Práctica de transferencia de calor por coductividad, convección y transferencia de calor en...

17
OBJETIVOS 1 Obtener de manera experimental el coeficiente de conductividad “K” del bronce y compararlo con el valor teórico 2 Obtener la variación de temperatura con respecto a la distancia que hay en una barra de bronce somita a transferencia de calor desde uno de sus extremos. 3 Obtener el coeficiente de convección ”h” del aire de manera experimental y compararlo con la teoría 4 Medir y determinar la transferencia de calor en una aleta y verificar si los datos obtenidos concuerdan con las temperaturas que debieran darse en el extremo de una aleta MARCO TEÓRICO Transferencia de Calor La transferencia de calor se produce normalmente desde un objeto con alta temperatura, a otro objeto con temperatura más baja. La transferencia de calor cambia la energía interna de ambos sistemas implicados, de acuerdo con la primera ley de la Termodinámica. Los modos de transferencia son diferentes procesos de transporte de calor, usualmente se agrupan en tres tipos según haya también transferencia o no transferencia de materia (o fotones) como los siguientes: Conducción: Es la transferencia de calor que se produce a través de un medio estacionario - que puede ser un sólido- cuando existe una diferencia de temperatura. Convección: La convección es una de las tres formas de transferencia de calor y se caracteriza porque se produce por medio de un fluido (líquido o gas) que transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales fluidos. Lo que se llama convección en sí, es el transporte de calor por medio del movimiento del fluido, por ejemplo: al trasegar el fluido por medio de bombas o al calentar agua en una cacerola, la que está en contacto con la parte de abajo de la cacerola se mueve hacia arriba, mientras que el agua que está en la superficie, desciende, ocupando el lugar que dejó la cacerola caliente. Radiación: se puede atribuir a cambios en las configuraciones electrónicas de los átomos o moléculas constitutivas. En ausencia de un medio, existe una transferencia neta de calor por radiación entre dos superficies a diferentes temperaturas, debido a que todas las superficies con temperatura finita emiten energía en forma de ondas electromagnéticas.1 La conductividad térmica es una propiedad de los materiales que valora la capacidad de transmitir el calor a través de ellos. Es elevada en metales y en general en cuerpos continuos, es baja en polímeros, y muy baja en algunos materiales especiales como la fibra de vidrio, que se denominan por ello aislantes térmicos. Para que exista conducción térmica hace falta una sustancia, de ahí que es nula en el vacío ideal, y muy baja en ambientes donde se ha practicado un vacío bajo.

Transcript of Práctica de transferencia de calor por coductividad, convección y transferencia de calor en...

OBJETIVOS

1 Obtener de manera experimental el coeficiente de conductividad “K” del bronce y

compararlo con el valor teórico

2 Obtener la variación de temperatura con respecto a la distancia que hay en una

barra de bronce somita a transferencia de calor desde uno de sus extremos.

3 Obtener el coeficiente de convección ”h” del aire de manera experimental y

compararlo con la teoría

4 Medir y determinar la transferencia de calor en una aleta y verificar si los datos

obtenidos concuerdan con las temperaturas que debieran darse en el extremo de

una aleta

MARCO TEÓRICO

Transferencia de Calor

La transferencia de calor se produce normalmente desde un objeto con alta temperatura, a

otro objeto con temperatura más baja. La transferencia de calor cambia la energía interna de

ambos sistemas implicados, de acuerdo con la primera ley de la Termodinámica.

Los modos de transferencia son diferentes procesos de transporte de calor, usualmente se

agrupan en tres tipos según haya también transferencia o no transferencia de materia (o

fotones) como los siguientes:

Conducción: Es la transferencia de calor que se produce a través de un medio estacionario -

que puede ser un sólido- cuando existe una diferencia de temperatura.

Convección: La convección es una de las tres formas de transferencia de calor y se

caracteriza porque se produce por medio de un fluido (líquido o gas) que transporta el calor

entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de

materiales fluidos. Lo que se llama convección en sí, es el transporte de calor por medio del

movimiento del fluido, por ejemplo: al trasegar el fluido por medio de bombas o al calentar

agua en una cacerola, la que está en contacto con la parte de abajo de la cacerola se mueve

hacia arriba, mientras que el agua que está en la superficie, desciende, ocupando el lugar que

dejó la cacerola caliente.

