Prueba Elisa

28
ELISA Este artículo o sección necesita referencias que aparezcan en una publicación acreditada , como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas . Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias ELISA}} ~~~~ Y ELISA (aco del inglés Enzyme-Linked ImmunoSorbent Assay, Ensayo por inmunoabsorción ligado a enzimas) es una técnica de inmunoensayo en la cual un antígeno inmovilizado se detecta mediante un anticuerpo enlazado a una enzima capaz de generar un producto detectable como cambio de color o algún otro tipo; en ocasiones, con el fin de reducir los costos del ensayo, nos encontramos con que existe un anticuerpo primario que reconoce al antígeno y que a su vez es reconocido por un anticuerpo secundario que lleva enlazado la enzima anteriormente mencionada. La aparición de colorantes permite medir indirectamente mediante espectrofotometría el antígeno en la muestra. Se usa en muchos laboratorios para determinar si un anticuerpo particular está presente en la muestra de sangre de un paciente. Aunque el procedimiento es rutinario y sencillo, involucra a un gran número de variables, tales como seleción de reactivo, temperatura, medición de volumen y tiempo, que si no se ajustan correctamente puede afectar a los pasos sucesivos y al resultado de la prueba.

description

CULTIVO DE VIRUS

Transcript of Prueba Elisa

Page 1: Prueba Elisa

ELISA

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias ELISA}} ~~~~

Y

ELISA (aco del inglés Enzyme-Linked ImmunoSorbent Assay, Ensayo por inmunoabsorción ligado a enzimas) es una técnica de inmunoensayo en la cual un antígeno inmovilizado se detecta mediante un anticuerpo enlazado a una enzima capaz de generar un producto detectable como cambio de color o algún otro tipo; en ocasiones, con el fin de reducir los costos del ensayo, nos encontramos con que existe un anticuerpo primario que reconoce al antígeno y que a su vez es reconocido por un anticuerpo secundario que lleva enlazado la enzima anteriormente mencionada. La aparición de colorantes permite medir indirectamente mediante espectrofotometría el antígeno en la muestra.

Se usa en muchos laboratorios para determinar si un anticuerpo particular está presente en la muestra de sangre de un paciente. Aunque el procedimiento es rutinario y sencillo, involucra a un gran número de variables, tales como seleción de reactivo, temperatura, medición de volumen y tiempo, que si no se ajustan correctamente puede afectar a los pasos sucesivos y al resultado de la prueba.

La interacción antígeno-anticuerpo en el laboratorio puede ser utilizada para determinar si un paciente tiene una infección o una enfermedad autoinmune. Pero como prueba diagnóstica, posee diversas limitaciones que conviene conocer:

-En primer lugar, un resultado positivo que confirma la presencia de anticuerpos no significa necesariamente que el paciente esté enfermo. El cuerpo de una persona que ha estado enferma y que ya se ha recuperado, puede seguir produciendo anticuerpos. Esto originaría un falso positivo.

-En segundo lugar, hay personas que producen una baja cantidad de anticuerpos, por lo que éstos pueden pasar desapercibidos y no ser medidos, dando lugar a un falso negativo. Sería el caso, por

Page 2: Prueba Elisa

ejemplo, de personas que padezcan una inmunodeficiencia, o que se encuentren en el periodo ventana de la infección en el momento de realizar la prueba, o que estén infectadas por una cepa extraña.

-En tercer lugar, pueden aparecer falsos positivos cuando se da inespecificidad entre antígeno-anticuerpo.

En estos casos de diagnóstico de enfermedad es recomendable la eliminación (mediante centrifugación) de células de la sangre que puedan interferir con el ensayo y pueda ocasionar un resultado falso positivo, careciendo aquél de especificidad. También, debemos tener en cuenta que cuando se trata de diagnosticar una enfermedad que posee un valor predictivo positivo bajo en una determinada población, es decir, que esa enfermedad tiene muy baja incidencia en dicha población, es necesario volver a confirmar el resultado positivo mediante otro método de diagnostico independiente. Normalmente, se lleva a cabo un western blot donde se detecta la presencia de varios anticuerpos, simultáneamente, frente a la misma infección en una muestra. El resultado del western se considera positivo cuando aparecen al menos 5 bandas, que indica que 5 anticuerpos diferentes están presentes en el sujeto frente a esa infección. Entonces es cuando se diagnostica como positivo a dicho paciente.

Este principio tiene muchas de las propiedades de un inmunoensayo ideal: es versátil, robusto, simple en su realización, mediante el uso de la fase sólida, una separación fácil entre la fracción retenida y la fracción libre.

Además se han propuesto y desarrollado diferentes métodos de amplificación de la señal (luminiscentes, cascadas enzimáticas...) que han permitido elevar la sensibilidad de algunos ELISA a la obtenida en el RIA (radioinmunoensayo) hormonal.

Este método ha tenido una enorme aplicación en todos aquellos campos en los que se precisaba la cuantificación de productos mediante anticuerpos: diagnóstico clínico, detección viral, clasificación de anticuerpos en isotipos, búsqueda de anticuerpos monoclonales, etc.

