Proyecto Fiber Deep - Nvo Bosque Ctg

39
ESPECIALIZACIÓN TECNOLOGICA EN INTERVENTORIA DE PROYECTOS DE TELECOMUNICACIONES MEJORAMIENTO DE UNA RED HFC CON TECNOLOGIA FIBER DEEP Ing. Marceliano Hoyos Ing. Willson Moscote PROYECTO DE FIBER DEEP VICTOR COVANS ACOSTA SERVICIO NACIONAL DE APRENDIZAJE (SENA) CARTAGENA, 23 FEBRERO DE 2011

Transcript of Proyecto Fiber Deep - Nvo Bosque Ctg

Page 1: Proyecto Fiber Deep - Nvo Bosque Ctg

ESPECIALIZACIÓN TECNOLOGICA EN INTERVENTORIA DE PROYECTOS DE TELECOMUNICACIONES

MEJORAMIENTO DE UNA RED HFC CON TECNOLOGIA FIBER DEEP

Ing. Marceliano Hoyos

Ing. Willson Moscote

PROYECTO DE FIBER DEEP

VICTOR COVANS ACOSTA

SERVICIO NACIONAL DE APRENDIZAJE (SENA)

CARTAGENA, 23 FEBRERO DE 2011

Page 2: Proyecto Fiber Deep - Nvo Bosque Ctg
Page 3: Proyecto Fiber Deep - Nvo Bosque Ctg

OBJETIVOS Y ALCANCE DEL PROYECTO

Diseñar e implementar un sistema de red basado en tecnología Fiber Deep para mejorar la calidad en la prestación de servicios integrados de telecomunicaciones en la séptima etapa del bario Nuevo Bosque de la ciudad de Cartagena, que permita cubrir 400 usuarios.

RIESGOS DEL PROYECTO

Los riesgos del proyecto están dados a partir de los factores tácitos que se encuentran implícitos en el mismo: tiempo, costo y calidad.

1. Tiempo (Retraso por personal idóneo insuficiente, demora en la entrega de materiales, condiciones ambientales)

2. Costo (Reajustes de IPC, incrementos en mano de obra y seguridad social por retraso en la obra)

3. Calidad (Utilización de materiales que no cumplan con las especificaciones técnicas, normas y certificaciones que garanticen el funcionamiento durante la vida útil proyectada de la red FiberDeep.

Cada uno de los factores mencionados afectara de manera directa las diferentes fases del proyecto, además de los inmersos en el tipo de actividad a realizar los cuales se agrupan en factores de riesgo como lo son de tipo Mecánicos, Eléctricos, Locativos y Físicos.

La tabla de control de riesgos o imprevistos la calificamos en tres niveles de

incertidumbre desde el 1 al 3, considerando 1 el nivel más alto y 3 el más bajo, de

igual forma se identifican los tipos de riesgos: Inherentes, Adquiridos, Interno

(Organizacional) y externo.

Page 4: Proyecto Fiber Deep - Nvo Bosque Ctg

N° Nombre y descripción de riesgo

Tipo de Riesgo Causa primaria o raíz Grados de incertidumbre

1 De Trabajo en Alturas (Evitar una caída de altura, una quemadura, trabajos no ergonómicos, caídas de Materiales)

Inherente No Usar adecuadamente los elementos de seguridad, Falta de

entrenamiento preventivo

1

2 Naturales (Cualquier Imprevistos Atmosférico que pueda afectar el cronograma)

Externo -------------------------- 1

4 De Subida de Precios de Materiales

Externo Incremento inesperado de material por factores de Orden Público.

3

5 De Falta de Permisos en portería.

Externo La portería es de Electricaribe pero es administrada por OfiNet, los permisos los expide este último.

3

6 De Ingeniería o técnica Interno Falta de conocimiento técnico, de procesos y procedimientos del

equipo, Mal diseño del mappingde la red

1

7 De Imprevisto Eléctricos (Líneas de alta tensión o media tensión a baja altura)

Inherente/Externo Adecuaciones Eléctricas por anomalías de corriente, Problemas con Neutro del poste

2

9 De Imprevistos de RR HH Interno Utilización inadecuada de los implementos de seguridad industrial y señalización, problemas con ARP, EPS y demás requisitos.

3

10 De Accidente de Transito Externo Cualquier accidente de tránsito que impida un tendido de Fibra o Coaxial.

11 De Agresiones físicas o de Animales

Externo Cualquier agresión física externa en el lugar de trabajo.

12 De Orden Publico Externo Cualquier movimiento de revuelta, protesta, paro vehicular, etc.

Page 5: Proyecto Fiber Deep - Nvo Bosque Ctg

ANALISIS DE LOS PARTICIPANTES

Para llevar a cabo el proyecto de FiberDeep en el barrio Alto Bosque se requieren

los siguientes Participantes:

PERFIL DEL PERSONAL REQUERIDO Cantidad

Ingeniero de Telecomunicaciones

Director de Frente con experiencia en Diseños de Redes Hibridas y gestión de proyecto.

Coordinador de Construcción con más de 3 años de experiencia en proyectos de telecomunicaciones.

Supervisor de proyecto (Experiencia en construcción de redes HFC)

3

Técnicos en Telecomunicaciones con Certificación en HFC, 6 deben tener experiencia en tendido, conectorizacion y calibración y además de esto 1 debe tener experiencia en fusión de fibra.

7

Técnico Almacenista con experiencia en manejo de inventario y conocimiento en equipos

1

Técnico Electricista 1

Page 6: Proyecto Fiber Deep - Nvo Bosque Ctg

DIAGRAMA DE DESCOMPOSICIÓN (WBS)

Luego de haber definido el objetivo del presente proyecto entre contratista y contratante, la siguiente fase es definir el alcance del mismo en termino de las actividades que son necesarias para cubrir los requerimientos de la empresa, para esto aplicaremos el Esquema de División del Trabajo (EDT) usando la herramienta Microsoft Project de Office, que permite gestionar de forma fácil y confiable un proyecto.

