Números, Revista de Didáctica

191
Sociedad Canaria Isaac Newton de Profesores de Matemáticas N N Ú Ú M M E E R R O O S S Revista de Didáctica de las Matemáticas Marzo de 2014 Volumen 85

Transcript of Números, Revista de Didáctica

Page 1: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton de Profesores de Matemáticas

NN ÚÚ MM EE RR OO SS Revista de Didáctica de las Matemáticas

MMaarrzzoo ddee 22001144 VVoolluummeenn 8855

Page 2: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton de Profesores de Matemáticas

http://www.sinewton.org/numeros ISSN: 1887-1984 Volumen 85, marzo de 2014, página 2

NNúúmmeerrooss, Revista de Didáctica de las Matemáticas, se ocupa de la enseñanza y el aprendizaje desde infantil hasta la universidad, aunque atiende preferentemente la educación primaria y secundaria. Publica trabajos de interés para el profesorado de esos niveles, tales como experiencias de aula, reflexiones sobre la enseñanza, aplicaciones de la investigación…

NNúúmmeerrooss, Revista de Didáctica de las Matemáticas aparece en las bases de datos bibliográficas Latindex, Dialnet y DICE, y es recensionada en Mathematics Education Database.

Directora

Alicia Bruno (Universidad de La Laguna)

Comité editorial

Hugo Afonso, Dolores de la Coba, Miguel Domínguez, Fátima García, Israel García, Mª Aurelia Noda, Josefa Perdomo e Inés Plasencia.

Consejo asesor

José Luis Aguiar, Luis Balbuena, Carmen Batanero, Teresa Braicovich, Juan Contreras, Norma Cotic, Juan Díaz Godino, Salvador Llinares, Antonio Martinón, Jacinto Quevedo, Victoria Sánchez y Arnulfo Santos.

Portada. Autor: Juan Cuenca Serrano. Título: “Rectas, circunferencias y espectáculo visual”. La Punta del Hidalgo, Tenerife, a 28 de julio de 2013.

Edita

Sociedad Canaria Isaac Newton de Profesores de Matemáticas

Apartado 329.

38200 La Laguna (Tenerife) España

Email: [email protected]

Web: http://www.sinewton.org

Junta Directiva de la Sociedad Canaria "Isaac Newton" de Profesores de Matemáticas

Juan Agustín Noda Gómez (Presidente), Mª Nila Pérez Francisco (Vicepresidente), José Manuel Vidal González (Secretario General), Sergio Alexander Hernández Hernández (Tesorero), Carmen Dolores Ríos González (Vicesecretaria), Carmen Sonia Fernández Valdivia (Secretaria de actas), Luis Balbuena Castellano (Bibliotecario). Coordinadores insulares: Ramón Galán González (Gran Canaria), Roberto Rodríguez Cruz (La Palma), Dolores de la Coba García (Tenerife).

NNúúmmeerrooss, Revista de Didáctica de las Matemáticas, es una publicación de la Sociedad Canaria Isaac Newton de Profesores de Matemáticas. Se editan tres números ordinarios al año, los meses de marzo, julio y noviembre.

Page 3: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 3-4

Índice

Artículos

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la

Formación Inicial y Continua del Profesorado 5

C. Vásquez, Á. Alsina

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a

través de la literatura infantil en Educación Infantil y Primaria. 25

R. Fernández Cézar, C. Harris, C. Aguirre Pérez

Los sistemas de ecuaciones en el bachillerato 41

F. Martínez de la Rosa, S. M. Sáez Martínez

¿Pueden nuestros estudiantes construir conocimientos matemáticos? 49

P. Cobo, M. A. Molina

Actividades Matemáticas: Conjeturar y Argumentar 75

Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

Actividad de estudio e investigación para la enseñanza de nociones de

geometría 91

A. R. Corica, E. A. Marin

Secciones

Astronomía

Club Astronómico del Instituto 115

F. Fernández Porredón

Juegos

Poliprismas 139

J. A. Rupérez Padrón, M. García Déniz (Club Matemático)

Problemas

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI 145

J. A. Rupérez Padrón, M. García Déniz (Club Matemático)

Page 4: Números, Revista de Didáctica

Índice (continuación)

4 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Experiencias de aula

Los enigmas del Ogro de Halloween 157

E. Rodríguez Francisco

Leer Matemáticas

Cuando las rectas se vuelven curvas. Las geometrías no euclídeas. Joan Gómez 179

Reseña: J. García Melián

Matemáticamente competentes…Para reír. Pablo Flores y Antonio Moreno 183

Reseña: V. Giaconi

Informaciones 187

Normas para los autores 191

Page 5: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 5-23

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la

Formación Inicial y Continua del Profesorado.

Claudia Vásquez (Pontificia Universidad Católica de Chile. Chile)

Ángel Alsina (Universidad de Girona. España)

Fecha de recepción: 9 de julio de 2013

Fecha de aceptación: 30 de octubre de 2013

Resumen En los últimos años la probabilidad se ha incorporado fuertemente en el currículo escolar

de muchos países, transformándose en un desafío para las instituciones formadoras y el

profesorado. Con este artículo se busca aportar evidencias sobre los conocimientos

matemáticos y didácticos que deben poner en juego los profesores de educación primaria

para la enseñanza de la probabilidad. Para ello, se ha realizado un análisis exploratorio de

referentes curriculares internacionales y nacionales sobre enseñanza y aprendizaje de la

probabilidad, así como de algunos modelos sobre el conocimiento didáctico y

matemático del profesor. En base a dicho análisis, se concluye con algunas directrices

para la formación del profesorado que contribuyen a mejorar la comprensión de la

probabilidad, y procurar así la transformación progresiva de la práctica docente.

Palabras clave Conocimiento matemático y didáctico, probabilidad, educación primaria, formación

inicial y continua de profesores.

Abstract In the last years, probability has become a major component of school curriculum in

many countries and a challenge to both, educational institutions and teachers. The

purpose of this article is to provide evidence about the mathematical and didactic knowledge that primary school teachers must bring into play to teach probability. To do

that, an exploratory analysis of international and national curricular benchmarks of

probability teaching and learning, well as some models of teacher's mathematical and

didactic knowledge, has been conducted. Based on that, it concludes with some teacher

education guidelines that contribute to improving the understanding of probability, and

enable the progressive transformation of teaching practices.

Keywords Mathematical and didactic knowledge, probability, primary education, initial and on-

going training of teachers.

1. Introducción

No es desconocido que los requerimientos de la sociedad varían muy rápidamente, cambiando

al mismo tiempo lo que los alumnos necesitan aprender en la escuela. Estos cambios exigen una

mayor preparación por parte de los profesores para ejercer la enseñanza en los distintos ciclos

educacionales que conforman el sistema escolar. Tal es el caso de la probabilidad, que durante los últimos veinticinco años aproximadamente se ha ido incorporando fuertemente en los currículos de

matemática a nivel parvulario, básico, medio y superior en gran parte de los países desarrollados.

Algunos de los principales motivos son su utilidad y presencia en numerosas situaciones de la vida

Page 6: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

6 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

diaria, en las que es necesario disponer de un razonamiento crítico que permita interpretar y comunicar

distintos tipos de información, además de su estrecho vínculo con distintas disciplinas. Esta iniciativa

ha contado, desde 1989, con el apoyo del National Council of Teachers of Mathematics (NCTM) al ser este organismo pionero en incluir “Datos y Azar” como una área temática en el currículo de

matemáticas Currículum and Evaluation Standard for School Mathematics (NCTM, 1989). Esta

iniciativa ha ido cobrando fuerza con el transcurso de los años, generando una verdadera reforma en los currículos de matemática de diversos países que se ha plasmado, en la última década, en los

Principles and Standard for School Mathematics (NCTM, 2000). Estos estándares buscan proveer de

una visión y dirección necesarias para una educación matemática de alta calidad para todos los

alumnos.

Dada esta situación de cambios se hace necesario contar con profesores preparados que logren que sus alumnos alcancen estos nuevos requerimientos y que utilicen enfoques adecuados para enseñar

los contenidos recientemente incorporados, como es el caso de la probabilidad. Esta transformación

curricular representa un verdadero desafío para las instituciones formadoras, ya que la gran mayoría de profesores no han contado durante su formación inicial con asignaturas que les permitan alcanzar una

enseñanza eficaz de la probabilidad. Bajo esta perspectiva, es necesario contar con estudios sobre la

enseñanza de la probabilidad en educación primaria, y más específicamente vinculados a los

conocimientos matemáticos y didácticos que los profesores de primaria deben poner en juego a la hora de enseñar estos contenidos, sobre todo en países como Chile en el que tales estudios son aún muy

escasos. Es en este escenario que surge este trabajo, a través del cual se busca vislumbrar y analizar el

conocimiento matemático y didáctico que los profesores de primaria necesitan para la enseñanza de la

probabilidad.

2. La probabilidad en el currículo escolar

Un punto central en este estudio es el relacionado con la presencia y el rol otorgado a la

probabilidad dentro del currículo escolar tanto a nivel internacional como nacional. En esta sección se describen los contenidos vinculados al estudio de la probabilidad en las orientaciones curriculares de

la NCTM (2000), los Estándares Comunes (CCSSI, 2010), en el currículo chileno para la educación

básica (Mineduc, 2012) y por último en el currículo español para la educación primaria (MEC, 2007). Esto nos permitirá contar con una visión panorámica en torno al tratamiento otorgado al estudio de la

probabilidad, y de este modo tener claridad, en parte, acerca del conocimiento de la probabilidad y su

enseñanza que necesitan los profesores de primaria para llevar a cabo el proceso de enseñanza y

aprendizaje con sus estudiantes.

2.1. La probabilidad en el currículo escolar internacional

Para establecer la presencia y el rol otorgado a la probabilidad en el currículo escolar

internacional, se analizan los Principios y Estándares para la Educación Matemática del National

Council of Teachers of Mathematics (NCTM, 2000), y los Estándares Comunes para las Matemáticas de la Common Core State Standard Initiative (CCSSI, 2010), al tratarse de documentos de referencia

que han tenido gran influencia tanto en el currículo de EEUU como en el de muchos otros países como

Chile y España.

Actualmente existe un acuerdo generalizado en que la probabilidad, debido a sus múltiples

aplicaciones en distintas áreas del saber, es parte importante de la matemática, por lo que es necesario que el pensamiento probabilístico se desarrolle desde las primeras edades (nivel parvulario). Como se

ha indicado, esta fue adoptada por la NCTM (1989), al incluir como área temática en el Curriculum

Page 7: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

7 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

and Evaluation Standard for School Mathematics a Datos y Azar, iniciativa que desde entonces ha

cobrado fuerza y se ha plasmado, últimamente, en los Principles and Standard for School

Mathematics (NCTM, 2000). Por medio de tales Principios y Estándares se busca “describir las características particulares de una educación matemática de gran calidad”, además de “describir los

contenidos y procesos matemáticos que deberían aprender los estudiantes” (NCTM, 2000, p. 11). Para

lograr este propósito se proponen los Principios de: igualdad, currículo, enseñanza, aprendizaje, evaluación y tecnología para las matemáticas escolares. Además de un conjunto de conocimientos y

competencias matemáticas que buscan desarrollar en los estudiantes, la capacidad de pensar y razonar

matemáticamente. Es así como emergen los Estándares de Contenidos y los Estándares de Procesos.

Los primeros describen explícitamente los contenidos que deberían aprender los estudiantes desde el Prekindergarten al nivel 12, en relación a Números y operaciones, Álgebra, Geometría, Medida y

Análisis de datos y probabilidad, mientras que los segundos exponen distintas formas de adquisición y

usos de dichos contenidos, como un continuo en el currículo escolar, por medio de los procesos de:

Resolución de problemas: se enfatiza la construcción de nuevos conocimientos a partir de la

exploración de métodos de resolución de problemas, ya sea del ámbito de la matemática o de otros contextos, lo que permitirá que los estudiantes reflexionen y apliquen sus

conocimientos y estrategias en busca de una solución.

Razonamiento y demostración: se pretende capacitar a los estudiantes para reconocer la

importancia del razonamiento y la demostración en el desarrollo de la matemática, como

herramientas que permiten formular, desarrollar y evaluar distintos tipos de argumentos matemáticos.

Comunicación: se entiende como una parte esencial de las matemáticas, pues a través de ella

los estudiantes estarían capacitados para organizar, comunicar, analizar y evaluar, de forma

rigurosa, tanto su pensamiento matemático como el de los demás.

Conexiones: se enfatiza que los estudiantes sean capaces de vincular distintas ideas

matemáticas entre sí, generando nuevas ideas, además de reconocer la aplicabilidad en

contextos no matemáticos.

Representación: se busca mejorar la comprensión de distintos tipos de ideas matemáticas por

medio de amplio espectro de representaciones otorgadas a los estudiantes de modo que estos sean capaces de seleccionar, aplicar y traducir aquellas que sean más adecuadas a un

determinado problema.

Estos diez estándares se encuentran presentes de forma continua y gradual a lo largo de todo el

currículo escolar, respondiendo a las distintas necesidades presentes en cada una de las distintas etapas

de la formación escolar, tal y como es posible apreciar en la figura 1.

Figura 1. Nivel de atención que deberían recibir los diferentes estándares de contenidos desde Prekindergarten

al nivel 12 (NCTM, 2000, p. 32)

Page 8: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

8 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Dado que nuestro estudio se centra específicamente en el contenido de probabilidad, el análisis

se focaliza en el estándar de contenido de Análisis de datos y probabilidad (NCTM, 2000), puesto que

en él se abordan conceptos básicos y distintas aplicaciones de la probabilidad que permitirían a los estudiantes establecer, de manera progresiva, conexiones entre las matemáticas y otros ámbitos del

saber, así como con experiencias de la vida diaria, de modo que al finalizar su formación escolar los

estudiantes posean una sólida formación en lo que se refiere al análisis de datos y probabilidad. Es por esta razón que este estándar propone, específicamente para el tema de probabilidad, “capacitar a los

estudiantes, en las distintas etapas, para: desarrollar y evaluar inferencias y predicciones basadas en

datos; y comprender y aplicar conceptos básicos de probabilidad.” (NCTM, 2000, p. 51)

Para ello, se propone iniciar el estudio de la probabilidad y de los contenidos vinculados a partir

del Prekindergarten (preescolar) de forma continua hasta el nivel 12 (bachillerato), de tal manera que

se favorezca la adquisición progresiva de los siguientes contenidos:

Desarrollar y evaluar inferencias y

predicciones basadas en datos

Comprender y aplicar conceptos básicos de

probabilidad

Pre K-2 Discutir sucesos probables e improbables

relacionados con las experiencias de los alumnos.

3–5

Proponer y justificar conclusiones y predicciones

basadas en datos, y diseñar estudios para

investigarlas más a fondo.

Describir sucesos como probables o no probables,

y discutir su grado de probabilidad usando

expresiones como seguro, igualmente probable e

improbable;

Predecir la probabilidad de resultados de

experimentos sencillos, y someter a prueba tales predicciones;

Comprender que la medida de la probabilidad de

un suceso puede representarse por un número

comprendido entre 0 y 1.

6–8

Utilizar observaciones relativas a las diferencias

entre dos o más muestras, para formular

conjeturas sobre las poblaciones de las que se han

extraído;

Formular conjeturas sobre las posibles relaciones entre dos características de una muestra, a partir

de nubes de puntos de los datos y líneas de ajuste

aproximadas;

Utilizar las conjeturas para formular nuevas

preguntas y programar nuevos estudios para

contestarlas.

Comprender y utilizar la terminología apropiada

para describir sucesos complementarios y

mutuamente excluyentes;

Utilizar la proporcionalidad y una comprensión

básica de la probabilidad para formular y comprobar conjeturas sobre los resultados de

experimentos y simulaciones;

Calcular probabilidades de sucesos compuestos

sencillos, utilizando métodos como listas

organizadas, diagramas de árbol y modelos de

área.

9–12

Utilizar simulaciones para explorar la variabilidad

de muestras estadísticas de una población

conocida, y para construir distribuciones

muestrales;

Comprender cómo las muestras estadísticas

Comprender los conceptos de espacio muestral y

distribución de probabilidad, y construir espacios

muestrales y distribuciones en casos sencillos;

Utilizar simulaciones para construir distribuciones de probabilidad empíricas;

Page 9: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

9 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

reflejan los valores de los parámetros de la

población, y utilizar las distribuciones muestrales

como base para inferencias informales;

Evaluar informes basados en datos, examinando

el diseño del estudio, lo apropiado del análisis de

los datos y la validez de las conclusiones;

Comprender cómo se utilizan técnicas estadísticas

básicas en los lugares de trabajo, para controlar características del proceso de producción.

Calcular e interpretar el valor esperado de

variables aleatorias en casos sencillos;

Comprender los conceptos de probabilidad

condicionada y sucesos independientes;

Comprender cómo se calcula la probabilidad de

un suceso compuesto.

Tabla 1. Contenidos en relación al tema de probabilidad desde Prekindergarten al nivel 12 (NCTM, 2000)

Como se puede apreciar en la Tabla 1, el desarrollo de los conceptos básicos de probabilidad

pasa por diferentes fases: a) se inicia de manera informal en las primeras etapas, introduciendo en

primer lugar el vocabulario vinculado a las nociones de probabilidad por medio de actividades centradas en los juicios que emiten los estudiantes en base a sus propias experiencias, llevándoles a

responder preguntas sobre la probabilidad de sucesos, cuyas respuestas consideren el empleo de

términos tales como: más probable, menos probable o imposible; b) sigue con la realización de experimentos aleatorios con material concreto como bolitas, fichas de colores, monedas, ruletas, etc. y

de este modo comenzar a aprender cómo cuantificar la probabilidad de ocurrencia de un determinado

suceso. Además de empezar a comprender que la probabilidad de un suceso imposible se designa por medio del 0 y la de un suceso seguro por medio del 1, vinculando así a los estudiantes con la

asignación numérica de probabilidad a la ocurrencia de ciertos sucesos; y c) se finaliza la educación

primaria con el cálculo de probabilidades de sucesos compuestos sencillos, dejando para la educación

secundaria el cálculo de probabilidad de sucesos dependientes e independientes, así como conceptos

de mayor complejidad.

La adquisición de estos contenidos, como se ha indicado, se ve complementada con los

estándares de procesos, pues éstos ofrecen un conjunto de herramientas (Resolución de problemas,

Razonamiento y prueba, Comunicación, Conexiones y Representación) que facilitan la adquisición y uso de tales contenidos en los estudiantes, ya que a partir de los estándares de procesos los estudiantes

se introducen progresivamente en las formas de pensar propias de las matemáticas como: razonar,

argumentar, descubrir, representar, modelizar, demostrar, etc. Estos procesos de pensamiento

matemático les permiten construir nuevos conocimientos y sobre todo otorgar aplicabilidad a los distintos contenidos tratados, vinculándoles no tan solo con otros contenidos matemáticos y de otras

disciplinas, sino también con contextos de la vida cotidiana (Alsina, 2012). En este punto es crucial la

labor del profesor, pues éste debe ser capaz de lograr una correcta interacción entre los estándares de contendidos y los de procesos, para así contribuir al desarrollo de la competencia matemática en los

estudiantes, lo cual de acuerdo con Alsina (2009) implica:

Pensar matemáticamente: construir conocimiento matemático en situaciones donde tenga

sentido, experimentar, intuir, relacionar conceptos y abstraer.

Razonar matemáticamente: realizar deducciones e inducciones, particularizar y generalizar;

argumentar las decisiones, así como los procesos y las técnicas.

Plantear y resolver problemas: leer y entender el enunciado, generar preguntas, planificar y

desarrollar estrategias de resolución y validar soluciones.

Obtener, interpretar y generar información con contenido matemático.

Page 10: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

10 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Usar técnicas matemáticas básicas (para contar, operar, medir, situarse en el espacio y

organizar y analizar datos) e instrumentos (calculadoras y tecnologías de la información, de

dibujo y medida) para hacer matemáticas.

Interpretar y representar expresiones, procesos y resultados matemáticos con palabras,

dibujos, símbolos, números y materiales.

Comunicar el trabajo y los descubrimientos a los demás, tanto oralmente como por escrito,

usando de forma progresiva el lenguaje matemático.

Es precisamente en este punto donde todo lo anterior es de gran relevancia para este estudio

pues uno de los principales objetivos de este análisis es proporcionar información sobre el

conocimiento matemático y didáctico que necesitan los profesores de educación básica para enseñar probabilidad, es decir del conocimiento necesario para propiciar el desarrollo de la competencia

matemática en sus estudiantes.

Otro referente internacional en esta línea son los Common Core State Standards for

Mathematics o Estándares Comunes para las Matemáticas de la Common Core State Standards

Initiative (CCSSI, 2010). Estos estándares describen los conocimientos y habilidades que los profesores deben ser capaces de desarrollar en sus estudiantes en cada nivel, es decir, “lo que se espera

que los estudiantes aprendan y sean capaces de hacer” (CCSSI, 2010, p. 5). Se trata de un conjunto de

orientaciones para la práctica de matemáticas y del contenido en matemáticas, con el objeto de lograr una educación de alta calidad que permita a los estudiantes acceder a los conocimientos y habilidades

necesarios para sus vidas después de la escuela, ya sea en la universidad o en el mundo laboral.

Los estándares para la práctica de matemáticas buscan describir la variedad de experiencias

(habilidades) que los profesores deben desarrollar en todos sus estudiantes desde la educación infantil

hasta el décimo segundo grado (nivel 12), para que éstos puedan aplicar los conocimientos matemáticos, es decir, sean matemáticamente competentes. Tales estándares se basan, por un lado en

los estándares de procesos de la NCTM, y por otro en las competencias matemáticas descritas en el

informe Adding It del National Council Research, surgiendo de esta manera los siguientes ocho

estándares para la práctica de matemática, que a continuación se mencionan:

Dar sentido a los problemas y perseverar en resolverlos

Desarrollar un razonamiento abstracto y cuantitativo

Construir argumentos viables y criticar el razonamiento de otros

Modelar usando matemáticas

Usar herramientas adecuadas de manera estratégica

Reconocer la importancia de la precisión

Buscar y hacer uso de una estructura

Buscar y expresar regularidades en un razonamiento repetido

Mientras que los estándares para la práctica de matemáticas definen las experiencias que los profesores deberían desarrollar en sus estudiantes, los estándares para el contenido en matemáticas

presentan una combinación equilibrada entre los procedimientos y la comprensión de conceptos

centrales en la formación de los estudiantes, es decir, lo que los estudiantes saben sobre matemáticas.

Así, se busca conectar las prácticas con los contenidos, estableciendo un conjunto de estándares específicos para cada nivel, desde el Pre-K-2 al nivel 12, en los distintos dominios (Conteo y

cardinalidad, operaciones y pensamiento algebraico, números y operaciones en base diez, números y

operaciones-fracciones, medición y datos, geometría, razones y relaciones proporcionales, sistema de numeración, expresiones y ecuaciones, funciones y estadística y probabilidad) definidos para el

aprendizaje de las matemáticas.

Page 11: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

11 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

En el caso de los contenidos vinculados al estudio de la probabilidad, a diferencia de los

Principles and Standard for School Mathematics (NCTM, 2000), éstos no son considerados en la

educación primaria, iniciándose su estudio en la educación secundaria en el dominio de estadística y probabilidad. Sin embargo, en el caso de la educación primaria encontramos, dentro del dominio de

medición y datos, estándares de contenidos vinculados únicamente a la estadística, con gran énfasis en

la recolección, análisis, clasificación y organización de datos utilizando distintos tipos de

representación como: dibujos, tablas, gráficos, diagramas, etc.

Como se puede apreciar, en términos generales los referentes internacionales analizados ponen

de manifiesto un constante énfasis en el estudio de la probabilidad dada su utilidad como herramienta

que permite modelar diversas situaciones en las que existe incertidumbre, y a la vez desarrollar el

pensamiento matemático e interpretar distintos tipos de información tanto del ámbito de otras

disciplinas como en lo cotidiano y el mundo laboral.

2.2. La probabilidad en el currículo escolar chileno para la educación básica

El currículo chileno de matemáticas en la educación básica (6 a 12 años) se ha modificado

recientemente a raíz de la implementación de las nuevas bases curriculares, y actualmente está organizado en los ejes temáticos de: números y operaciones, patrones y álgebra, geometría, medición y

datos y probabilidades (Mineduc, 2012). Estas nuevas bases se encuentran estructuradas por Objetivos

de Aprendizaje, que describen los desempeños mínimos que deberán alcanzar los estudiantes, por

medio del desarrollo de ciertas habilidades, conocimientos y actitudes propias para cada asignatura, en sus distintos ejes temáticos. Para alcanzar los distintos objetivos de aprendizaje el Ministerio de

Educación ha desarrollado nuevos programas de estudios de 1º a 6º básico, con los que se busca

apoyar a los profesores en la implementación de las nuevas bases curriculares. Tales programas contemplan una planificación anual que contiene indicadores de evaluación para cada objetivo de

aprendizaje, además de actividades, ejemplos de evaluación y material educativo sugerido.

Cabe destacar que las nuevas bases curriculares para la asignatura de Matemática, consideran

que la formación matemática en la educación básica se logra por medio del desarrollo del pensamiento

matemático, el cual involucra las siguientes cuatro habilidades que se integran con los objetivos de

aprendizaje y están interrelacionadas entre sí (Mineduc, 2012, p. 3-4):

Resolver problemas: esta habilidad tiene por objetivo el que los estudiantes sean capaces de

dar solución, de manera autónoma, a distintos tipos de situaciones problemáticas, por medio

de la aplicación de distintos tipos de estrategias como: la experimentación, ensayo y error,

transferencia des problemas similares ya resueltos, etc. siendo capaces de comparar los distintos caminos de solución y evaluar las respuestas obtenidas y su pertinencia.

Argumentar y comunicar: con esta habilidad se busca que los estudiantes sean capaces de

verbalizar y comunicar, progresivamente, sus intuiciones y conclusiones, así como también

detectar aquellas informaciones erróneas.

Modelar: con el desarrollo de esta habilidad se pretende que los estudiantes construyan una

versión simplificada y abstracta de un sistema, usualmente más complejo, pero que capture

los patrones claves y los exprese mediante lenguaje matemático.

Representar: esta habilidad tiene por objetivo que los estudiantes aprendan a utilizar una

amplia variedad de tipos de registros que le permitan representar distintos tipos de datos de

acuerdo a las necesidades que presente cada situación problemática.

Las habilidades descritas, que mantienen un fuerte paralelismo con los estándares de procesos de la NCTM, juegan un rol fundamental tanto en la adquisición de nuevas destrezas y conceptos, como

Page 12: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

12 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

en la aplicación de conocimientos para la resolución de problemas en diversas áreas. Por otro lado, el

desarrollo de estas habilidades permitirá obtener desempeños medibles y observables de los

aprendizajes de los estudiantes, en los cinco ejes temáticos definidos para la asignatura de

matemáticas.

Para el eje de datos y probabilidades el Ministerio de Educación se ha planteado el objetivo de

que todos los estudiantes registren, clasifiquen y lean información dispuesta en tablas y gráficos, y que

se inicien a temprana edad y de manera continua a lo largo del currículo escolar en temas relacionados con las probabilidades. Lo cual, de acuerdo a lo planteado por Vásquez y Alsina (2013), permitirá

desarrollar en los estudiantes, de manera paulatina a lo largo de toda su etapa escolar, un pensamiento

estadístico y probabilístico necesarios para el ciudadano actual, pues éste se ve diariamente enfrentado

a situaciones de incertidumbre ante las cuales es necesario que cuente con una actitud crítica que le permita identificar informaciones erróneas que muchas veces aparecen en los distintos medios de

comunicación. Siendo esta una de las principales razones de la reciente incorporación de la

probabilidad a muy temprana edad en los currículos de diversos países.