1 Dispositivos empleados en ELISA

2 Fases de un ensayo ELISA

3 Tipos de ensayos ELISA

4 Quimioluminiscencia

5 Marcadores enzimáticos más comúnmente utilizados

6 Prueba ELISPOT

7 Enlaces externos

Dispositivos empleados en ELISA

Page 3: Prueba Elisa

Se han ensayado numerosas fases sólidas, desde los tubos de cristal de los orígenes a las actuales microplacas de 96 pocillos de plástico tratado para aumentar su capacidad de absorción (fenómeno de superficie) de moléculas y con fondos de pocillo ópticamente claros para poder realizar las medidas de densidad óptica en instrumentos específicos, espectrofotómetros de lectura de placas que han recibido el nombre de lectores ELISA. Actualmente se están desarrollando dispositivos de mayor capacidad, por ejemplo con 384 y 1536 pocillos, adecuados para los sistemas de 'screening' masivo de los sistemas robotizados (HTS, 'High-throughput system')

Los lectores ELISA son espectrofotómetros capaces de realizar lecturas seriadas de cada uno de los pocillos de la placa ELISA. A diferencia de un espectrofotómetro convencional, con capacidad de leer todas las longitudes de onda del ultravioleta y el visible de manera continua, los lectores de ELISA disponen de sistemas de filtros que sólo permiten la lectura de una o pocas longitudes de onda. Son la que se corresponden con las necesarias para determinar la densidad óptica de los cromógenos más comúnmente utilizados.

Fases de un ensayo ELISA

Page 4: Prueba Elisa

Las 4 fases de un ensayo ELISA son las siguientes:

1. Conjugacion del anticuerpo o del antígeno con un enzima (peroxidasa, fosfatasa alcalina...). El anticuerpo conjugado a la enzima se emplea en los ensayos directos e indirectos, sandwich, etc. El antígeno marcado se emplea en ensayos de competición de antígeno. Dicha unión anticuerpo-enzima o antígeno-enzima ha de producirse durante un determinado periodo de tiempo en aras de producir una solución coloreada y que pueda ser valorada visualmente o cuantificada por medio de un espectrofotómetro (normalmente a una longitud de onda de 414 nm). Si no transcurre el tiempo adecuado para que se de la reacción, no se evidenciará ningún color, interpretándose este resultado como un falso negativo, disminuyendo la sensibilidad de la técnica.

2. Unión del antígeno (o del anticuerpo) a los pocillos. La unión de anticuerpos o antígenos se realiza con facilidad a la superficie de plásticos tratados que tienen gran afinidad por proteínas. Así, el procedimiento de recubrimiento de los pocillos debe realizarse cuidadosamente. Si se usa poco antígeno, se pueden obtener falsos positivos. Por el contrario, si se usa demasiado antígeno, el exceso dará lugar a una reacción falsa negativa.

3. Formación de una o más capas de inmunocomplejos. En el caso del antígeno unido a la placa se puede detectar mediante un anticuerpo anti-antígeno marcado (ELISA directo) o empleando un anticuerpo primario anti-antígeno y un secundario anti primario marcado (ELISA indirecto). Este segundo método permite la amplificación de la señal al poderse unir uno o más anticuerpos secundarios a cada anticuerpo primario. En el caso del anticuerpo unido a la placa se incuba con una mezcla de antígeno y antígeno marcado. Se ensayan diferentes relaciones de antígeno frío frente a una cantidad fija de antígeno marcado. Es el ensayo de competición del antígeno. En esta etapa es muy importante controlar los

Page 5: Prueba Elisa

factores tiempo y temperatura de incubación para evitar la aparición de falsos negativos. En el caso del tiempo, si es inferior a 15 minutos, no ocurrirá la interacción antígeno-anticuerpo y el color no será evidente al final del ensayo, dando un falso negativo. Por su parte, si la temperatura de incubación es muy baja, la formación del complejo antígeno-anticuerpo tampoco se completará en el tiempo establecido, mientras que si es muy alta, las proteínas (antígeno y anticuerpo) se desnaturalizan y por tanto disminuyen su capacidad para interaccionar, dando igualmente falsos negativos.

4. Revelado de la reacción enzimática. Después de un lavado para eliminar todos las moléculas marcadas no fijadas en forma de inmunocomplejos se añade el sustrato enzimático en solución. Se deja reaccionar y se lee la densidad óptica (D.O.) mediante espectrofotometría.

Tipos de ensayos ELISA

Se han desarrollado múltiples variantes de ensayos ELISA que permiten desde la cuantificación de un antígeno en solución, la detección de un anticuerpo en una solución (por ejemplo en el clonaje de anticuerpos monoclonales) o la determinación de la subclase (idiotipo) de un anticuerpo. A continuación se describen los más comunes.

ELISA directo (ensayo ELISA simple de dos capas). Las placas ELISA se preparan recubriendo los pocillos con las soluciones en las que se sospecha se encuentra el antígeno. Se incuban con anticuerpos marcados. Indican la presencia de antígeno en la solución analizada. Es necesario incluir controles negativos que serán muestras del mismo tipo de las analizadas (sangre, orina,...) pero en las que se tenga la certeza de la ausencia del antígeno buscado. Asimismo se incluyen controles positivos (soluciones donde se encuentra el antígeno buscado).