Page 7: Proyecto Fiber Deep - Nvo Bosque Ctg

Para un mayor entendimiento del WBS les especificamos en una tabla aparte

todas las Actividades que se realizaran en el transcurso del proyecto:

ACTIVIDADES 1. DISEÑO Y APROBACION 1.1 Realizar planos de zona a construir

1.2 Realizar los cálculos de diseño en el Cluster( para forward, retorno y potencia)

1.3 Realizar diseño digital del Cluster con base en los cálculos y los planos de la Zona incluyendo la distribución de la portería

1.4 Aprobación del plano de fibra y coaxial del Cluster a construir por parte del Coordinador de construcción.

1.5 Entregar plano al líder de construcción.

1.6 Diseñar un plan para iniciar la construcción como tal del clúster

2.TENDIDO

2.1 VESTIR POSTES

2.1.1.Verificación de elementos necesarios y condiciones dadas. Plano de diseño y permiso del operador (viabilidad). Herramientas, materiales y señalización adecuados

2.1.2.Definición del trazado de la red según se determinó en el replanteo y acorde con la necesidad y las particularidades del terreno

2.1.3.Se debe establecer la altura a la cual se instalará la red teniendo en cuenta aspectos de seguridad, estabilidad física de la red y cumplimiento de normas como la distancia mínima a la red de baja tensión del operador de infraestructura

2.1.4.inicio del montaje de la herrajeria tomando como base el plano de diseño de forma tal que exista coherencia entre la proyección de la red y la ejecución del tendido.

2.2 TENDIDO DE CABLE RG .500 AEREO 2.2.1 Revisión del estado del cable

2.2.2 montaje y corte del cable en los postes.

2.2.3 .aseguramiento y tensión del mensajero a cada uno de los herrajes ubicados en los postes

2.3 TENDIDO DE FIBRA OPTICA 2.3.1 recorrido de verificación previa al trazado de la fibra incluyendo medidas para determinar el punto medio y así ubicar el carrete

2.3.2. Tendido de la fibra con guías de PVC para evitar el deterioro del cable

2.3.3 Aseguramiento de la fibra

3. CONECTORIZACION

3.1INSTALACION DE EQUIPOS PASIVOS 3.1.2 verificación de la localización de equipos pasivos en el plano de diseño

Page 8: Proyecto Fiber Deep - Nvo Bosque Ctg

3.1.3 montaje de los equipos pasivos sobre el cable mensajero asegurando una buena conexión eléctrica y mecánica entre el mensajero y la carcasa del equipo

3.1.4 instalación de los conectores en la red protegiéndolos contra la humedad por medio de tubo termo contraíble

3.2 INSTALACION DE EQUIPOS ACTIVOS 3.2.1 verificación de la localización de equipos activos en el plano de diseño

3.2.2 Configuración de los nodos ópticos NC 4000 para el cumplimiento del diseño (selección de los componentes de ecualización del equipo (ecualizadores, simuladores y atenuadores)

3.2.3 montaje y conectorizacion de los nodos.

3.2.4 montaje de la fuente de poder con su respectivo banco de baterías

4. BALANCEO Y CALIBRACION DEL CLUSTER 4.1 Instalación de los módulos activos dentro de los nodos ópticos

4.2 energización de los nodos ópticos del clúster

4.3 ajuste de los niveles de potencia de las señales tanto ópticas como de RF a los valores especificados por el diseño

4.4 Elaboración de las hojas de vida de los nodos ópticos ,colas de red y la fuente de poder

5. ENTREGA DEL CLUSTER

5.1 Verificación física de la red 5.1.1 Inspección de cables instalados.

5.1.2 Dispositivos bien instalados y acordes con diseño.

5.1.3 Validación cumplimiento normas de tendido y construcción.

5.1.4 Loops de protección adecuadamente ubicados.

5.1.5 Cable instalado adecuadamente según normas de operador de infraestructura.

5.1.6 Verificación de activos, figuración de cables, terminación y configuración de diseño.

5.1.7 Validación de puestas a tierra y sistemas de protección de fuentes

5.2 Verificación de niveles.

5.2.1 Validación de los niveles de calibración de los nodos ópticos en forward y reversa

5.2.2 Toma de niveles en puntos aleatorios de la red.

5.2.3 Confrontación de niveles tomados en terreno frente a proyección de diseño.

5.2.4 Confrontación de niveles de fin de red con proyección de diseño.

5.3 Pruebas de desempeño.

5.3.1 Realización de pruebas de desempeño en tres puntos de la red a fin de validar los servicios.

5.3.2 Realización de un FTP local y una prueba internacional en cada uno de los lugares legidos.

5.3.3 Documentación de cada una de las pruebas para ser incorporadas al acta de entrega del Nodo.

Page 9: Proyecto Fiber Deep - Nvo Bosque Ctg

5.4 Pruebas de Performance. 5.4.1 Llevar a cabo pruebas de CTB, CSO, HUM, C/N con apoyo de headend

5.4.2 Elaboración de las actas de entrega del clúster

2.2 ORGANIGRAMA

Director de Frente

Coordinador de

Construcción

1 TécnicoEmpalmador

Supervisor de

Construcción

Técnicos de Tendido,

conectorizacion y

calibración.

Almacenista

Page 10: Proyecto Fiber Deep - Nvo Bosque Ctg

2.3 CALENDARIO

Page 11: Proyecto Fiber Deep - Nvo Bosque Ctg

2.4 COSTO (Presupuesto)

ITEM DESCRIPCION CANTIDAD UND VALOR

UNIDAD ($)

MANO DE OBRA

UNIDAD ($)

TOTAL UNIDADES

VALOR TOTAL ($)