Radiación: se puede atribuir a cambios en las configuraciones electrónicas de los átomos o

moléculas constitutivas. En ausencia de un medio, existe una transferencia neta de calor por

radiación entre dos superficies a diferentes temperaturas, debido a que todas las superficies

con temperatura finita emiten energía en forma de ondas electromagnéticas.1

La conductividad térmica es una propiedad de los materiales que valora la capacidad de

transmitir el calor a través de ellos. Es elevada en metales y en general en cuerpos continuos,

es baja en polímeros, y muy baja en algunos materiales especiales como la fibra de vidrio, que

se denominan por ello aislantes térmicos. Para que exista conducción térmica hace falta una

sustancia, de ahí que es nula en el vacío ideal, y muy baja en ambientes donde se ha practicado

un vacío bajo.

El coeficiente de conductividad térmica (λ) caracteriza la cantidad de calor necesario por m2,

para que atravesando durante la unidad de tiempo, 1 m de material homogéneo obtenga una

diferencia de 1 °C de temperatura entre las dos caras. Es una propiedad intrínseca de cada

material que varía en función de la temperatura a la que se efectúa la medida, por lo que

suelen hacerse las mediciones a 300 K para poder comparar unos elementos con otros.

Cuando el elemento no es homogéneo, pero su heterogeneidad se distribuye uniformemente,

como por ejemplo, un muro de ladrillo con juntas de mortero, se obtiene en laboratorio un λ

útil, media ponderada de los coeficientes de cada material.

Es un mecanismo molecular de transferencia de calor que ocurre por la excitación de las

moléculas. Se presenta en todos los estados de la materia pero predomina en los sólidos.

Factores que influyen en la conductividad térmica

Temperatura

El efecto de la temperatura en la conductividad térmica es diferente para metales y para no

metales. En metales la conductividad es primariamente debido a electrones libres. De acuerdo

con la ley Wiedemann-Franz la conductividad térmica de los metales es aproximadamente

proporcional al producto de la temperatura absoluta expresada en Kelvin, multiplicada por la

conductividad eléctrica. En metales puros la resistividad eléctrica frecuentemente se

incrementa de manera proporcional a la temperatura, y por tanto la conductividad térmica

permanece aproximadamente constante. En aleaciones el cambio de conductividad eléctrica

es usualmente menor y por tanto la conductividad térmica se incrementa con la temperatura,

frecuentemente de manera proporcional.

Por otro lado, la conductividad en los no metales se debe fundamentalmente a las vibraciones

de la red (ver intercambio de fonones). Excepto para cristales de calidad alta a bajas

temperaturas, el camino libre medio de un fonón no se reduce de manera significativa par

altas temperaturas. Por tanto la conductividad de los no metales es aproximadamente

constante. Así la conductividad térmica es baja siempre y cuando la temperatura no sea

demasiado baja. A bajas temperaturas por debajo de la temperatura de Debye la

conductividad decrece justo como lo hace la capacidad calorífica.

Cambios de fase del material

Cuando un material sufre cambios de fase de sólido a líquido o de líquido a gas, la

conductividad térmica puede cambiar. Un ejemplo de esto sería el cambio en conductividad

térmica que ocurre cuando el hielo (conductividad térmica de 2,18 W/(m·K) a 0 °C) se derrite

formando agua líquida (conductividad térmica de 0,90 W/(m·K) a 0 °C).

Estructura del material

Las substancias cristalinas puras pueden exhibir diferentes conductividades térmicas en

diferentes direcciones del cristal, debido a diferencias en la dispersión de fonones según

diferentes direcciones en la red cristalina. El zafiro es un ejemplo notable de conductividad

térmica según la dirección, con una conductividad de 35 W/(m·K) a lo largo del eje-c, y 32

W/(m·K) a lo largo del eje a.1

Conductividad eléctrica

En metales, la conductividad térmica, varía muy a la par con la conductividad eléctrica de

acuerdo con la ley de Wiedemann-Franz ya que los electrones de valencia que se mueven

libremente transportan no sólo corriente eléctrica sino también energía calórica. Sin embargo,

la correlación general entre conductancia eléctrica y térmica no se mantiene para otros

materiales, debido a la importancia de la transmisión por fonones en no metales.