ELISA indirecto. Las placas ELISA se preparan de la misma forma a la anterior. Los controles positivos y negativos son los mismos. El sistema de detección emplea dos anticuerpos: uno primario contra el antígeno y uno secundario marcado contra el primario. La detección tiene mayor sensibilidad por presentar una amplificación de señal debida a la unión de dos o más anticuerpos secundarios por cada primario. Es el ensayo

Page 6: Prueba Elisa

más popular, como lo es la inmunofluorescencia indirecta, pues un mismo secundario marcado y un mismo sistema enzimático permite cuantificar una gran variedad de antígenos, por eso es un método más polivalente y barato, aunque se pierda algo de precisión por tener un eslabón más con respecto al método directo. La dilución de la solución que contiene el anticuerpo primario (por ejemplo: suero sanguíneo) es un factor muy importante a tener en cuenta para evitar la aparición de falsos negativos, ya que si la muestra está muy diluida no saldrá positiva si la titulación de anticuerpos es muy baja. Es decir, aunque los anticuerpos están presentes, la prueba no da positivo porque la concentración de anticuerpos específicos contra el antígeno que está pegado en el fondo del pocillo no es suficiente como para dar una señal detectable.

El ELISA indirecto es el método de elección para detectar la presencia de anticuerpos séricos contra el virus de la inmunodeficiencia humana (VIH), agente causante del síndrome de inmunodeficiencia adquirida (SIDA). Según esta técnica, proteínas recombinantes de la envoltura y el núcleo del VIH se absorben como antígenos en fase sólida a los pocillos. Las personas afectadas de VIH producen anticuerpos séricos contra epítopos en estas proteínas víricas. En general, el ELISA indirecto permite detectar anticuepos séricos contra VIH desde las primeras seis semanas de una infección.

ELISA sándwich (Ensayo de captura de antígeno y detección mediante inmunocomplejos). Se trata de un ensayo muy empleado en el que se recubre el pocillo con un primer anticuerpo anti-antígeno. Después de lavar el exceso de anticuerpo se aplica la muestra problema en la que se encuentra el antígeno, que será retenido en el pocillo al ser reconocido por el primer anticuerpo. Después de un segundo lavado que elimina el material no retenido se aplica una solución con un segundo anticuerpo anti-antígeno marcado. Así pues cada molécula de antígeno estará unida a un anticuerpo en la base que lo retiene y un segundo anticuerpo, al menos, que lo marca. Este ensayo tiene una gran especificidad y sensibilidad debido a la amplificación de señal que permite el segundo anticuerpo.

Quimioluminiscencia

Page 7: Prueba Elisa

Durante determinadas reacciones químicas, la luz generada por este fenómeno constituye una alternativa conveniente y muy sensible para las mediciones de absorbancia en ELISA. Los tipos de ELISA que recurren a la quimioluminiscencia utilizan un sustrato que genera luz, en lugar del sustrato cromógeno de las reacciones ELISA ordinarias. Tales son los casos de la oxidación del compuesto luminol por peróxido de hidrógeno y la enzima peroxidasa de rábano (HRP), que producen luz.

La luz que se genera en dichas reacciones puede detectarse gracias a su capacidad de sensibilizar una pelicula fotográfica. La medición cuantitativa de la emisión de luz puede hacerse mediante el uso de un luminómetro. La ventaja de las pruebas de quimioluminiscencia sobre las cromógenas es la mejoría de la sensibilidad. En general, el límite de detección puede aumentarse al menos diez veces si se cambia un sustrato cromógeno por uno que emita luz, y más de doscientas veces cuando se adicionan agentes potenciadores.

Marcadores enzimáticos más comúnmente utilizados

En la tabla siguiente se recogen los marcadores enzimáticos más comúnmente empleados en ensayos ELISA, los sustratos que se emplean para su revelado y el modo de prepararlos.

Enzima Sustrato Tampón

HRPO (peroxidasa de rábano) OPD 10 mg/25 mL de tampón citrato sódico 0.15 M pH 5; añadir microL de 30% peróxido de hidrógeno 30%

TMB 2.5 mg/250 microL de DMSO; hasta 25 ml con tampón citrato sódico 0.1M pH 6; añadir 5 microL de peróxido de hidrógeno 30%

ABTS 60 mg/100 mL de tampón citrato sódico 0.1 M pH 6; añadir 35 microL de peróxido de hidrógeno 30%; parar con fluoruro sódico 1.25%; leer a 405 nm

DAB 10 mg/20 mL de tampón Tris 50 mM pH 7.4; filtrar y añadir 20 microL de peróxido de hidrógeno 1%

CNP 6 mg en 1 mL de metanol; añadir 10 mL de tampón Tris 50 mM pH 7.4; filtrar y añadir 40 microL de peróxido de hidrógeno 30%

AEC 80 mg en 1 mL de N,N'-dimetilformamida + 200 microL de tampón acetato 0.1 M pH 4.5; filtrar y añadir 50 microL de peróxido de hidrógeno 30%

ASA 80 mg/100 mL de agua destilada caliente; ajustar a pH 6.0 con 1 mM NaOH y añadir 10 % por volumen de 0.05% peróxido de hidrógeno; parar con 25 microL de NaOH 1 M

AP (Fosfatasa alcalina) PNPP 5 mg/5 mL de tampón dietanolamina-HCl 0.1 M pH 9.8 +1 mM cloruro de magnesio

Page 8: Prueba Elisa

NAPFB (A) 4 mg de fosfato de naftol en 200 microL de dimetilformamida en un tubo de vidrio, (B) 10 mg de sal Fast Blue BB/ 10 ml de tampón Tris 0.05M pH 9.2 - 2 mM cloruro de magnesio. Mezclar A + B y filtrar.