1

Fibra Óptica Monomodo armada para uso exterior de 12 hilos

1340 mts $ 7.180 $ 2.500 $ 9.680 $

12.971.200

2 Cable coaxial .500 P -III aéreo

2748 mts $ 2.636 $ 1.800 $ 4.436 $

12.190.128

3 Nodos ópticos aurora NC 4000 y Balanceo.

3 unid $ 5.550.000 $ 125.000 $ 5.675.000 $

17.025.000

4 Fuente de poder ALPHA XM-9015 con gabinete y respaldo

1 unid $ 4.781.250 $ 90.000 $ 4.871.250 $ 4.871.250

5 Splitter óptico 70/30 1 unid $ 840.788 $ 60.000 $ 900.788 $ 900.788

6 Splitter óptico 50/50 2 unid $ 1.130.152 $ 60.000 $ 1.190.152 $ 2.380.304

7 Splitter 2W Externo 3 unid $ 160.000 $ 35.000 $ 195.000 $ 585.000

8 Mangas 1 unid $ 650.540 $ 80.000 $ 730.540 $ 730.540

9 Acoplador SSP-12K 5 unid $ 53.432 $ 35.000 $ 88.432 $ 442.160

10 Acoplador SSP-8K 1 unid $ 45.672 $ 35.000 $ 80.672 $ 80.672

11 Acoplador SSP-16K 1 unid $ 31.419 $ 35.000 $ 66.419 $ 66.419

12 Insertor de poder SSP-PIK

7 unid $ 86.584 $ 35.000 $ 121.584 $ 851.088

13 Ecualizador de línea FFE-8-750/40

1 unid $ 64.500 $ 35.000 $ 99.500 $ 99.500

14 Taps 2 vías FFT2-23-K 7 unid $ 14.796 $ 35.000 $ 49.796 $ 348.572

15 Taps 2 vías FFT2-20-K 3 unid $ 13.596 $ 35.000 $ 48.596 $ 145.788

16 Taps 2 vías FFT2-14-K 6 unid $ 13.714 $ 35.000 $ 48.714 $ 292.284

17 Taps 2 vías FFT2-11-K 3 unid $ 18.218 $ 35.000 $ 53.218 $ 159.654

18 Taps 2 vías FFT2-4-K 2 unid $ 13.365 $ 35.000 $ 48.365 $ 96.730

19 Taps 4 vías FFT4-23-K 6 unid $ 19.750 $ 35.000 $ 54.750 $ 328.500

20 Taps 4 vías FFT4-20-K 2 unid $ 15.339 $ 35.000 $ 50.339 $ 100.678

21 Taps 4 vías FFT4-17-K 5 unid $ 22.740 $ 35.000 $ 57.740 $ 288.700

22 Taps 4 vías FFT4-14-K 1 unid $ 16.512 $ 35.000 $ 51.512 $ 51.512

Page 12: Proyecto Fiber Deep - Nvo Bosque Ctg

23 Taps 4 vías FFT4-10-K 4 unid $ 28.294 $ 35.000 $ 63.294 $ 253.176

24 Taps 4 vías FFT4-8-K 4 unid $ 22.870 $ 35.000 $ 57.870 $ 231.480

25 Taps 8 vías FTT8-23-K 3 unid $ 34.260 $ 35.000 $ 69.260 $ 207.780

26 Taps 8 vías FTT8-20-K 2 unid $ 27.650 $ 35.000 $ 62.650 $ 125.300

27 Taps 8 vías FTT8-14-K 1 unid $ 23.336 $ 35.000 $ 58.336 $ 58.336

28 Taps 8 vías FTT8-17-K 2 unid $ 22.995 $ 35.000 $ 57.995 $ 115.990

29 Puesta a Tierra 4 unid $ 200.000 $ 100.000 $ 300.000 $ 1.200.000

TOTAL MATERIALES $ 57.198.529

ANEXOS

Este es un mapping del Nodo Bosque a construir con tecnología Fiber Deep.

Page 13: Proyecto Fiber Deep - Nvo Bosque Ctg

Nombre NODO 1 NODO 2 NODO 3

Metros Lineales 952 1315 481

HHPP CONT. HORIZ. 56 11 1

HHPP PARA VT 129 79 51

HHPP TOTAL 185 118 135

Receptor 1 1 1

Fuentes 1

INFORMACION SOBRE EL PROYECTO

La necesidad de contar con mayor capacidad para transmitir mas información ha ido en

aumento desde los inicios de la televisión por cable, en un principio, solo se necesitaba

ancho de banda para retransmitir canales locales de televisión a lugares donde las

señales aéreas no llegaban. Varios años más tarde, se fueron incorporando nuevos

servicios a los sistemas de cable, llegaron los canales Premium, el pago por evento

(PPV), las señales digitales y el acceso a internet. Hoy en día los operadores de cable se

enfrentan con el reto de ofrecer una nueva gama de servicios como telefonía IP,

transmisión de datos de alta velocidad (HSD), canales de televisión de alta definición

(HDTV), varias clases de video por demanda (VoD) y otras aplicaciones avanzadas. Para

poder ofrecer todos estos servicios satisfactoriamente (y los que aún están por llegar), es

preciso contar con redes robustas y buscar estrategias tecnológicas que permitan

mantener la calidad de servicio y lograr que el ancho de banda disponible en un sistema

de cable no se convierta en un asunto critico.

Los esquemas tradicionales de servicios han evolucionado y ahora se requiere mayor

ancho de banda o capacidad en ambos sentidos de transmisión (donwstreams y

upstreams), tal es el caso del internet. Las nuevas aplicaciones requieren altas

velocidades no solo para la descarga de información, sino también para los datos que los

clientes envían hacia la red. Es por ello que las tendencias indican que los servicios de

transmisión de datos de alta velocidad tendrán que ser simétricos. De igual forma, el video

por demanda y la HDTV están transformando la forma de ver televisión y la telefonía ip

ha revolucionado el mercado convirtiéndose en un servicio clave para la denominada

convergencia de servicios.

Las arquitecturas de solo cable coaxial del tipo árbol y rama no ofrecen la confiabilidad

que demandan los nuevos servicios. Estas arquitecturas presentan muchos problemas de

ruido, atenuación y distorsión de señales. Muchos operadores ya han adoptado redes

HFC (hibridas de fibra-coaxial) debido a que la fibra óptica, al no transmitir señales de RF

está exenta de muchas de las interferencias y distorsiones que afectan a las señales que

viajan a través del cable coaxial. Además, la atenuación que sufren las señales en la fibra

óptica es mínima en comparación con las pérdidas inherentes al cable coaxial, evitando

así las grandes cascadas de amplificadores que no solo limitan el ancho de banda, sino

Page 14: Proyecto Fiber Deep - Nvo Bosque Ctg

que constituyen un gran riesgo de confiabilidad. Por esta y otras ventajas la fibra óptica ha

ganado más terreno dentro de las redes de cable.

Hoy en día el espectro de las redes de cable en arquitecturas convencionales está

saturado o se utiliza en su totalidad dejando poca capacidad para otras aplicaciones,

especialmente las que tiene que ver con las rutas de retorno.

A continuación se observa alguna de las tendencias en los servicios para los próximos

años:

Page 15: Proyecto Fiber Deep - Nvo Bosque Ctg

Los estudios indican que para ofrecer a largo plazo un paquete compuesto por video

analógico, video digital, VoD, transmisión de datos de alta velocidad y telefonía, se

necesitarían alrededor de 225 canales de 6MHz, o bien, 1.35 GHz de ancho de banda.

Esto excede claramente la capacidad actual de las redes de cable cuyo ancho de banda

va de 450, 550, 750 y 850 MHz para la mayoría de los sistemas de Colombia.

Antes de comenzar a hablar de las alternativas para optimizar la capacidad de un sistema,

es conveniente recordar que el ancho de banda recae en varias categorías:

Ancho de banda general para donwstream: ancho de banda utilizado para transmitir

señales hacia todos los suscriptores sin tomar en cuenta si ellos son capaces de recibirlas

o no (tipo broadcasting). Un ejemplo puede ser la transmisión continua de un canal de alta

definición hacia toda la red pero que únicamente puede ser visto por ciertos suscriptores

autorizados.