Formula

CONVECCION

La convección es una de las tres formas de transferencia de calor y se caracteriza porque se

produce por medio de un fluido (líquido o gas) que transporta el calor entre zonas con

diferentes temperaturas. La convección se produce únicamente por medio de materiales

fluidos. Lo que se llama convección en sí, es el transporte de calor por medio del movimiento

del fluido, por ejemplo: al trasegar el fluido por medio de bombas o al calentar agua en una

cacerola, la que está en contacto con la parte de abajo de la cacerola se mueve hacia arriba,

mientras que el agua que está en la superficie, desciende, ocupando el lugar que dejó la

caliente.

La transferencia de calor implica el transporte de calor en un volumen y la mezcla de

elementos macroscópicos de porciones calientes y frías de un gas o un líquido. Se incluye

también el intercambio de energía entre una superficie sólida y un fluido o por medio de una

bomba, un ventilador u otro dispositivo mecánico (convección mecánica, forzada o asistida).

En la transferencia de calor libre o natural un fluido es más caliente o más frío y en contacto

con una superficie sólida, causa una circulación debido a las diferencias de densidades que

resultan del gradiente de temperaturas en el fluido.

La transferencia de calor por convección se expresa con la Ley del Enfriamiento de Newton:

Donde h es el coeficiente de convección (o coeficiente de película), A_{s} es el área del cuerpo

en contacto con el fluido, T_{s} es la temperatura en la superficie del cuerpo y T_{\inf} es la

temperatura del fluido lejos del cuerpo.

Transferencia de calor en superficies extendidas

El término de superficie extendida se usa normalmente con referencia a un sólido que

experimenta transferencia de calor por conducción dentro de sus límites, así como

transferencia de calor por convección y/o radiación entre sus límites y alrededores

La aplicación más frecuente es el uso de las superficies extendidas de manera específica para

aumentar la rapidez de transferencia de calor entere un sólido y un fluido contiguo. Esta

superficie extendida se denomina aleta.

Dentro de sus usos comunes tenemos los radiadores (enfriadores de agua de enfriamiento

de los sistemas de combustión interna) la estructura externa de la cámara (cilindro) de los

motores de motocicletas, etc.

Considérese la pared plana de la figura si T es fija hay dos formas en la que es posible

aumentar la transferencia de calor. El coeficiente de convección h podría aumentarse

incrementando la velocidad del fluido y podría reducirse la temperatura del fluido TQ

Sin embargo se encuentra muchas situaciones, en las que h puede aumentar al valor máximo

posible, pero el factor económico que esta no lo hace viable.

La eficiencia de calor más efectiva se logra aumentando el Área de la superficie a través de la

cual ocurre convección, esto se logra a través del uso de aletas que se extienden desde la

pared al fluido circundante la conductividad térmica del material de la aleta tiene fuerte

afecto sobre la distribución de temperaturas a lo largo de la aleta y por lo tanto influye en el

grado al que la transferencia de calor aumenta, se tiene distintas configuraciones de aletas.

Las Aletas se montan en un aparato térmico, tubería u otro sistema con la finalidad de

aumentar el producto del Coeficiente de Transferencia de Calor convectivo con el Área (hA)

y así disminuir la resistencia térmica (1/hA) . Sin embargo el Área adicional no es tan

eficiente como la superficie original ya que para conducir el calor es necesario un gradiente

de temperatura a lo largo de la aleta. Así la diferencia media de temperatura en el

enfriamiento es menor en una superficie con aletas que en una sin ellas. La resistencia

adecuada de una aleta está dada por 1/(A*h*nf) , donde A es la superficie de la aleta y nf es

su efectividad (0< nf < 1) . Para aletas cortas de alta conductividad térmica nf es grande ,

pero disminuye al aumentar la longitud de la aleta.

Desde el punto de vista práctico solo se justifica el montaje de una aleta o superficie

extendida cuando se cumple la siguiente relación:

h≤ 0.25* (PK/A)

h = Coeficiente de película del fluido.

P = Perímetro de la sección de la aleta.

K = Conductividad térmica del material de la Aleta.

A = Superficie de la Aleta.

En caso contrario el aumento de transferencia de calor no es apreciable.

Para poder decidir sobre el tipo de aleta a poder usar se debe de tener en cuenta:

- Especio disponible.

- Caída de presión.

- Facilidad de su manufactura.

- Costo del material y su construcción.

Para poder plantear una ecuación para estos casos se debe tener en cuenta las siguientes

consideraciones:

- Conducción unidimensional a lo largo de toda la aleta.

- Conducción de calor en estado permanente.

- El material usado se considera homogéneo, con un K= cte.