NAPR (A) 4 mg de fosfato de naftol en 200 microL de dimetilformamida en un tubo de vidrio, (B) 10 mg de sal Red BB/ 10 ml de tampón Tris 0.05M pH 9.2 - 2 mM cloruro de magnesio. Mezclar A + B y filtrar.

BCIP 1 mg/mL en solución AMP (2-amino-2-metil-propanol)

beta-G ONPG 2.5 mg/ml en tampón fosfato sódico 0.1 MpH 7.0 + 1 mM cloruro de magnesio + 0.1 M beta-mercaptoetanol

ureasa BP 8 mg/1.48 ml de 0.01M NaOH; llevarlo a 100 ml con agua desionizada; añadir 100 mg de urea y EDTA a 0.2 mM; ajustar el pH a 4.8 con 1 mM NaOH o HCl; almacenar a 4 °C

PG IS Añadir a cada placa de ELISA 25 microL de cada uno de los reactivos siguientes en secuencia : (A) 1% (peso/vol) gelatina en 0.1 M tampón fosfayo pH 7.0, (B) 1% (peso/vol) almidón en agua destilada caliente, (C) 3.04 mg/mL de benzil-penicilina en 0.1 M tampón fosfato pH 7.0 (5000 U/mL), (D) 0.01 N ioduro en 0.1 M KI solución stock (en una botella oscura).

Prueba ELISPOT

Una variante de la prueba ELISA, llamada ELISPOT, es capaz de detectar cuantitativamente el número de células en una población productora de anticuerpos específicos contra un antígeno determinado o un antígeno contra el que se dispone de un anticuerpo específico. Aquí, las placas se recubren con el antígeno reconocido por el anticuerpo de interés o con el anticuerpo específico para el antígeno cuya producción se valora. Seguidamente, se añade a las placas recubiertas una suspensión de la población celular que se investiga e incuba. Las células se disponen en la superficie de la placa, y las moléculas secretadas reactivas a las moléculas de captura son unidas en la cercanía de las células secretoras, produciéndose un anillo de complejos antígeno-anticuerpo alrededor de cada célula que sintetiza la molécula de interés. Después, la placa se lava y un anticuerpo unido a enzima específico para el antígeno secretado, o para la especie de anticuerpo secretado, se añade y deja que se unan. El posterior revelado del ensayo mediante adición de un sustrato cromógeno o emisor de luz adecuado, indica la posición de cada célula productora de anticuerpo (o de antígeno) como un punto de color o luz.

http://es.wikipedia.org/wiki/ELISA

http://www.elispot-analyzers.de/english/elisa-animation.html

Page 9: Prueba Elisa

Leer ahora

Western blotDe Wikipedia, la enciclopedia libre

Saltar a: navegación, búsqueda

Resultado del Western blot: una membrana con las proteínas separadas en la electroforesis unidas, de las que sólo se disciernen aquellas contra las se ha añadido un anticuerpo.

El Western blot, o inmunoblot, es una técnica analítica usada para detectar proteínas específicas en una muestra determinada (una mezcla compleja de proteínas, como un extracto tisular). Mediante una electroforesis en gel se separan las proteínas atendiendo al criterio que se desee: peso molecular, estructura, hidrofobicidad, etc. Hay casi tantas posibilidades como tipos de electroforesis existen. Luego son transferidas a una membrana adsorbente (típicamente de nitrocelulosa o de PVDF) para poder buscar la proteína de interés con anticuerpos específicos contra ella.[1] [2] Finalmente, se detecta la unión antígeno-anticuerpo por actividad enzimática, fluorescencia entre otros métodos. De esta forma se puede estudiar la presencia de la proteína en el extracto y analizar su cantidad relativa respecto a otras proteínas.

Esta técnica es hoy en día imprescindible en varios campos de la biología, como la biología molecular, la bioquímica, la biotecnología o la inmunología. Existe toda una industria especializada en la venta de anticuerpos (monoclonales y policlonales) contra decenas de miles de proteínas diferentes.[3] [4]

Page 10: Prueba Elisa

El Western blot fue desarrollado en el laboratorio de George Stark, en la Universidad de Stanford.[2] El nombre (Western, occidental en inglés) le fue dado por W. Neal Burnette,[5] y consiste en un juego de palabras con una técnica análoga pero que usa DNA, el Southern (sureño) blot, que en este caso debe su nombre a su descubridor, Edwin Southern. Otras técnicas que fueron nombradas siguiendo este criterio son el Northern blot (en el que se separa e identifica RNA), el Eastern blot, el Southwestern blot.