Chile no se ha quedado ajeno a esta tendencia, planteándose los siguientes objetivos de aprendizaje e indicadores de evaluación en los distintos niveles educativos relacionados con el tema

probabilidad:

Nivel Objetivo de Aprendizaje Indicadores de Evaluación Sugeridos

1º básico

Recolectar y registrar datos para

responder preguntas estadísticas sobre sí

mismo y el entorno, usando bloques,

tablas de conteo y pictogramas.

Recolectan datos acerca de situaciones sobre sí mismo y

del entorno.

Formulan preguntas sobre sí mismo y los demás que

pueden ser respondidas a partir de recolección de

información.

Registran datos, usando bloques y tablas de conteo.

Recolectan y organizan datos, usando material concreto,

registros informales y tablas de conteo.

Responden preguntas, utilizando la información recolectada.

2º básico

Recolectar y registrar datos para

responder preguntas estadísticas sobre

juegos con monedas y dados, usando

bloques y tablas de conteo y

pictogramas.

Registrar en tablas y gráficos de barra simple, resultados de juegos aleatorios

con dados y monedas.

Recolectan datos acerca de lanzamientos de dados y

monedas.

Registran datos en una tabla de conteo acerca de datos de

lanzamientos de monedas y dados.

Registran datos acerca de lanzamientos de dados y

monedas, usando cubos apilables.

Responden preguntas en el contexto de juegos con

monedas, usando registros expresados en cubos apilables.

Registran resultados de juegos aleatorios con dados y

monedas en tablas.

Registran resultados de juegos aleatorios con dados y

monedas en gráficos de barra simple.

Page 13: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

13 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

3º básico

Registrar y ordenar datos obtenidos de

juegos aleatorios con dados y monedas,

encontrando el menor, el mayor y

estimando el punto medio entre ambos.

Realizan juegos aleatorios con dados de diferentes formas

(cubos, tetraedros u otros) y monedas, registrando los

resultados en tablas de conteo y diagramas de punto.

4º básico

Realizar experimentos aleatorios lúdicos

y cotidianos, y tabular y representar

mediante gráficos de manera manual y/o

con software educativo.

Realizan experimentos con dados cúbicos o de otra forma

regular como tetraedro, dodecaedro, etc.

Extraen naipes al azar con y sin devolución.

Pesan piedritas de un saco de gravilla y determinan la

frecuencia absoluta de las masas de 5 g, 10 g, etc.

Reconocen que los resultados de experimentos lúdicos no

son predecibles.

Realizan repeticiones de un mismo experimento,

determinan la frecuencia absoluta y la representan en un

gráfico.

Usan software educativo para simular experimentos

aleatorios.

5º básico

Describir la posibilidad de ocurrencia de

un evento en base a un experimento

aleatorio, empleando los términos seguro

- posible - poco posible - imposible.

Comparar probabilidades de distintos

eventos sin calcularlas.

Describen eventos posibles en el resultado de un juego de

azar; por ejemplo: al lanzar un dado, indican los resultados

posibles incluidos en el evento: “que salga un número par”.

Se refieren a la posibilidad de ocurrencia de un evento,

mediante expresiones simples como seguro, posible, poco

posible o imposible.

Dan ejemplos de eventos cuya posibilidad de ocurrencia es

segura, posible, poco posible o imposible.

Dan ejemplos de eventos cuya probabilidad de ocurrencia

es mayor que la de otros eventos, sin calcularla.

Juegan a lanzar dados o monedas y, frente a eventos relacionados con estos lanzamientos, dicen, sin calcular,

cuál es más probable que ocurra.

Hacen apuestas entre alumnos y dicen, sin calcular, quién

tiene más probabilidad de ganar.

6º básico

Conjeturar acerca de la tendencia de

resultados obtenidos en repeticiones de

un mismo experimento con dados,

monedas u otros, de manera manual y/o

usando software educativo.

Enumeran resultados posibles de lanzamientos de monedas

o dados con ayuda de un diagrama de árbol. Por ejemplo,

al lanzar tres veces una moneda, o una vez dos dados.

Realizan de manera repetitiva experimentos con monedas

para conjeturar acerca de las tendencias de los resultados.

Conjeturan acerca de porcentajes de ocurrencia de eventos relativos a lanzamientos de monedas o dados.

Tabla 2. Contenidos en relación al tema probabilidad desde 1º a 6º año básico (Mineduc, 2012)

Como puede apreciarse en la tabla anterior, el currículo nacional ha incluido el estudio de la

probabilidad en el currículo de matemática en todos los niveles escolares, iniciando con actividades

Page 14: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

14 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

muy sencillas que buscan que el estudiante se enfrente desde pequeño a situaciones donde el azar esta

presente y que permitan que sus intuiciones sobre el azar afloren. Para ello se propone la realización

de juegos aleatorios, por ejemplo: con monedas y dados, en los que primeramente se solicita registrar los resultados por medio de la utilización de tablas y gráficos, para luego responder distintos tipos de

preguntas que lleven a realizar predicciones sobre: el comportamiento de los resultados de dichos

experimentos aleatorios y las posibilidades de ocurrencia de determinados fenómenos, y así introducir de forma progresiva la noción de probabilidad. De este modo, a partir de los objetivos de aprendizaje y

de los indicadores de evaluación propuestos en las actuales bases curriculares, es posible distinguir

tres etapas orientadoras del proceso de enseñanza y aprendizaje de la probabilidad para la educación

básica:

Plantear distintos tipos de situaciones y de preguntas, en un contexto familiar y de interés

para los estudiantes, que les permita distinguir entre aquellos datos que son pertinentes para responder a tales preguntas.

Organización y análisis de los datos por medio del uso de distintos tipos de registros que

permitan la realización de inferencias y predicciones para dar respuesta a las situaciones y

preguntas planteadas.

Adquisición de las nociones básicas vinculadas a la probabilidad e incertidumbre para su

posterior aplicación en situaciones de la vida diaria y del estudio de la probabilidad en mayor

profundidad en la educación media.

En este enfoque para iniciar a los estudiantes en el desarrollo de la noción de probabilidad, si

bien no hay una correspondencia directa, se ve la influencia de las directrices presentadas en los

Principles and Standard for School Mathematics para trabajar los contenidos de probabilidad (NCTM, 2000), aunque con una menor profundidad y amplitud en los contenidos, puesto que solo se aborda la

probabilidad desde un punto de vista intuitivo y más bien ligados a una visión frecuentista de ésta.

Ahora bien, si nos centramos en el énfasis que se otorga al estudio de la probabilidad en las

orientaciones curriculares antes descritas, se puede apreciar que en todas ellas se comienza trabajando a partir del planteamiento de situaciones cotidianas de las que emergen o están presentes los conceptos

posible, seguro, imposible, etc. que permiten dar cabida al concepto de probabilidad. Así mismo se da

gran importancia a la utilización de material concreto como fichas, dados entre otros, los que son

vinculados a los juegos de azar y de este modo a la noción de experimento aleatorio, reforzando de esta forma la noción de probabilidad, vinculándole directamente con la asignación de probabilidades

desde una perspectiva cuantitativa, para luego pasar a una visión frecuentista de la probabilidad por

medio del uso de frecuencias relativas obtenidas de los distintos experimentos aleatorios realizados, ya

sea de forma manual o mediante a utilización de algún software.

2.3. La probabilidad en el currículo español para la educación primaria

La Educación Primaria en España tiene carácter obligatorio y gratuito, con una duración de seis

cursos académicos, de los 6 a los 12 años de edad. El currículo español se organiza en tres ciclos de dos años cada uno, y en cuatro bloques de contenidos para cada ciclo: Números y operaciones;

Medida; Geometría; Tratamiento de la información, azar y probabilidad (MEC, 2007). El bloque 4,

como su nombre indica, se organiza en base a dos aspectos: a) tratamiento de la información (gráficos

estadísticos en el primer ciclo; gráficos y tablas en el segundo ciclo; y gráficos y parámetros estadísticos en el tercer ciclo); y b) azar y probabilidad (carácter aleatorio de algunas experiencias en

el primer y segundo ciclo, e introducción al lenguaje del azar en el segundo ciclo, mientras que en el

tercer ciclo no se hace ninguna referencia explícita a los contenidos de azar y probabilidad).

Page 15: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

15 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Como se indica en las orientaciones curriculares vigentes, en el currículo español los contenidos

del bloque 4 en general, y los que se refieren a azar y probabilidad en particular, adquieren su pleno

significado cuando se presentan en conexión con actividades que implican a otras áreas de conocimiento. Igualmente el trabajo ha de incidir de forma significativa en la comprensión de las

informaciones de los medios de comunicación, para suscitar el interés por los temas y ayudar a valorar

el beneficio que los conocimientos estadísticos proporcionan ante la toma de decisiones, normalmente sobre cuestiones que estudian otras áreas. Tienen especial importancia en el bloque los contenidos

actitudinales, que favorecen la presentación de los datos de forma ordenada y gráfica, y permiten

descubrir que las matemáticas facilitan la resolución de problemas de la vida diaria. A su vez, los

contenidos de este bloque deben iniciar en el uso crítico de la información recibida por diferentes medios. En la Tabla 3 se exponen los contenidos que hacen referencia explícita a aspectos de

probabilidad en Educación Primaria, y que se han obtenido a partir del análisis de la ORDEN

ECI/2211/2007, del 12 de julio, por la que se establece el currículo y regula la ordenación de la

Educación Primaria (MEC, 2007):

Ciclo Contenidos

Primer ciclo

Carácter aleatorio de algunas experiencias:

- Distinción entre lo imposible, lo seguro y aquello que es posible pero no seguro, y utilización en el lenguaje habitual, de expresiones relacionadas con la probabilidad.

- Participación y colaboración activa en el trabajo en equipo y el aprendizaje

organizado a partir de la investigación sobre situaciones reales. Respeto por el trabajo

de los demás.

Segundo ciclo

Carácter aleatorio de algunas experiencias:

- Valoración de los resultados de experiencias en las que interviene el azar, para

apreciar que hay sucesos más o menos probables y la imposibilidad de predecir un

resultado concreto. Introducción al lenguaje del azar:

- Constatación del carácter aleatorio de algunas experiencias.

- Confianza en las propias posibilidades, y curiosidad, interés y constancia en la

interpretación de datos presentados de forma gráfica

Tercer ciclo

Carácter aleatorio de algunas experiencias:

- Presencia del azar en la vida cotidiana. Estimación y expresión del grado de

probabilidad de un suceso.

- Utilización del lenguaje adecuado para describir experiencias relacionadas con el

azar. - Valoración de la necesidad de reflexión, razonamiento y perseverancia para superar

las dificultades implícitas en la resolución de problemas.

- Confianza en las propias posibilidades e interés por utilizar las herramientas

tecnológicas en la comprensión de los contenidos funcionales.

Tabla 3. Contenidos en relación al tema de azar y probabilidad en Educación Primaria (MEC, 2007)

Como puede apreciarse en las Tablas 2 y 3, en ambos países las directrices curriculares incluyen los temas de probabilidad a partir de los primeros niveles de la enseñanza primaria. La estructura de

los contenidos es gradual y, en términos generales, en ambos países hacen alusión a la utilización de

nociones de azar y probabilidad, realización de experimentos aleatorios y el cálculo de la probabilidad de un suceso. Además, se sugiere la incorporación del uso de herramientas tecnológicas como apoyo

para fomentar la comprensión de los contenidos propuestos.

De forma más pormenorizada, al revisar los contenidos de probabilidad de ambos países se

observa, de acuerdo con Morales y Ruíz (2013), que en los dos primeros años de educación primaria

del currículo chileno se fomenta el estudio de datos, tablas y gráficos, presentando los experimentos

Page 16: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

16 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

aleatorios como una fuente para obtener información. En cambio, en el primer ciclo del currículo

español se comienza a introducir el lenguaje que se utiliza para describir conceptos probabilísticos

como: imposible, seguro y aquello que es posible pero no seguro. Tanto en los niveles de tercero y cuarto de educación básica en Chile como en el segundo ciclo del currículo español se incluye la

realización de experimentos aleatorios, y en el caso español se enfatiza de nuevo el uso de los términos

relacionados con el azar y la probabilidad, que en el currículo chileno se introducen en 5º básico. En los dos últimos años de la enseñanza primaria chilena, además de incidir en la descripción de la

ocurrencia de un evento usando el lenguaje apropiado, se hace alusión también a la comparación de

probabilidades de un mismo evento sin calcularlas y a la realización de conjeturas acerca de la

tendencia de resultados obtenidos a partir de la repetición de un mismo experimento, mientras que en el currículo español no se alusión explícita a las conjeturas para, por ejemplo, llegar a deducir la ley de

los promedios, pero sí que se incide en el uso de software educativo para favorecer la comprensión de

este tipo de contenidos. Por otro lado, en el currículo español se menciona, como en el chileno, al uso de lenguaje adecuado para describir experiencias relacionadas con el azar, y se subraya la importancia

de relacionar estos aspectos con la vida cotidiana.

Bajo este enfoque y atendiendo tanto a las orientaciones nacionales e internacionales, según

Alsina (2013) es importante tener en cuenta a la hora de iniciar el proceso de enseñanza-aprendizaje de

la probabilidad algunas ideas claves como la importancia de centrarse, primeramente, en el desarrollo informal de la probabilidad a partir de la intuición y del planteamiento de actividades a partir de lo

cotidiano, de un contexto cercano para los estudiantes, para así, posteriormente (Batanero y Godino,

2004):

Proporcionar una amplia variedad de experiencias que permitan observar los fenómenos

aleatorios y diferenciarlos de los deterministas.

Estimular la expresión de predicciones sobre el comportamiento de estos fenómenos y los

resultados, así como su probabilidad.

Organizar la recogida de datos de experimentación de forma que los alumnos tengan

posibilidad de contrastar sus predicciones con los resultados producidos y revisar sus

creencias en función de los resultados.

Resaltar el carácter imprevisible de cada resultado aislado, así como la variabilidad de las

pequeñas muestras, mediante la comparación de resultados de cada niño o por parejas.

Ayudar a apreciar el fenómeno de la convergencia mediante la acumulación de resultados de

toda la clase y comparar la fiabilidad de pequeñas y grandes muestras.

Y de este modo alcanzar los objetivos de aprendizaje planteados. No obstante, es importante

destacar que dado lo reciente de la incorporación de la probabilidad en el currículo de primaria, son

muchos los profesores que no han tenido la posibilidad de adquirir los conocimientos disciplinares y didácticos, ya sea durante el ejercicio de la docencia o por medio de cursos de educación continua, que

les permitan desarrollar de manera efectiva las ideas claves antes expuestas. Razón por la cual es

necesario contar con directrices claras, que permitan orientar tanto los procesos de formación inicial como continua del profesorado, que les lleven a transformar su práctica docente. Desde esta

perspectiva es de gran importancia el contar con antecedentes en relación al conocimiento matemático

y didáctico de los profesores para la enseñanza de la probabilidad en la educación primaria.

Page 17: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

17 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

3. La probabilidad y la formación del profesorado

Actualmente las investigaciones sobre el conocimiento matemático y didáctico de los profesores

en probabilidad y su enseñanza son escasas, sobre todo en lo que se refiere a profesores de primaria en ejercicio, pues la mayoría se centra en profesores en formación y sobre todo en profesores de

secundaria. Sin embargo, es posible distinguir claramente dos líneas de estudio dentro de este campo:

las relacionadas con las actitudes y creencias de los profesores frente a la probabilidad y su enseñanza,

y las vinculadas con el conocimiento disciplinar y didáctico. Es en esta última en la cual nuestro estudio busca profundizar, puesto que de acuerdo a investigaciones recientes se ha podido evidenciar

que los profesores en formación presentan concepciones erróneas y dificultades en relación a la

probabilidad y conceptos vinculados a ella (Ortiz, Mohamed, Batanero, Serrano y Rodríguez, 2006; Ortiz, Serrano y Mohamed, 2009) mientras que un grupo importante evita su enseñanza debido a que

lo consideran un contenido de menor importancia que podría representar dificultades para los alumnos,

o bien por falta de información y preparación (Serradó, Azcárate y Cardeñoso, 2006). Esto se debería

a que los programas de formación inicial, en gran parte, no incluyen dentro de sus mallas curriculares asignaturas relacionadas con la probabilidad y su enseñanza, ya que éstas hasta hace un par de años

formaban parte, casi únicamente, de la formación secundaria y no de la educación primaria como hoy

ocurre (Batanero, Godino y Roa, 2004; Franklin y Mewborn, 2006).

Una de las primeras investigaciones sobre el conocimiento probabilístico de los profesores de educación primaria en formación, realizada por Azcárate (1995), evidenció una baja comprensión de

la noción de aleatoriedad y por ende en la comprensión del conocimiento probabilístico por parte de

futuros profesores, pues su razonamiento en relación a la noción de probabilidad se encontraba elaborado más bien a partir de experiencias vinculadas a lo cotidiano que en un conocimiento formal.

Situación que se ve reforzada por Begg y Edwards (1999) quienes al solicitar a un grupo de profesores

de primaria dar respuesta a tres situaciones relacionadas con ideas básicas de aleatoriedad, sucesos

equiprobables e independencia, detectaron una débil comprensión de la probabilidad y de las nociones que subyacen a ella. Con ello no se quiere decir que sea necesario que los profesores cuenten con

conocimientos matemáticos acabados de la probabilidad, como teoría de la medida, pero si se requiere

que tengan un conocimiento profundo y acabado del contenido a enseñar y de cómo enseñarlo, en nuestro caso un conocimiento y una comprensión profunda de la probabilidad y de ciertos aspectos

básicos vinculados a ella, entendiendo por comprensión profunda “los conocimientos que debería

poseer un profesor para ejercer en plenitud su tarea de enseñar matemáticas” (Ma, 1999, p. 13). Lo

anterior, concuerda con las ideas de Ball, Lubienski y Mewborn (2001) quienes introducen el modelo “Mathematical knowledge for Teaching (MKT)”, que se define como el conocimiento matemático que

utiliza el profesor en el aula para producir instrucción y crecimiento en el alumno (Hill, Ball y

Schilling, 2008). Desde este marco, proponen un modelo del conocimiento matemático para la enseñanza en el que se describe el conocimiento matemático necesario para la enseñanza de la

matemática escolar, estableciendo, además, la existencia de una correlación positiva entre el

conocimiento matemático para la enseñanza y el logro de aprendizaje matemático en los alumnos.

Posteriormente Schoenfeld y Kilpatrick (2008) desarrollan la noción de proficiencia en la enseñanza de las matemáticas, que se concibe como la competencia profesional del profesor de

matemáticas para ejercer una enseñanza de calidad. Para estos autores, la proficiencia se alcanza a

través de la integración de las siguientes dimensiones: a) conocer las matemáticas escolares con

profundidad y amplitud; b) conocer a los estudiantes como personas que piensan; c) conocer a los estudiantes como personas que aprenden; d) diseñar y gestionar entornos de aprendizaje; e) desarrollar

las normas de la clase y apoyar el discurso de la clase como parte de la “enseñanza para la

comprensión”; y f) construir relaciones que apoyen el aprendizaje; g) reflexionar sobre la propia

práctica.

Page 18: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

18 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A partir del modelo MKT y la noción de proficiencia, Godino, Batanero, Roa y Wilhelmi

(2008) elaboran un modelo integrador para el conocimiento didáctico-matemático del profesor de

matemáticas que incorpora, además, los elementos teóricos de Enfoque Ontosemiotico del Conocimiento y la Instrucción Matemática (Godino, 2002; Godino, Batanero y Font, 2007). Este

modelo se concibe como “la trama de relaciones que se establecen entre los objetos que se ponen en

juego en las prácticas operativas y discursivas realizadas con el fin de resolver un determinado campo de situaciones-problemas matemáticos para implementar procesos de instrucción eficaces (idóneos)

que faciliten el aprendizaje de los estudiantes” (Pino-Fan, Godino, Font, 2011, p. 144). Dicha trama de

relaciones que da origen al conocimiento didáctico-matemático del profesor, nace de la unión entre el

conocimiento del contenido y el conocimiento pedagógico del contenido, puesto que cada uno de estos conocimientos, por sí solos, no consideran la totalidad de componentes y facetas que un profesor debe

conocer a la hora de enseñar un determinado contenido. De ahí la necesidad de contar con un modelo

integrador que contemple las facetas: epistemológica, cognitiva, afectiva, interaccional, mediacional y ecológica, que se relacionan directamente con la noción de idoneidad didáctica y sus componentes.

Godino (2009) profundiza en dicho modelo y refina algunas de las nociones anteriormente

consideradas, planteándose un sistema de categorías de análisis de los conocimientos matemáticos y didácticos del profesor que se encuentra compuesto por un conjunto de facetas y niveles para el

análisis didáctico, que interactúan entre sí (figura 2), donde cada uno de los elementos presentes puede

ser considerado como categorías o componentes del conocimiento matemático y didáctico de los

profesores.

Figura 2: Facetas y niveles del conocimiento del profesor (Godino, 2009, p. 21)

Como se muestra en la Figura 2, el conocimiento didáctico-matemático del profesor se

encuentra constituido por las siguientes categorías de conocimientos fundamentales necesarios para

que un profesor lleve a cabo el proceso de enseñanza y aprendizaje:

Conocimiento del contenido: común, especializado y ampliado: se fundamenta en la faceta

epistémica del conocimiento del profesor, a través del cual se espera indagar en los

conocimientos matemáticos correspondientes al contexto institucional en el que se lleva a

cabo el proceso de enseñanza y aprendizaje. Para ello se elaboran consignas orientadas a

identificar, clasificar y evaluar aspectos específicos del conocimiento que se pone en juego para resolver tareas o problemas matemáticos (conocimiento común); del conocimiento

especializado del contenido el cual considera las distintas formas de representar (lenguajes)

ideas y problemas matemáticos, así como los distintos procedimientos, definiciones, propiedades y argumentos que permiten alcanzar su solución; y por último el conocimiento

ampliado del contenido que pretende evidenciar la relación entre el contenido a enseñar con

ideas matemáticas más avanzadas.

Conocimiento del contenido en relación a los estudiantes: se fundamenta en la faceta

cognitiva y afectiva del conocimiento del profesor, por lo que incluye conocimientos

Page 19: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

19 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

relativos a conocimientos personales de los alumnos, errores, dificultades y conflictos

presentes en sus aprendizajes y su progresión, además de las actitudes, emociones, creencias

y valores vinculados al proceso de estudio y a los objetos matemáticos vinculados a las probabilidades en la educación básica.

Conocimiento del contenido en relación a la enseñanza: se fundamenta en las facetas

interaccional y mediacional del conocimiento del profesor, por lo que involucra

conocimientos relativos a los patrones de interacción entre el profesor y sus alumnos, su secuenciación orientada a la fijación y negociación de significados, además de aspectos

vinculados a los conocimientos del profesor en relación a los recursos tecnológicos y la

asignación del tiempo a las distintas acciones y procesos.

Conocimiento del currículo y conexiones intra e interdisciplinares: tiene sus fundamentos en

la faceta ecológica del conocimiento del profesor, pues considera aspectos del currículo, entorno social, político, económico, etc. que condicionan el proceso de enseñanza y

aprendizaje.

Desde esta perspectiva, la enseñanza de la probabilidad en la educación primaria representa un

verdadero desafío sobre todo para los profesores en ejercicio, puesto que como las mismas investigaciones lo han dilucidado, éstos no cuentan con una formación adecuada al respecto, es decir,

en muchos casos, éstos no cuentan con los conocimientos fundamentales necesarios para que un

profesor lleve a cabo el proceso de enseñanza y aprendizaje, lo que les lleva a presentar concepciones

erróneas y una ausencia de herramientas matemáticas y didácticas necesarias para alcanzar los

objetivos de aprendizaje planteados para la educación primaria.

Dicha situación representa no solo un reto para el profesorado chileno y español sino para

muchos otros países, puesto que como ya se ha expuesto gran parte de los profesores de educación

primaria no ha recibido una formación para la enseñanza de la probabilidad, y si la ha recibido ha sido desde una perspectiva teórica y no didáctica, lo que plantea la necesidad de contar con programas de

formación inicial y continua que permitan que los profesores adquieran las herramientas tanto

disciplinares como didácticas para responder a las nuevas exigencias de la enseñanza de la

probabilidad en la educación primaria.

Lo cual, desde la perspectiva del modelo de categorías del conocimiento didáctico-matemático del conocimiento del profesor (Godino, 2009) debe orientarse al desarrollo de una comprensión en

profundidad de los contenidos de probabilidad del currículo escolar, es decir, en el desarrollo de la

capacidad de resolver problemas de probabilidad que requieran del dominio de conceptos básicos (conocimiento del contenido), como por ejemplo la resolución de problemas de asignación de

probabilidades (Figura 3):

Figura 3: Ejemplo conocimiento del contenido (Mineduc 2012b, p. 162)

Page 20: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

20 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Por medio de situaciones problemáticas como la anterior, es posible desarrollar aspectos

específicos del conocimiento del contenido que los profesores deben poner en juego a la hora de dar

solución a un determinado problema, permitiéndoles además analizar y describir fenómenos aleatorios distintos que lleven a cuantificar la probabilidad de ocurrencia de eventos, considerando sus distintas

formas de representación, procedimientos, propiedades y argumentos. Asimismo, dicha formación

debe encaminarse al desarrollo de la faceta cognitiva y afectiva del conocimiento del profesor (conocimiento del contenido en relación a los estudiantes) considerando el estudio de situaciones en

las cuales se den a conocer algunos de las dificultades y errores comunes durante el aprendizaje de la

probabilidad (Figura 4):

Figura 4: Ejemplo conocimiento del contenido en relación a los estudiantes (Mineduc 2012b, p. 165)

En situaciones como la anterior es importante que el profesor reconozca el potencial de este tipo

de dificultades ante la independencia de sucesos, de modo de considerar y valorar el sentido común

para el estudio de la probabilidad.

Otro aspecto que no se debe dejar de lado en la formación del profesorado para la enseñanza de

la probabilidad, son los aspectos vinculados al conocimiento del contenido en relación a la enseñanza,

es decir, el conocimiento que el profesor debe tener sobre las relaciones que se dan entre la enseñanza y el aprendizaje, así como de su capacidad para identificar los efectos que pueden tener los modos de

gestionar la clase (tiempo, materiales, trayectoria didáctica) sobre el aprendizaje de sus alumnos. Tal

tipo de conocimiento es posible de desarrollar por medio del enfrentamiento a situaciones en las que,

por ejemplo, debe seleccionar recursos pertinentes para apoyar el proceso de enseñanza del azar

(Figura 5):

Figura 5: Ejemplo conocimiento del contenido en relación a la enseñanza (Mineduc 2012b, p. 165)

Y por último, y no por eso menos importante, el desarrollo de la faceta ecológica del conocimiento del profesor, es decir, del conocimiento del currículo y conexiones intra e

interdisciplinares, entendido como las actividades y tareas que se proponen para lograr los objetivos

planteados (Figura 6), para ello es fundamental que conozca el currículo en nuestro caso en el tema de

probabilidad, sus objetivos y contenidos.

