ix x i x i

    u c ix x i x i

    = = = = +

    = = + % %

  • An introduction to the numerical simulation of reacting flows

    Pascal Bruel Laboratoire de Mathmatiques et de leurs Applications CNRS - Pau University France (Cordoba 08/2007)129

    Artificial compressibility approach for 1D turbulent flame: a concrete example

    1,1, 1,1, 1,

    12 12 12 1 11/ 2

    21

    With such a choice the space derivatives can be expressed as:Implicit convective terms

    . ( )

    .

    p

    nn nn nac ac ac

    2 x 2 2i ii ii

    ac1

    A i A Ax

    Ax

    + + ++ +

    q q q

    q1,

    1, 1,1, 1,21 211/ 2 1/ 21/ 2 1/ 2

    1,1, 1,1, 1,

    1 11 11/ 2

    ( )

    ( ).2

    for ,

    u

    nn nn nac ac

    x 1 1i ii iin

    n nn nac ac acxlm 1 lm lm lm 1mi ii i