Contenido

[ocultar]

1 Antecedentes 2 Pasos del Western blot

o 2.1 Preparación de la muestra o 2.2 Electroforesis en gel o 2.3 Transferencia

2.3.1 Difusión simple 2.3.2 Transferencia al vacío 2.3.3 Electrotransferencia

o 2.4 Bloqueo o 2.5 Detección

2.5.1 Método en dos pasos 2.5.1.1 Anticuerpo primario 2.5.1.2 Anticuerpo secundario

2.5.1.2.1 Radiactividad 2.5.1.2.2 Anticuerpo unido a una enzima 2.5.1.2.3 Marcaje fluorescente 2.5.1.2.4 Sistema avidina/estreptavidina 2.5.1.2.5 Detección con oro

2.5.2 Método en un paso o 2.6 Análisis

2.6.1 Detección colorimétrica 2.6.2 Detección quimioluminiscente 2.6.3 Detección radiactiva 2.6.4 Detección fluorescente

o 2.7 Exploraciones secundarias 3 Aplicaciones

o 3.1 Investigación o 3.2 Diagnóstico

4 Protocolos 5 Véase también 6 Enlaces externos 7 Referencias

[editar] Antecedentes

Page 11: Prueba Elisa

Antes de la aparición del Western blot, ya existían diversas técnicas capaces de detectar un antígeno determinado en una muestra, como la inmunoelectroforesis, la inmunodifusión doble de Ouchterlony, la inmunoprecipitación...

La aparición del Western no fue posible hasta la aparición de las membranas. En 1975, Edwin Southern demostró que la nitrocelulosa era capaz de capturar ácidos nucleicos separados previamente por electroforesis. De esta forma, se permitía el análisis de una mezcla compleja de moléculas de ADN, como un genoma tratado con enzimas de restricción.[6] Se desarrolló así el Southern blot, usando el nombre del descubridor como epónimo; es por ello que tanto esta técnica como sus derivadas (Western blot, Northern blot...) se escriben con mayúscula.

Más tarde, Towbin (1979) y Burnette (1981) demostraron que también era capaz de unirse a proteínas. Ya en 1986, Millipore desarrolló la primera membrana de PVDF diseñada para la transferencia de proteínas, la membrana de transferencia ImmobilonTM PVDF. Porteriormente fue llamada membrana de transferencia Immobilon-PTM para diferenciarse de otras membranas.

[editar] Pasos del Western blot

[editar] Preparación de la muestra

Las muestras pueden ser tomadas de un tejido entero o de un cultivo celular:

Una pequeña cantidad del tejido se introduce en un buffer de extracción. Después se procede a homogeneizarlos, sea con una licuadora (para grandes volúmenes de muestra), con un homogenizador (para muestras pequeñas) o por sonicación. Por último se centrifuga para obtener las proteínas en el sobrenadante, la fracción no precipitada.[7]

Las células pueden lisarse por uno de esos métodos mecánicos. También pueden usarse detergentes, sales o tampones que favorezcan la lisis y solubilicen las proteínas. A veces se añaden inhibidores de proteasas y fosfatasas que evitan la digestión por las enzimas celulares de las proteínas y de las fosfoproteínas, respectivamente.[8]

Los materiales deben estar a bajas temperaturas (~4 °C) para evitar la desnaturalización proteica. Para separar proteínas de compartimentos y orgánulos celulares es preciso combinar técnicas mecánicas - como filtraciones y centrifugaciones - y bioquímicas.

Page 12: Prueba Elisa

[editar] Electroforesis en gel

Artículo principal: Electroforesis en gel.

Las proteínas de la muestra serán separadas mediante una electroforesis en gel en función de uno o varios (en las electroforesis bidimensionales) de estos criterios: punto isoeléctrico, peso molecular y carga eléctrica. La naturaleza de la separación depende del tratamiento de la muestra y de la naturaleza del gel.

La electroforesis en gel más frecuente, conocida como SDS-PAGE, hace uso de gel de poliacrilamida y de tampón con dodecilsulfato (SDS). En esta técnica las proteínas sufren un tratamiento por agentes reductores que provocan la pérdida de las estructuras secundaria y terciaria (por ejemplo, reduciendo los puentes disulfuro (S-S) a grupos tiol (SH + SH)) y mantiene los polipéptidos en este estado desnaturalizado. De este modo, la estructura tridimensional de las proteínas no influye en la electroforesis, y pueden separarse únicamente en función del tamaño.

Page 13: Prueba Elisa

[editar] Transferencia

Para que las proteínas sean accesibles a la detección por anticuerpos, se las transfiere desde el gel de poliacrilamida a una membrana de nitrocelulosa o de PVDF. Esta transferencia puede realizarse por difusión, por vacío o por acción de un campo eléctrico (electrotransferencia).

Las membranas que se emplean en el Western blot se caracterizan por su capacidad de unir proteínas de forma inespecífica (es decir, se adhieren a todas las proteínas con idéntica afinidad):

las membranas de nitrocelulosa, aunque no se conoce exactamente la naturaleza de las interacciones membrana - proteína, se sabe con cierta seguridad que se trata de interacciones no covalentes de naturaleza hidrófóba.

en las membranas de PVDF, la unión está basada en interacciones hidrofóbicas y de dipolos entre la membrana y las proteínas. Como particularidad, deben ser humedecidas con metanol o etanol antes de exponerlas a tampones acuosos, debido a su alta hidrofobicidad y a la ausencia de surfactantes.