Ancho de banda interactivo para donwstream: ancho de banda ocupado por señales

que son transmitidas para ciertos usuarios en particular (por ejemplo para transmisiones

narrowcasting). VoD, servicios de internet o telefonía, son ejemplos de esta categoría.

Ancho de banda para upstream: ancho de banda destinado para la trasmisión de

señales del suscriptor hacia el CRC (banda de retorno).

¿Qué alternativas se tienen?

Para contar con mayor ancho de banda o incrementar la eficiencia de las redes de cable

se tienen varias alternativas. Algunas de las opciones solo optimizan el ancho de banda

para el downstream mientras que otras lo hacen para el downstream y upstream. Como

ejemplos tenemos:

Page 16: Proyecto Fiber Deep - Nvo Bosque Ctg

1. La migración de toda la red a una de mayor ancho de banda (por ejemplo a una

red HFC de 870 MHz o 1 GHz)

2. El incremento de la transmisión de señales digitales con la sustitución y/o

reducción de la oferta de canales analógicos. Además de obtener ventajas en la

calidad de las señales, se libera espacio o ancho de banda para otros servicios.

3. La división sistemática de las zonas de cobertura o áreas de servicios de los

nodos.

4. La implantación de una nueva arquitectura de la red.

La primera opción implica el rediseño parcial de la red y la sustitución de algunos

dispositivos como amplificadores en la planta externa. La segunda alternativa requiere la

instalación de equipo extra tanto en CRC como en las instalaciones del suscriptor, es

decir, equipos para procesar y enviar señales digitales desde la cabecera y cajas

decodificadoras que permitan al suscriptor recibir las señales. Los operadores que ya

cuentan con redes hibridas de fibra-coaxial (HFC) generalmente optan por la tercera

alternativa ya que, con una reestructuración menor en la red se logra un mayor ancho de

banda para cada uno de los usuarios que pertenecen al nodo que se divide. En algunos

casos, para el caso de sistemas con arquitecturas de solo coaxial, es necesario tomar la

cuarta opción y hacer la reestructuración o reconstrucción total de la red para lograr una

red bidireccional de mayor capacidad.

En cuanto a las alternativas que solo hacen más eficiente el ancho de banda en un

sentido, existe una estrategia llamada SDV (video digital conmutado) que optimiza la

transmisión de datos hacia el suscriptor. SDV no incrementa la capacidad de la red, lo

único que hace es distribuir su potencial con mayor eficiencia.

Muchos operadores de cable buscan llevar la fibra óptica cada vez más cerca del

suscriptor con el fin de aprovechar todas las ventajas que brinda la misma. Gracias a esto

han surgido las arquitecturas FTTX (fibra hasta donde “X”, donde “X” es sustituida por el

lugar hasta donde la fibra es llevada), que reducen considerablemente el uso del cable

coaxial. Como ejemplos de arquitecturas FTTX se pueden citar:

FTTLA (Fiber To The Last Active): fibra hasta el último active

FTTP (Fiber To The Premises): fibra hasta las instalaciones

FTTB (Fiber To The Building): fibra hasta el edificio

FTTC (Fiber To The Curb): fibra hasta la acera

FTTH (Fiber To The Home): fibra hasta la casa

Con la FTTH se obtienen considerables beneficios en la operación de las redes; sin

embargo los costos de inversión son elevados ya que se debe hacer una fuerte

reestructuración de la red. Es por este motivo que la alternativa más utilizada para llegar a

las instalaciones del suscriptor (la última milla) sigue siendo la acometida de cable coaxial.

Page 17: Proyecto Fiber Deep - Nvo Bosque Ctg

En algunos países se han implementados otras opciones, como por ejemplos las redes

PON (Redes Ópticas Pasivas). Una red PON es una arquitectura de red del tipo FTTP.

La arquitectura BPON (Red Óptica Pasiva de Banda Ancha) crea grupos de servicios para

32 casas. De acuerdo a estudios (que consideran el esquema de modulación 256 QAM

para downstream y 16 QAM para upstream), BPON se traduce en 19.5 Mbps en

downstream por casa pasada y 4.5 Mbps en upstream por casa pasada

aproximadamente. El nuevo están de GPON (Gigabit PON) da mayor flexibilidad al

operador al utilizar grupos de 64 casas. Esta arquitectura ofrece un mejor rendimiento y

puede proveer hasta 37.5 Mbps en downstream por casa pasada y aproximadamente

18.75 Mbps en upstream. Al compararlo con las redes tradicionales HFC ( con nodos de

500 casas y con esquemas de modulación 256 QAM y 16 QAM para downstream y

upstream respectivamente) se observa un notable incremento en las tasas de transmisión.

Arquitectura Downstream Upstream

BPON 19.5 Mbps 4.5 Mbps

GPON 37.5 Mbps 18.75 Mbps

Tasas de transferencias en redes BPON Y GPON

Redes HFC Downstream Upstream

750 MHz 8.8 Mbps 0.18 Mbps

850 MHz 10.2 Mbps 0.18 Mbps

1 GHz 11.9 Mbps 0.18 Mbps

Tasas de transferencia típicas de las redes HFC

También existen redes APON (ATM PON) y EPON (Ethernet PON) que usan la misma

estructura básica y cambian en que utilizan diferentes protocolos y tasas de transferencia.

¿ y qué sucede con el ancho de banda para el retorno?

Es importante mencionar que una limitante histórica en las redes de cable fue la

asignación de la banda de retorno de los 5 a los 42 MHz únicamente. Una desventaja de

este hecho es que se restringió el espacio o la porción del espectro para transmitir

señales desde las instalaciones del suscriptor hacia el CRC (sin mencionar que la parte

más baja de esta banda es más vulnerable a ingresos e interferencias). Esta porción del

espectro, también llamada sub-banda, originalmente se diseño con la finalidad de la

transmisión de señales de retorno, pero no para señales enviadas por cada uno de los

suscriptores, sino para enviar señales de televisión generadas en algún estudio local o en

cualquier punto de la red hacia el CRC. Las señales de televisión analógica de 6 MHz se

modularían en algunos de los siete canales T contenidos en la sub-banda (así se les

denomino, del T7 al T13), se enviarían hacia el CRC y de ahí se transmitirían con el resto

de los canales, como bien se sabe, actualmente, esta banda de retorno tiene otra función,

se utiliza para servicios interactivos, VoD, telefonía, internet y en general para todas las

señales que viajan desde el suscriptor hacia el CRC.