Page 21: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

21 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Figura 6: Ejemplo conocimiento del currículo y conexiones intra e interdisciplinares (Mineduc 2012b, p. 166)

Como es posible apreciar, los ejemplos antes expuestos abordan por medio de la resolución de

tareas y situaciones sencillas algunos de los aspectos relacionados con el proceso de enseñanza y

aprendizaje de la probabilidad, que llevarían a desarrollar las competencias profesionales de los profesores de primaria, es decir, el nivel de su conocimiento en relación a cada una de las categorías

de conocimientos que conforman el conocimiento didáctico-matemático del profesor de matemáticas.

4. Reflexiones finales

En este trabajo hemos presentado un análisis de referentes curriculares internacionales y nacionales en relación a la enseñanza y aprendizaje de la probabilidad, permitiéndonos evidenciar la

tendencia de introducir tempranamente el estudio de la probabilidad, lo cual significa un enorme

desafío a todo el sistema educacional, y sobre todo a las instituciones formadoras de profesores. Es por esta razón, que hemos presentado algunos modelos que buscan categorizar el conocimiento del

profesor de matemática, como elemento central para el formador de profesores a la hora de conducir el

proceso de enseñanza y aprendizaje de la probabilidad en el profesorado. Es por ello que se ha finalizado con un conjunto de situaciones problemas que buscan ejemplificar, y de este modo otorgar

algunas directrices para la formación del profesorado en relación al tipo de conocimientos a desarrollar

en torno a la probabilidad y su enseñanza.

Desde este marco, consideramos que es necesaria una adecuación o reestructuración de los

actuales programas de formación inicial y continua del profesorado de primaria que contemple la mejora de aspectos disciplinares como didácticos pues, en su mayoría, los profesores de primaria

cuando se ven enfrentados a la enseñanza de la probabilidad, se limitan a enseñar un conjunto de

técnicas y formulas sin mayores interpretaciones que no facilitan la comprensión de la probabilidad y de sus conceptos asociados por parte de los estudiantes, mostrando de este modo una debilidad en la

comprensión de los contenidos a enseñar y del conocimiento necesario para llevar a cabo el proceso de

enseñanza y aprendizaje. Razón por la cual, es preciso que dentro de los programas de formación

inicial y continua del profesorado se consideren cursos orientados a entregar el conocimiento matemático y didáctico, que permita a los profesores comprender los conocimientos matemáticos que

deberán poner en juego a la hora de enseñar probabilidad, además de desarrollar las competencias

profesionales necesarias para anticiparse a los posibles errores y dificultades que pueden presentar los

estudiantes en su proceso de aprendizaje, y la forma de superar tales dificultades.

Para ello, en futuros estudios va a ser necesario seguir indagando para poder ofrecer una

formación que logre desarrollar una comprensión adecuada de la probabilidad, de los conceptos que

subyacen a ella y de las distintas estrategias para promover su enseñanza, por medio de la resolución de problemas, la experimentación y simulación de fenómenos aleatorios; enfoque que finalmente

cambiará la mirada y los conocimientos del profesor en relación a la probabilidad y su enseñanza. Por

otro lado, es importante que los profesores cuenten con una formación que los lleve a tener una actitud

reflexiva y crítica sobre los conceptos que deben enseñar, sus estrategias de enseñanza y de la manera en cómo aprenden sus estudiantes, para empoderar que progresivamente consideren la probabilidad

como una herramienta para el análisis de información, modelamiento y resolución de problemas

provenientes de distintos ámbitos.

Page 22: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

22 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Bibliografía

Alsina, Á (2013). La estadística y la probabilidad en Educación Infantil: conocimientos disciplinares,

didácticos y experienciales. Didácticas Específicas, Nº 7, págs. 4-22. Alsina, Á. (2012). Hacia un enfoque globalizado de la educación matemática en las primeras edades.

Números, 80, 7-24.

Alsina, Á. (2009). Matemáticas en la educación primaria. En N. Planas y À. Alsina (2009). Educación

matemática y buenas prácticas. (pp. 93-144). Barcelona: Editorial Graó. Azcárate, P. (1995). El conocimiento profesional de los profesores sobre nociones de aleatoriedad y

probabilidad. Su estudio en el caso de la educación primaria. Tesis doctoral inédita. Universidad

de Cádiz. Ball, D. L., Lubienski, S. T. y Mewborn, D. S. (2001). Research on teaching mathematics: The

unsolved problem of teachers` mathematical knowledge. En V. Richardson (Ed.), Handbook of

Research on Teaching (pp. 433-456). Washington, DC: American Educational Research

Association. Batanero, C. y Godino, C. (2004). VI. Estocástica: estadística y probabilidad. En J.D. Godino (Ed.);

Didáctica de la Matemática para maestros (pp. 405-455). Departamento de Didáctica de las

Matemáticas: Universidad de Granada. Batanero, C., Godino, J. D. y Roa, R. (2004). Training teacher to teach probability. Journal of

Statistics Education [en línea], 12 (1). Recuperado el 20 de diciembre de 2012, de

www.amstat.org/publications/jse/v12n1/batanero.html Begg, A. y Edwards, R. (1999). Teachers’ ideas about teaching statistics. Proceedings of the 1999

combined conference of the Australian Association for Research in Education and the New

Zealand Association for Research in Education. Melbourne: AARE & NZARE. Recuperado el 23

de Agosto de 2012, de http://www.aare.edu.au/99pap/beg99082.htm. Common Core State Standards Initiative (2010). Common Core State Standars for Mathematics.

Recuperado el 30 de Septiembre de 2011, de

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf Franklin, C. y Mewborn, D. (2006). The statistical education of PreK-12 teachers: A shared

responsibility. En G. Burrill (Ed.), NCTM 2006 Yearbook: Thinking and reasoning with data and

chance (pp. 335-344). Reston, VA: NCTM. Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas.

UNION, Revista Iberoamericana de Educación Matemática, 20, 13-31.

Godino, J. D., Batanero, C., Roa, R. y Wilhelmi, M. R. (2008). Assessing and developing pedagogical

content and statistical knowledgeof primaryschool teachers through Project work. En C. Batanero, G. Burrill, C. Reading & A. Rossman (Eds.). Joint ICMI/IASE Stud: Teaching Statistics in School

Mathematics. Challenges for Teaching and Teacher Education. Proceedings of the ICMI Study 18

and 2008 IASE Round Table Conference. Monterrey: ICMI and IASE. Godino, J. D. Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics

education. ZDM. The International Journal on Mathematics Education, 39 (1-2), 127-135.

Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en

Didactique des Mathématiques 22, (2/3), 237-284. Hill, H. C., Ball, D.L. y Schilling, S.G. (2008). Unpacking pedagogical content knowledge:

Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for

Research in Mathematics Education, 39, 372-400. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of

fundamental mathematics in China and the United States. Mahwah, N.J.: Lawrence Erlbaum

Associates. Ministerio de Educación y Ciencia (2007). ORDEN ECI/2211/2007, del 12 de julio, por la que se

establece el currículo y regula la ordenación de la Educación Primaria. Madrid, España. Boletín

Oficial del Estado nº 173

Page 23: Números, Revista de Didáctica

Enseñanza de la Probabilidad en Educación Primaria. Un Desafío para la Formación Inicial y

Continua del Profesorado C. Vásquez, Á. Alsina

23 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Ministerio de Educación (2012). Bases Curriculares 2012: Educación Básica Matemática. Santiago

de Chile: Unidad de Curriculum y Evaluación.

Ministerio de Educación (2012b). Estándares Orientadores para Egresados de carreras de Pedagogía General Básica. Santiago de Chile.

Morales, R. y Ruíz, K. (2013). Comparación entre los contenidos del currículo chileno y español en el

área de estadística y probabilidad. En J. M. Contreras, G. R. Cañadas, M. M. Gea y P. Arteaga (Eds.), Actas de las I Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y

Combinatoria (pp. 137-142). Granada, Departamento de Didáctica de la Matemática de la

Universidad de Granada.

National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, Va.: The National Council of Teachers of Mathematics (Trad. Castellana,

Principios y estándares para la educación matemática. Sevilla: Sociedad Andaluza de Educación

Matemática Thales, 2003). National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for

School Mathematics. Reston, VA: NCTM.

Ortiz, J., Serrano, L. y Mohamed, N. (2009). Competencias de los futuros profesores de primaria sobre la probabilidad. En L. Serrano (Ed.), Tendencias actuales de la investigación en educación

estocástica. (pp. 95-116). España: Universidad de Granada.

Ortiz, J., Mohamed, N., Batanero, C., Serrano, L., y Rodríguez, J. (2006). Comparación de

probabilidades en profesores en formación. En P. Bolea, M.J. González y M Moreno (Eds,), Actas del X Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 268-276).

Huesca: SEIEM.

Pino-Fan, L., Godino, J. D., y Font, V. (2011). Faceta epistémica del conocimiento didáctico-matemático sobre la derivada. Educação Matemática Pesquisa, 13(1), 141-178.

Schoenfeld, A. H. y Kilpatrick, J. (2008). Towards a theory of profiency in teaching mathematics. En

D. Tirosh & T. Wood (eds.), Tools and Processes in Mathematics Teacher Education (pp. 321-

354). Rotterdam: Sense Publishers. Serradó, A., Azcárate, P. y Cardeñoso, J.M. (2006). Analyzing teacher resistance to teaching

probability in compulsory education. En A. Rossman y B. Chance (Eds.), Proceedings of the

Seventh International Conference on Teaching Statistics. Salvador de Bahía, Brasil. Vásquez, C. y Alsina, A. (2013). Conocimiento didáctico y matemático en profesores de primaria para

la enseñanza de las probabilidades. En J. M. Contreras, G. R. Cañadas, M. M. Gea y P. Arteaga

(Eds.), Actas de las I Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y Combinatoria (pp. 165-172). Granada, Departamento de Didáctica de la Matemática de la

Universidad de Granada.

Claudia Vásquez Ortiz. Profesora de Matemática y Didáctica de la Matemática de la Pontificia

Universidad Católica de Chile. Estudiante de Doctorado en Ciencias de la Educación de la Universidad de

Girona (España). Sus líneas de investigación son la didáctica de la matemática y la formación del

profesorado de primaria. [email protected]

Ángel Alsina es profesor de Didáctica de las Matemáticas en la Universidad de Girona (España). Sus

líneas de investigación están centradas en la enseñanza y el aprendizaje de las matemáticas en las

primeras edades y en la formación del profesorado de matemáticas. Ha publicado numerosos artículos

científicos y libros sobre cuestiones de educación matemática, y ha llevado a cabo múltiples actividades

de formación permanente del profesorado de matemáticas en España y en América Latina.

[email protected]

Page 24: Números, Revista de Didáctica
Page 25: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 25-39

Propuestas para el tratamiento de la Competencia Matemática y de

Ciencias a través de la literatura infantil en Educación Infantil y Primaria

Raquel Fernández Cézar Christine Harris

Constancio Aguirre Pérez

(Universidad de Castilla La Mancha. España)

Fecha de recepción: 9 de julio de 2013

Fecha de aceptación: 31 de octubre de 2013

Resumen Este trabajo aportar herramientas para los maestros con las que trabajar en el aula de

manera interdisciplinar las competencias matemática y la de conocimiento del medio

mediante libros de literatura infantil. La naturaleza del trabajo es exploratoria y la

metodología de análisis documental consistiendo en la realización de la búsqueda de los libros en lengua castellana e inglesa, y su estudio tomando como referencia de contenidos

curriculares incluidos en el currículo oficial de Educación Infantil y Primaria en Castilla

la Mancha. Se centra en las primeras etapas de la educación en España, es decir, a edades

entre 3 y 7 años. Se incluyen como resultados los libros catalogados según el ciclo para el

que son más adecuados, los contenidos que en ellos aparecen, reflexiones de los autores

sobre los mismos, y propuestas para los docentes de estas etapas de la educación.

Palabras clave Educación Infantil, Educación Primaria, libro infantil, inglés, matemáticas y ciencias.

Abstract This report is intended to propose ways that make possible competence acquisition

through cross-curricular learning, particularly starting from books for children to acquire

English language, mathematics and science competence. The research is exploratory and

the methodology used is empirical, searching for the books and analyzing them

respecting the reference: the Castile La Mancha curriculum for Infant and Primary

Education. The focus is on first stages of education in Spain, corresponding to ages from 3 to 7 years, and in children books in English and Spanish. As a result, tables including

classification of the books in terms of curriculum criteria, authors’ comments on them,

and proposals for their use in the classroom are obtained.

Keywords Infant education, Primary education, children book, mathematics and sciences.

1. Introducción

La orientación presente de la enseñanza, tanto en el Espacio Europeo de Educación Superior (EEES) como en niveles inferiores de la educación, se plantea en función de la adquisición de

competencias.

Existen distintas definiciones de competencias con distintos matices, aunque en su mayoría se

relacionan con lo que el estudiante va a saber, comprender y ser capaz de llevar a la práctica. Por ejemplo, a nivel europeo, en el Marco de Cualificaciones para el EEES, se plantean los resultados de

Page 26: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

26 NÚMEROS Vol. 85 marzo de 2014

aprendizaje y entre ellos se incluyen las competencias. Estos consisten en declaraciones de lo que una

persona debe conocer, entender y/o ser capaz de hacer al final de un período de aprendizaje. En otros

entornos fuera de Europa, como a los que se refiere el proyecto Tuning (González y Waagenar, 2003, 2006) que trabaja en el entorno iberoamericano, se describen como una combinación dinámica de

conocimientos, comprensión, habilidades y capacidades. La mejora de estas competencias es el objeto

de los programas educativos. Las competencias cobran forma en varias unidades de curso y son

evaluadas en diferentes etapas.

La educación primaria, primer tramo de la educación obligatoria en España, tiene como

propósito que los estudiantes alcancen las “competencias básicas” que le permitan ser un ciudadano

con recursos intelectuales suficientes para desenvolverse en su vida académica y cotidiana en la edad

adulta. La legislación que en Castilla-La Mancha rige la Educación Primaria, el decreto 68/2007 de 1 de junio, recoge un grupo de competencias básicas entre las que se encuentra la “competencia de

comunicación lingüística” en primer lugar, la “competencia matemática”, en segundo, y la

“competencia del conocimiento y la interacción con el mundo físico”, en tercero. Estas competencias se deben adquirir mediante las asignaturas que se imparten en el currículo. Entre esas asignaturas, las

matemáticas han sido tradicionalmente una de las más complicadas para educadores, padres y

estudiantes. Es considerada una asignatura de tipo instrumental y fundamental en la Educación

Primaria en España y en todos los sistemas educativos de su entorno, como la lengua del país o región. También el conocimiento del medio es importante en el desarrollo intelectual de los estudiantes: junto

con las matemáticas, el conocimiento del medio ofrece al alumno estrategias de razonamiento para que

pueda “aprender a pensar” y “aprender a aprender”. En este grupo de nueve competencias está también la competencia “afectiva” que, sin ser una competencia de contenido, permite preparar perfectamente

la vía de comunicación entre maestro y alumno y favorece el proceso de enseñanza aprendizaje tanto

en matemáticas (Gómez-Chacón, 2000) como en el resto de materias.

La vía para adquirir estas competencias aparece desglosada en objetivos, contenidos, y criterios de evaluación. La adquisición de la competencia matemática supone dotar al alumno de los

conocimientos y destrezas necesarios para comprender, utilizar, aplicar y comunicar conceptos y

procedimientos matemáticos; que puedan, a través de la exploración, abstracción, clasificación,

medición y estimación, llegar a resultados que le permitan comunicarse y hacer interpretaciones y representaciones de la realidad. Es decir, descubrir que las matemáticas están relacionadas con la vida

y con las situaciones que lo rodean, más allá de la escuela. Por otro lado, la adquisición de la

competencia del conocimiento y la interacción con el mundo físico se traduce, en definitiva, en que el alumno sepa actuar de forma coherente en ámbitos de la salud, actividad productiva, consumo, y de

interpretar el mundo dedicando sus esfuerzos, dentro de sus posibilidades, a asegurar el uso

responsable de los recursos naturales, el cuidado del medio ambiente, el consumo racional y

responsable, y la protección de la salud individual y colectiva. Y desde luego que todo ello se lleva a cabo empleando una lengua, vehículo de comunicación, lo que permite trabajar también la

competencia lingüística.

Teniendo en cuenta que el papel fundamental de la etapa de Educación Primaria en el sistema

educativo español consiste en desarrollar en el alumnado la habilidad de desenvolverse en situaciones de su vida cercana en las que tenga que emplear los conocimientos adquiridos en la escuela, esta debe

conseguir en el alumno un aprendizaje a medio y largo plazo. Para que esto sea así, ese aprendizaje

debe llevarse a cabo de forma no compartimentada confiando en que los alumnos encuentren conexiones entre las materias que estudian de manera separada en la escuela, sino de forma

interdisciplinar, que es como el ser humano aprende en la vida real. Varios autores tratan de

desarrollar marcos didácticos teóricos para este tipo de enseñanza, como Woods (2007) y más

recientemente Barnes (2011). Pero más allá de la teoría es la práctica de aula la que prueba que esa forma de enseñar consigue mejores resultados en los discentes, tanto en niveles preuniversitarios

Page 27: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

27 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

(Ortiz-Hernández, 2006) como en los universitarios. De estos últimos los que son de nuestro interés

son los realizados con maestros en formación (Altava et al, 1999; Moore, 2007) que son los que

educarán a los ciudadanos del futuro. De ahí que sea importante que este tipo de investigaciones se desarrollen en las facultades de educación y se den a conocer a nuestros alumnos (Yore y Treasagut,

2006) para contribuir a la mejora de las prácticas de aula de nuestros alumnos, futuros maestros.

Buscar la intersección entre matemáticas, ciencias y literatura para abordar la enseñanza de

aquellas a través de esta última no es una idea nueva. Algunos investigadores han trabajado en la enseñanza de las matemáticas a través del cuento o la novela, como Marín (2007; 2013) con el

Proyecto Kovalevskaya. Estas investigaciones tratan de actuar sobre el dominio afectivo del estudiante

(Gil et al. 2005) y evitar las barreras que surgen cuando ellos perciben lo que estamos enseñando como

algo muy alejado de sus vidas. Esta no es solo una situación de enseñanza- aprendizaje que se dé en las matemáticas, sino también en otras disciplinas, como ciencias y lenguas extranjeras. También se

sabe que, al menos en las matemáticas, como recoge el Informe Cockcroft (1985), la edad a la que se

hacen más evidentes esas reticencias está en torno a los 11 años. Y sobre esas edades han trabajado los

estudios a los que anteriormente nos referíamos.

Despertar el gusto por la ciencia es también un reto actualmente, dado el bajo índice de alumnos

que deciden cursar carreras científicas. Hay también estudios sobre en qué debería consistir la

enseñanza de las ciencias para que esta fuera efectiva y resultara atractiva a los alumnos (Duit y

Treagust, 2003; Levinson, 2006). El nivel en el que estas se imparten en la educación primaria no incluye las subdivisiones entre las ciencias naturales y sociales, y de las primeras en física, química,

geología y biología. Es habitual encontrar para niveles de Educación Secundaria Obligatoria (ESO),

bachillerato o superiores, estudios de alguna de esas ciencias por separado, en combinación con la literatura, por ejemplo el estudio de Palacios (2007) particularmente para la física y la literatura de

ciencia ficción. También hay algunos trabajos hechos sobre la química y la literatura, como el de Mata

(2006). En el nivel correspondiente a la educación primaria existen algunas propuestas de materiales para el estudio de alguna de las áreas de las ciencias, como la astronomía, aunque no de nuestro país

(Kaser, 2001).

La lectura tiene una importancia primordial en el proceso de aprendizaje del alumno. Mediante

la comprensión de mensajes escritos en cualquier estilo podrá el alumno avanzar en su aprendizaje en

la escuela y fuera de ella. También sabemos, como docentes que somos, de la importancia de despertar en el niño el gusto por la lectura y por los libros. Consideramos importante para los maestros la

elaboración de propuestas para trabajar despertando en el niño el gusto por la lectura, la competencia

matemática y de ciencias de manera conjunta. Utilizando como referencia un libro, más allá del libro de texto, pretendemos que se despierte en ellos el gusto por aprender, ya sea porque le gustan los

libros, las matemáticas o las ciencias, y que aquello que le gusta sirva como punto de partida para

despertar su curiosidad hacia lo que no le gusta tanto. Pensamos que los libros de lectura son material

clave como medio para alcanzar el objetivo máximo de interdisciplinariedad en la enseñanza.

Nuestro trabajo pretende aportar ideas para que el docente acometa la tarea de enseñar en edades tempranas las matemáticas y ciencias contextualizando el aprendizaje, que es como los

expertos dicen que se aprende a largo plazo (de Guzmán, 2007) mediante libros de literatura infantil.

Se pretende con ello aportar una forma de trabajar en el aula tendente a vencer las reticencias frente a estos contenidos que se observan en investigaciones realizadas con alumnos de edades posteriores en

la educación primaria y/o secundaria obligatoria en nuestro país.

Page 28: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

28 NÚMEROS Vol. 85 marzo de 2014

2. Metodología y objetivos

Este es un estudio de naturaleza exploratoria sobre colecciones y ejemplares de libros infantiles

en los que puedan encontrarse incluidos de manera explícita contenidos de conocimiento del medio y matemáticas, y por lo tanto puedan ser empleados en el aula por los docentes. De esta forma podrán

sacar el máximo partido a los libros al abordarlos de manera interdisciplinar.

El trabajo se ha hecho analizando libros infantiles en lengua española, y, en menor medida, en

lengua inglesa, adecuada para su uso en la etapa de educación infantil y en el primer ciclo de

educación primaria, donde la enseñanza puede ser desarrollada mediante el cuento o relato corto como composición literaria, o mediante una obra más larga, estableciendo capítulos. Es sabido que hay

algunas obras literarias de este tipo no solo en castellano, sino también en inglés. En ellas se plantean

situaciones con un lenguaje literario rico, entendible por el niño, que amplían su vocabulario y el conocimiento de la lengua que usa como vehículo en la comunicación, que fomenta su creatividad y

en la que aparecen en alguna medida los contenidos de matemáticas y de ciencias que se espera que

adquiera.

Los objetivos perseguidos han sido los siguientes:

1. Investigar y recopilar cuentos y/o relatos cortos que existen en lengua castellana e inglesa a

niños de edades entre 3 y 8 años; 2. Analizar su calidad científica y literaria, y su adecuación al currículo de Castilla-La

Mancha, estableciendo unos descriptores basados en ese currículo;

3. Clasificar por niveles, editoriales, autores y lenguas las obras encontradas en tablas, distintas para cada lengua, para que puedan ser empleadas tanto por docentes que trabajan

en lengua española como por aquellos involucrados en los programa bilingües;

4. Preparar guías de uso para los materiales encontrados que cumplen estas características.

Para conseguir el objetivo 1, se han analizado distintos libros pertenecientes a editoriales

variadas y a colecciones de libro infantil.

Para llevar a cabo el objetivo 2 y desarrollar los descriptores se han tenido en cuenta los documentos que rigen la educación Infantil y primaria en Castilla La Mancha, los decretos 67/2007 y

68/2007 respectivamente. De manera resumida se muestran en la tabla 1, para las áreas de

matemáticas y conocimiento del medio natural y social.

Matemáticas Conocimiento del medio

Ed

ucació

n

Infa

nti

l

Acceder mediante manipulación y conteo al concepto y representación de número.

Adquirir la idea de suma como adición y resta como sustracción.

Construir del pensamiento lógico en la resolución de problemas de juntar y quitar.

Manejar el orden y secuencias atendiendo a uno o dos criterios, cuantificadores de tiempo y espacio y situación en el mismo.

Explorar su mundo cercano con relación al espacio tiempo en situaciones de juego.

Reconocer el nombre y cualidades de partes del propio cuerpo y del de los otros.

Adquirir esquemas de relación cada vez más complejos.

Interactuar con el mundo que le rodea: construir hábitos de supervivencia y salud, evitar riesgos, conocer los efectos que su actuación produce y actuar con respeto.

Localizar y orientarse en espacios cotidianos, situarse en el tiempo y localizar acontecimientos relevantes.

Page 29: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

29 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Ed

ucació

n

Prim

ari

a

La comprensión, representación y uso de

los números: operaciones (de adición, sustracción, multiplicación e introducción a la división) y medida.

Interpretación y representación de las formas planas y la situación en el espacio.

Recopilación de información y resolución de problemas de su vida cotidiana incluyendo la explicación verbal de los mismos.

El conocimiento y defensa del hombre y el resto de los seres vivos: la diversidad de los seres vivos; la salud y el desarrollo personal.

El conocimiento, construcción y conservación del entorno ambiental, social y cultural.

Elaboración de sencillos proyectos apoyándose en materiales con explicación verbal de los mismos.

Conciencia de derechos y deberes, de igualdad entre todos, reconocimiento de miembros de la familia, de profesiones del entorno social y cultural.

Producción de textos básicos.

Tabla 1. Contenidos por área y etapa incluidos en el decreto 67/2007 para Educación Infantil y en el 68/2007

para Educación Primaria

Para alcanzar el objetivo 3 se han recopilado en una tabla los libros analizados. Se han

catalogado teniendo en cuenta los descriptores elaborados a partir del currículo oficial, y además otros,

que son la editorial a la que pertenece el libro, el autor, la edad a la que va dirigido, la lengua en la que

está escrito (español o inglés), y la calidad de la obra escrita.

Por último, para conseguir el objetivo 4 se han desarrollado esquemas o guías de uso para seis

ejemplares: dos en español para la etapa de educación infantil (De cómo el tigre aprendió a contar; Diez abejas en el naranjal), dos para el primer ciclo de educación primaria (Los números son

sorprendentes; Cuando la tierra se olvidó de girar), y uno en lengua inglesa (The Bad tempered

Ladybird). Esperamos que las guías preparadas sirvan de guía a los docentes y les estimulen a preparar

otras similares con el resto de los libros encontrados.

3. Resultados

Con los libros considerados se han elaborado unas tablas en las que se incluye una clasificación

sobre cada obra relativa a: idioma (español/ inglés), título, autor, editorial, disciplinas que se pueden trabajar (matemáticas, conocimiento del medio natural y social), otras disciplinas a trabajar, ciclo al

que va dirigido (infantil y 1er ciclo de primaria), y se ha incluido un apartado de observaciones. En este

último apartado incluimos, por ejemplo información referente a que la edad a la que se recomienda el libro por habilidad lectora del niño no se corresponde con aquella a la que van dirigidos los contenidos

matemáticos o de conocimiento del medio que se tratan o aparecen, según el currículum consultado,

sin que esto sea considerado de manera negativa por nosotros. También incluimos otros comentarios

sobre el tipo de libro, como si es considerado como obra de literatura infantil o no puede ser considerado obra literaria, de nuevo sin que esto nos haga desestimar el libro para el tipo de registro

escrito en el que se encuadra.

3.1. Discusión

Se discuten los resultados de esta catalogación separando los libros por idioma (español o

inglés) y por etapa educativa (infantil o primaria).

En la tabla 2 aparecen los libros correspondientes a lengua española y al ciclo de educación

infantil de 3-6 años.