Las membranas de nitrocelulosa son más baratas que las de PVDF, aunque son también más frágiles, tienden a tornarse quebradizas cuando se secan y no pueden ser sometidas a varias pruebas consecutivas.[9]

También pueden usarse otros soportes, como las membranas de nylon o el papel activado. Sin embargo, no son tan usados como los anteriores.

[editar] Difusión simple

En la transferencia por difusión simple se ponen en contacto las superficies del gel electroforético y de la membrana y, sobre ésta, se dispone un taco de papeles de filtro. Con el fin de facilitar el proceso, puede ponerse encima una placa de vidrio y un objeto pesado. Este montaje se coloca sobre un tampón, que ascenderá por capilaridad hacia el papel de filtro arrastrando consigo las proteínas. Al llegar a la membrana, quedarán retenidas en ella.

Este protocolo no está muy extendido actualmente, puesto que la cantidad de proteína transferida a la membrana es muy baja, mucho menor que con la electrotransferencia. Sin embargo, ha ganado cierta popularidad por una modificación que permite obtener múltiples transferencias de un mismo gel, permitiendo de esta forma realizar varias pruebas sobre geles virtualmente idénticos. Esta modificación es viable cuando no es necesaria una transferencia cuantitativa de proteína.[10] [11]

[editar] Transferencia al vacío

En esta técnica, se añade el poder de succión de una bomba conectada a un sistema de secado de planchas de gel, el cual lleva las proteínas desde el gel hasta la superficie de la membrana de nitrocelulosa.[12] Este método es válido tanto para proteínas de alto como de bajo peso molecular.[11]

Page 14: Prueba Elisa

[editar] Electrotransferencia

Este método se basa en una corriente eléctrica y un tampón de transferencia para llevar las proteínas desde el gel hacia la membrana. Para ello, se apilan en el orden descrito los siguientes elementos (del polo negativo o cátodo al positivo o ánodo): esponja, varios papeles de filtro empapados en buffer de transferencia, gel, membrana, más papeles de filtro empapados y otra esponja. Este montaje, llamado coloquialmente sandwich, se dispone en el sistema de transferencia y se aplica una corriente eléctrica, de magnitud acorde a los materiales empleados, al tiempo disponible,... Las proteínas del gel se desplazan hacia el polo positivo y quedan atrapadas por la membrana.[1]

Tras la transferencia, se suele proceder a la tinción del gel con Coomassie Brilliant Blue (un colorante de proteínas) para comprobar que en efecto una parte importante del material proteico ha pasado a la membrana.

La electrotransferencia es hoy en día la técnica de transferencia más usada gracias a la velocidad del proceso y al elevado porcentaje de proteína que se transfiere (especialmente en comparación con las otras técnicas).

[editar] Bloqueo

Puesto que la membrana escogida necesita poder unirse proteínas de forma inespecífica, es preciso bloquear los lugares de unión que han quedado libres tras la transferencia. En caso contrario, el anticuerpo (de naturaleza proteica) empleado en la detección puede unirse a ellos, dificultando la distinción del complejo antígeno-antígeno que se forma con la proteína que se busca.

En el bloqueo se incuba la membrana con una solución de proteínas, típicamente de albúmina de suero bovino o ASB (más conocida por sus siglas en inglés, BSA), leche en polvo o caseína, con una diminuta fracción de detergente, como Tween 20 o Tritón X-100. Las proteínas en solución se unirán a todos aquellos lugares de unión de la membrana que

Page 15: Prueba Elisa

no estén ya ocupados por las transferidas desde el gel. De este modo, el anticuerpo sólo podrá unirse a su antígeno específico, reduciendo así el ruido de fondo y los falsos positivos.

[editar] Detección

En la detección se comprueba la presencia en la membrana de una determinada proteína. Para ello se emplea un anticuerpo específico contra ella unido a enzima que, en presencia de su sustrato, catalice una reacción colorimétrica (produce color). De esta forma, se hace patente la unión con el antígeno, la proteína, así como su localización.

El proceso tradicionalmente se ha realizado en dos pasos, aunque ahora es posible la detección en un único paso, lo cual es útil en ciertos campos.

[editar] Método en dos pasos

Los dos pasos de los que consta este método de detección son la unión del anticuerpo primario y la del anticuerpo secundario.

[editar] Anticuerpo primario

El primer paso es permitir la unión de un anticuerpo primario contra la proteína buscada. Éste se consigue inoculando dicha proteína o uno de sus epítopos (regiones capaces de desencadenar la respuesta inmune) a un animal (como un conejo o una cabra) o a un cultivo celular. Además, como la proteína se ha desnaturalizado durante la electroforesis en gel, es preciso que el anticuerpo reconozca específicamente la proteína desnaturalizada. La presencia del elemento extraño debería desencadenar una respuesta inmune cuyo resultado incluya la producción del anticuerpo, primario en este caso, ya que reconoce la proteína.

Así pues, tras el bloqueo se incuba en agitación moderada la membrana con una disolución de anticuerpo primario (0,5 - 5 μg/ml). La disolución consiste en un tampón salino, con

Page 16: Prueba Elisa

cloruro de sodio por lo general, con un pH cercano a la neutralidad, una pequeña fracción de detergente y, en ocasiones, proteínas disueltas, como ASB o leche en polvo. La membrana junto con la disolución pueden ser introducidas en una pequeña bolsa de plástico. Esta incubación puede durar desde 30 minutos a una noche entera. La temperatura a la que puede tener lugar es igualmente variada; en general, las elevadas temperaturas favorecen las uniones más específicas.