- La temperatura en la base de la aleta se considera uniforme y constante.

- La temperatura y el coeficiente pelicular convectivo del fluido que rodea la aleta es

constante e uniforme.

CLASIFICACION:

Una aleta recta es cualquier superficie prolongada que se une a una pared plana. Puede ser

de área transversal uniforme (a) o no uniforme (b) una aleta anular es aquella que se une de

forma circunferencial a un cilindro y su sección transversal varia con el radio desde la línea

central del cilindro (c).

Una aleta de aguja o spine, es una superficie prolongada de sección transversal circular

uniforme o no uniforme. Pero es común en cualquier sección de una configuración de aletas

depende del espacio, peso, fabricación y costos, así como del punto al que las aletas reducen

el coeficiente de convección de la superficie y aumentan la caída de presión asociada con un

flujo sobre las aletas.

Se puede realizar la siguiente clasificación:

Aletas de sección transversal constante:

- Aleta rectangular.

- Aleta spine.

- Aleta anular o circunferencial.

Aletas de sección transversal variable:

- Aleta triangular.

- Aleta circunferencial variable.

- Aleta de aguja parabólica

ANÁLISIS GENERAL DE CONDUCCIÓN:

La conducción alrededor de una aleta

generalmente bidimensional la rapidez

a la que se desarrolla la convección de

energía hacia el fluido desde cualquier

punto de la superficie de la aleta debe

balancearse con la rapidez a la que la

energía alcanza ese punto debido a la

conducción en esta dirección

transversal (y, z)

Sin embargo, en la práctica la aleta es delgada y los cambios de temperatura en la

dirección longitudinal son muchos más grandes que los de la dirección transversal.

Por tanto, podemos suponer conducción unidimensional en la dirección X.

consideramos condiciones de estado estable y también supondremos que la

conductividad térmica es una constante, que la radiación desde la superficie es

insignificante, que los efectos de la generación de calor están ausentes y que el

coeficiente de transferencia de calor por convección h es uniforme sobre la superficie.

Tenemos entonces:

qx = qx+dx + dqconv ……..(1)

Según la ley de Fourier:

qx = -K*Ac*dT/dx

Donde Ac es el área de la sección transversal, que varía con x. como la conducción de

calor en x + dx se expresa como:

qx+dx = qx + (dqx)dx / dx v

qx+dx = -K*Ac*dT/dx - K*(d/dx)( Ac*dT/dx )dx

ademas: dqconv = h*dAs*(T – Ta)

Donde As: es el área superficial del elemento diferencial entonces tenemos

sustituyendo todas las ecuaciones en (1).

(d/dx)( Ac*dT/dx ) – (h/K)( dAs /dx)*(T – Ta) = 0

d 2T/dx2 + (1/Ac* dAc /dx* dT/dx) – (1/Ac* h/K * dAs /dx)(T – Ta) = 0 ......(2)

ALETAS DE AREA DE SECCION TRANSVERSAL UNIFORME:

Según la ecuación (2) es necesario tener una geometría adecuada para la solución de

problemas.

Para las aletas detalladas Ac es una constante, y As=Px donde As es el área de la

superficie medida de la base a x y P es el perímetro de la aleta en consecuencia dAc/dx

y dAs/dx = P por lo que:

La ecuación (b) se transforma en.

02

2

TTKA

hP

dx

Td

c

Si denotamos como. )()( TxCT Como T∞=constante.

dx

dT

dx

d

, lo que la ecuación anterior quedaría como.

)......(....................02

2

mdx

d

Dónde:

cKA

hPm 2

Esta ecuación (δ) es una ecuación diferencial lineal de segundo orden, homogénea con

coeficientes constantes. Su solución general es:

)4......(....................)( 21

mxmx eCeCx

Para poder evaluar C1 y C2 de la solución es necesario especificar condiciones de

frontera apropiadas. Una condición es especifica en términos de la temperatura base

de la aleta (x=0).

)5......(....................)0( bTTb La segunda condición especificada, en el extremo de la aleta (x=L) corresponde a

cualquiera de la siguientes condiciones físicas.

CASO A. Cuando se tiene una transferencia de calor por convección desde el extremo

de la aleta. Al aplicar un balance en una superficie de control alrededor de este

extremo en la figura tenemos.

)...()()( Lxdx

dTKATLThAc

)6)...(..()( Lxdx

dKLh

Al sustituir (4) en (5) y (6) se obtiene.