Page 30: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

30 NÚMEROS Vol. 85 marzo de 2014

Disciplina

Título Autor Editorial Matemáticas

Conocimiento del medio

natural y social Otros

cmn cms

Colección “El

Zoo de los números”

María Caparrós Ed. Bruño

(Ana I. Jiménez)

Recuento, símbolo del

número y relación número-

cantidad.

Animales como

personajes: fauna

variada

Aprender a leer.

Vocabulario

Colección “Mi

primer libro”

Contrarios (1)

Formas (2)

1 2 3 (3)

Ruth Thomson Anaya (1)Tamaños y dimensiones:

grande/pequeño

estrecho/ancho.

(2) Figuras planas, sus

características y

particularidades; figuras en

volumen, descripción.

(3) Recuento y símbolos

numéricos. Relación cantidad -símbolo

Vocabulario

relacionado con

tamaños, formas,

partes de las figuras, números.

Colección “Mi

mundo y yo”

Diez abejas en el

naranjal (1)

La granja de Simón (2)

(1)Marilar

Aleixandre

(2)Enric Lluch

Círculo de

lectores

(1)Números: recuento y

símbolo

(1)Insectos

(2)Animales

domésticos de

granja. Formas de vida de los mismos.

Verso, colores.

Colección “A

través de la

ventana” (color

azul: nociones y colores)

¿Dónde está el

cuadrado?(1)

¿Dónde está el triángulo?(2)

¿Dónde están los círculos? (3)

(1)Pascale de

Bourgoing,

Celine Bour

(2)Pascale de

Bourgoing, Colette Camille

(3)Pascale de

Bourgoing, Colette Camille

La Galera Formas planas,

reconocimiento y partes

Animales

domésticos y

diferentes entornos

Expresión oral y

escrita. Vocabulario

asociado

Colección

“Descubrimos”

Para qué sirven

los dientes (1)

Quién sigue a un elefante (2)

Uno, dos, tres(3)

(1) Gusti

(2) Teresa Novoa

(3) Guadalupe Espejo

Alfaguara infantil (1)Números y grafía

(2,3) Recuento y símbolo

(1)Animales de

distintos

ecosistemas: terrestres y marinos.

(2,3) Animales variados

Expresión oral y

escrita. Vocabulario

del tema. Verso y prosa. Rima.

El laberinto del

pequeño indiecito

No aparece Edaf Orientación

(izda/dcha; arriba/abajo; cerca/lejos)

Recompensa al

trabajo bien hecho.

Autoevaluación

(llega al punto final o no).

Buenas noches

dulces mariposas

María Casas,

Mónica Pérez-

Campdepadrós

Beascoa, Random

House,

Mondadori S.A.

Recuento, iniciación a suma

y resta

Animales: Insectos Colores.

Verso.

Expresión oral y escrita.

Tabla 2. Libros para Educación Infantil (3-6 años)

Page 31: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

31 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

3.1.1. Idioma español

3.1.1. a- Educación Infantil

En este conjunto de libros no hemos detectado desfase entre la edad recomendada al niño por habilidad lectora, y la que se corresponde con el contenido tratado incluido en el currículo oficial del

ciclo de la educación infantil. Teniendo en cuenta que en este rango de la educación no todos los niños

son capaces de leer por ellos mismos, serán los maestros, padres o educadores los que podrán explotarlos y sacarles partido en cuanto a los aspectos lingüísticos, matemáticos y de conocimiento del

medio que se proponen.

Existen colecciones que no hemos adquirido, pero que hemos analizado por su idoneidad para

trabajar prácticamente todos los contenidos matemáticos del ciclo de la educación infantil. Para

trabajar la cantidad, el recuento y la grafía de los números, tenemos la colección “El Zoo de los números” de la editorial Bruño; 1 2 3, de la colección “Mi primer libro”, de la editorial Anaya; Diez

abejas en el naranjal y La granja de Simón de la colección “Mi mundo y yo” de la editorial Círculo de

Lectores; Para qué sirven los dientes, Quién sigue a un elefante y Uno, dos, tres de la colección “Descubrimos” de la editorial Juvenil Alfaguara; y por último, Buenas noches dulces mariposas, de la

editorial Beascoa, Random House, Mondadori S.A, que no solo introducen los números, el recuento y

la grafía, sino también inician a la suma y la resta mediante el recuento.

En la colección “Mi primer libro”, de la editorial Anaya, encontramos los títulos Contrarios y Formas, que tratan tamaños y dimensiones (grande/pequeño; estrecho/ancho), y figuras planas, sus

características y particularidades, así como figuras en volumen y su descripción. Las formas y la

orientación se tratan también en la colección “A través de la ventana” (color azul: nociones y colores)

en los títulos ¿Dónde está el cuadrado?, ¿Dónde está el triángulo? y ¿Dónde están los círculos?, de la editorial La Galera. Y la orientación espacial puede tratarse con el libro El laberinto del pequeño

indiecito de la editorial Edaf.

3.1.1. b- Educación Primaria

A continuación, en la tabla 3 se muestran los libros catalogados para primer ciclo de educación

primaria.

Disciplina

Título Autor Editorial Matemáticas Conocimiento del

medio natural y social Otros Inf/

Primaria

Ciclo o nivel.

Observaciones cmn cms

La amiga más

amiga de la

hormiga Miga

E. Teixidor SM

Direccionalidad

(arriba/abajo,

subir/bajar)

Comparación

tamaños:

grande/pequeño,

ancho/angosto

Secuencias:

adelante/atrás.

Clasificación de

animales:

vertebrados/inverte-

brados.

Diferenciación

insectos alados y sin

alas.

Lingüística:

formación de

palabras.

Contrarios.

Prosa/verso.

Actitudes: visión

positiva del

trabajo en equipo;

actitud de

respecto a uno

mismo y a los

demás.

5-7 años

Contenido:5-7 años.

Lector: 3er ciclo

Uso: emplear como

punto de partida y

adaptar a cada

necesidad.

Page 32: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

32 NÚMEROS Vol. 85 marzo de 2014

Historia del

uno

F. Krahn y

M.L. Uribe

Destino infantil

y juvenil

Números 1-10. Grafía

y relación con

recuento. Par/ impar.

Distintos ecosistemas:

montes, ríos,

desiertos, playas.

Verso.

Actitudes hacia

otros diferentes a

uno mismo.

4-6 años También para E.

Infantil

Cuando la

Tierra se olvidó

de girar

Fina

Casalderrey SM NO

Movimientos

terrestres y

estaciones.

Temperatura:

frío/calor.

Tiempo: día /noche.

5-7 años

1er ciclo.

Promover

deducciones sobre

contenido del libro.

Para Elisa, tres

lobos y un

cerdito feroz

Claudi Alsina

Proyecto Sur

de ediciones

S.L.

Situaciones de la vida

cotidiana en las que

aparece vocabulario

matemático: orden

(dcha/izda); tamaño

(alto/bajo); ordinales

(primero, segundo…)

Situaciones en las que

encontramos números,

unidades de medida.

Creatividad.

Verso/prosa.

2º-3er ciclo

Primaria

Lector: a partir de 8

años.

Contenidos: 1er

ciclo

El sapo y la

rana se saltan

la evolución

Antonio

Rodríguez

Almodóvar

Colección

cuentos de

ciencia

La evolución de las

especies.

Conservación del

medioambiente.

Actitud frente al

medioambiente.

2º-3er ciclo

Primaria

De cómo el

tigre aprendió a

contar Janosh Kokinos, 2003

Números, recuento y

grafía. Unicidad de

cada elemento en un

conjunto (no contar

dos veces)

Comparaciones: el

más grande.

Animales de distintos

ecosistemas: terrestres

(de granja o salvajes)

y marinos.

Amistad. 4-6 años Inf.

El gran libro de

las

matemáticas

del Ogro feroz

Gregory Oster Ediciones

Oniro

Plantea situaciones

cotidianas que

suponen el empleo de

las operaciones

matemáticas con

números naturales.

Vocabulario.

Expresión oral y

escrita.

8-12 años 2º-3er ciclo

Primaria

Multiplicacione

s a toda

máquina

David Blanco

Laserna

Nivola

colección

numeriverso

No es una novela,

sino juego en forma

de libro que cuenta

una historia y que

implica trabajo

matemático para

seguir avanzando.

Las sumas que

vinieron del

espacio

David Blanco

Laserna

Nivola

Colección

numeriverso

No es una novela,

sino juego en forma

de libro que cuenta

una historia y que

implica trabajo

matemático para

seguir avanzando.

El dragón que

no sabía sumar

ni restar

David Blanco

Laserna

Nivola

Colección

numeriverso

No es una novela,

sino juego en forma

de libro que cuenta

una historia y que

implica trabajo

matemático para

seguir avanzando.

Así se

aprenden las

tablas de

multiplicar

Susana Obrero

Tejero

Colección El

rompecabezas

Tablas de multiplicar a

través de una historia

con personajes: Edu.

El fantasma

que odiaba las

matemáticas

Rafael Ortega

de la Cruz

Nivola: Lucía y

Bruno

Numeración

consecutiva, de 2 en 2,

3 en 3, 4 en 4 y 5 en 5.

Problemas simples de

sumas y restas.

Geo

gra

fía Amor por los

libros.

Valor de la

amistad.

1er-2º ciclo

Primaria

Page 33: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

33 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Juana sin

miedo Pizca de sal

Animales mamíferos

de diferentes

ecosistemas: selva,

sabana, domésticos,

marinos.

Concienciación del

peligro de extinción

de los animales.

Amor por los

libros y su empleo

para aprender.

Actitud hacia los

animales.

2º ciclo

Primaria

Números pares,

impares e

idiotas

Juan José

Millás

SM: Barco de

vapor

Distintas ideas

matemáticas: conjunto

vacío, infinito,

múltiplos, etc.

3er Ciclo

Nível lector: a partir

de 9 años.

Matemático algo

inferior.

El Cero

Colección

Matemática

Pequeña

Grafía de números de

0 a 8.

Semejanzas y

diferencias.

Aceptación de

uno mismo;

afirmación y

autoestima

individual y de

grupo. Mayúscula

/minúscula.

Infantil-1er

ciclo

Primaria

Los números

son

sorprendentes

Claudi Alsina-

Elisenda Solà-

Niubó

Colección

Matemática

Pequeña

Grafía de números de

0 a 10.

Relación número y

cantidad.

Partes del cuerpo; la

familia.

Respeto a

personas mayores

y sabiduría.

Infantil-1er

ciclo

Primaria

Los Pares

Colección

Matemática

Pequeña

Grafía de números;

semejanzas y pares.

Mayúscula/

minúscula.

Infantil-1er

ciclo

Primaria

Error inducido:

incluye números del

1 al 10, y no todos

son pares.

Treinta y tres

son treinta y

tres Carlo Frabetti

SM: Barco de

Vapor

Grafía de números.

Representación en el

ábaco.

Los números en

situaciones de la vida

cotidiana. Doble,

triple, números

capicúas.

1er ciclo

Primaria

No tiene riqueza

literaria, más allá

del vocabulario que

introduce.

Al-Jwarizmi y

la magia de las

matemáticas

Jorge de

Barnola

Colección El

Rompecabezas

Historia del sistema de

numeración

hindoarábigo.

La España

musulmana

2º ciclo

Primaria

Mucho vocabulario

de la época.

Tabla 3. Libros para 2º ciclo de Educación Infantil y 1er ciclo de Educación Primaria (6-8 años)

De los libros analizados enfocados a educación primaria, lo primero que destacamos es la

riqueza de vocabulario matemático y/o científico, dependiendo de los casos. También observamos que no siempre la edad indicada en el libro correspondiente a la habilidad lectora del niño, coincide con la

correspondiente al ciclo de educación primaria en el que aparecen los contenidos de conocimiento del

medio y matemáticas incluidos en la obra, lo que indicamos en observaciones. Así por ejemplo, el

libro “La amiga más amiga de la hormiga miga” está dirigido a lectores de 3er ciclo, mientras que los

contenidos matemáticos que incluye corresponden al primer ciclo, 6-8 años. De la colección Proyecto

Sur, el libro “Para Elisa, tres lobos y un cerdito feroz” se indica para lectores de a partir de 8 años,

mientras que los contenidos matemáticos se corresponden al primer ciclo. Y por último, el libro de la colección Barco de Vapor de SM, “Números pares, impares e idiotas”, también está dirigido a lectores

del tercer ciclo o mayores, mientras que los contenidos matemáticos se corresponden con el segundo

ciclo, y algunos incluso con el primero de educación primaria, como puede verse en la tabla 3.

Destacamos también que en “observaciones” hemos indicado que algunos libros que se venden

como literatura matemática no encajan ni en el cuento ni en el relato corto. Son meras instrucciones en las que se emplean personajes que pueden ser más o menos atractivos para los niños, pero que en

ningún caso contribuyen a la calificación como “literatura” del libro. En este grupo se encuentran

aquellos de la colección Numeriverso, de editorial Nivola, que está compuesta por libros del mismo autor, David Blanco Laserna. Esos libros posibilitan al niño enfrentarse a otro tipo de registro que le

será también útil entender e interpretar.

Page 34: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

34 NÚMEROS Vol. 85 marzo de 2014

Siguiendo con otras colecciones, podemos destacar algunas que publican obras literarias con

contenidos de las áreas que buscábamos, matemáticas y conocimiento del medio, como son la

colección Pizca de Sal, la colección Barco de Vapor, de SM, Destino Infantil y Juvenil, y El

Rompecabezas.

3.1.2. Idioma inglés (Educación Infantil y Primaria)

Los libros analizados en esta lengua se incluyen en la tabla 4 que se muestra a continuación.

Disciplina

Título Autor Editorial/ISBN Matemáticas

Conocimiento del medio

natural y social Infantil-

Primaria Comentarios

cmn cms

The Bad-

Tempered

Ladybird

Eric Carle Puffin

0140503986

Las horas, números

1-12, tamaños,

grande/pequeño

Insectos/Animales y

sus característicos y

entornos

Relaciones

sociales, egoísmo/

generosidad.

3º curso Ed.

Infantil / 1º

ciclo Ed.

Primaria

Muchos recursos de

apoyo en internet

Handa’s

Surprise Eileen Browne

Walker

9780744536348

Numeros de 1 a 7,

contando atrás

(subtracción)

Animales de Africa,

entornos africanos;

frutos exóticos.

Geografía,

ubicación de

África en mapa

3º Ed.Infantil/

1º ciclo

Ed.Primaria

Muchos recursos de

apoyo en internet

A Little bit of

Winter Paul Ste-wart

3º curso Ed.

Infantil /

1º ciclo Ed.

Primaria

Monkey Puzzle Julia Donaldson Relaciones,

diferencias

2º/3º curso

Ed Infantil

The Shape of

Things

Dayle Ann

Dodds

Walker

0744543681 Formas geométricas

2º ciclo Ed.

Infantil

Jack and the

Beanstalk Traditional Tale

1º ciclo Ed.

Primaria

Funnybones Janet & Allan

Ahlberg

Puffin

9780140565812

La estructura

esquelética humana

y de animales

La ciudad (casas,

zoo, comisaría,

parque etc)

1º ciclo Ed.

Primaria

Se presta a explotar con

la canción ‘dem bones’

Flat Stanley

Adventures

(The Big

Mountain

Adventure)

Jeff Brown Egmont

9781405252089

Máquinas simples:

Palancas

Historia y

geografía

americana (Dakota

del Sur)

2º /3º ciclo

Ed. Primaria

Actividades adicionales

en Internet:

http://www.flatstanleyb

ooks.com/adventuresby

disney/index.aspx

The Lighthouse

Keeper’s lunch R & D Armitage

Electricidad y

poleas

El faro y aves de

mar

1º ciclo Ed.

Primaria

Room on the

Broom

Julia Donaldson

& Alex Scheffler

Macmillan

9780330508919

Medidas, distancias,

conteo con números

naturales pequeños.

Sumas.

El tiempo, tormenta,

lluvia

Hacer mapas,

dirección

Colaboración,

ayudando tus

amigos

1º Ed.

Primaria

Incluye CD interactivo,

actividades, posters etc.

Enlace web para

actividades:

http://www.primaryreso

urces.co.uk/english/engl

ishbooks_authors_d.htm

Tabla 4. Libros en lengua inglesa para para Educación Infantil y 1er ciclo de Educación Primaria (3-8 años)

En esta lengua hemos tenido más dificultades para hacernos con los libros que consideramos

interesantes, por lo que el análisis ha quedado reducido a los 10 ejemplares que hemos podido

adquirir. Se indica en la tabla 4 que casi todos pueden trabajarse indistintamente en la educación

infantil y en el primer ciclo de educación primaria.

3.2. Propuestas de aula

Nuestra propuesta fundamental es la incorporación de los libros analizados al “Plan de lectura”

o “Proyecto lector” del centro en educación primaria, y como material de clase en el caso de educación

infantil. Incorporamos en las figuras 1 a 3 unas guías de uso para algunos de estos libros. Contar con

Page 35: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

35 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

estas indicaciones sobre los temas que se incluyen en cada libro facilitará su labor a los docentes al

sugerirles cómo explotar los libros. Ellos a su vez promoverán con su uso la contextualización del

aprendizaje y la mejor comprensión del libro.

a)

b)

Figura 1. Guías de uso para libros adecuados para 2º ciclo de Educación Infantil (3-6 años)

Page 36: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

36 NÚMEROS Vol. 85 marzo de 2014

a)

b)

Figura 2. Guías de uso para libros adecuados para 1er ciclo de Educación Primaria (6-8años)

Page 37: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

37 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Figura 3. Guía de uso para libros adecuados para 2º ciclo de Educación Infantil y 1er ciclo de Educación

Primaria (3-8 años) en lengua inglesa

El proceso de lectura del libro podría desarrollarse incluyendo un análisis de los sucesos importantes acontecidos en el libro, asegurándonos así la comprensión básica de la historia.

Detectaríamos también con los alumnos los contenidos matemáticos y de ciencias que aparecen,

haciendo hincapié en cómo surgen y cómo los emplean los personajes. También se tratarían los otros contenidos o valores que se encierren en la historia transmitida por el libro elegido y que sean temas

transversales como el compañerismo, la amistad, el trabajo en equipo, etc. Y la tarea puede

completarse con la ejecución de actividades que pongan en práctica los contenidos matemáticos y de

conocimiento del medio natural que se hayan tratado, como por ejemplo, actividades sobre contar colecciones, ordenar colecciones, dibujar las figuras geométricas, inventar canciones con los números,

repetir nombres y características de animales que aparecen, cantar canciones en las que aparezcan

partes del cuerpo humano, etc.

Estas propuestas de aula creemos que facilitarán al docente el empleo de los libros analizados y se explotarían mediante actividades que surgirían a partir del plan de lectura. Puede emplearse esta

actividad como punto de partida para abordar, no solo los contenidos de lengua inglesa o española,

sino para generar el interés por la lectura, y por aprender otros contenidos del currículo de

matemáticas y conocimiento del medio. Es indicado, por lo tanto, para su empleo en aulas de colegios españoles y bilingües, que en los últimos años han incrementado notablemente su número en nuestro

país.

Page 38: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

38 NÚMEROS Vol. 85 marzo de 2014

4. Conclusiones

Se ha procedido a la elaboración de una base de datos que se muestra en las tablas 2 a 4, en las

que se incluyen diversas obras catalogadas según idioma (español/inglés), contenidos de matemáticas

y conocimiento del medio natural y social, y observaciones sobre otros contenidos.

Hemos encontrado varios libros que no podemos considerar como obras literarias, pero que no por eso son rechazables para su lectura. Con ellos el niño aprenderá a manejar otros códigos del

lenguaje escrito y a entender mensajes escritos diversos: literarios, científicos, instrucciones, etc.

Se propone la inclusión de estos libros en el plan de lectura del centro.

Se ha preparado un plan de clase para el uso de cinco libros, dos para Educación Infantil, dos

para primer ciclo de Educación Primaria, ambos en español, y uno en lengua inglesa. El propósito es que estos esquemas sirvan para ayudar a los maestros de infantil y primaria a emplear estas obras en

sus clases de forma interdisciplinar, contribuyendo así a que la enseñanza se aleje del modelo

compartimentado en áreas o disciplinas.

Se prevé poner en práctica estas sugerencias en colegios y recoger las impresiones de los

maestros sobre las mismas para poder mejorarlas en el futuro.

Agradecimientos

Este proyecto fue financiado por la Universidad de Castilla La Mancha, UCLM.

Bibliografía

Altava Rubio, V., Pérez Serrano, I. y Ríos García, I. (1999). La interdisciplinariedad como instrumento de formación del profesorado. Revista electrónica interuniversitaria de formación del

profesorado, 2 (1), 243-249

Barnes, J. (2011). Cross-curricular learning. Eds 3-14. London: Sage Publication Ltd Cockcroft, W.H., (1985). Las matemáticas sí cuentan. Madrid: Ministerio de Educación y Ciencia.

Duit, R. y Treagust, D. (2003). Conceptual Change: a Powerful Framework for improving Science

Teaching and Learning, International Journal of Science Education, 25 (6), 671-688.

Gil, N., Blanco y L. J., Guerrero, E. (2005). El dominio afectivo en el aprendizaje de las matemáticas. Una revisión de sus descriptores básicos. Unión-Revista Iberoaméricana de Educación

Matemática, 2, 15-32

Gómez Chacón, I.M. (2000). Matemática Emocional: Los afectos en el Aprendizaje Matemático. Narcea. ISBN: 9788427713369

González, J., y Wagenaar, R. (coord.). (2003). Tuning. Tuning Educational Structures in Europe.

Informe Final. Bilbao: Universidad de Deusto. González, J., y Wagenaar, R. (coord.). (2006). Tuning. Tuning Educational Structures in Europe

(Informe Final Fase 2). Universities’ Contribution to the Bologne Process. Bilbao: Universidad de

Deusto. Recuperado el 2 de Julio de 2013, de

http://ec.europa.eu/education/policies/educ/tuning/tuning_es.html De Guzmán Ozámiz, M.(2007), Enseñanza de las ciencias y la matemática. Revista Iberoamericana de

educación, 43, 19-58

Page 39: Números, Revista de Didáctica

Propuestas para el tratamiento de la Competencia Matemática y de Ciencias a través de la

literatura infantil en Educación Infantil y Primaria. R. Fernández Cézar, C. Harris, C. Aguirre Pérez

39 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Kaser, S. (2001). Searching the Heavens with Children's Literature: A Design for Teaching Science.

Language Arts, 78 (4), 348-56 Levinson, R. (2006). Towards a Theoretical Framework for Teaching Controversial Socio-scientific

Issues, 54 (6), 853-866. Recuperado el 2 de Julio de 2013, de DOI: 10.1007/s10734-006-9027-3

Marín Rodríguez, M. (2007). El valor matemático de un cuento. Sigma, 31, 11-26.

Marín Rodriguez, M. (2013). Cuentos para enseñar y aprender matemáticas, en Educación Infantil. Narcea (Madrid). ISSN: 9788427718999.

Mata, R. (2006). Química y literatura. Boletín del Instituto de Investigaciones Bibliográficas de

México, XI (1-2), 227-236. Recuperado el 2 de Julio de 2013, de http://www.revistas.unam.mx/index.php/biib/article/view/18964

Moore, P., (2007). Enhancing Classroom Discourse: a modelling potential for Content Teachers,

Revista española de lingüística aplicada, 1 (Extra), 141-152. Ortiz Hernández, E. (2006). Retos y perspectivas del currículo integrado. Cuaderno de investigación

en la educación, 21, 35-56

Palacios, S.L. (2007). El cine y la literatura de ciencia ficción como herramientas didácticas en la

enseñanza de la física: una experiencia de aula. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 4 (1), 106-122. Recuperado el 2 de Julio de 2013, de

http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=92040107.

Woods, Ch. (2007). Researching and developing interdisciplinary teaching: towards a conceptual framework for classroom communication. Higher Education, 54 (6), 853-866. Recuperado el 2 de

Julio de 2013, de DOI: 10.1007/s10734-006-9027-3

Yore, L. y Treasagut, D. (2006). Current Realities and Future Possibilities: Language and Science

Literacy- Empowering Research and Informing Instruction, International Journal of Science Education, 28 (2-3), 291-314.

Nota: de todos los libros que se incluyen en las tablas están incluidos en las mismas los datos

necesarios para su localización bibliográfica.

Raquel Fernández Cézar. Facultad de Educación de Cuenca, Universidad de Castilla La Mancha, Campus universitario s/n. Es Profesora Asociada del Departamento de Matemáticas, área Didáctica de las

Matemáticas. Participa en congresos y posee publicaciones en el área de didáctica de las ciencias

experimentales y matemáticas, y sobre la formación de maestros a nivel universitario.

[email protected]

Christine Harris. Facultad de Educación de Cuenca, Universidad de Castilla La Mancha, Campus

universitario s/n. Es Profesora del Departamento de Inglés, área de Didáctica. [email protected]

Constancio Aguirre Pérez. Facultad de Educación de Cuenca, Universidad de Castilla La Mancha, Campus universitario s/n. Es Profesora del Departamento de Pedagogía, área Didáctica de las Ciencias

Experimentales. [email protected]

Page 40: Números, Revista de Didáctica
Page 41: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 41-48

Los sistemas de ecuaciones en el bachillerato

Félix Martínez de la Rosa

Soledad María Sáez Martínez

(Universidad de Cádiz. España)

Fecha de recepción: 7 de junio de 2013

Fecha de aceptación: 31 de octubre de 2013

Resumen En este artículo se describen los esquemas mentales relacionados con los sistemas de

ecuaciones lineales, que tienen los alumnos al acceder al primer curso de Matemáticas en

la Universidad. En relación con ello se analiza la normativa de las pruebas de acceso, el tratamiento que se da a los sistemas en algunos libros de texto, y las consecuencias que

pueden derivarse del uso de esos esquemas.

Palabras clave Matrices, determinantes, rango, sistemas, Cramer.

Abstract In this paper we describe the freshman´s mental models about the systems of linear

equations. In this connection we analyze the rules of entrance exams, the treatment given

to the systems in some textbooks, and the consequences that may result from use of these

methods.

Keywords Matrix, determinants, rank, systems, Cramer.

1. Introducción

Los sistemas de ecuaciones lineales son un tema importante dentro de los contenidos de

Matemáticas del bachillerato. Presentan un aspecto verbal, un aspecto algebraico y un aspecto gráfico.

El aspecto verbal trata sobre la comprensión del enunciado con el que se plantea un problema.

Esta es una de las carencias más evidentes de los alumnos por la dificultad que tienen para entender un

texto escrito, tener claro lo que se les pregunta, identificar las incógnitas y plasmarlo todo en

ecuaciones algebraicas y sistemas.

En el aspecto algebraico, los alumnos deben saber dilucidar o discutir si un sistema de

ecuaciones es posible resolverlo o no, saber el número de soluciones que tiene y saber calcularlas.

En cuanto al aspecto gráfico, en el bachillerato de ciencias se incide en los significados

geométricos de las ecuaciones como rectas y planos, estudiando sus posiciones relativas a través de los sistemas. En el de ciencias sociales se analizan las regiones factibles de los ejercicios de programación

lineal bidimensional.

En este artículo queremos detenernos en contemplar la manera en que los alumnos de

bachillerato aprenden a discutir y resolver los sistemas de ecuaciones. El método de Gauss y el

Page 42: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

42 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

posterior análisis de la matriz escalonada que se obtiene, es sencillo y rápido. Los alumnos de primer curso de la Universidad lo conocen, sin embargo no es su primera opción para resolver un ejercicio.