Page 18: Proyecto Fiber Deep - Nvo Bosque Ctg

Otra de las opciones que tienen los operadores de cable es usar la técnica de spectrum

overlay. Mediante esta práctica se puede hacer un mejor uso del espectro sin tener que

efectuar inversiones tan altas para la reconstrucción de la red. Los promotores de esta

solución indica que spectrum overlay permite utilizar varios bloques de ancho de banda

extra en ambos sentidos de la red, específicamente un bloque de 700MHz para

downstream y cuatro bloques de 120 MHz para upstream. Esto se logra en la sección

coaxial de la red HFC mediante un dispositivo que se coloca en el nodo óptico para la

conversión de frecuencias. De esta manera, el ancho de banda extra se vuelve totalmente

transparente para el CRC y para los equipos terminales sin necesidad de hacer otras

modificaciones. Por consiguiente, se seguirán teniendo todos los servicios que la red de

cable transportaba, incluyendo video digital, transmisión de datos de alta velocidad o

telefonía IP.

¿Qué es Fiber Deep y cómo surge?

Fiber Deep es una arquitectura de red (del tipo FTTC) que busca aprovechar al máximo

los beneficios de llevar la fibra óptica lo más cerca del suscriptor en una red de cable;

busca eliminar los amplificadores de RF en la red. Fiber Deep no es una arquitectura

totalmente nueva; la fibra óptica se ha empleado en redes de cable de diversas maneras

desde 1991. Durante las primeras pruebas con fibra, se colocaban transmisores y

receptores ópticos en medio de grandes cascadas de amplificadores con la finalidad de

sustituir grandes tramos de cable coaxial, llevar las señales a mayores distancias y

disminuir los problemas y distorsiones. A mediados de 1994, Time Warner, una compañía

de cable de los Estados Unidos, comenzó a estudiar el impacto financiero y técnico de

las diferentes arquitecturas con fibra óptica. Dicha compañía llevo a cabo pruebas con

fibra óptica. El sistema de cable se extendía por poco más de 330 millas con una

densidad de 145 casas por milla aproximadamente y se reestructuraron 200 millas con el

nuevo diseño de Fiber Deep.

Time Warner también utilizo una arquitectura denominada Fiber Rich. Esta consistía en

instalar fibra para limitar las cascadas de amplificadores a dos amplificadores troncales,

un amplificador puente y tres amplificadores de distribución como máximo. Se comprobó

la eficiencia de este diseño y de su viabilidad económica, ya que permitía actualizar un

sistema de 300 MHz a 700MHz con un costo aceptable. En el caso de Fiber Deep (en los

primeros años de esta arquitectura), se extendía la fibra desde el CRC hasta el

amplificador puente reduciendo así el numero de amplificadores en la red y eliminando los

troncales. Estos amplificadores representaban puntos débiles de la red porque tendían a

fallar con mayor frecuencia que los componentes ópticos. Haciendo una comparación, en

esa época para Fiber Rich se tenían 6 amplificadores por milla mientras que para Fiber

Deep, 5 amplificadores por milla aproximadamente.

En los sistemas de cable de hoy en día, la fibra óptica ha cobrado mayor importancia. La

reducción de cascadas de amplificadores permite a su vez trabajar con niveles más altos

a la salida de los dispositivos activos. Al llegar la fibra hasta el último activo (FTTLA) o

hasta la acera (FTTC), se elimina la necesidad de colocar amplificadores en cascada,

reduciendo así un sinnúmero de ruidos e interferencias asociados con el proceso de

Page 19: Proyecto Fiber Deep - Nvo Bosque Ctg

amplificación de señales de RF. Un sistema típico de Fiber Deep lo observamos a

continuación:

Un nodo en una red convencional HFC puede dar servicio a varios cientos de casas (de

500 a 2000 generalmente). Para el caso de las arquitecturas Fiber Deep los nodos dan

servicios a grupos de casas más pequeños (de 50 a 150 típicamente) con un ancho de

banda de 1GHz. La mayoría de los operadores eligen nodos de 125 casas por cuestiones

relativas al costo-beneficio. Si se tienen nodos de 64 casas, a la arquitectura se le conoce

como Fiber Very Deep y, obviamente, el costo por casa se incrementa.

Existe un compromiso o una relación muy estrecha entre el ancho de banda de la red, el

número de casas por nodo y la tasa de transferencia de datos. Para determinar una

arquitectura de red, se debe evaluar los servicios que se quieren ofrecer, las necesidades

de la población y aspectos financieros.

A continuación mostramos un esquema de una red con modulación 256 QAM para

donwstream y 16 QAM para upstream con nodos de 500 casas.

Ancho de banda Tasa de transferencia de DS (Donwstream)

Tasa de transferencia de US (Upstream)

750 MHz 8.8 Mbps/casa pasada 0.18 Mbps/casa pasada

850 MHz 10.2 Mbps/casa pasada 0.18 Mbps/casa pasada

1 GHz 11.9 Mbps/casa pasada 0.18 Mbps/casa pasada

Page 20: Proyecto Fiber Deep - Nvo Bosque Ctg

La reconstrucción de una red para su conversión en una arquitectura del tipo FTTX

requiere, sin duda, altos costos de inversión inicial, no obstante, se observa un

considerable decremento en los gastos destinados a su mantenimiento y se eleva

notablemente la confiabilidad y disponibilidad de la red. Basta con recordar que el

mantenimiento de una antigua arquitectura analógica de solo coaxial puede convertirse en

una carrera sin fin.

Fabricantes y tipos de equipos

Muchos fabricantes ofrecen equipos diseñados específicamente para arquitecturas Fiber

Deep. Algunas de estas soluciones permiten planear la migración o actualización de las

redes de cables con la opción de seguir creciendo en el futuro. La flexibilidad de los

equipos se determina por el número de sus accesorios, por ejemplo, dispositivos para el

retorno como filtros diplexores y/o diferentes tipos de transmisores ópticos.

Algunos transmisores de retorno o de reversa permiten ya sea la comunicación

bidireccional a través de las fibras separadas o, en lugares donde no hay muchas fibras,

la transmisión de señales hacia y desde el CRC a través de una solo fibra. Esta

tecnología se basa en multicanalización por División de Longitud de Onda (WDM).

Otros modelos de nodos ópticos especialmente diseñados para Fiber Deep brindan la

posibilidad de tener receptores ópticos para redundancia o de soportar servicios de

narrowcasting es decir, contenidos que se transmiten solo para algunos usuarios dentro

de la red. Algunos otros nodos ofrecen altos niveles de salida de RF con bajos consumos

de energía, bajos niveles de CNR (Relación Portadora a Ruido) y distorsiones muy bajas.