21)( CCb

)()( 1221

emLmLmLmL CeCKmCeCeCh

EFICIENCIA GLOBAL DE UNA ALETA

En un arreglo de aletas y superficies base a la que une, como se muestra en la figura,

donde S designa el espaciamiento de las aletas; en cada caso la eficiencia global se

define como.

.................(1)

qt= es la transferencia de calor total del área de la superficie At , asociada con las

aletas y la parte expuesta de la base ( a menudo denominada la superficie primaria) si

hay N aletas en el arreglo, cada una de las áreas superficiales Af , y el área de superficie

primaria se designa como Ab , el área e la superficie total es.

bft ANAA

la transferencia de calor máxima posible resultaría si toda la superficie de la aleta, así

como la base expuesta , se mantuvieran en Tb . La transferencia total de calor por

convección de las aletas y de la superficie principal se expresa como:

bbbfft hAhANq

donde el coeficiente de convección h se supone equivalente para las superficies

principal y con aleta, nf es la eficiencia de una sola aleta. De aquí.

bf

t

f

fbffffA

NAhANAAANhq

)1(1)( .............(2)

al sustituir la ecuación (2) en (1) se tiene:

RESISTENCIA DE LA ALETA.

Esto se obtiene al tratar de la diferencia de temperaturas de la base y del fluido como

el gran potencial de impulso.

bf

tt

hA

q

q

q

max

0

)1(10 t

f

A

NA

La cual θ b es equivalente a:

Donde C1 y C2 se obtienen de la siguiente ecuación:

Este resultado es extremadamente útil en particular cuando se representa una

superficie con aleta mediante un circuito térmico.

La resistencia térmica debida a la base de convección de la base expuesta se expresa

de la siguiente forma:

PRACTICA 1

Obtener de manera experimental el coeficiente de conductividad “K” del bronce y compararlo

con el valor teórico

MATERIAL

- Soporte universal

- Secadora de pelo

- Vaso precipitado de 100ml

- Barra de bronce aislada .098m largo x área

- Pinzas de 3 dedos

- Termómetro de bulbo e infrarrojo

PROCEDIMIENTO

El primer paso de la práctica fue determinar de manera experimental la cantidad de calor que

podía transferir la secadora de pelo en un determinado tiempo a un objeto, en este caso se

expuso un vaso de precipitado de 100ml con 25ml de agua al flujo de aire caliente de la

secadora por la parte inferior por un periodo de 3 min, se midió la temperatura inicial del

agua y la final y mediante la multiplicación de la masa por el Cp. y diferencial de temperatura

se calculó la “q”.

Una vez teniendo una “q” de referencia se procedió a obtener la “K” de conducción de la barra

de bronce aislada, del mismo modo la barra de bronce se expuso al mismo tiempo que se

expuso el vaso con agua y se medió el diferencial de temperatura de los 2 extremos y

despejando k de la ecuación de conducción para compararla con la teórica

CÁLCULOS

Procedimiento 1

Masa de agua= 25ml =

Diferencial de temperaturas en un tiempo de 3 minutos del Agua

T inicial=22 C T final= 30 C

Cp. agua=

Tiempo= 5 min = 300seg

Q=2.8watts

Procedimiento 2

Dimension Barra:

Diferencial de temperatura en barra de bronze

CONCLUSIÓN

La constante obtenida es muy similar a la teórica que esta entre 116 y 186 en una gran

medida puede haber variaciones debido al área del vaso de 50 ml y el área de la barra de

bronce y otro factor que pudo afectar es los flujos convectivos envolventes sobre toda la

barra.

PRÁCTICA 2

Obtener la variación de temperatura con respecto a la distancia que hay en una barra de

bronce somita a transferencia de calor desde uno de sus extremos

MATERIAL

- Soporte universal

- Secadora de pelo

- Barra de bronce aislada .098m largo x área

- Pinzas de 3 dedos

- Termómetro infrarrojo

PROCEDIMIENTO

Se aisló una barra de dimensiones con una pelicula de unicel para aislar la barra por los

costados y evitar convección por los mismos. En uno de los costados se hicieron orificios para

por los cuales se pudiera medir la temperatura con el termómetro de infrarrojo a cada cierta

distancia. Para esto primero se dejó calentar la barra por un periodo de tiempo largo hasta

saber que el flujo de calor era estacionario y no variaba con el tiempo. El espacio entre cada