Ellos tienen interiorizado un esquema mental o conceptual que expondremos. Veremos las causas que

contribuyen a que los alumnos lo tengan como el mejor método de resolución de sistemas. En relación con ello analizaremos la normativa de acceso a la Universidad, el tratamiento que se da en algunos

libros de texto a la discusión y resolución de sistemas, y las consecuencias que pueden derivarse del

uso del esquema mencionado.

La expresión esquema mental o esquema conceptual hace referencia al término concept image introducido en el artículo [Tall y Vinner, 1981], acerca de las dificultades en el proceso de enseñanza

y aprendizaje de límites y continuidad:

Concept image (esquema conceptual): son las estructuras cognitivas

que un individuo asocia a un concepto.

Cuando se explica un concepto, los alumnos desarrollan un proceso cognitivo con el que

conciben un esquema conceptual. Para ello se basan en un conjunto de imágenes mentales (formas simbólicas, diagramas o gráficas) que asocian al concepto. Pero el conjunto de objetos matemáticos,

que un alumno considera ejemplos adecuados para formar esa imagen, puede que no se haya elegido

correctamente y pase por alto matices importante. Esto da lugar a esquemas conceptuales incompletos

e inadecuados, que propician la aparición de errores de concepto.

2. Esquema mental y normativa

Los autores de este artículo hemos impartido docencia en asignaturas de Matemáticas de primer

curso, en diferentes titulaciones de la Universidad de Cádiz a los que alumnos ingresan, en su mayoría, tras haber cursado las asignaturas Matemáticas I y II del bachillerato de Ciencias, o bien las

Matemáticas Aplicadas a las Ciencias Sociales I y II. A esas asignaturas de Matemáticas de primero de

Universidad, los alumnos acceden con una serie de conocimientos acerca de los sistemas de

ecuaciones, de los que nos ocuparemos en este artículo.

Sea cual sea la procedencia de los alumnos hemos observado que la mayoría de ellos ha interiorizado el siguiente esquema para la resolución de sistemas de tres ecuaciones con tres

incógnitas.

1. Si no hay parámetros, se calcula el determinante de la matriz de los coeficientes

aplicando la regla de Sarrus. Si es distinto de cero, el sistema se resuelve

usando la regla de Cramer. Si es cero, se prescinden de una o dos ecuaciones y

se resuelven una o dos incógnitas en función del resto.

2. Si hay parámetros, sus valores se obtienen igualando a cero el determinante de

la matriz de los coeficientes y para estos valores se resuelve el sistema como en

el paso anterior.

Tabla1. Esquema de los alumnos para la resolución de sistemas de tres ecuaciones con tres incógnitas.

En el Real Decreto 1467/2007 de 2 de noviembre (BOE del 6 de noviembre), se establece la estructura del bachillerato y se fijan sus enseñanzas mínimas, mientras que en la Orden de 5 de agosto

de 2008 (BOJA del 26 de agosto) se desarrolla el currículo correspondiente al Bachillerato en

Page 43: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

43 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Andalucía (comunidad a la que pertenecemos los autores), y que es similar a los del resto de

comunidades autónomas.

En el bachillerato de Ciencias la asignatura Matemáticas II recoge el estudio de matrices,

determinantes, rango y sistemas de ecuaciones. Las orientaciones para las pruebas de acceso a la

Universidad en Andalucía incluyen “saber clasificar un sistema de ecuaciones lineales con no más de

tres incógnitas y que dependa, como mucho, de un parámetro y, en su caso, resolverlo”.

Se supone que en esas pruebas se exigen contenidos mínimos, y los alumnos deberían ser

capaces de discutir y resolver sistemas de todo tipo. Pero la necesidad de obtener una nota alta para

acceder a los estudios preferidos, y la escasez de tiempo, propicia que los profesores se apliquen en

resolver los modelos de ejercicios que se preguntan en esas pruebas. El esquema de la tabla 1 funciona bien para los sistemas de tres ecuaciones y tres incógnitas. Requiere poco esfuerzo intelectual, resulta

fácil de memorizar para los alumnos y es cómodo de explicar para los profesores. A los alumnos les

funciona bien y por eso les parece innecesario recordar y aplicar otra técnica.

En el bachillerato de Ciencias Sociales los contenidos de álgebra lineal se reparten entre las Matemáticas I y II. En la primera se ubican los sistemas de ecuaciones lineales y en la segunda el

álgebra matricial y la programación lineal. Llama la atención que las orientaciones para las pruebas de

acceso no incluyan la discusión y resolución de sistemas de ecuaciones. Estos alumnos sólo discuten sistemas en el primer año y, al no incluirse en esas pruebas, sus conocimientos acerca de ellos son

sensiblemente inferiores a los que cursan el otro bachillerato, aunque suelen recordar la estructura

básica del esquema de la tabla 1.

Las orientaciones para las pruebas de acceso acerca de los sistemas son demasiado restrictivas

en el primer caso, e inexistentes en el segundo, y tienen su repercusión porque influye en alumnos y profesores a la hora de insistir más o menos en un tema, y esto propicia algunas deficiencias que

hemos observado en nuestros alumnos universitarios y que se comentarán en la sección cuatro.

3. Sobre los libros de texto

Las matrices, determinantes, rango y sistemas de ecuaciones lineales se exponen en los libros de texto de los dos tipos de bachillerato, en cursos diferentes aunque con contenidos similares. Para que

el discurso sea fluido nos hemos centrado en dos textos correspondientes al bachillerato de ciencias

(que citaremos en función de su editorial: Santillana y Anaya), que son habitualmente usados en el

entorno en el que se ha hecho este trabajo.

Las matrices se dan como una tabla de elementos ordenados en filas y columnas [Santillana, p.

8], y a veces se motivan a partir de los coeficientes de los sistemas de ecuaciones [Anaya, p. 36]. Los

determinantes se introducen como un número asociado a una matriz cuadrada, dándose la fórmula

para los de orden dos y la regla de Sarrus para los de orden tres ([Santillana, p. 36] y [Anaya, p. 81]). Esta técnica eclipsa la del desarrollo por adjuntos que en combinación con la técnica de hacer ceros

([Santillana, p. 43] y [Anaya, p. 88]), simplifica y facilita el cálculo de determinantes de cualquier

orden.

El rango es un concepto que observamos que los alumnos no llegan a comprender y dominar del todo bien. Es posible que el hecho de que en los libros de texto se defina tres veces, influya en

crear una cierta confusión sobre el mismo. La primera definición que se da ([Santillana, p. 18] y

[Anaya p. 65]) es la siguiente:

Page 44: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

44 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

“El rango de una matriz es el número de filas o columnas no nulas

linealmente independientes de la matriz.”

Esta definición se basa en la dependencia e independencia lineal que son conceptos muy ligados a los espacios vectoriales. Pero estos no se explican con detalle en segundo de bachillerato. Por

ejemplo en [Santillana, p. 98], se habla de las operaciones y otros elementos de los vectores como

introducción a la geometría del espacio, mientras que en [Anaya, p. 62] se da una breve introducción a los espacios vectoriales generales, mencionándose que “la idea de vector como flecha da lugar a la de

espacio vectorial”.

Para analizar la independencia lineal de las filas de una matriz, se recurre a las operaciones

elementales de fila con el objeto de transformar la matriz inicial en una escalonada con el mismo

rango. A partir de esto se da la segunda definición de rango ([Santillana, p. 19] y [Anaya p. 66]):

“El rango de una matriz es el número de filas no nulas que tiene la matriz

escalonada que se obtiene con el método de Gauss”.

Con esta definición el concepto y la forma de calcular el rango se establece totalmente. El

problema surge al explicar los determinantes. Entonces aparece el concepto de menor de una matriz y

basándose en él se enuncia la tercera definición de rango ([Santillana, p. 45] y [Anaya p. 89]):

“El rango de una matriz es el orden del mayor de sus menores no nulo”.

De pronto, el método fácil y rápido que se empleaba para calcular el rango se sustituye por la búsqueda de un menor. Pero como la cantidad de menores que tiene una matriz es muy grande, se

describe un método que según [Santillana, p. 45], “permitirá no tener que calcularlos todos para

determinar el rango”, y según [Anaya, p. 90], “permite hallar el rango con razonable rapidez”.

La técnica consiste en partir de un menor no nulo y añadir filas y columnas de una manera adecuada para aumentar su orden: esto se denomina “orlar la matriz”. Pero al aplicarlo no se efectúa

una simplificación previa de la matriz por Gauss, y por eso se efectúan más cálculos de los necesarios.

Por otro lado, si se hiciese la simplificación entonces se obtendría una matriz escalonada en la que

hallar el rango no precisaría de los menores porque se haría directamente con la segunda definición.

El método de “orlar la matriz” no parece muy eficiente, además puede crear la impresión errónea de que simplificar la matriz no es algo que se pueda mezclar con otras técnicas. Por otro lado,

la mecánica de los menores funciona bien en matrices de pequeñas dimensiones, como las de los

ejercicios de las pruebas de acceso del bachillerato de ciencias, por eso suele ser la que los alumnos escogen como primera opción. Aquí nos preguntamos si la técnica de “orlar” es tan importante como

para enmarañar lo establecido en la segunda definición. Algún alumno que emplea esta técnica piensa

que “el rango es eso de coger determinantes cada vez más grandes”.

Un fenómeno parecido a lo analizado para el rango ocurre también en los sistemas de ecuaciones. La primera técnica que se describe en los libros para su discusión y resolución consiste en

la transformación del mismo, con el método de Gauss, en un sistema escalonado. Según la forma que

presente la matriz ampliada así será el sistema. Para que sea más claro, los textos de bachillerato

ofrecen el siguiente esquema ([Santillana, p. 65] y [Anaya, p. 37]):

Page 45: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

45 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

ba

0000

Si 0a y se tiene el mismo número de ecuaciones no nulas que de

incógnitas, es un Sistema compatible determinado.

baa

21000

Si 01 a o 02 a y se tienen más incógnitas que ecuaciones no

nulas, es un Sistema compatible indeterminado.

b

00000

Si 0b no hay solución del sistema, es un Sistema incompatible.

Tabla 2. Esquema para la resolución de sistemas de ecuaciones generales

En los textos citados, se explica que la solución de los sistemas compatibles determinados se obtiene despejando la incógnita de la última fila. Sustituyendo en la anterior se calcula la siguiente, y

se repite el proceso hasta la primera fila. En los compatibles indeterminados, para obtener la forma

escalonada deben trasladarse una o más columnas al segundo miembro, y las incógnitas

correspondientes serán los parámetros. De esta forma, la discusión de sistemas, sea cual sea su forma, queda establecida clara y rápidamente. Los textos que estamos citando sólo precisan de dos páginas

para describir el método de Gauss y el esquema de la tabla 2.

Sin embargo todo cambia tras la explicación del teorema de Rouché-Fröbenius ([Santillana, p.

68] y [Anaya, p. 102]). La cuestión no es la dificultad intrínseca de este teorema sino que al “aplicarlo” los rangos se obtienen con la técnica de “orlar”. Claro que si se simplificara de forma

previa la matriz ampliada se obtendría un sistema escalonado cuya discusión ya se ha establecido en el

esquema de la tabla 2, lo que haría innecesaria la utilización de ningún otro algoritmo. Notemos que en libros tan conocidos como [Grosman (1992)] o [Anton (1991)] los sistemas se resuelven con el

esquema de la tabla 2, enmarcando el teorema de Rouché-Fröbenius dentro de los espacios vectoriales.

Asimismo sólo en el primero [Grosman, p. 282] se alude (en un apartado opcional) al cálculo del

rango con menores.

Finalmente los libros de texto exponen la regla de Cramer. Como el ejercicio de la prueba de acceso del bachillerato de ciencias se resuelve fácilmente con ella, los alumnos la prefieren antes que

el esquema de la tabla 2. La ubicación de la regla de Cramer al final de los temas dedicados a los

sistemas, donde se explica su uso para sistemas cualesquiera ([Santillana, p. 72] y [Anaya, p.106]), puede dar la errónea impresión de que se trata de la culminación del proceso de resolución de los

mismos. Muchos alumnos así lo creen, pero no es así. En [Grossman, p. 158], se expresa el siguiente

comentario sobre esta regla:

“Durante casi 200 años fue esencial en la enseñanza del álgebra. Debido a la

gran cantidad de operaciones que requiere, en la actualidad se usa mucho

menos que antes. Sin embargo, el resultado fue de gran importancia en su

tiempo”.

En un sistema compatible determinado de tres ecuaciones y tres incógnitas, el método de

Cramer exige calcular cuatro determinantes que, si se hacen con la regla de Sarrus, requieren 68

Page 46: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

46 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

operaciones: con tantas operaciones el error siempre está al acecho. A pesar de esto, es la primera

opción de muchos alumnos para resolver sistemas.

4. Consecuencias observadas en los alumnos

El esquema de la tabla 1 junto con la técnica de “orlar la matriz” son las primeras opciones de los alumnos de primer curso en la Universidad, para discutir y resolver sistemas de ecuaciones. Pero

su uso requiere de un gran número de operaciones y propicia la confusión en la comprensión de

algunos conceptos, como el rango o el de parámetro, a los que nos referiremos a continuación.

4.1. Sobre el exceso de operaciones

Uno de los aspectos en que los profesores de Matemáticas insistimos a los alumnos es en

economizar en los cálculos, para que no se pierdan entre tantas operaciones y prevengan los errores de

tipo operativo. El esquema de la tabla 1 y el método de “orlar” son ejemplos de lo contrario.

El exceso de operaciones propicia errores con los que los profesores nos mostramos permisivos,

en parte porque así sucede en las pruebas de acceso. De hecho, a los correctores de los ejercicios de

esas pruebas se nos instruye en que los errores en las operaciones aritméticas elementales se penalicen

con un máximo del 10% de la nota total del ejercicio. Los alumnos saben de esta permisividad con los errores operativos, y la importancia del resultado correcto se relativiza apelando a que lo importante es

el método.

Por otro lado, los alumnos realizan las operaciones valiéndose de una calculadora. Confían

ciegamente en ellas para los cálculos lo que causa efectos secundarios: no practican jamás el cálculo mental, descuidan las operaciones básicas con papel y lápiz, y no se preocupan en simplificar

previamente las expresiones numéricas. Es especialmente llamativo cuando para operar con fracciones

prefieren transformar estas en decimales y emplear un resultado aproximado antes que uno exacto. Ya sea a mano o con calculadora, el resultado es un papel atiborrado de cálculos, a veces muy

desordenado y difícil de comprender incluso por ellos mismos, lo que propicia nuevos errores

operativos.

4.2. Sobre los parámetros

El esquema de la tabla 1 sirve para resolver un tipo de ejercicio muy concreto. Poner uno que se

salga de ese tipo es una manera de comprobar la consistencia de los conceptos adquiridos por los alumnos. La idea que ellos tienen sobre los parámetros es un tanto difusa. Basta dar un sistema en el

que no aparece una incógnita para observar que la respuesta mayoritaria es ignorar ese hecho. Cuando

se pregunta cuál es el valor de la incógnita que falta razonan que si no aparece es que no existe, y lo que no existe vale cero: no tienen asimilado un sistema como una serie de condiciones que deben

cumplir las incógnitas, y que si no hay condición sobre alguna significa que puede tomar cualquier

valor.

4.3. Sobre el rango

La simplificación de una matriz permite hallar su rango de una forma más rápida y directa que

el método de “orlar”. Y muchos alumnos la emplean, pero cambian de técnica al llegar a los sistemas. Aquí se produce un fenómeno curioso: la distinción entre dos tipos de rango. Si se trata de una matriz

suelta aplican el método de Gauss, pero si se trata de una proveniente de un sistema de ecuaciones los

Page 47: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

47 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

alumnos aplican el “orlado” de la matriz. Esto permite apreciar que el concepto de rango no está bien

asimilado.

4.4. Sobre sistemas cuya matriz de los coeficientes no es cuadrada

Los alumnos suelen tratar de reproducir el esquema de la tabla 1 sea cual sea la forma del

sistema. A veces intentan realizar el determinante aunque sea imposible. Muchas dudas se suscitan

cuando falta alguna incógnita y también cuando el número de ecuaciones y de incógnitas es muy desparejo. Cuando hay más ecuaciones que incógnitas, el método de Gauss permite observar

fácilmente las ecuaciones sobrantes, y si hay más incógnitas que ecuaciones, es sencillo apreciar

cuáles deben ser tomadas como parámetros. El esquema de la tabla 2 lo recuerdan vagamente porque

no lo han necesitado demasiado, y esto va en contra de la necesaria visión general que requiere el

estudio de los sistemas de ecuaciones.

Las dificultades expresadas en los puntos anteriores se superan si insistimos en la idea de

unificar la manera de calcular el rango de una matriz (esté relacionada o no con un sistema de

ecuaciones) utilizando la simplificación por Gauss para escalonarla. Con este método es fácil, además, encontrar el mayor menor no nulo de la matriz y establecer y aclarar la relación entre su orden y el

número de filas no nulas de la matriz escalonada.

5. Resumen final

En bachillerato se explican tres métodos para discutir y resolver sistemas: Gauss, Rouché -Fröbenius y Cramer. El método más rápido e intuitivo es el de Gauss. No conlleva más operaciones

que los otros métodos, y presenta la ventaja de no perder de vista lo que se hace, al aplicar

reiteradamente el método de reducción. Se explica el primero en los textos y el primero en las clases. Los alumnos lo entienden y lo aplican para sistemas de todo tipo. Si hubiese sistemas que no se

pudiesen resolver de esa manera sería entendible la introducción de los otros dos métodos en

bachillerato pero esto no es así.

Los alumnos del bachillerato de ciencias tienen ante sí una disyuntiva acerca del método que

deben emplear. En este sentido, es decisivo el hecho de que el sistema de ecuaciones que se pregunta en las pruebas de acceso a la Universidad se resuelva sin problemas siguiendo los pasos del esquema

de la tabla 1 basado en el método de Cramer. Debido a esto los profesores, que deben exprimir al

máximo el tiempo del que disponen, suelen preferirlo frente a otras técnicas y, finalmente, este es el preferido por muchos alumnos, incluidos los del bachillerato de ciencias sociales. Una circunstancia

relativa a este método, es la no simplificación previa de la matriz con las operaciones elementales de

fila: es claro que si se hace se llega a un sistema escalonado cuya resolución resulta evidente y vaciaría

de sentido al citado método.

La no simplificación de la matriz se observa también en el método de Rouché - Fröbenius. En este caso es el cálculo del rango el que se beneficiaría de ello. Y no sólo el rango: el propio sistema

quedaría casi resuelto. En los textos de bachillerato, cuando se trata de calcular el rango de una matriz

relacionada con un sistema de ecuaciones, se opta por la técnica denominada “orlar la matriz”, que puede incrementar innecesariamente el número de operaciones. Pero lo peor es que crea confusión en

los alumnos sobre el concepto de rango: parece que es distinto el de una matriz general que el de una

que surge de un sistema de ecuaciones.

En este artículo nos preguntamos el por qué de la pervivencia de distintos métodos para el

cálculo de rangos y la resolución de sistemas de ecuaciones lineales, y nos cuestionamos si tanta

Page 48: Números, Revista de Didáctica

Los sistemas de ecuaciones en el bachillerato F. Martínez de la Rosa, S. M. Sáez Martínez

48 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

técnica puede contribuir al enmascaramiento de los conceptos en lugar de aclararlos. La postura de los autores de este artículo es decidida a favor de utilizar la misma técnica de simplificación matricial, ya

sea para obtener un rango o para discutir un sistema de ecuaciones. De hecho, es así como se hace en

primera instancia en los textos de bachillerato y también en los universitarios.

Bibliografía

Anton, H. (1991) “Introducción al álgebra lineal”, Limusa, 5ª edición.

Colera, J.; Oliveira, M.J. (2009) “Matemáticas II. 2º bachillerato”, Anaya.

Escoredo, A. y otros (2009) “Matemáticas II. 2º bachillerato”, Santillana. Grossman, S. (1992) “Álgebra lineal con aplicaciones”, McGraw-Hill, 3ª edición.

Tall, D.; Vinner, S. (1981) “Concept image and concept definition in mathematics with particular

reference to limits and continuity”, Educational Studies in Mathematics Education, nº 12, pp. 151-169.

Félix Martínez de la Rosa. Doctor en Matemáticas y Catedrático de Escuela Universitaria de

Matemática aplicada en la Universidad de Cádiz. Investigaciones en educación matemática acerca de la

diferenciación de funciones reales de una y dos variables, el uso de la visualización en la docencia de las

matemáticas y la detección de errores de concepto. Email: [email protected]

Soledad María Sáez Martínez. Doctora en Matemáticas y profesora colaboradora en la Universidad de

Cádiz. Email: [email protected].

Page 49: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 49-73

¿Pueden nuestros estudiantes construir conocimientos matemáticos?

Pedro Cobo Lozano (Instituto de Enseñanza Secundaria Pius Font i Quer. España)

Mª Antonia Molina Hernández (Universidad Politécnica de Cataluña. España)

Fecha de recepción: 29 de abril de 2013

Fecha de aceptación: 20 de diciembre de 2013

Resumen Este es un artículo sobre resolución de problemas en las clases de matemáticas. En él mostramos cómo los estudiantes pueden construir conocimientos matemáticos y dar

significado a los mismos. Para ello, establecemos una metodología con la que los

estudiantes aprenden a gestionar sus propios procesos de resolución. Además, definimos

el rol del profesor y de los estudiantes y resaltamos la importancia de las tareas que

proponemos para el aprendizaje, por su capacidad de favorecer la actividad en el aula.

Palabras clave Resolución de Problemas, Procesos de Gestión, Heurísticas, Tareas ricas, Interacciones

sociales.

Abstract This paper is about problem solving in mathematic lessons. It shows how students can

build mathematical knowledge and give meaning to them. We focus on a methodology in

which students learn to manage their own solving process. Furthermore, we define the

role of the teacher and the students, and we emphasize the importance of the tasks we

propose for learning, by its ability to promote the activity in the classroom.

Keywords Problem solving, Managerial process, Heuristics, Rich tasks, Social interactions.

1. Introducción

¿Qué han aprendido nuestros estudiantes de cuarto curso de enseñanza secundaria después de un

proceso de enseñanza y aprendizaje de la resolución problemas de matemáticas? Empezamos este

artículo mostrando algunas respuestas de los estudiantes a esta pregunta.

Hemos aprendido: “a formularnos preguntas para llegar más allá de la solución, “a resolver

problemas desde el final”, “a hacer matemáticas, a crearlas”, “que de cualquier cosa cotidiana puede

salir un problema de matemáticas”, “a resolver problemas que nunca nos hubiéramos pensado que pudiéramos resolver”, “que si empiezas por las cosas más sencillas después te saldrán las más

difíciles”, “que no hay solo un camino para resolver los problemas”, “a buscar relaciones entre

números y buscar el porqué de estas relaciones”, “a alargar un problema, no quedarnos con el resultado, buscar variantes, investigar”, “a inventarnos nuestras propias fórmulas a partir de la

observación y la comparación”, “a generalizar problemas concretos”, “a resolver problemas mediante

el método de inducción”, “que las matemáticas pueden ser divertidas”, “a trabajar en grupo, a

organizarnos la tarea, a ayudarnos, más que a seguir las instrucciones del profesor”; “a valorar las

opiniones de los otros componentes del grupo”, etc.

Page 50: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

50 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A continuación el lector tendrá la oportunidad de comprobar si esas respuestas se corresponden con la realidad o no, y si realmente estos estudiantes construyen conocimientos matemáticos y cómo lo

hacen.

Antes de ello, y para concretar nuestros puntos de vista, expresamos lo que entendemos por

resolución de problemas, establecemos los principios básicos en los que basamos nuestro modelo de

enseñanza y concretamos los objetivos que nos proponemos.

De las muchas acepciones del término ‘resolución de problemas’, consideramos la que tiene que

ver con el desarrollo de las habilidades estratégicas relacionadas con la gestión de los procesos y con

los contenidos matemáticos implicados en las resoluciones, especialmente los procedimentales. En

consecuencia, exponemos a nuestros estudiantes a nuevas formas de enseñanza en las que se modifican los roles tradicionales de profesor y estudiante, y en las que las tareas que se proponen sean

adecuadas a la generación del conocimiento que se pretende.

Basamos nuestro modelo de enseñanza en dos ideas fundamentales, relacionadas con la forma

de actuar del profesor y de los estudiantes, y con las características de las tareas que proponemos:

Para nosotros, el buen profesor no actúa, hace actuar a los estudiantes. Es decir, la

intervención del profesor se ha de optimizar. Entendemos que su labor no ha de ser la de explicar cosas y más cosas, hacer clases magistrales, convertirse en el centro de la

enseñanza, sino que ha de ceder el protagonismo a sus estudiantes, intentando conseguir que

sean ellos los que generen la actividad en el aula. Esta idea está en la línea de las teorías del

constructivismo social, que preconizan que los estudiantes han de ser los protagonistas principales de su aprendizaje y, por tanto, los que construyan su propio conocimiento, que

ha de ser socialmente compartido.

Las tareas han de ser ricas, en el sentido de: presentar situaciones contextualizadas próximas al

alumno; generar actitudes de curiosidad y de interés para su resolución; ser abiertas para permitir que se aborden de diferentes maneras y, con ello, facilitar una mejor atención a la

diversidad; presentar la información inicial usando diferentes representaciones; permitir

establecer conexiones entre diferentes contenidos matemáticos y con otras materias; etc.

Así pues, el objetivo que perseguimos es mostrar cómo nuestros estudiantes aprenden, por una parte, las heurísticas implicadas en la resolución de problemas y, por otra, la gestión de sus propios

procesos de resolución, de tal manera que, tras un proceso inicial de aprendizaje, ellos por sí solos

sean capaces de construir conocimientos matemáticos diversos y dar significado a los mismos.

Para conseguir ese objetivo, explicamos, en primer lugar, qué entendemos por gestión en la

resolución de problemas, separándola de lo que es la gestión de la clase, aunque en muchos momentos ambos tipos de gestión estén muy próximos o incluso se solapen. Después, detallamos la metodología

que seguimos, y mostramos y comentamos las producciones de los alumnos en las clases de

matemáticas en los tres problemas que proponemos. Por último, en las reflexiones finales, trataremos

de responder a la pregunta del título de este artículo.

2. Qué entendemos por gestión de los procesos de resolución de problemas

Cuando hablamos de gestión de los procesos de resolución nos referimos a las preguntas (o

mensajes) que nos hacemos (o en los que pensamos) cuando estamos resolviendo un problema, que tienen por finalidad conseguir activar o reactivar el proceso de resolución o simplemente reflexionar

sobre él. Y cuando decimos que queremos convertir la gestión en objeto de enseñanza y aprendizaje en

Page 51: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

51 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

nuestras clases estamos pensando en que los estudiantes han de aprender, en cada momento del desarrollo de la actividad, a hacerse las mismas preguntas que un profesor experto les haría, y han de

aprender a responderlas.

En primer lugar, los estudiantes han de tener claro lo que se espera de ellos cuando se les

propone un problema, es decir, qué les pedimos y qué pretendemos que aprendan. Les pedimos que:

Resuelvan el problema de todas las formas que sean capaces. Por tanto, el reto está no sólo

en resolver el problema utilizando una estrategia, sino que han de intentar buscar otras estrategias de resolución. Aquí incluimos la utilización de todo tipo de contenidos

matemáticos (conceptos, procedimientos técnicos, heurísticas) y de gestión. Con esta

demanda conseguimos que cada pequeño grupo de alumnos pueda ir a su ritmo, facilitando

con ello la atención a la diversidad.