Algunas de las principales compañías que han lanzado soluciones para arquitecturas

Fiber Deep son Scientific Atlanta, Harmonic, C-COR, Aurora Networks, Arris y

Motorola..

La solución planteada nos permite una gran cantidad de aplicaciones y servicios que en la

actualidad son de gran importancia y de mucho uso en los hogares de nuestra ciudad,

tales como:

Page 21: Proyecto Fiber Deep - Nvo Bosque Ctg

Con esta implementación estamos garantizando una red robusta apta para sostener toda

la demanda de aplicaciones y capaz de converger a futuros cambios.

En primer lugar para realizar mi diseño he seguido un riguroso proceso que consta de

varias etapas. Primero se realizó un estudio de las condiciones del mercado, investigando

sobre el tipo de servicios que necesita la población, y el estado de la competencia en

dicha zona. Con estos datos, he determinado que la arquitectura fiber deep es la

adecuada para implementar en dicha zona y el ancho de banda de mi red será de 1Ghz.

A continuación describiré cada uno de los pasos a seguir para lograr nuestra red Fiber

Deep:

Levantamiento y mapeo de la zona a trabajar. La fase de adquisición de datos de campo

es una parte extremadamente importante del proceso de construcción ya esta es la base

para un buen diseño. Entre los datos recolectados debemos tener lo siguiente:

• Postes, con distancias entre postes, tipo de postes (madera, concreto, metal, etc.).

• Limites de las áreas a diseñar.

• Lista por escrito de los layers del dibujo existente.

• Levantamiento (postes, distancias)

• Calles

• Conteo de casas

• Edificios y/o oficinas propietarias.

• Sitios considerados como probables oficinas.

• Nombres de las calles.

Page 22: Proyecto Fiber Deep - Nvo Bosque Ctg

• Áreas que no se van a diseñar

• Cálculo y conteo potencial de casas indicado por poste en formato de texto

• Acometidas fuera de norma

• Escala de los planos

• Rutas de las fibras existentes

• Áreas de posibles expansiones (crecimiento)

La limitación de la zona que voy a trabajar está determinada por un clúster que tiene un

tamaño entre 750 HH PPs a 850 HH PPs (Por retorno no es recomendable tener más de

850 HH PPs esto puede generar en el futuro segmentaciones.)

Una vez terminado el levantamiento y mapeo de la zona, procedemos a digitalizarlo para de

esta manera terminar nuestra arquitectura. Con los datos recolectados en terreno en cuanto

a los requerimientos actuales y futuros de la zona, he diseñado una red que soporte un total

de 875 HH PPs.

Con el diseño final ya terminado, se procederá con la construcción del clúster empezando

por el CRC (hub o cabecera) donde se instalaran los equipos especificados tales como:

200 Casas aprox.

200 Casas aprox.

200 Casas aprox.

200 Casas aprox.

Page 23: Proyecto Fiber Deep - Nvo Bosque Ctg

Chasís CH3000 con sus respectivas fuentes de alimentación PS 3002N, Un transmisor

óptico ref. AT 3512 de 12 dB lambda 1550nm, receptor óptico dual DR 3002.

Luego de esto, ya en terreno se comenzara con el tendido del cable coaxial y fibra óptica.

Para empezar con dicho tendido de cables, es necesario en primer lugar vestir los postes

utilizando todas las herramientas y dispositivos necesarios entre los cuales tenemos:

Ganchos tipo j, silla extremo poste, tuerca de ojo de 5/8, tornillo con tuerca y arandela, perro

para guaya, hebilla bandit de ½, guaya para aseguramiento, strand link, strand wise, etc.

Entre las herramientas contamos con:

Antenallas, malacate, polipasto, zunchadora, porta carretes, rodillos, entre otras.

El tipo de cable que se utilizara es el .500 P-III categoría 000 y fibra óptica monomodo

auto soportada de 12 hilos.

Este proyecto está dividido en dos partes en cuanto a diseño:

1. Red óptica

2. Red en coaxial o de distribución

La parte óptica es aquella que va desde el CRC (Head end) hasta los nodos ópticos tanto en

Forward como en retorno, y la red coaxial es aquella que va desde los nodos hasta los taps

distribuidores de señal.

Diseño de Red óptica

AT 3512G

Filtro CWDM

Nodo 1

Nodo 2 Nodo 3 Nodo 4

FORWARD

RETORNO

Page 24: Proyecto Fiber Deep - Nvo Bosque Ctg

En esta imagen observamos la parte óptica y la disposición de cada uno de los cuatro nodos

ópticos. En forward podemos ver que la señal es transmitida desde el CRC por un

transmisor de AT 3512 de 12 dB de potencia óptica, luego pasa por un splitter óptico 80/20

donde la salida con 80% de atenuación (-8.4 ) llega a nuestro primer nodo óptico(Nodo 1 )y

la de 20% de atenuación (-3.6) sigue hasta otro splitter óptico 70/30, en esta parte la salida

de 70% de atenuación (-5.88) llega al segundo nodo y la de 30% (-2.52) sigue hasta otro

splitter 50/50 donde cada una de las salidas llegan a los nodos 3 y 4 con (-2.94).

En la parte de retorno, observamos que cada nodo recoge las señales que vienen de los

usuarios asignados a cada uno de ellos y luego se mezclan para ser enviados al CRC.

En el nodo 4, la DT 4030N recibe la señal en RF y la convierte a óptica para luego a través

del modulo TR 4000 enviarla a través de la fibra en 1310 nm de longitud de onda. Esta señal

llega hasta el nodo 3 y se mezcla con la señal óptica de dicho nodo, la TR 4440 convierte

esa señal mezclada a 1570nm de longitud de onda y es enviada hasta un splitter óptico

50/50.

Por otro lado, la DT 4030N presente en el nodo 2 recibe los retornos en RF de dichos

usuarios asignados y los convierte en óptica y nuevamente un modulo TR 4000 las envía en

1310 nm de longitud de onda hasta el nodo 1 donde se mezcla con la señal de dicho nodo y

la resultante se le asigna la longitud de onda 1550 nm a través de la TR 4440 y se envía

hasta el splitter óptico 50/50 donde se encuentra con la señal 1570nm para ser enviadas al

CRC (hub o cabecera) a través de un solo hilo de fibra óptica. Esta señal llega a un filtro

CWDM el cual divide las longitudes de onda dejándolas en su estado original (1550nm-

1570nm). Después de esto, las señales entran al receptor dual DR 3002 en donde son

convertidas a RF y luego mezcladas para el proceso interno en el CRC.