ventana 1 cm

CÁLCULOS

(

)

promedio real dif "T" dif "x" temp teórica temp real

33.74 0.26 0.015 33.3877551 33.74

30.28 3.72 0.025 32.97959184 30.28

29.12 4.88 0.035 32.57142857 29.12

29.28 4.72 0.045 32.16326531 29.28

29.04 4.96 0.055 31.75510204 29.04

ventana mediciones promedio real

1 36 36 36 35.2 32.3 33.74

2 30.8 28.6 29.8 31 31.2 30.28

3 29.8 28.8 28.6 29.2 29.2 29.12

4 29.6 28.4 28.6 28.6 31.2 29.28

5 32.4 31.6 31 30.8 30.8 29.04

T al calor 34

T sin calor 31

∆ T 4

k 139

q 2.8

CONCLUSIONES

Las variaciones experimentales y teóricas en gran medida fueron debido a los flujos

convectivos envolventes sobre el tubo de bronze ya que no se pudo hacer el experimento

evitando dichos flujos. Pero aun así los datos arrojados son muy parecidos a la teoría

PRACTICA 3

Obtener el coeficiente de convección”h” del aire de manera experimental y compararlo con la

teoría

MATERIAL

- Soporte universal

- Secadora de pelo

- Vaso precipitado de 100ml

- Barra de bronce aislada .098m largo x área

- Pinzas de 3 dedos

- Termómetro de bulbo e infrarrojo

PROCEDIMIENTO

Del mismo modo que la práctica para la obtención de k de conducción se tomó el valor de Q

que la maquina secadora transmitió al vaso con 25 ml de agua de la practica 1 y se igualo ese

valor con la ecuación de convección para obtener la “h” de convección del aire. En este caso se

volvió a poner la secadora por un periodo de 5 min a calentar un extremo de la barra de broce

hasta alcanzar el flujo estacionario y se midió la temperatura de la cara expuesta a la

convección por el aire para calcularlo.

CÁLCULOS

Q de convección=2.8 watts

Igualando con la ecuación por convección

T superficie=25.4

T ambiente=25

Despejando h

h aire = 5-20 vs 7

CONCLUSIÓN

Los resultados arrojaron una muy buena aproximación a los coeficientes de convección del

aire teóricos pues rondan los 5 y 20

PRÁCTICA 4

Medir y determinar la transferencia de calor en una aleta y verificar si los datos obtenidos

concuerdan con las temperaturas que debieran darse en el extremo de una aleta

PROCEDIMIENTO

Se calentaron 750ml de agua a 91 grados C para luego vaciarlos en el cubo de acero provisto

de aletas, se esperó hasta determinar un estado relativamente estacionario entre la

temperatura del agua y el cubo y se procedió a medir la temperatura de una de las paredes de

cubo contra la temperatura del extremo de la aleta que le correspondía para verificar si

correspondían la temperaturas con respecto a la teoría

CÁLCULOS

Datos perímetro extremo aleta=.212m (2x.003+2x.103)

Área del extremo de aleta=

H aire =

K acero=

T pared= 56.4, 55.2, 54.4

T ambiente= 28 C

FORMULAS

Para calcular temperatura en extremo de aleta

{(

) }

Sustituyendo en ecuaciones se obtuvieron los sig. datos mismos que se dieron al colocar el

rayo del termómetro infrarrojo en el extremo de aleta por la parte superior para evitar error

de puntería

Los siguientes datos se obtuvieron al disparar el rayo infrarrojo en la cara de la aleta

CONCLUSÓN

Los datos arrojan en una buena aproximación siempre y cuando se dispare el rayo infrarrojo a

la cara superior de la aleta en la parte más externa de la misma pues al intentar disparar a la

cara exterior por ser de un ancho muy angosto pudo haberse dado un error de puntería, otro

factor que pudo haber influenciado es la resistencia por contacto entre la aleta y la pared por

la soldadura irregular.

# medicion T pared T real T real diferencia

1 56.4 31.2 30.63 0.57

2 55.2 30.6 30.57 0.03

3 54.4 30.6 30.48 0.12

# medicion T pared T real T teorica diferencia

1 56.4 54 30.63 23.37

2 55.2 54.2 30.57 23.63

3 54.4 51.4 30.53 20.87

T amb 28

cosh(mL) 9.58

mL 2.95

k 52

h 7

P 0.212

A 0.000309