Generen variantes del problema propuesto y que las resuelvan. Es decir, han de responder a

la pregunta: ¿qué podemos variar del enunciado del problema original? Se les enseña, a base

de práctica, que han de analizar el enunciado del problema e indicar los elementos que se

puedan cambiar.

Busquen regularidades entre las variantes que han generado y traten de generalizar

resultados, no perdiendo nunca de vista ni el problema inicial ni las variantes generadas.

Además, se espera que aprendan a gestionar los procesos de resolución. Para ello, en Cobo

(2004a) podemos encontrar una batería de preguntas y mensajes ordenados según la fase del proceso

de resolución en la que nos encontremos.

Así por ejemplo, en la fase de comprensión del problema, los mensajes a enviar a los

estudiantes, y que ellos tienen que ir asimilando, podrían ser del tipo:

Trata de comprender bien las condiciones del problema.

Identifica el objetivo del problema.

Vuelve a leerlo lentamente.

Intenta comprender todas las palabras del enunciado.

Recuerda los conceptos matemáticos que hay en el enunciado.

Organiza la información que tienes, etc.

En la fase de planificación/ejecución, los mensajes podrían ser del tipo:

Piensa en un problema más sencillo.

Experimenta.

Piensa en alguna conjetura.

Inventa alguna representación simbólica.

Busca problemas análogos.

Trata de construir figuras.

Busca casos más sencillos.

Si ya has establecido un plan, ejecútalo.

Si has establecido una conjetura, trata de buscar relaciones entre los elementos del problema,

etc.

En la fase de verificación, los mensajes podrían ser del tipo:

Comprueba los resultados, mira si son coherentes.

Page 52: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

52 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Reflexiona sobre la posibilidad de revisar la solución que has obtenido. Si es necesario sigue

un orden inverso a los pasos de la solución.

Reflexiona sobre cómo surgieron las ideas que te llevaron a la solución.

Haz un repaso de los contenidos matemáticos que has utilizado.

Reflexiona sobre estas preguntas:

o ¿Has propuesto varias estrategias a lo largo de la resolución?

o ¿Las has examinado todas?

o ¿Te parece que has desarrollado la más adecuada?

Y cuando se pretende que los estudiantes generen problemas nuevos a partir del inicial, los

mensajes podrían ser del tipo:

¿Qué elementos del enunciado piensas que se pueden variar?

¿Se obtienen enunciados coherentes si variamos algún elemento?

¿Y si variamos dos o más simultáneamente?

¿Puedes invertir el enunciado del problema?

¿El problema te sugiere otros similares?

¿Puedes generalizar el enunciado del problema?, etc.

Se ha de hacer notar que estos mensajes que al principio el profesor envía a los alumnos cuando se los demandan, ni uno ni los otros los han de aprender de memoria, simplemente, a base de ir

adquiriendo experiencia, se han de ir incorporando de manera natural al bagaje de conocimientos de

los estudiantes.

Además, se ha de tener presente que, en el inicio de la fase de aprendizaje, siempre hay una

demanda excesiva de ayuda por parte de los estudiantes. Es fundamental que el profesor se limite a

enviar mensajes que no conviertan el problema en un simple ejercicio.

3. Qué lugar ocupa la gestión en la resolución de problemas

Desde que en los años 80, algunos investigadores, como Schoenfeld (1987), adaptan la definición de Flavell sobre metacognición a la resolución de problemas, son pocos los profesores que

han llevado a la práctica y han dado la importancia que se merecen a aspectos tales como las

creencias, las intuiciones, las emociones o cómo controlan los propios estudiantes lo que hacen cuando

resuelven problemas. Nosotros fijaremos nuestra atención en esta última cuestión, relacionada con la

gestión en los procesos de resolución y su enseñanza y aprendizaje en las aulas de matemáticas.

En los años 90, algunas investigadoras como Fernández, M. L. y otras. (1994) ya sitúan a la

gestión en el corazón de los procesos de resolución de problemas, siendo la que los organiza y los

controla (Figura1).

Estas investigadoras contraponen su modelo de naturaleza cíclica y dinámica de los procesos de resolución (Figura 1), a los modelos que enfatizan en la linealidad de dichos procesos, propios de

muchos libros de texto, y que son inconsistentes con la actividad real de resolver problemas.

Además, nosotros consideramos que ese modelo cíclico y dinámico no estaría completo si no contempla otros aspectos implicados en los procesos de resolución y en la enseñanza que se deriva de

ellos. Así pues, lo hemos acompañado sobrepuesto a tres capas en las que hemos evidenciado la importancia que damos a los conocimientos matemáticos, a la conciencia del proceso que se sigue y a

la comunicación.

Page 53: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

53 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Figura 1. Situación de la Gestión en los procesos de resolución de problemas (adaptada de Fernández, M. L y

otros, 1994)

Cuando hablamos de conocimientos matemáticos, nos referimos a los relacionados con

contenidos conceptuales; con procedimientos técnicos (o técnicas), que incluyen los

algorítmicos y los que están asociados a los contenidos matemáticos de los problemas que se resuelven; y con los procedimientos heurísticos (o heurísticas), entendidos según L. Puig

(1996) como: “modos de comportamiento al resolver problemas y los medios que se utilizan

en el proceso de resolverlos que son independientes del contenido y que no suponen garantía

de que se obtenga la solución”(p. 38).

La conciencia de los procesos que se siguen y que pretendemos que los alumnos alcancen se

ha de encuadrar, como señalan Mayor y otros (1993), dentro de los niveles más altos o

conciencia reflexiva, procurando obviar aquellos niveles de conciencia vaga o meramente

funcional. Así pues, los estudiantes deberán tener conciencia, en general, de todos sus actos importantes durante los procesos de resolución (tomas de decisiones, descubrimientos,

interpretaciones, preguntas clave, etc.) y reflexionar sobre ellos.

Se ha de potenciar el uso de diferentes formas de representación para comunicar lo que se

quiere expresar. Partiendo de la verbalización, el uso del lenguaje numérico y gráfico, hasta llegar, de manera progresiva, a la utilización del lenguaje simbólico (DOGC, 2007).

En este modelo cíclico y dinámico, la gestión está presente en todas las fases de la resolución de un problema. Por tanto, es esencial que los programas de enseñanza de resolución de problemas

tengan presente formas de aproximarnos a ella. Así pues, la metodología que proponemos a

continuación contempla esa enseñanza, en la que se visualiza la gestión, los conocimientos

matemáticos, la toma de conciencia de los procesos y la comunicación en sus diversas formas.

4. Metodología para la enseñanza y el aprendizaje de la resolución de problemas

En los apartados anteriores hemos hablado de la relación entre el profesor y el estudiante por lo

que respecta a la gestión de los procesos de resolución de problemas. Ahora extendemos esa relación a

la manera en que el profesor ha de gestionar el funcionamiento general de la clase.

Para que los estudiantes consigan los objetivos que nos proponemos es necesario que las clases

tengan una estructura de funcionamiento determinada, en la que queden claras las funciones que cada

elemento (profesor, estudiante, tarea) ha de desempeñar.

Page 54: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

54 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Dividimos la descripción de dicho funcionamiento en tres fases: registro de los procesos de resolución, reflexión y puesta en común, y elaboración de un informe final (Cobo, 2004b). Además,

resaltamos después otros elementos metodológicos.

4.1. Registro de los procesos de resolución

En el inicio, los estudiantes reflexionan individualmente sobre el problema propuesto durante un

tiempo breve.

Después, formamos grupos de tres o cuatro estudiantes.

A pesar de que los estudiantes que participan tienen experiencia en la resolución de problemas, las primeras sesiones de una nueva secuencia didáctica siempre suelen ser de experimentación y

aprendizaje en lo que se refiere a cómo gestionar los procesos de resolución, a la importancia de la

función del moderador y/o secretario en esa gestión, y a la realización de informes escritos

provisionales como elementos generadores de reflexión y comunicación. También, en estas sesiones puede haber falta de recursos en la utilización de estrategias heurísticas por parte de los estudiantes,

que se va subsanando conforme van participando en una segunda fase que es la puesta en común con

toda la clase.

4.2. Reflexión y puesta en común

Ahora, los estudiantes exponen al grupo-clase sus resultados y la forma de obtenerlos, y el profesor va fomentando la participación de todos, analizándose conjuntamente los aspectos más

relevantes relacionados con los contenidos matemáticos que utilizan y con la gestión de los procesos

desarrollados, por ejemplo:

Por qué es importante hacer una tabla o un diagrama y las consecuencias que puede tener en la

obtención de nuevos datos que ayuden a resolver el problema.

Cómo puede evolucionar la realización de tablas o diagramas a medida que se avanza en la

resolución del problema.

Cómo se ataca un problema de forma inductiva y la importancia de ser sistemáticos y de

ordenar la información que se vaya obteniendo.

Cómo y cuándo podemos utilizar la estrategia de ensayo-error.

Cómo podemos abordar la resolución de un problema empezando por el final y trabajando

hacia atrás.

Qué importancia tiene elegir una representación simbólica adecuada.

En qué momentos se han bloqueado los estudiantes y las posibles explicaciones y salidas a

esos bloqueos.

Cómo se han hecho las revisiones de los procesos de resolución y de los resultados obtenidos;

etc.

Hemos de tener presente que las puestas en común en el grupo-clase y las discusiones que en

ellas se generan han de servir para que los estudiantes reflexionen y tomen conciencia de sus procesos

de resolución, así como para unificar criterios, intentar solucionar bloqueos y conflictos, dar

significado a los contenidos matemáticos involucrados en las resoluciones, y establecer, compartir y aceptar por todos los conocimientos matemáticos generados. La propuesta interactiva de Schoenfeld

(2011) sobre la discusión de un tópico nos sirve como modelo para dirigir el debate en nuestras clases.

Para facilitar y fomentar la participación de los estudiantes hemos de transmitirles la idea de que

no importa que se equivoquen, lo importante es rectificar y seguir buscando. Esa insistencia en la

Page 55: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

55 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

búsqueda de soluciones y en la generación de problemas es la que hace que se consigan los objetivos

que nos proponemos.

4.3. Elaboración de un informe final escrito

Como recopilación final, proponemos a los estudiantes que, en casa e individualmente, elaboren

un informe final escrito del proceso de resolución, que es el que entregarán al profesor. Además, el profesor selecciona a uno de los grupos para que exponga a toda la clase la resolución del problema,

ayudándose de los medios técnicos y materiales didácticos que considere oportunos.

Esta estructura metodológica que acabamos de exponer no es rígida. El profesor puede proponer

puestas en común en cualquier momento del proceso de resolución, por ejemplo cuando los

estudiantes estén bloqueados, o cuando se crea conveniente unificar las líneas de trabajo que hayan de seguir. También, si durante las puestas en común se generan contenidos matemáticos interesantes, el

profesor puede proponer volver a trabajarlos en grupos pequeños.

4.4. Otros elementos metodológicos

Resaltamos aquí tres aspectos metodológicos más, relacionados con la actuación del profesor antes y durante las clases de matemáticas, por la importancia que tienen en el desarrollo de los

procesos de resolución generados por los estudiantes. Concretamente, nos referimos a las

características de los problemas que proponemos, a la manera de formar los grupos de trabajo en clase y a la actuación del profesor cuando hay estudiantes con dificultad de comprensión, cuando

pretendemos unificar las líneas de trabajo en el aula o cuando hay bloqueos y conflictos.

a) Los problemas que proponemos forman una secuencia didáctica contextualizada en la

enseñanza y aprendizaje del Álgebra. En el desarrollo de esta secuencia se utilizan

aproximadamente entre 12 y 14 horas de clase. Los estudiantes ya tienen nociones algebraicas de cursos anteriores. Lo que pretendemos es

que consoliden aspectos concretos como la búsqueda de relaciones y regularidades para

obtener patrones, el análisis y la representación de estructuras matemáticas, y la búsqueda de modelos para representar y comprender relaciones cuantitativas (DOGC, 2007), al mismo

tiempo que avancen en la utilización de heurísticas para la resolución de problemas. Para

conseguir esto e implicar a los estudiantes desde el principio proponemos problemas en los

que primen los contenidos procedimentales, que sean abiertos y permitan introducir variantes que puedan resolver los estudiantes, que sean relativamente fáciles de resolver en su

presentación inicial y que esa resolución se pueda hacer de diferentes formas. (Cobo, 2004a).

b) La composición de los grupos de estudiantes que trabajan en la resolución de los problemas ha de ser variada respecto a las capacidades de los estudiantes y a su rendimiento académico. Con

ello conseguiremos: integrar a todos los estudiantes, que no haya diferencias importantes en el

desarrollo de la resolución de los problemas de unos grupos a otros y que haya aportaciones por parte de casi todos los grupos. Además, es importante ir cambiando la composición de

estos grupos de trabajo cuando cambiamos de problema, siempre procurando mantener los

criterios de formación de cada grupo.

c) Cuando estamos en el aula, para que los estudiantes puedan conseguir los objetivos que perseguimos, el profesor ha de aplicar unas líneas básicas de actuación, que resumimos a

continuación y que también iremos resaltando en las descripciones de los procesos de

resolución generados por los estudiantes (apartado 5).

Si queremos que los estudiantes generen buenos procesos de resolución han de tener

tiempo suficiente para desarrollarlos.

Page 56: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

56 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Las reflexiones conjuntas que tienen lugar en las puestas en común son los momentos

en los que se intentan solucionar las dificultades de comprensión, en los que se unifican las líneas de trabajo de los diferentes grupos y donde se abordan los bloqueos

y conflictos que se produzcan. El profesor tiene que dar siempre prioridad a que sean

los propios estudiantes los que resuelvan las cuestiones y dificultades que se planteen.

El profesor ha de respetar el desarrollo de los procesos de resolución que vayan

generando los diferentes grupos de trabajo y solo cuando considere que la dispersión

del trabajo en la clase sea amplia, delimitará, en una puesta en común, las diferentes

líneas de trabajo propuestas por los estudiantes y les instará a trabajar sucesivamente en cada una de ellas.

El profesor ha de procurar anticipar las dificultades que puedan tener los estudiantes,

para intentar solucionarlas conjuntamente en el grupo-clase. Normalmente, estas

dificultades suelen producirse cuando se aborda por primera vez algún contenido

matemático. Por ejemplo, cuando se producen las primeras generalizaciones o la realización de tablas específicas u otras estrategias heurísticas, cuando, para avanzar,

necesitan de la introducción de un nuevo contenido conceptual, cuando hay bloqueos

en la búsqueda de nuevas variantes, etc.

5. Los estudiantes que participan y las resoluciones que generan

La experiencia que describimos en los siguientes parágrafos corresponde al desarrollo de las

clases ordinarias de matemáticas de un grupo-clase de cuarto curso de la ESO, de 29 estudiantes, con capacidades matemáticas avanzadas, aunque no todos con un rendimiento académico alto en esa

materia. Este grupo-clase corresponde a la distribución que se hace habitualmente en el centro de

enseñanza donde se desarrolla la actividad en la que se tienen en cuenta los rendimientos académicos

en las materias instrumentales.

Además, a lo largo del curso, los estudiantes han adquirido, con su profesor de matemáticas,

experiencia en desarrollar las unidades didácticas enfocadas desde el punto de vista de la resolución de

problemas, como mostramos en este artículo, pero también utilizando otros tipos de enfoques, como,

por ejemplo, a partir de proyectos didácticos (Grup Vilatzara, 2001), o partiendo de un problema inicial, como elemento motivador, que se va resolviendo conforme se van introduciendo conceptos

matemáticos nuevos, en la línea de algunas “mini unidades didácticas” del proyecto Intermates

(http://www.edu365.com/aulanet/intermates/).

En cualquier caso, sea cual sea el enfoque que utilicemos, siempre intentamos fomentar que los

estudiantes se involucren y sean los protagonistas principales de la actividad.

Todos los resultados que mostramos a continuación han sido obtenidos por los estudiantes en

las clases de matemáticas. Sólo los informes escritos los realizaron como deberes fuera del aula.

5.1. Problema de la suma de números consecutivos

Este problema es el primero de los propuestos en muchos libros de texto dentro del tema de

Álgebra, en cursos anteriores al 4º de la ESO. Puede resolverse en 5 minutos y ser abandonado, o convertirse en una actividad rica a base de resolver las variantes que los estudiantes van generando. Su

enunciado es el siguiente:

Calcula tres números naturales consecutivos cuya suma sea 60.

Page 57: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

57 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

5.1.1. Búsqueda de soluciones

Después de un trabajo en grupos relativamente corto, hacemos una puesta en común para que

los estudiantes propongan las diferentes soluciones. Resumimos a continuación las que se proponen.

1. Utilizan el leguaje algebraico, siguiendo una de las dos formas:

x + x+1 + x+2 = 60, o (x-1)+x+(x+1) = 60.

2. Utilizan el método de ensayo-error: “Hemos probado primero con 15, 16 y 17, y como no

llegan a 60, aumentamos los números hasta encontrar el resultado”.

3. Dividen por 3: “Hemos dividido 60 entre 3 y nos ha dado 20, por tanto 20, 20 y 20, y quitamos 1 del primero y se lo sumamos al tercero”.

4. Analizan posibilidades: “Hemos hecho todas las posibilidades y hemos llegado a que 9, 0 y

1 son las únicas tres cifras consecutivas que suman 0, que es la cifra de las unidades del 60,

y a partir de aquí hemos encontrado los tres números: 19, 20 y 21”. 5. Suman los tres primeros números naturales: “1+2+3=6, la suma total menos 6 dividida entre

3 y al resultado se le suman 1, 2 y 3”.

6. Utilizan la proporcionalidad: “elegimos tres números consecutivos cualesquiera, por

ejemplo, 7+8+9=24, cogemos el del centro y establecemos la proporción: 8

24 60

x , de

aquí resulta que x = 20 y los números son 19, 20 y 21”.

5.1.2. Propuesta y resolución de variantes

1. Los estudiantes empiezan cambiando el valor de la suma de los tres números consecutivos, y responden a preguntas como: ¿el enunciado estaría bien construido si la suma toma

cualquier valor?, ¿qué propiedad ha de tener la suma para que el enunciado esté bien

construido?, e intentan buscar respuestas y justificaciones a esas preguntas. Utilizan como suma (n) de los tres números valores concretos, y utilizan expresiones

algebraicas para concluir que la suma ha de ser múltiplo de 3:

(x-1)+x+(x+1)=n; 3·x=n

2. A continuación suman 2, 3, 4… números consecutivos, y tratan de buscar las características

que ha de tener la suma (n) para que el enunciado esté bien construido.

En los distintos grupos de trabajo, se producen formas diferentes de abordar esta variante,

que el profesor ha de respetar. Así, unos grupos van elaborando la Tabla 1.

Suma de k números

consecutivos Justificación algebraica Resultados

2 x+(x+1)=n; 2x=n-1 n=2x+1

3 (x-1)+x+(x+1)=n n=3x

4 (x-1)+x+(x+1)+(x+2)=n n=4x+2

5 (x-2)+(x-1)+x+(x+1)+(x+2)=n n=5x

6 (x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=n n=6x+3

Tabla 1. Características de la suma de 2, 3, 4,... números naturales consecutivos

Page 58: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

58 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

De esta manera obtienen el resultado general, que lo expresan de la forma siguiente:

“Si sumamos una cantidad impar de números consecutivos, n siempre será múltiplo de esta

cantidad. Es decir, si sumamos k números, n será múltiplo de los k números que hemos

sumado. n=k·x”

“Si sumamos una cantidad par de números consecutivos, n siempre será múltiplo de esta

cantidad, más la mitad de la misma cantidad. Es decir, si sumamos k números.

n=k·x+(1/2)·k”

Otros grupos de estudiantes, siguen la quinta solución propuesta en el apartado 5.1.1 y

consiguen la generalización a partir de la propuesta:

x+1+x+2+x+3+…+x+k = x+…(k-veces)…+x +1+2+3+…+k

Y, para calcular la suma, hacen un esquema como el de la Figura 2.

Figura 2. Visualización de la suma x+…(k-veces)…+x +1+2+3+…+k

Obteniendo el resultado como suma de las dos áreas

n = x+…(k-veces)…+x +1+2+3+…+k = k·x + k·(k-1)/2 + k·1 = k·x + k·(k+1)/2

Y no llegan a establecer el valor de n como múltiplo (o no) de k porque no diferencian que k

pueda ser par o impar.

En este momento, los estudiantes exponen sus soluciones en una puesta en común para toda la

clase, y como hay desavenencias en los resultados que muestran, les pedimos que traten de unificar los resultados que han obtenido, diferenciando los casos en los que k sea par o impar.

Esa unificación se produce, llegándose a la misma generalización en los dos desarrollos que

hemos expuesto.

Por otra parte, el profesor explica qué es una progresión aritmética y reparte el material didáctico de la Figura 3a, con la finalidad de que los estudiantes generen el procedimiento de

la suma de los términos de una progresión aritmética (Figura 3b).

Page 59: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

59 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

(a) (b)

Figura 3. Material didáctico para generar el procedimiento de la suma de los primeros términos de una

progresión aritmética

Los estudiantes pronto visualizan cómo conseguir la suma de los primeros números naturales y el procedimiento general para obtener la suma de los k primeros términos de

cualquier progresión aritmética. El profesor, simplemente, resalta el valor que tiene dicho

procedimiento en matemáticas.

3. Después, los pequeños grupos continúan considerando otra variación del enunciado inicial, como es averiguar qué pasa si los números naturales que se suman no son consecutivos, por

ejemplo, si están separados por dos, tres, cuatro… unidades.

Y van elaborando tablas, buscando regularidades y llegan a las siguientes conclusiones:

“En el caso de que sumemos una cantidad impar de números (k), la distancia entre los

números no afecta a la conclusión final, es decir, en todos los casos, n es múltiplo de la

cantidad de números sumados: n=k·x”

“En el caso de que sumemos una cantidad par de números (k), n será múltiplo de la cantidad de números sumados más la mitad del producto de los números sumados por la distancia

entre ellos (m), es decir, n= k·x+1/2·k·m

4. Llegados a este extremo, algunos grupos han observado que hay números que no tienen

descomposición posible como suma de números consecutivos, en cambio hay otros que

tienen una o más descomposiciones, y la pregunta que surge es: ¿qué números se pueden

expresar como suma de números naturales consecutivos?

Encuentran regularidades en los números que no se pueden descomponer, en ningún caso,

como suma de números naturales consecutivos, que son las potencias de 2, pero no

encuentran regularidades entre los números que sólo tienen una descomposición, o dos, o

tres, etc.

5. Otra variante que los estudiantes consideran y que no tiene mucho recorrido es la de pensar

qué pasa si sustituyen la suma de números naturales consecutivos por el producto. Por

ejemplo, empiezan suponiendo que el producto de tres números naturales consecutivos es

24. Y buscan, mediante la descomposición factorial, números cuyos factores se puedan

agrupar en tres que sean consecutivos.

Otros estudiantes razonan al revés, van multiplicando números naturales consecutivos y

observan los resultados. Por ejemplo, si un número natural (n) se puede expresar como

n=a·(a+1)·(a+2), el siguiente (m) es de la forma m = n·(a+3)/a.

Page 60: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

60 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

6. Otros grupos también buscan patrones en la suma de los cuadrados de tres números naturales consecutivos. Obtienen regularidades en las que aparecen la suma de los

cuadrados de números naturales consecutivos.

El profesor podría continuar esta actividad utilizando modelos con discos y conos hechos de

plastilina para calcular y justificar la suma de los cuadrados de números naturales

consecutivos (Somchaipeng y otros, 2012).

5.1.3. Puesta en común de los resultados obtenidos en la resolución del problema de la suma de

números consecutivos

En la puesta en común general, a medida que los estudiantes van haciendo sus exposiciones, el

profesor va fomentando la participación de todos y va resaltando los contenidos matemáticos o de

gestión que están implícitos en las resoluciones que presentan. Así por ejemplo, en esta puesta en

común se habla de:

Múltiplos y divisores. Criterios de divisibilidad.

Utilización del lenguaje algebraico.

Estrategia de ensayo-error.

Análisis de posibilidades.

Procesos inductivos (realización de tablas).

Generalizaciones de propiedades.

Procesos de conjeturar y probar.

Comunicación de los procesos de resolución.

Identificación de las dificultades que han tenido y la forma en que las han superado.

Exposición de las ideas a las críticas de otros.

Generación de nuevos problemas.

Progresiones aritméticas. Suma. Etc.

5.2. Problema de Jaimito

Jaimito sale de casa con un mazo de cromos y vuelve sin ningún cromo. Su madre le pregunta

qué ha hecho de los cromos.

- A cada amigo que he encontrado le he dado la mitad de los cromos que llevaba más uno. - ¿Cuántos amigos te has encontrado?

- Seis.

¿Cuántos cromos llevaba Jaimito cuando salió de casa?

5.2.1. Búsqueda de soluciones

Los diferentes grupos de la clase abordan la resolución de este problema, esencialmente, de dos

formas:

1. Siguiendo un procedimiento a la inversa, es decir, empezando por el final. Si a cada amigo le da la mitad de los cromos más 1, quiere decir que a Jaimito le quedan, cada vez, la mitad

de los cromos menos 1, es decir, tendrán que sumar 1 cromo a los que tiene y multiplicar el

resultado por 2. De esta manera, construyen tablas como la siguiente (Tabla 2) para obtener

el resultado final.

Page 61: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

61 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Amigo 6 (último) (0+1)·2=2

Amigo 5 (penúltimo) (2+1)·2=6

Amigo 4 (6+1)·2=14

Amigo 3 (14+1)·2=30

Amigo 2 (30+1)·2=62

Amigo 1 (62+1)·2=126

Tabla 2. Procedimiento “empezar por el final”

2. Siguiendo un procedimiento directo, es decir, empezando por el amigo 1, el 2, el 3, etc.,

planteando un esquema como el de la Tabla 3, e igualando el resultado final a cero.

Obtienen el resultado final x=126.

Tabla 3. Utilización del lenguaje algebraico para resolver el problema

Otros grupos, siguiendo este procedimiento, utilizan las mismas expresiones pero con los números en forma de potencia y obtienen directamente una expresión general para el caso de n

amigos, de la forma:

Después de encontrarse al primer amigo tiene: 12

x ; después del segundo, tiene:

2

11

2 2

x .

Y así sucesivamente hasta obtener la cantidad de cromos que le queda a Jaimito después del sexto

amigo: 6 5 4 3 2

11

2 2 2 2 2 2

x x x x x .

Así pues, llegan a obtener la expresión de x de la forma x = 2 + 22 + 2

3 + 2

4 + 2

5 + 2

6 = 126. Y,

de aquí, la expresión general para n amigos que sería: x = 2 + 22

+ 23

+ 24

+…+ 2n-1

+ 2n

. E indican

textualmente que “como esta operación es muy larga intentamos resolverla encontrando una fórmula a

partir de la Tabla 4”

Page 62: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

62 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Amigos Cromos

Buscamos una fórmula para encontrar cuántos cromos

debería de tener sabiendo el número de amigos. Es:

2·(2n-1)

n: número de amigos

1 2

2 6

3 14

4 30

5 62

6 126

7 254

Tabla 4. Búsqueda de la expresión general para n amigos

Esta expresión, a la que no han llegado todos los grupos de trabajo, es motivo de comentarios y

reflexiones en una puesta en común que provoca el profesor. Se incide en esta generalización puesto

que es la primera con cierta dificultad que ha aparecido y el profesor ha de cerciorarse de que los estudiantes que la han generado expliquen el proceso que han seguido y éste sea comprendido por los

demás. Después el profesor explica qué es una progresión geométrica y cómo se puede obtener la

suma de un número finito de sus términos.