A continuación se mostrara los cálculos de los enlaces ópticos para el Forward entre el

CRC y cada uno de los nodos del clúster:

Nombre del

nodo

NODO dist Mts

Dist Km

fiber loss

dB/Km

Perdidas splitter 1

Perdidas splitter 2

Perdidas splitter 3

Perdida total del

enlace

Potencia de TX

Potencia de

entrada RX

NODO 1 6669 6,669 2,917 7.3 0 0 10,567

12 1,432

NODO2 7048 7,048 3,083 1.3 5.6 0 10,383

12 1,616

NODO 3 7579 7,579 3,315 1.3 1.9 3.3 12,515

12 -0,515

Page 25: Proyecto Fiber Deep - Nvo Bosque Ctg

De igual forma los cálculos para el camino de retorno entre los cuatro nodos y el CRC:

Diseño de red coaxial de distribución

Para realizar este diseño hay que tener en cuenta que cantidad de señal se requiere en cada

uno de los puertos de salida de los taps, de tal forma que permita entregar la potencia

adecuada de operación a los equipos terminales del suscriptor.

Se debe determinar el nivel mínimo de las señales a la frecuencia más alta y a la frecuencia

más baja. Para lograr esto último, se calcula la atenuación que experimentan las señales con

base en la longitud máxima permitida para las acometidas y a los equipos pasivos requeridos

para una instalación con varios servicios.

NODO 4 7757 7,751 3,39 1.3 1.9 3.3 12,241

12 -0,241

Nombre del nodo

NODO dist Mts

Dist Km

fiber loss

dB/Km

Perdidas splitter

Perdida total del enlace

Potencia de

entrada RX

NODO 1-NODO 2

7048 7,048 2.202 3.3 6.8025 -6.8025

NODO3-NODO 4

7751 7,751 2.531 3.3 7.231 -7.23125

Page 26: Proyecto Fiber Deep - Nvo Bosque Ctg

En este proyecto, los niveles óptimos que voy a manejar en los equipos terminales de los

suscriptores son:

Nivel de entrada al televisor: 0 dBmV

Nivel de entrada al cablemodems: -15 dBmV a 15 dBmV

A partir de aquí se puede hacer los siguientes cálculos:

Perdidas @ 860 MHz

Elemento TV PC

30m de cable RG 6 (= 20 dB/100m)

6dB 6 dB

Acoplador direccional 1dB 8 dB

20m de cable RG 6 (= 20 dB/100m)

4 dB 4 dB

Divisor de 4 7dB ---

Pérdida total 18dB 18 dB

De acuerdo con el cálculo, el nivel de las señales en la boca del tap a la máxima frecuencia

del sistema debería ser de 18 dB para llegar con 0 dBmV a la entrada del televisor.

Cálculos de niveles

Forward

El diseño de RF tiene como objetivo distribuir las señales a la mayor cantidad posible de

casa pasadas. Partiendo de los niveles de salida de los nodos (definidos previamente) y de

la perdida de señal por pasivos, se va calculando el nivel de señal disponible para repartirse

a cada uno de los abonados. Los taps tienen distintos valores de atenuación debido a que no

todos reciben la misma potencia de la señal. Los más cercanos a los RO reciben mayor

potencia y los más alejados reciben menor potencia. Los más próximos a los RO deberán

restar más potencia a las señales, mientras que los más alejados, deberán restar menor

potencia a la señal recibida para llegar con el mismo nivel al suscriptor (0 dBmV).

Page 27: Proyecto Fiber Deep - Nvo Bosque Ctg

Entre las consideraciones en cuanto a pérdidas que se tienen a la hora de hacer los cálculos

para el diseño, tenemos las pérdidas por inserción en los dispositivos y en el cable coaxial

.500:

Cable coaxial .500 @ 860 MHz: 7.68 dB /100mts

Cable coaxial .500 @ 55.25MHz: 1.71 dB/100mts

Es importante asegurarse que los niveles que llegan al suscriptor se encuentren dentro del

rango de los valores especificados por el sistema de cable. Una vez calculados los niveles

de forward en alta y baja frecuencia, se debe corroborar que la pendiente también se

encuentre dentro de los parámetros establecidos. En ocasiones cuando la pendiente cae

fuera de las especificaciones, se colocan ecualizadores de línea para ajustar los niveles.

Retorno

En el caso de retorno se sigue un procedimiento similar al de forward, solo que, en este caso

se toma el máximo nivel de potencia de transmisión del cablemodem y se sigue la

trayectoria inversa para los cálculos: de las instalaciones del suscriptor hacia los nodos.

RO

Page 28: Proyecto Fiber Deep - Nvo Bosque Ctg

NOTA: el nivel en los nodos de debe calibrar de tal forma que al CRC llegue un nivel de 14

dB en la portadora de 35 MHz.

En cuanto a la parte de alimentación del cluster, voy a trabajar con un voltaje de 90V AC el

cual es proporcionado por una fuente de poder marca ALPHA XM 90-15. Esta fuente va

acompañada de un inversor de voltaje, gabinete aéreo, 2 bancos de baterías y un

transponder para la gestión de la misma.

Equipos a usar en red externa

En red externa se va a hacer uso de cuatro nodos ópticos de la plataforma Aurora NC 4000 ,

una fuente de poder marca Alpha y múltiples dispositivos que describiré a continuación:

Plataforma Aurora NC4000

Dispone de cuatro salidas de RF las cuales presentan un nivel de salida de 58 dBmV a

870MHz, en nuestra aplicación usamos 1550nm para el broadcast y DWDM narrocast.

Además de ser flexible y robusta esta plataforma tiene la capacidad de segmentar dos

RO

Page 29: Proyecto Fiber Deep - Nvo Bosque Ctg

caminos de upstream (retorno) utilizando la solución patentada para el manejo de retorno

por Aurora la cual es el manejo del retorno en forma digital, además incluye CWDM y

DWDM, presenta la posibilidad de ampliar la señal para los servicios de “ancho de banda

por demanda” (incluidos los 100 Mbps Ethernet para los servicios comerciales) en la

zonas donde se carece de fibra, lo cual permite la reducción de las necesidades reales en

el terreno.

La capacidad de poder realizar el monitoreo del estado de la red se proporciona a través

de una red integrada de gestión de complemento, eliminando la necesidad de aumentar

los costos al introducir monitores de estado usando transceptores. Y de forma opcional se

ofrece receptores de retorno que permiten dividir la banda para diferentes aplicaciones.