[editar] Anticuerpo secundario

Tras lavar la membrana para eliminar el anticuerpo primario que no se ha unido, se expone al anticuerpo secundario. Éste reconoce de forma específica una región concreta del anticuerpo primario. Suelen estar marcados para ser detectables (unión a biotina, a una enzima reporter como laa fosfatasa alcalina o la peroxidasa del rábano (HRP), etc.). Varios de estos anticuerpos se unirán a cada anticuerpo primario, amplificando la señal.

Los anticuerpos secundarios proceden de animales o de cultivos de hibridomas de origen animal. Por ejemplo, un anticuerpo secundario "anti-ratón" es aquel capaz de reconoces casi todos los anticuerpos primarios obtenidos de ratones. Igualmente hay anticuerpos "anti-cabra", "anti-conejo"... Su uso presenta ciertas ventajas: económicas, por permitir a un laboratorio compartir una única fuente de anticuerpos secundarios; y dan resultados mucho más consistentes.

También pueden emplearse proteínas no anticuerpos, como las proteínas A y G.

[editar] Radiactividad

Unión del anticuerpo primario a la proteína de interés. A este se une la proteína A o la proteína G para ser detectada.

Es una alternativa al uso de anticuerpos secundarios que consiste en proteínas de unión a anticuerpos marcadas radiactivamente. Esta proteína puede ser, por ejemplo, la proteína A de Staphylococcus aureus [ 13 ] o la proteína G [ 14 ] marcadas con 125I (un isótopo radiactivo de yodo). Las proteínas mencionadas tienen la capacidad de unirse a anticuerpos de forma inespecífica, por lo que se unirán al primario.

Page 17: Prueba Elisa

Este método apenas se usa actualmente, por ser significativamente más caro, peligroso y lento que los otros. Sin embargo, presenta ventajas: es muy sensible, da bandas que permiten una precisa cuantificación; y la imagen autoradiográfica puede ser reproducida fácilmente y con gran precisión para su publicación.[11]

[editar] Anticuerpo unido a una enzima

Anticuerpo secundario unido a la peroxidasa de rábano, de modo que puede catalizar la reacción quimioluminiscente.

Un mecanismo de detección simple y rápido consiste en unir al anticuerpo secundario enzimas que catalicen la transformación de un sustrato soluble en un producto insoluble. De esta forma, en el posterior análisis quedará una mancha allí donde esté la proteína de interés. Enzimas como la peroxidasa de rábano (HRP) o una fosfatasa alcalina son válidas para este mecanismo.[11] Por ejemplo, la peroxidasa puede catalizar la oxidación del 4-cloronaftol en presencia de un 1% de peróxido de hidrógeno. El resultado es que el primero forma una mancha de precipitado oscura.[15] Otras técnicas, como ELISA o ELISPOT, también emplean este método de detección.

Otro método más sofisticado consiste en la unión de una enzima que catalice una reacción quimioluminiscente. Las anteriormente citadas enzimas también son válidas en este caso, aunque cada una usa un agente quimioluminiscente diferente. En el caso de la peroxidasa, cataliza la oxidación del luminol en presencia de peróxido de hidrógeno. La fosfatasa alcalina cataliza la defosforilación del adamantil-1-2-dioxetano fosfato, reacción que genera luz. Si se coloca una película fotográfica sobre la membrana, la exposición a la luz que se desprende en la reacción permite detectar la actividad enzimática.

[editar] Marcaje fluorescente

Otro método basado en el mismo principio emplea anticuerpos unidos a fluorocromos del infrarrojo cercano, como el 2 - metoxi - 2,4 - difenil - 3 (2H) - furanona (MDPF) o el rojo Nilo. Estos compuestos emiten una cantidad de luz constante (estado estático) cuando se excitan de manera constante, permitiendo una detección muy precisa y una cuantificación

Page 18: Prueba Elisa

del antígeno más exacta que la de la quimioluminiscencia, que se realiza durante un estado dinámico.

El rojo Nilo no es puede usarse para teñir bandas en membranas de PVDF; sin embargo es posible realizar la tinción en el gel SDS - PAGE y luego transferirlo a la membrana de PVDF. Esto último presenta una ventaja, y es que no es necesario realizar una tinción del gel para comprobar la transferencia proteica.[16]

[editar] Sistema avidina/estreptavidina

Otra opción es emplear un anticuerpo primario unido covelentemente a moléculas de biotina. Después la detección se llevará a cabo con una proteína de unión a la misma, como la estreptavidina o la avidina.