5.2.2. Propuesta y resolución de variantes

1. La primera propuesta, integrada en la resolución del problema original, es, como vemos en la Tabla 4, la consideración de n amigos.

2. La segunda propuesta de variación del enunciado que proponen los estudiantes es la de

considerar que, en lugar de dar a cada amigo la mitad de los cromos más 1, le demos la

mitad más 2, más 3, más 4…, más m.

Después de construir tablas como la Tabla 5, llegan a obtener una generalización para el caso

1

2m

Amigos 1

12

12

2

13

2 Ahora lo hacemos también para 1/2+4.

Se ve que con 1/2+2 es el doble del

primero y con 1/2+3, es el triple. Por eso

la fórmula para saber el número de

cromos será: 2·(2n-1)·m

m: número que le sumamos a la

fracción

1 2 4 6

2 6 12 18

3 14 28 42

4 30 60 90

5 62 124 186

6 126 252 372

Tabla 5. Inicio del proceso inductivo y generalización del caso 1

2m

Según explican los estudiantes, para obtener la generalización, simplemente observan que

cada columna se obtiene multiplicando la primera por m.

Page 63: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

63 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

3. La tercera variante, por otra parte lógica, que los estudiantes pretenden resolver es la de variar

la fracción, considerando que cada vez, Jaimito da a sus amigos 1 1 1

; ; ...; .2 3 n

En este momento, los estudiantes empiezan a tener dificultades porque observan que no

siempre es posible dar a los amigos 1

n de los cromos que tenía, más una cantidad. Después de

una puesta en común en la que expresan las dudas sobre la posibilidad de poder continuar

haciendo propuestas y desarrollando el enunciado inicial, el profesor da más tiempo a los

grupos de trabajo para que traten de resolver este primer bloqueo serio que se ha presentado. Así, poco después, un grupo de alumnas propone a la clase que la variación lógica es

considerar que se da 1 2 3 1

; ; ;...; .2 3 4

n

n

Entonces empieza una búsqueda frenética para encontrar generalizaciones que resuelvan el

caso planteado, llegando los estudiantes a producir, ordenar y generalizar datos como los que

se muestran en la Tabla 6.

Amigos 1

12

12

2

21

3

22

3

31

4

32

4

41

5

42

5

51

6

1 2 4 3 6 4 8 5 10 6

2 6 12 12 24 20 40 30 60 42

3 14 28 39 78 84 168 155 310 258

4 30 60 120 240 340 680 780 1560 1554

5 62 124 363 726 1364 2728 3905 7810 9330

6 126 252 1092 2184 5460 10920 19530 39060 55986

n 2 2 1

1

n

m

3 3 1

2

n

m

4 4 1

3

n

m

5 5 1

4

n

m

Tabla 6. Inicio del proceso inductivo sobre fracciones del tipo1q

q

Y a encontrar generalizaciones para el caso de 1q

mq

(Tabla 7).

Viendo que con 1

3 no funciona, vamos probando con diferentes fracciones. Llegamos a la

conclusión que sólo funciona con fracciones del tipo 1q

q

como por ejemplo

2

3 o

4

5, donde el

numerador es una unidad más pequeño que el denominador.

Después vemos que para 1

2 la fórmula en realidad era:

2 2 1

1

n

m

; Para 2

3 será:

3 3 1

2

n

m

Por tanto deducimos que la fórmula general será: 1

1

nq q

mq

q: denominador de la fracción n: número de amigos m: número que le sumamos a la fracción

Tabla 7. Generalización al caso 1q

mq

Page 64: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

64 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

En la idea del profesor de no abandonar ninguna línea de trabajo propuesta por los estudiantes y

una vez acabado el proceso de generalización para el caso de 1q

mq

, les propone insistir sobre el

caso que había quedado pendiente, es decir, investigar qué pasa si Jaimito da a cada amigo una tercera

parte más uno de los cromos que llevaba, una tercera parte más dos, una tercera más tres, etc.

Después de trabajar sobre este caso, un grupo de estudiantes escribe:

“Con 1

13 ,

13

3 ,

15

3 , … ,

1

3un número impar , no hay ningún número natural de

cromos que funcione”.

“Con 1

3un número par funciona, pero sólo con un amigo”.

“Con 1

23 y potencias de 2, funciona de la forma siguiente: para

12

3 funciona si sólo se

encuentra con un amigo; para 1

43 , funciona si se encuentra con 2 amigos; para

18

3 , funciona si se

encuentra con 3 amigos; para 1

23

n funciona si se encuentra a n amigos”. Y realizan la tabla

siguiente (Tabla 8).

Amigos 1

23

14

3

18

3

116

3

132

3

164

3

1 (x1) 3 6 12 24 48 96

2 (x2) 15 30 60 120 240

3 (x3) 57 114 228 456

4 (x4) 195 390 780

5 (x5) 633 1266

6 (x6) 1995

Tabla 8. Inicio del proceso inductivo para el caso 1

3m

Y continúan la generalización realizando un proceso iterativo para el caso 1

mq , aplicando la

expresión 0x

x mq

, siendo x el número de cromos que tiene Jaimito antes de darle al

siguiente amigo. De esta manera, para el primer amigo será:

11 0

xx m

q

11 0

xx m

q

Page 65: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

65 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

1

11x m

q

11

m qx

q

Y utilizan la misma ecuación para saber el número de cromos que da al segundo amigo (x2), y

anteriores (Tabla 9)

Sustituyendo x1 por su valor:

Tabla 9. Proceso iterativo para el caso 1

mq

Comprobando, con las fórmulas que obtienen, los valores de la Tabla 8

5.2.3. Puesta en común de los resultados obtenidos en la resolución del problema de Jaimito

Durante las exposiciones de los estudiantes, el profesor resalta los resultados que han obtenido, y les va pidiendo que los relacionen, como por ejemplo cuando presentan los resultados de las Tablas

4 y 9:

x = 2 + 22 + 2

3 + 2

4 + … + 2

n-1 + 2

n = 2·(2

n-1)

5 4 3 2

5 5 4 3 2 11 1 1 1

q m q m q m q m q mx

qq q q q

Page 66: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

66 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Donde les pide que, por similitud, calculen la suma general en el segundo caso. Hablan después de las progresiones geométricas y de la importancia del cálculo de la suma de un número finito de sus

términos, y de que las generalizaciones en forma de expresiones algebraicas que van obteniendo

necesitan, para su validación, de una justificación más rigurosa que la simple observación. Los

estudiantes de estas edades no entienden todavía esa necesidad de demostración.

Además, el profesor va favoreciendo la participación de los estudiantes e invitándoles a la

reflexión sobre las aportaciones que van haciendo y, al mismo tiempo, va dando nombre a las

heurísticas y otros contenidos matemáticos y elementos de gestión que van apareciendo, como por

ejemplo:

Comprensión e interpretación del enunciado.

Estrategia de ensayo error.

Procedimiento directo y de empezar por el final.

Realización de tablas.

Búsqueda y determinación de regularidades.

Visualización de modelos.

Procesos de inducción y generalización.

Utilización de razonamientos.

Generación y análisis de variantes de un problema.

Interpretación de resultados múltiples.

Utilización de expresiones algebraicas.

Procesos iterativos. Iteración.

Utilización de potencias y sus propiedades.

Conceptos matemáticos de progresiones geométricas, múltiplos y divisores, etc.

5.3. El juego de las 21 cartas

El juego consta de tres iteraciones que acaban produciendo la posición fija de una carta

previamente elegida.

5.3.1. Cómo se juega

El profesor hace una presentación práctica del juego de la siguiente manera:

Baraja un paquete de 21 cartas diferentes. Con las 21 cartas boca abajo, y empezando por arriba, reparte las cartas de una en una sobre una mesa en tres montones, de forma consecutiva, y dejando

todas las cartas boca arriba. Así, la primera carta quedará en el primer montón, la segunda, en el

segundo, la tercera, en el tercero, la cuarta, en el primero, la quinta, en el segundo, etc.

Mientras ejecuta la acción anterior pide a un estudiante que se fije en una carta y que, después

del reparto, solo señale el montón en la que se encuentra.

A continuación, agrupa los tres montones de forma que el que contiene la carta elegida quede

en el centro y, con las 21 cartas boca abajo, repite este proceso otras dos veces más.

Después de esas tres iteraciones, con las 21 cartas agrupadas y boca abajo, el profesor cuenta

mentalmente, desde la carta superior, hasta 11 cartas y señala la que ocupa ese lugar, adivinando, de

esta forma, la carta que el estudiante había elegido.

Page 67: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

67 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

El profesor vuelve a repetir la presentación anterior y después explica a los estudiantes los objetivos de este juego: explicar de manera razonada cómo se encuentra la carta elegida y buscar

variantes del juego y resolverlos.

5.3.2. Cómo funciona

En la primera fase, los estudiantes han de ver cómo funciona el juego.

Para ello, y después de varios intentos, suponen, como ha hecho el profesor, que el montón de la

carta elegida en las tres iteraciones se coloca en la posición central y, en ese caso, describen el funcionamiento del juego haciendo un seguimiento de la carta elegida. En la primera iteración, una

vez que saben el montón que contiene la carta elegida lo colocan entre los otros dos. O sea que la carta

elegida quedará entre las posiciones 8 y 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Suponen, por ejemplo, que la carta elegida es la que ocupa la posición 9. Hacen la segunda

iteración y observan que la carta de esa posición queda en el tercer montón (Tabla 10).

Posición en el montón Montón nº 1 Montón nº 2 Montón nº 3

1ª 1 2 3

2ª 4 5 6

3ª 7 8 9

4ª 10 11 12

5ª 13 14 15

6ª 16 17 18

7ª 19 20 21

Tabla 10. Distribución de las cartas después de la segunda iteración

A continuación, sitúan el montón 3 (que contiene la carta 9) en el centro de los tres montones.

2 5 8 11 14 17 20 3 6 9 12 15 18 21 1 4 7 10 13 16 19

Finalmente hacen la tercera iteración (Tabla 11) y sitúan el primer montón (el que contiene la carta 9) en el centro de los tres montones.

Posición en el montón Montón nº 1 Montón nº 2 Montón nº 3

1ª 2 5 8

2ª 11 14 17

3ª 20 3 6

4ª 9 12 15

5ª 18 21 1

6ª 4 7 10

7ª 13 16 19

Tabla11. Distribución de las cartas después de la tercera iteración

Page 68: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

68 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Quedando, al final distribuidas las cartas de la forma:

5 14 3 12 21 7 16 2 11 20 9 18 4 13 8 17 6 15 1 10 19

Con la carta número 9 en la posición 11.

Repiten el juego varias veces, eligiendo otras cartas en diversas posiciones y comprueban que,

al final, la carta elegida siempre ocupa la posición número 11 de entre las 21 cartas.

5.3.3. Generación de variantes. Generalizaciones

Como en los otros problemas, lo que pretendemos es que los estudiantes generen, resuelvan y

generalicen variantes de este juego.

Durante el desarrollo de la actividad, los grupos de estudiantes van trabajando sobre diferentes

variantes. Aproximadamente a la mitad del proceso de resolución, decidimos con los estudiantes

unificar las notaciones que utilizaban los diferentes grupos de trabajo para facilitar las puestas en

común. Mostramos aquí desde el principio esa notación unificada.

Así pues, llamamos p a la posición final de la carta elegida y mi a la posición del montón que contiene la carta elegida tras la iteración i. Así, mi=1 significaría que el montón que contiene la carta

elegida tras la iteración i se coloca en la parte superior con las cartas boca abajo. En el ejemplo

anterior p sería 11, y m1, m2 y m3 serían siempre 2, ya que el montón que contiene a la carta elegida

siempre lo vamos colocando en segunda posición.

a) Algunos grupos consideran el juego en el que sean necesarias sólo dos iteraciones para

determinar la posición de la carta elegida.

Después de muchos intentos, encuentran dicha posición en función de la posición (m1 y m2)

del montón en el que está la carta elegida. Observan que la carta elegida se puede adivinar considerando n

2 cartas y realizando con ellas

dos iteraciones en n montones. Hacen tablas como las que mostramos en la Tabla 12. Por

ejemplo, para 9 cartas, 3 montones y 2 iteraciones, la Tabla 12b muestra las diferentes posiciones finales de la carta elegida según que m1 tome los valores 1, 2 o 3 y m2 tome los

valores 1, 2 o 3.

m1

m2 1 2

1 1 2

2 3 4

(a)

m1

m2 1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

(b)

m1

m2 1 2 3 4

1 1 2 3 4

2 5 6 7 8

3 9 10 11 12

4 13 14 15 16

(c)

Tabla 12. En cada tabla, posición p de la carta elegida para n2 cartas y n montones.

Page 69: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

69 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

La observación de estas tablas lleva a los estudiantes a obtener una expresión generalizada para la posición de la carta elegida como la siguiente:

p= m1 + n·(m2-1)

El profesor pide a los estudiantes que expliquen el significado de esa expresión, y lo hacen de la siguiente manera: “en la primera iteración cada montón representa una columna; en la segunda, cada columna se distribuye en filas; por tanto, sabidas la columna y la fila se sabe la

posición de la carta elegida”. Están hablando, aunque no lo expliciten, de filas y columnas de

matrices cuadradas y de transpuesta de una matriz.

b) Una variante que surge es la de determinar la posición de la carta elegida en función del orden

en el que se vayan colocando los montones que la contienen.

Los estudiantes resuelven este reto aportando ideas muy interesantes tanto en la utilización de diferentes representaciones como en la realización de tablas y en la búsqueda de regularidades.

Lo cual contribuye a incorporar al juego modificaciones atractivas.

En primer lugar, observan que, para 3 montones, sólo se estabiliza la posición de la carta

elegida, en todas las posiciones posibles de los montones, cuando el número total de cartas es una potencia de 3. Así, para 21 cartas distribuidas en 3 montones, la carta elegida se estabiliza,

tras 3 iteraciones, solo en algunas posiciones de los montones que la contienen. Por ejemplo,

en el caso que presentamos en el juego inicial (cuando las posiciones son m1=2, m2=2 y

m3=2), pero no se estabiliza en el caso m1=1, m2=2 y m3=1.

De esta forma, si sólo tienen 3 cartas, la posición de la carta elegida se estabiliza después

de una iteración. Y sería p=m1.

Si tienen 9 cartas, la posición de la carta elegida se estabiliza después dos iteraciones.

Los estudiantes determinan dicha posición construyendo la Tabla 13, que es la misma que

la Tabla 12b.

m1

m2 1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

Tabla 13. Posiciones (p) de la carta elegida en función de las posiciones de los montones, para 9 cartas.

Y encuentran la expresión general de la posición de la carta elegida de la forma:

p=m1+3(m2-1)

Si hay 27 cartas, la posición de la carta elegida se estabiliza después tres iteraciones.

Los estudiantes determinan dicha posición construyendo la Tabla 14. En ella, según

explican, m1 y m2 pueden tomar los valores 1, 2 o 3, que indica la tabla, y el montón que

contiene la carta elegida tras la 3ª iteración siempre lo colocan en la primera posición, es

decir m3=1.

Page 70: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

70 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

m1

m2 1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

Tabla 14. Posiciones de la carta elegida, si, tras la 3ª iteración, m3=1

Observan que en todas las posiciones en que se puedan colocar los montones tras las

sucesivas iteraciones, la posición de la carta elegida se estabiliza en el lugar que dice la

tabla.

Después realizan la Tabla 15, que les da las posiciones de la carta elegida en función de

las posiciones de los montones que la contienen tras las tres iteraciones. En realidad han

reducido una tabla que debería ser de tres dimensiones a una de doble entrada.

También explican que la colocación de los montones después de la 3ª iteración (m3) tiene

una influencia muy evidente en la colocación final de la carta elegida. Simplemente si m3

es 2, se suma 9 a la posición que se obtiene si m3 fuera 1; y si m3 es 3, se suma 18 a la posición que se obtiene si m3 fuera 1 (Tabla 15).

m1m2

m3 11 21 31 12 22 32 13 23 33

1 1 2 3 4 5 6 7 8 9

2 10 11 12 13 14 15 16 17 18

3 19 20 21 22 23 24 25 26 27

Tabla 15. Posiciones de la carta elegida según las posiciones del montón que la contiene

Tras la realización de estas tablas, los estudiantes buscan una expresión algebraica que permita

calcular directamente la posición de la carta elegida sabiendo las posiciones (m1, m2 y m3) de

los montones tras cada iteración. Obtienen la siguiente expresión, que Serrano (2006) llama

Teorema de Tamariz :

p = m1+3(m2-1)+9(m3-1)

Así, el que realice el juego puede abrirlo y permitir que la persona del público elija libremente

las posiciones en las que quiera colocar los montones tras las tres iteraciones.

La pregunta siguiente que se hacen los estudiantes es obvia: ¿Cómo sería la expresión para 81

cartas?, ¿y para 3i cartas? Las respuestas son rápidas, y, sin hacer ninguna comprobación,

proponen que para 81 (34) cartas se necesitarían 4 iteraciones y la expresión podría ser:

p = m1+3(m2-1)+9(m3-1)+27(m4-1)

Para 3i cartas, se necesitarían i iteraciones y la expresión podría ser una generalización del

Teorema de Tamariz:

p = m1+3(m2-1)+32(m3-1)+….-… …+3

i-1(mi-1)

Page 71: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

71 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

En este momento, y debido al tiempo considerable que les ha llevado el desarrollo del juego, el profesor decide acabarlo, dejando para las discusiones de la puesta en común las posibles variantes por

las que se hubiera podido continuar.

5.3.4. Puesta en común de los resultados obtenidos en la resolución del juego de las 21 cartas

En la puesta en común, como en el caso del problema de Jaimito, el profesor insiste a los estudiantes que las generalizaciones obtenidas por inducción necesitan ser justificadas para poderse

aceptar como válidas en matemáticas.

A partir de aquí, y aceptando su incomprensión por lo que dicen con insistencia: “se ve que la

expresión general es correcta y no necesita ninguna justificación más”, se propone que generen nuevas

variantes. En las discusiones aparecen retos como los siguientes:

¿Y si hiciéramos dos montones con un número de cartas que sea potencia de 2? , ¿y si fueran

cuatro montones con un número de cartas que sea potencia de 4?, ¿y si fueran k montones con

un número de cartas que sea potencia de k ? Rápidamente y sin comprobar los estudiantes proponen expresiones similares a la del

Teorema de Tamariz que tratan de localizar la carta elegida, para 2n cartas, para 4

n cartas y

para kn cartas.

Hay estudiantes que insisten en analizar el caso del enunciado, es decir, suponen que siempre

colocan el montón que contiene la carta elegida en segunda posición, manteniendo el número

de montones (3), pero variando el número de cartas, que siempre ha de ser múltiplo de 3.

El profesor propone, siguiendo a Alegría (2004), el reto de considerar 27 cartas distribuidas en

3 montones, y ver si es posible llevar la carta elegida a cualquier posición de la baraja. Este

autor dice que sí es posible, escribiendo esa posición en base 3. Las preguntas que nos formularíamos serían: ¿De qué manera se puede conseguir esto?, ¿es aplicable a otros

números de cartas?

Estas preguntas y otras pueden generar para los estudiantes nuevos retos y prolongar la

actividad tanto como queramos.

Además, en las exposiciones de los estudiantes van apareciendo contenidos matemáticos que se

van comentando en el grupo-clase, como por ejemplo:

Comprensión e interpretación del enunciado.

Estrategia de ensayo error.

Consideración y análisis de juegos más simples. Resolución de casos particulares.

Realización, caracterización y propiedades de las tablas generadas.

Búsqueda y determinación de regularidades.

Visualización de modelos.

Procesos de inducción y generalización.

Utilización de diferentes sistemas de representación.

Utilización de razonamientos.

Generación y análisis de variantes de un juego (o de un problema).

Interpretación de resultados múltiples.

Generación y utilización de expresiones algebraicas.

Conceptos matemáticos de matriz, matriz transpuesta, múltiplo, iteración, punto fijo, etc.

Page 72: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

72 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

6. Reflexiones finales

Pensamos que mostrar a los estudiantes las matemáticas acabadas, hechas, cerradas y sin, o con

poca, posibilidad de construirlas no es la mejor manera de avanzar ni en la motivación, ni en la actitud,

ni en el progreso de los conocimientos matemáticos de los estudiantes. Por el contrario, creemos que hemos de intentar buscar nuevas formas de aproximarnos a la enseñanza de las matemáticas, que

contemplen una mayor participación de los estudiantes, unas tareas más ricas, y una participación más

discreta y optimizada del profesor, que favorezca la reflexión, la búsqueda, el descubrimiento, etc.

En esas nuevas formas de enseñanza, consideramos que han de ser muy importantes las

reflexiones conjuntas que tienen lugar en las puestas en común de todos los estudiantes del grupo-clase. Son los momentos en los que se han de intentar solucionar las dificultades de comprensión, en

los que se unifiquen las líneas de trabajo de los diferentes grupos y donde se aborden los bloqueos y

los conflictos que se produzcan. Además, en ellas, el profesor ha de dar prioridad a que sean los

propios estudiantes los que resuelvan las cuestiones y dificultades que se vayan planteando.

En la metodología que proponemos, no es fácil el papel del profesor, que en todo momento ha

de estar abierto a los nuevos retos que plantean los estudiantes y a las soluciones que aportan.

Tampoco es fácil para los estudiantes el cambio de hábitos que supone pasar de esperar las respuestas

del profesor a que sean ellos los que tengan que generar retos y buscar soluciones.

Llegados a este momento, tratamos de responder a la pregunta del título de este artículo:

¿Pueden nuestros estudiantes construir el conocimiento matemático?

Según Giménez (2000), “se construye cuando se produce con significado. No hay construcción

sin producción, aunque pueda haber momentos de ‘reproducción’” (p.5). Es claro que nuestros

estudiantes no solo han producido conocimiento matemático nuevo, sino que han sido capaces de vincular ese conocimiento a un lenguaje matemático que le da significado. En este sentido, las

presentaciones al grupo-clase de las aportaciones que han hecho los estudiantes han contribuido al

desarrollo de dicho lenguaje y a que el conocimiento sea socialmente compartido.

Es importante saber si los estudiantes construyen o no, pero también lo es saber: cómo

construyen, qué papel otorgamos a cada uno de los protagonistas, y cómo reflexionamos sobre las construcciones (Giménez, 2000). Cuestiones que hemos tratado de responder a lo largo de este

artículo, mostrando la metodología que seguimos y los desarrollos detallados de los procesos de

resolución de los problemas que los estudiantes han producido.

Bibliografía

Alegria, P. (2004).Códigos Secretos y Teoría de la Información en la Magia. Sigma nº 25. Noviembre

2004. [en línea]. Recuperado el 1/9/11 de http://www.ehu.es/~mtpalezp/mates/codigos.pdf

Cobo, P. (2004a). Experiencias sobre enseñanza de resolución de problemas de matemáticas. En La actividad matemática en el aula. Homenaje a Paulo Abrantes

Joaquim Giménez, Leonor Santos, Joao Pedro da Ponte (coords.), 127-136. Ed. Graó. Barcelona.

Cobo, P. (2004b). Disseny d'agents pedagògics intel·ligents per millorar les competències estratègiques de l'alumnat en la resolució de problemes de matemàtiques. Memoria inédita de la

llicencia de estudios concedida por el Departament d'Ensenyament de la Generalitat de Catalunya

(DOGC,núm.3926 de 16-7-2003. [en línea]. Recuperado el 15/3/2005 de

http://www.xtec.es/sgfp/llicencies/200304/memories/868m.pdf

Page 73: Números, Revista de Didáctica

¿Pueden nuestros estudiantes construir conocimientos matemáticos? P. Cobo, M. A. Molina

73 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

DOGC (2007). Diari Oficial de la Generalitat de Catalunya. Decret 143/2007. Ordenació dels ensenyaments de l’Educació Secundària Obligatòria.

Fernández, M. L., Hadaway, N.; Wilson J. W. (1994). Problem solving: Managing It All. Mathematics

Teacher, 87, 3, 195-199. Giménez, J. (2000). ¿Construir o no construir? Esa no es la cuestión. UNO. Revista de Didáctica de

las matemáticas. n. 25. Pp. 5-7.

Grup Vilatzara (2001). Proyectos en la ESO. Una actividad rica. UNO. Revista de Didáctica de las matemáticas. n. 27. Pp. 21-36.

Intermates. Dentro del portal edu365 del Departament d’Ensenyament de la Generalitat de Catalunya.

[en línea]. Recuperado el 1/11/09 de http://www.edu365.com/aulanet/intermates/.

Mayor, J., Suengas, A.; González Márquez, J. (1993). Estrategias metacognitivas. Ed. Síntesis. Madrid.

Puig, L. (1996). Elementos de resolución de problemas. Ed. Comares. Granada.

Schoenfeld, A. H. (1987). “What's all the fuss about metacognition?”. En A. H. Scoenfeld (Ed.). Cognitive science and mathematics education , Hillsdal, NJ: Lawrence Erlbaum, 189-215.

Schoenfeld, A. (2011). How We Think. A Theory of Goal-Oriented Decision Making and its

Educational Applications Ed. Routledge. Serrano, A. J. (2006). Análisis matemático de algunos juegos de magia [en línea]. Recuperado el 10 de

febrero de 2011, de http://olmo.pntic.mec.es/~aserra10/articulos/magia.html

Somchaipeng, T.; Kruatong, T.; Panijpan, B. (2012). Using Disks as Models for Proofs of Series.

Mathematics Teacher, 106, 1, pp.46-50.

Pedro Cobo Lozano. Catedrático de Matemáticas del Instituto de Enseñanza Secundaria Pius Font i Quer de Manresa. Doctor en Ciencias de la Educación por la Universidad Autónoma de Barcelona (UAB). Es

investigador invitado de la UAB y profesor formador del ICE de la UAB. Participa en proyectos de

investigación relacionados con la Didáctica de las Matemáticas y con el uso de las nuevas tecnologías,

subvencionados por el MEC. Como miembro del Grupo Vilatzara se dedica a la elaboración de material

didáctico para la enseñanza secundaria.

María Antonia Molina Hernández. Licenciada en Matemáticas por la Universidad de Granada. Fue

profesora de enseñanza secundaria y es, en la actualidad, profesora titular de la Escuela Politécnica

Superior de Ingeniería de Manresa de la Universidad Politécnica de Cataluña. Ha pertenecido a

movimientos de renovación pedagógica en la enseñanza secundaria. Ha publicado diversos trabajos sobre

Educación Matemática relacionados con la enseñanza universitaria.