Especificaciones del producto:

FISICAS

dimensiones: 20” L x 10” D x 11.7” H ( 51cm x 25.5 cm x 30 cm)

peso: 38 lbs. (17.1 Kg)

puertos en la carcasa: 6 puertos de AC/RF y 2 puertos de fibra

AMBIENTALES

Rango operativo de temperatura: -40° a +65°C

Humedad: 5% al 95% sin condensación

REQUERIMIENTOS ELECTRICOS

Rango operativo de voltaje de entrada: 44 a 95V rms a 47-70 Hz

Nivel de corriente: 15 A

Voltaje de entrada para inicialización de la fuente de poder interna: 40-44 V

Voltaje de entrada para apagado de la fuente de poder interna : 34-38 V

Eficiencia de la fuente de poder interna: 73%

Consumo de potencia DC en configuración estándar (4 salidas RF y un receptor

óptico): 63 W

BANDAS DE TRABAJO

RETORNO FORWARD

5-45 MHz 54-870 MHz

5-55 MHz 70-870 MHz

5-60 MHz 72-870 MHz

5-65 MHz 85-870 MHz

RENDIMIENTO EN RF

CARGA DE CANALES APLICACIÓN FIBER DEEP

Page 30: Proyecto Fiber Deep - Nvo Bosque Ctg

Hasta 550 MHz NTSC análogo

550-870 MHz 256 QAM a l6 dBc

NIVEL NOMINAL DE SALIDA( POR PUERTO)

A 870 MHz 58 dBmV

A 54/ 70/ 85 MHz 42.0 / 42.3 / 42.6 dBmV

PENDIENTE NOMINAL

54/870 16.0 dB linear

70/870 15.7 dB linear

85/870 15.4 dB linear

PERDIDA DE RETORNO (EN PUNTO DE SALIDA)

>16 dB

RENDIMIENTO DEL ENLACE

CNR 49 dB

CSO 58 dB

CTB 56.5 dB

Módulos internos del NC 4000

Supplies Power

El NC4000 puede ser alimentada desde una o

dos fuentes de alimentación. Una fuente de

alimentación proporciona la potencia DC

suficiente para ejecutar el amplificador de RF y

los módulos plug-in.

Dos fuentes de alimentación permite repartir la

carga y genera una fuente redundante por si

alguna falla.

La fuente de alimentación requiere de 45 a 90

VAC entrada, y proporciona

+3,3, +5, +12, Y +24 VDC

En mi proyecto implementaré una sola fuente

de alimentación por nodo de ref. PS4001

Page 31: Proyecto Fiber Deep - Nvo Bosque Ctg

Transceptor óptico (5-50 MHz)

Los transmisores de retorno convierten las

señales de RF de los abonados a las señales de

salida óptica que se enviarán a la Cabecera (o

CRC).

Los nodos NC4000 permiten instalar una o dos

transceptores DT4xxx, dependiendo de la vía de

retorno y la segmentación de redundancia

En mi proyecto voy a implementar un solo

transceptor óptico por nodo de ref. DT4030N

Modulo RF

En la implementación que realizaré

el modulo a instalar es el OA4114

Receptores de forward

Los receptores de forward convierten las señales ópticas (de

la cabecera o del CRC) a las señales de RF que se son

enviadas por el modulo de amplificador de RF.

Los nodos NC4000 requieren por lo menos uno, y un máximo

de cuatro, AR4xxx receptores de FWD, ya sea en función de

realizar segmentación o redundancia.

La OPT. ALARMA LED es normalmente verde, pero

Cambia a rojo si la entrada óptica cae por debajo de -6 dBm

Page 32: Proyecto Fiber Deep - Nvo Bosque Ctg

Placa madre del NC4000

Lid motherboard:

La tapa placa base proporciona interconexiones entre los

módulos plug-in (receptores,

transceptores, tanspondedores) y el amplificador de RF en la

bandeja de la base.

La placa base también da cabida a una plug-in de gestión de la

red, además de un switch de redundancia para RF y una serie

de módulos de configuración para el retorno.

La conexión RF entre la placa base y amplificador de RF se

realizan a través de cables coaxiales.

Return path transceivers

SFP plug-in

Los transceptores ópticos plug-in SFP

determinan la longitud de onda óptica y la

velocidad de transmisión de datos.

En este proyecto voy a implementar dos

tipos:

La TR4000- para lambda 1310nm

La TR4040-para lambda 1550 y 1570 nm

Page 33: Proyecto Fiber Deep - Nvo Bosque Ctg

Alimentación

Fuente de poder

Cable coaxial .500 con mensajero

ALPHA XM 90-15

Esta fuente va acompañada de un inversor

de voltaje, gabinete aéreo, 2 bancos de

baterías y un transponder para la gestión de

la misma

Page 34: Proyecto Fiber Deep - Nvo Bosque Ctg

Dispositivos pasivos a utilizar

TAP 8X2 TAP 8X4 TAP 14X8

Fibra óptica monomodo de 12 hilos

autosoportada

Cajas de empalmes

Page 35: Proyecto Fiber Deep - Nvo Bosque Ctg

Acopladores Direccionales

Insertor de potencia

STARLINE® 2000

System Passives

[1 GHz SSP Series]

SERIE DE SSP-K

Combina RF con AC

Splitter

Page 36: Proyecto Fiber Deep - Nvo Bosque Ctg

Accesorios

Angulo de 90 grados conector doble pin extensor para ángulos

Angulo de 180 grados

Herrajes

Tuerca de Ojo 5/8 Gancho tipo J Gancho tipo J Silla extremo

poste

Tornillo con tuerca y arandela Perro para guaya Aseguramiento RO Aéreo

Page 37: Proyecto Fiber Deep - Nvo Bosque Ctg

Hebilla bandit de ½ Guaya para aseguramiento Strand Link Strand Wise

Page 38: Proyecto Fiber Deep - Nvo Bosque Ctg

CONCLUSIONES

Las redes de cable seguirán cambiando y readaptándose para poder brindar las diversas

modalidades de los servicios de video, datos y telefonía. Debido a esto, es muy probable

que en un futuro no muy lejano otras tecnologías ganen un mayor terreno en los sistemas

de cable, tal es el caso de las tecnologías inalámbricas.

Con la implementación de la tecnología fiber deep logramos muchos cambios de gran

importancia para la prestación de servicios de telecomunicaciones. Por otro lado

obtenemos grandes beneficios en la red tales como:

Disminución de Activos

Aumento del tendido de fibra óptica

Disminución del tendido de Coaxial

Disminución en los tiempos de calibración del Nodo

Disminución del consumo de potencia eléctrica

Disminución en los gastos destinados a mantenimiento de coaxial

Page 39: Proyecto Fiber Deep - Nvo Bosque Ctg

BIBLIOGRAFIA

www.aurora.com

www.telmex.com.co

www.cinit.com

Carga Terminal

Unión Doble hembra

Ecualizador

Insertor de Potencia