[editar] Detección con oro

Otra técnica, conocida como Golden blot, consiste en la detección de los anticuerpos primarios con proteína A unida a partículas de oro. El resultado es una membrana con manchas rojas, causadas por el oro, allí donde está la proteína.[17] La sensibilidad del método puede incrementarse con una tinción fotoquímica de plata: el oro cataliza la reducción de los iones plata a plata metálica en presencia de otro agente reductor, como la hidroquinona; la plata forma de este modo unas manchas visibles bajo microscopio óptico. Se consigue así una sensibilidad comparable a la de las técnicas radiactivas.[11] [18]

[editar] Método en un paso

Históricamente la detección se ha realizado en dos pasos por la relativa facilidad que supone producir anticuerpos primarios y secundarios en procesos separados. Esto ofrece a investigadores y empresas enormes ventajas en lo que a flexibilidad se refiere, y añade un efecto amplificador al proceso. Sin embargo, debido a la llegada de los análisis de proteínas de alto rendimiento y los menores límites de detección ha crecido el interés por desarrollar sistemas de detección en un solo paso que aumentarían la rapidez del proceso al tiempo que reducen los consumibles. Esto requiere un anticuerpo que reconozca al mismo tiempo la proteína de interés y una "etiqueta" detectable. Se incuba de manera similar al anticuerpo primario del proceso en dos pasos, y, tras una serie de lavados, ya se puede detectar directamente.

[editar] Análisis

Tras el lavado de las sondas marcadas no unidas, se procede a la detección de aquellas que sí se han unido a la proteína de interés.

[editar] Detección colorimétrica

La detección colorimétrica depende de la incubación del Western blot con un sustrato que reacciona gracias a la enzima reporter (una peroxidasa, por ejemplo) unida al anticuerpo secundario. Pasa así de ser un compuesto soluble a una forma insoluble de otro color que

Page 19: Prueba Elisa

precipita cerca de la enzima tiñendo así la membrana. Se procede después a un lavado en el que se elimina el tinte soluble. La cuantificación proteica se evalúa por densitometría (cuan intensa es la mancha) o por espectrometría.

[editar] Detección quimioluminiscente

La detección quimioluminiscente requieren la incubación de la membrana con un sustrato, que emitirá luminiscencia al ser expuesto al reporter que trae unido el anticuerpo secundario. La luz emitida es captada por una película fotográfica o, más recientemente, por cámaras CCD, que toman una imagen digital del Western blot. Se analiza la imagen por densitometría para evaluar la cantidad relativa de mancha y cuantifica el resultado en términos de densidad óptica. Actualmente hay programas que permiten realizar análisis más profundos si se aplican ciertos estándares, como la obtención del peso molecular.

[editar] Detección radiactiva

Los marcadores radiactivos no requieren sustratos enzimáticos; en su lugar se coloca una película fotográfica contra el Western blot y la actividad radiactiva del marcador provoca la aparición en ella de regiones oscuras. Éstas se corresponderán con las bandas de las proteínas de interés. Su alto precio y su riesgo para la salud y la seguridad han provocado su desuso en los últimos tiempos.

[editar] Detección fluorescente

En la detección con marcadores fluorescentes se procede a la excitación lumínica de éstos que les provoca una excitación. Ésta es detectable por un fotosensor, como una cámara CCD equipado con los filtros de emisión apropiados. Se consigue así una imagen digital del Western blot que puede ser analizado para obtener el peso molecular o la cuantificación proteica. La fluorescencia es considerada uno de los métodos de análisis más sensibles.

[editar] Exploraciones secundarias

Page 20: Prueba Elisa

Una característica de las membranas de PVDF, de la que carecen las de nitrocelulosa, es su capacidad de quitar los anticuerpos y volver a explorar la membrana con otros anticuerpos. Aunque hay protocolos que permiten hacer lo mismo en membranas de nitrocelulosa, la robustez de las de PVDF facilita la eliminación de los anticuerpos, permitiendo más reusos antes de que el ruido de fondo es tan grande que impide continuar con los experimentos. Otra diferencia es que, a diferencia de la nitrocelulosa, el PVDF debe ser empapado en etanol, isopropanol o metanol al 95% antes de ser usado. Además, las membranas de PVDF tienden a ser más delgadas y más resistentes a los daños durante su uso.

[editar] Aplicaciones

[editar] Investigación

Actualmente, el Western blot es una de las técnicas más usadas en el estudio de la biología molecular.[19]

[editar] Diagnóstico

Prueba de VIH : Aunque el VIH suele detectarse mediante la técnica ELISA, el Western Blot se usa como prueba confirmatoria cuando el ELISA da un resultado positivo en un grupo que no es de riesgo o en una población donde la prevalencia del virus es muy baja. Mediante el Western blot se buscan los anticuerpos anti-VIH en una muestra de suero humano. Se transfieren a una membrana las proteínas de células que, se sabe, están infectadas por el VIH. Entonces, se incuba el suero que hay que probar con esta membrana. Este paso es equivalente a la incubación con el anticuerpo primario; si hay anticuerpos anti-VIH en el suero, serán estos los que realizen el papel de anticuerpo primario. Se lava, para eliminar los anticuerpos no unidos, y la membrana se vuelve a incubar con un anticuerpo secundario anti-humano unido a una enzima-señal. La aparición de bandas indica la presencia de proteínas contra las cuales el suero del paciente contiene anticuerpos, es decir, el paciente es seropositivo.

Se emplea como prueba definitiva de la encefalopatía espongiforme bovina, comúnmente llamada "enfermedad de las vacas locas".

Algunas clases de la prueba para la enfermedad de Lyme usan el Western blot. En veterinaria, ocasionalmente se emplea el Western blot para confirmar la presencia del

FIV en gatos.

[editar] Protocolos

http://es.wikipedia.org/wiki/Western_blot