Page 74: Números, Revista de Didáctica
Page 75: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 75-90

Actividades Matemáticas: Conjeturar y Argumentar

Ingrith Álvarez Alfonso

Leonardo Ángel Bautista

Edwin Carranza Vargas

María Nubia Soler-Alvarez

(Universidad Pedagógica Nacional. Colombia)

Fecha de recepción: 15 de mayo de 2013

Fecha de aceptación: 31 de octubre de 2013

Resumen Con el fin de brindar algunos elementos adicionales para la transformación de la práctica

educativa, se presentan descripciones detalladas de algunos procesos fundamentales de la actividad matemática: conjeturar y argumentar. En términos generales, conjeturar

corresponde al proceso de formular y validar conjeturas, y argumentar al proceso de

hacer inferencias que se deducen de una información inicial. Conjeturar se apoya en la

visualización y en la argumentación; visualizar hace referencia al proceso de creación de

representaciones gráficas de objetos matemáticos y permite identificar aquello que es

relevante y que puede llevar a la formulación de una conjetura, mientras que argumentar

busca justificar o validar afirmaciones que se hagan en este proceso. Esta caracterización

se amplía con ejemplos surgidos en clases de matemáticas de futuros profesores.

Palabras clave Actividad matemática, argumentar, conjeturar, generalizar, visualizar, validar, verificar.

Abstract With the aim to offer to mathematics teacher some additional elements for transformation

of their educative practice, in this article we present detailed descriptions of some

fundamental processes of the mathematical activity: conjecturation and argumentation.

In general terms, a conjecture refers to the process of formulating and validating conjectures and argumentation is related to the process of doing inferences that are

concluded of initial information. Conjecturation rests significantly on both process,

argumentation and visualization. Visualization refers to the process of creation of

graphics representations of mathematical objects and allows identify relevant aspects for

formulate conjectures; while argumentation finds justify or validate some aims. For

extending this description, we give some examples arisen in classes of mathematics of

training teachers.

Keywords Mathematical activity, argumentation, conjecturation, visualization, validation,

verification.

1. Introducción

La organización curricular para la enseñanza de las matemáticas en Colombia se ha caracterizado

por estar centrada en los contenidos tal como lo demuestran las reformas curriculares presentadas a partir

de los años 60. Sin embargo, desde el año 1998 con la publicación de los Lineamientos Curriculares de

Matemáticas se hace evidente la importancia de atender no sólo los contenidos, sino los procesos

inherentes al desarrollo del pensamiento matemático. (MEN, 1998, pp. 14).

Page 76: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

76 NÚMEROS Vol. 85 marzo de 2014

En ese sentido, el interés de este artículo, sin dejar de lado los contenidos, es abordar acciones propias de la actividad matemática, sugiriendo al docente experimentar los roles que un matemático

tiene cuando se enfrenta a la tarea de crear y estudiar las matemáticas que ha de llevar al aula, para que

de esta manera, amplíe su concepción sobre las matemáticas y transforme, su práctica docente.

2. Actividad Matemática

Uno de los objetivos del quehacer matemático consiste en estudiar los elementos que aparecen

en un determinado contexto con el propósito de identificar y caracterizar comportamientos y

propiedades para abstraer estructuras, modelar situaciones, aplicar estos modelos, y en la medida de las posibilidades, si el contexto lo permite, generar nuevas teorías o actualizar las existentes de tal

manera que se evidencie la aplicabilidad de las mismas.

Así, se considera que la actividad matemática se concreta en procesos tales como los de

conjeturar y argumentar, que contribuyen al desarrollo de otros procesos generales presentes en toda actividad matemática como la resolución y planteamiento de problemas, el razonamiento, la

comunicación, la modelación y la elaboración, comparación y ejercitación de procedimientos. (MEN,

1998, pp. 35).

3. Proceso de conjeturar

El proceso de conjeturar en matemáticas se constituye en el mecanismo por medio del cual se

formulan afirmaciones acerca de las propiedades de determinados objetos o las relaciones que se dan

entre éstos, a partir de ciertas observaciones, exploraciones, ensayos o experimentos sobre dichos

objetos, que permiten identificar información para plantear conjeturas a través de tales afirmaciones.

En concordancia con Harel y Sowder en este documento se considera que una conjetura es:

[…] una observación hecha por una persona quien no tiene dudas acerca de su verdad. La observación de la persona deja de ser una conjetura y se

convierte en un hecho según su visión una vez que la persona obtiene certeza

de su verdad. (Harel y Sowder citados en Balacheff, 2008, pp. 504)

Bajo esta mirada, Cañadas, Deulofeu, Figueiras, Reid y Yevdokimov (2008, pp. 436), proponen y caracterizan cinco tipos de conjeturas

1, a partir de distintos modos de razonamiento (inductivo,

deductivo, abductivo y analógico) que aparecen en la resolución de problemas como parte de la

actividad matemática. Para cada tipo de conjetura sugieren pasos que de manera general, permiten evidenciar la existencia de otras actividades matemáticas transversales al proceso de conjeturar

2, las

cuales pueden ser secuenciales o repetitivas. Sin embargo, se considera que el conjeturar puede

estructurarse a partir de las actividades de visualizar; identificar patrones, relaciones, regularidades,

propiedades, etc.; formular, verificar, generalizar y validar conjeturas.

1 Inducción empírica a partir de un número finito de casos discretos, Inducción empírica a partir de casos dinámicos, Analogía, Abducción y Conjeturas basadas en la percepción. 2 Entre las cuales se encuentran las actividades de visualizar, identificar, organizar, categorizar, relacionar,

comparar, verbalizar, simbolizar, modelar, deducir, inducir, generalizar, argumentar, verificar, probar, explicar,

entre otras,

Page 77: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

77 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A continuación se caracterizan las primeras cinco actividades, en tanto la validación de conjeturas, será abordada en el contexto de la actividad de argumentar; además, se proponen tres

tareas como ejemplos para evidenciar las características fundamentales de estas actividades.

3.1. Visualizar

En matemáticas la visualización se refiere al proceso de observar el objeto matemático para

identificar sus características y las relaciones que se establecen entre ellas, fundamentándose en los

esquemas cognitivos previos que tiene el observador sobre tales objetos.

Planchart (2002, pp. 35), con el propósito de caracterizar el proceso de visualización, presenta

algunas definiciones asociadas a éste y dadas por diferentes autores: Zimmermann y Cunningham

(1991), plantean que la visualización matemática corresponde a la producción o uso de

representaciones geométricas y gráficas de conceptos o problemas matemáticos y consideran además que la visualización se hace a partir de diagramas que representan los objetos matemáticos y permiten

describir en términos visuales los problemas estudiados; Castro y Castro (1997) consideran que la

visualización es la capacidad de creación de imágenes mentales, estas últimas permiten hacer

referencia a los objetos matemáticos sin que estos se encuentren presentes.

Dentro del proceso de conjeturar, la visualización no se hace de forma descontextualizada o al

azar, sino que ésta, de manera previa a través de la tarea formulada, persigue el objetivo específico de

identificar elementos necesarios para poder formular una conjetura. Así, dependiendo del tipo de

conjetura se busca visualizar: un patrón, una propiedad invariante, una característica a partir de las

representaciones, entre otras.

Aunque la visualización tiene un papel relevante al inicio del proceso de conjeturar, cabe

resaltar que esta actividad puede darse en cualquier otro momento, con diferentes propósitos como

ratificar lo inicialmente visualizado, identificar nuevos elementos, modificar la conjetura o buscar un argumento para la misma. Sin embargo, en los ejemplos que siguen se enfatiza en la visualización

como un primer paso para conjeturar.

Tarea 1 Lo visualizado

En la siguiente figura ¿cuál superficie tiene mayor área, la

amarilla o la blanca?

(1) (2)(1) (2)

Se puede observar en la image: figuras,

colores, la cuadricula, entre otras cosas, pero

pensando en la tarea, se debe atender

características propias de la imagen tales

como, la figura global que contiene a las dos

superficies, la cuadricula que puede servir

como unidad de medida y las figuras

geométricas (triángulos, rectángulos) que

pueden usarse para descomponer las

diferentes superficies.

Tarea 2 Lo visualizado

Observe las siguientes igualdades

8 3 5

27 7 9 11

64 13 15 17 19

¿Cuáles son las dos filas siguientes?

Enuncie una regla general

Se puede observar en las igualdades: las clases de números que allí aparecen, las

operaciones inmersas, la cantidad de números

que se usa en cada igualdad, etc.; pero

pensando en la tarea se debe prestar atención

a la clase de números que aparecen al lado

izquierdo de la igualdad, a la clase y cantidad

de números que aparecen en la suma del lado

derecho de la igualdad y al primer o último

número que aparece en la suma.

Page 78: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

78 NÚMEROS Vol. 85 marzo de 2014

Tarea 3 Lo visualizado

Observe la siguiente secuencia3, cuente la cantidad de

cuadros blancos en cada caso y determine el número de

cuadros blancos de la figura n-ésima.

Figura 1 Figura 2 Figura 3

En cada figura aparece un cuadrado grande y en el centro un cuadrado

pequeño.

El cuadrado grande tiene cuadrados

unitarios en cada lado. El cuadrado

pequeño no tiene cuadrados unitarios.

Los cuadrados unitarios del cuadrado

grande son blancos y el cuadrado del

centro es negro.

En cada vértice del cuadrado negro, hay

un cuadrado unitario blanco.

Tabla 1. Actividad de visualizar, ejemplo en tres tareas

3.2. Identificar patrones, relaciones, regularidades o propiedades

En esta etapa los estudiantes a partir del estudio de los datos iniciales, identifican aquello que es relevante y común, lo cual, dependiendo del contexto de la situación propuesta, puede corresponder a

patrones, regularidades, relaciones entre objetos, propiedades, semejanzas, entre otros. En la tabla 2 se

presentan algunos patrones y relaciones encontradas en cada una de las tareas propuestas en la tabla 1.

Tarea 1 Tarea 2

En relación con la tarea, se

identifica lo siguiente: a. La superficie amarilla consta de cuatro

triángulos, dos grandes y dos pequeños.

b. La superficie blanca consta de dos

triángulos congruentes, cada uno con un

área mayor que el área de cualquiera de

los triángulos amarillos.

c. Si la superficie se divide con un

segmento horizontal que pase por el

centro (el punto rojo) se obtienen dos

figuras congruentes.

En relación con la tarea propuesta, se pueden identificar

entre otras las siguientes características: a. Al lado izquierdo de cada igualdad el número es un cubo

perfecto, empezando en la primera igualdad (primera fila) con

el cubo de dos, en la segunda con el cubo de tres y en la tercera

con el cubo de 4.

b. En la primera igualdad, la suma del lado derecho tiene dos

sumandos impares, en la segunda tres y en la tercera 4.

c. En la cuarta fila al lado izquierdo deberá estar el cubo de 5 y al

lado derecho habrá una suma de cinco números impares

d. Para la fila n el término del lado izquierdo de la igualdad es el

cubo de (n+1) y en la suma del lado derecho de la igualdad

deben haber (n+1) sumandos impares consecutivos.

Tarea 3

a. En la secuencia cada lado del cuadrado mayor tiene una unidad más de lado en relación con el anterior.

b. De una figura a la siguiente se aumenta, en cuatro, el número de cuadros blancos.

c. En cada figura los cuadros blancos se pueden agrupar para formar cuatro rectángulos del mismo tamaño,

que bordean el cuadro negro, así: para la primera figura que es un cuadrado de lado 3, cada rectángulo

tiene 2 cuadrados, luego el total de cuadros blancos es 4x2=8; para la segunda figura que es un cuadrado

de lado 4, cada rectángulo tiene 3 cuadrados, luego el total de cuadros blancos es 4x3=12; para la tercera figura que es un cuadrado de lado 5, cada rectángulo tiene 4 cuadrados, luego el total de cuadros blancos

es 4x4=16.

d. El número de cuadros blancos es un múltiplo de cuatro.

Tabla 2. Actividad de identificar patrones, regularidades y propiedades en las tareas propuestas

3 Esta tarea es una adaptación de un ejercicio propuesto por Mason, Graham, Pimm y Gowar (Trad. 1982, pp.

139).

Page 79: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

79 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

3.3. Formular conjeturas

Un proceso importante después de visualizar e identificar las características, propiedades, patrones, reglas, regularidades o propiedades de un objeto, es comunicarlas ya sea verbal, simbólica o

gráficamente con el fin de tener un registro que permita organizar, clasificar e identificar la

información útil para formular la conjetura de forma clara.

En esta etapa de la actividad matemática no es necesario hacer uso de un lenguaje especializado, pero sí se considera pertinente escribir las observaciones o la conjetura en un lenguaje que sea

compartido por la comunidad académica en la que se encuentra inmersa la persona que esta

enfrentándose a la tarea. Ahora bien, una forma particular de expresar lo visualizado es a través de la

simbología propia del lenguaje matemático; con ello se busca expresar de manera abreviada las

características identificadas en el caso o casos observados.

Continuando con las tareas propuestas, en la tabla 3 se observan posibles conjeturas derivadas

de las visualizaciones y de la identificación de patrones y regularidades presentadas, tanto en la tabla 1

como en la tabla 2.

Formulación de la conjetura

Tarea 1 Tarea 2

Conjetura:

La superficie blanca tiene mayor

área que la superficie amarilla.

Conjetura: Para la fila n, con a=n+1,los términos de la suma se obtienen, así:

a2=[a(a-1)+1]+[a(a-1)+3]+

. . . +[a(a-1)+2a-1]

Tarea 3

Una forma de registrar lo visualizado en esta tarea es utilizando una tabla como la siguiente:

Conjetura: La figura que se encuentra en la posición n ha de tener 4 rectángulos cada uno formado por n+1 cuadrados

blancos, luego en total tenemos 4(n+1) cuadros blancos.

Figura Número de rectángulos Cantidad de cuadros en cada rectángulo Total de cuadros blancos

1 4 2 8

2 4 3 12

3 4 4 16

4 4 5 20

Tabla 3. Actividad de formular conjeturas, ejemplo en tres tareas

3.4. Verificar conjeturas

Después de que ha emergido la conjetura que permite consolidar las observaciones hechas, es

pertinente llevar a cabo el proceso de verificación, el cual tiene como objetivo que la persona se

convenza e intente convencer a otros de que tal afirmación tiene una alta probabilidad de ser verdadera

en el contexto estudiado, en cuyo caso debe buscar, en la medida de las posibilidades, validar la conjetura formulada. Con esto, no se está diciendo que la conjetura sea demostrada, ya que aún no se

tiene el constructo teórico para generar tal proceso, sino que se busca probar si la conjetura es válida

en algunos nuevos casos o por el contrario que se muestre que la conjetura es falsa (puede ser a través de un contraejemplo), lo cual puede llevar de nuevo al proceso de reformular la conjetura a partir de

una nueva etapa de visualización.

Page 80: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

80 NÚMEROS Vol. 85 marzo de 2014

Verificación de la conjetura

Tarea 1 Tarea 2

En relación con la tarea propuesta se

intenta verificar la conjetura, es decir, que el

área de la superficie amarilla es menor que el

área de la superficie blanca.

Para lo cual se procede así:

Opción 1.

a. Usar la unidad de la cuadricula, como

unidad de medida para el área de la

superficie.

b. Calcular el área de cada uno de los

triángulos pequeños amarillos

2

b h;

1 21

2

. Como son dos triángulos,

entonces el área, iría en 22u .

c. Calcular el área para los triángulos

amarillos grandes 23 2

32

u

, y como son

dos triángulos de igual tamaño

(semejantes), entonces se lleva 26u

d. El área de la región amarilla es de 2 2 26 2 8u u u

e. Ahora se calcula el área de la región blanca. Como son dos triángulos, entonces

es 24 2

2 82

u

f. Por lo tanto el área de la superficie blanca

es igual al área de superficie amarilla,

siendo contradictorio con lo que se había

expresado de manera verbal en la anterior

etapa del proceso de conjeturar.

En ese sentido, se ha verificado que la

conjetura inicial es FALSA, pero se puede

reformular para afirmar que el área de la

superficie amarilla es igual al área de la

superficie blanca.

Opción 2.

Como la figura global es un cuadrado, y

tiene de lado 4u , el área de éste sería 216u ; y

como se comprobó anteriormente que el área

de los dos triángulos blancos es de 28u ,

entonces el área de la superficie coloreada de

amarillo será de 28u , lo cual confirma el

razonamiento de la opción 2.

El proceso de verificar la conjetura

a3=[a(a-1)+1]+[a(a-1)+3]+

. . . +[a(a-1)+2a-1]

se puede presentar de la siguiente manera:

a. Mirar que se cumple para la fila #4, es decir:

El término del lado derecho ha de ser 35 125 .

La suma del lado derecho debe tener 5 términos.

4 1a ; el primer término de la suma ha de ser:

5 5 1 1 21

Por lo tanto los otros 4 términos han de ser, 23, 25, 27 y

29, (impares consecutivos)

Así, 125=21+23+25+29

b. Mirar que se cumpla para la fila #5, es decir

El término del lado derecho es 3( 1)n , así, 63

=216

La suma del lado derecho debe tener 6 términos

5 1a ; el primer término de la suma ha de ser:

6 6 1 1 31

Los otros 5 términos han de ser, 33, 35, 37 39 y 41,

(impares consecutivos)

Así, 216=31+33+35+37+39+41

c. Mirar que se cumpla para una posición mayor, por ejemplo

qué igualdad estaría en la fila #20, 20n , 20 1a ,

entonces:

El término del lado izquierdo de la igualdad ha de ser 3( 1)n , así, 21

3=9261

La suma del lado derecho de la igualdad debe tener 21

términos

El primer término de la suma a de ser:

20 20 1 1 381

Por lo tanto los otros 20 términos han de ser,

383,385,387,389,391,393,395,397,399,401,403,405,407,409,411,413,415,417,419,421

ya que son los impares consecutivos.

Así,

9261 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421

Nótese que no se ha mostrado que la conjetura sea

válida para cualquier n , solamente se ha verificado para

tres casos, que por el momento genera un nivel de certeza

sobre su validez.

Page 81: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

81 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Tarea 3

Para verificar la conjetura planteada, se cuentan los cuadros de posiciones diferentes a las presentadas

en la primera instrucción, para cada posición se aplica la fórmula encontrada, luego se contrasta este resultado

con el anterior, si hay coincidencia, se empieza a considerar que la conjetura planteada es posiblemente válida.

En lo que sigue se verifica la conjetura presentada en la tabla 3.

Figura 4 Figura 5 Figura 6

Posición Número de cuadrados blancos Aplicación de la fórmula

4 20 4 4 1 20

5 24 4 5 1 24

6 28 4 6 1 28

Tabla 4. Actividad de verificar conjeturas, ejemplos en las tareas propuestas

3.5. Generalizar conjeturas

La generalización de la conjetura implica un cambio de valor epistémico, un cambio de

concepción frente a la conjetura como afirmación válida para determinados casos y que se ha de

convertir en una regla generalmente aceptada, a tal punto de poder reconocer que ésta es verdadera

para cualquier caso del contexto estudiado. Así, la verificación de varios casos no es suficiente para generalizar la conjetura, pero tampoco se requiere de un proceso formal de demostración para

justificar la generalización, aunque se puede acudir a un paso intermedio y presentar algún tipo de

prueba matemática, lo importante es poder llegar a convencer a otros, con argumentos fuertes, de que

la conjetura es válida a nivel general, a partir del convencimiento propio de quién la plantea.

Generalizada la conjetura, el último paso en el proceso de conjeturar consiste en validar la

conjetura generalizada. En la tabla 5 se presentan las generalizaciones de las conjeturas propuestas en

los tres ejemplos que se han venido desarrollando a lo largo de este documento.

Generalización de la conjetura

Tarea 1 Tarea 2

La generalización en esta

situación es:

Sin importar el tamaño del

cuadrado, pero manteniendo la razón

entre las medidas de las superficies, es

posible afirmar que el área de la

superficie blanca siempre será igual al área de la superficie amarilla.

La generalización de la conjetura es:

Para la fila n, la igualdad ha de tener en su término de la

izquierda el valor de (n+1)2, mientras que el término de la derecha

ha de tener n+1 sumandos impares consecutivos de tal forma que se

cumpla, que si a=n+1, entonces:

a2=[a(a-1)+1]+[a(a-1)+3]+

. . . +[a(a-1)+2a-1]

Esto para cualquier caso que se tome.

Tarea 3

La generalización de la conjetura es la siguiente:

El número de cuadrados blancos en cualquier posición n se obtiene aplicando la fórmula 4(n+1).

Tabla 5. Actividad de generalizar conjeturas, ejemplo en las tareas presentadas

Page 82: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

82 NÚMEROS Vol. 85 marzo de 2014

A partir de los ejemplos presentados, se puede observar que de manera transversal a la actividad de conjeturar se encuentra presente el proceso de argumentar, pues en cada una de las fases aparece

una conclusión que debe ser validada a la luz de los antecedentes y del contexto en el que se esté

trabajando. En ese sentido y ya que, por ejemplo, los argumentos que permiten concluir una observación difieren de los que permiten verificar una conjetura y estos a su vez difieren de los que

permiten demostrar la conjetura, es necesario ahondar en el estudio del proceso de argumentar.

4. Proceso de Argumentar

El proceso de argumentar está presente en todos los momentos de la actividad matemática en los que se afirma algo, o en los que se quiere garantizar la verdad o falsedad de ciertas afirmaciones.

Argumentar, es decir, el proceso de generar argumentos, tiene un carácter social y cobra sentido

cuando hay la necesidad de garantizar la validez de alguna afirmación hecha. En este sentido, el valor de verdad de una afirmación depende del contexto en el que se esté desarrollando la actividad

matemática, por ejemplo, para un grupo de estudiantes de básica primaria que están desarrollando un

ejercicio de generalización sobre números naturales, verificar la propiedad general en muchos

ejemplos podría ser un argumento válido, mientras que en un contexto de formación de profesores en

el área de Aritmética, un argumento válido sería una demostración por inducción.

Para Toulmin (2003, pp. 92) un argumento tiene lugar cuando a partir de unos hechos o datos se

elabora una afirmación (conclusión). El paso de los datos a la conclusión es el garante y,

generalmente, hace referencia a una regla, norma o principio general. El garante, a su vez, se sustenta en un grupo de afirmaciones que hacen parte de un conjunto de contenidos o creencias denominado

respaldo. Las refutaciones o reservas son el conjunto de circunstancias en las cuales el garante se

podría anular y el cualificador modal es una construcción lingüística que acompaña a la conclusión, atenuándola, indica el grado de probabilidad o de fuerza de la conclusión. La figura 1 presenta la

estructura de un argumento de acuerdo con este modelo.

Figura 1. Estructura de un argumento

Para Harel y Sowder (1998), según Flores (2007, pp. 67), existen dos tipos de argumentos que

dependen de la contundencia en que los datos son hilados de manera veraz en el garante y sustentados

por los respaldos para dar fuerza a la conclusión, dejando sin oportunidad a las refutaciones. Según

esto en matemáticas se considera válido un argumento que es sustentado por reglas teóricas y en los

que se hace un correcto uso de la lógica.

Page 83: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

83 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Como ya se ha mencionado, parte de la actividad matemática responde al proceso de conjeturar abordado anteriormente, durante todo este proceso surgen argumentos que ayudan a obtener de manera

eficiente el poder de convencimiento de que lo realizado es una conjetura y deja de serlo cuando se

logra argumentar de manera adecuada. Por ello, se exhiben tipos de argumentos presentes en la

actividad matemática con el objeto de profundizar más en los procesos de conjeturar.

Tipos de argumentos en la formulación de conjeturas

En la actividad matemática aparecen al menos tres tipos de argumentos diferentes, estos son:

abductivo, inductivo y deductivo. Las definiciones de estos argumentos se hacen a partir de la

propuesta de Peirce sobre los razonamientos utilizados para crear conocimiento científico (ver segunda

etapa de desarrollo de la teoría de Peirce sobre razonamiento. Santaella ,2011). En este documento un

razonamiento es un tipo especial de argumento.

La abducción es un tipo de argumento en el que el sujeto a partir de la observación de unos

datos, extrae una conclusión, la cual en caso de ser verdadera, deriva la verdad de los datos iniciales.

Por ejemplo, una persona saca muchas bolas de una bolsa, supongamos que todas las que sacó son de color blanco, de lo hecho se puede inferir que todas las bolas de la bolsa son blancas

4. Este ejemplo

muestra que hay una regularidad que permite discurrir la conclusión a partir de los datos. Dicha

regularidad es considerada como el garante de este argumento.

En la formulación de conjeturas, se presentan argumentos de tipo abductivo, los cuales se logran

al producir una conjetura a partir de unos datos observados. En estos argumentos, el garante corresponde a patrones, reglas, regularidades o propiedades que se identifican en los datos observados.

(Soler-Alvarez y Manrique, 2012, pp. 6)

La inducción se presenta cuando teniendo la regla general o la conjetura planteada, se procede a

experimentar para tratar de verificar si dicha regla o conjetura es verdadera. Algunos autores como Cañadas, Castro y Castro (2008, pp. 138) definen los argumentos inductivos de forma diferente a la

mencionada, siguiendo a Neubert y Binko (1992), establecen que el razonamiento inductivo

corresponde al paso de casos particulares a leyes generales. Las etapas en este proceso son: trabajo con casos particulares; organización de casos particulares; identificación de un patrón; formulación de

conjetura; justificación de conjetura (basada en casos particulares); generalización; y demostración.

Obsérvese que esta definición incluye los tres tipos de argumentos mencionados y los procesos de

formular y validar conjeturas descritos anteriormente.

La deducción ocurre cuando, de premisas que se suponen verdaderas, se deduce una conclusión que debe ser verdadera. La deducción surge cuando en cada conjetura ya generalizada se desea mirar

su validez, es decir, que argumentar no depende directamente de los objetos sino de sus propiedades,

características que generalizan el objeto, para que pueda concluirse de manera satisfactoria.

Una conjetura normalmente se puede expresar de la forma p q , donde p y q son dos

proposiciones, aunque hay que resaltar que las conjeturas adoptan generalmente esta estructura cuando

se intenta probar que son válidas. Un razonamiento deductivo garantiza la validez de la conjetura si a

partir de la verdad de q, se deduce necesariamente la verdad de p. En la figura 2 se presenta un

esquema para los argumentos deductivos en el modelo de Toulmin.

4 Es importante aclarar que la conclusión no es necesariamente verdadera.

Page 84: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

84 NÚMEROS Vol. 85 marzo de 2014

Figura 2. Esquema de un argumento deductivo según modelo de Toulmin

Para ejemplificar el proceso de argumentar, su relación con conjeturar y los tipos de

argumentos, se presentan argumentos logrados en las tareas mencionadas anteriormente.

Tarea 1

En el momento de proponer la conclusión que el área de la región blanca es mayor que el área

de la región amarilla, se evidencia un tipo de argumento abductivo proveniente de la percepción, bien puede ser por el contraste del color y los estilos o por la distribución de éstos dentro de la figura. En

esta tarea no hay forma de verificar casos, puesto que sólo hay uno, así que el trabajo no presenta

razonamientos de tipo inductivo.

Respecto al razonamiento deductivo se presentan diferentes argumentos de este tipo, uno de tipo geométrico al establecer correspondencias entre partes de la figura (tabla 4, opción 1-a), otros de tipo

métrico cuando se establecen las medidas del área de la superficie (tabla 4, opción 1-b, 1-c, 1-d, 1-e).

En cada caso se da un argumento respaldado por proposiciones matemáticas ya probadas y sólidas que

dan sustento al argumento de que las áreas de las dos regiones son iguales.

Tarea 2

En el desarrollo de esta tarea se evidencia inicialmente un argumento de tipo abductivo, en el

que se presenta una fórmula que permite determinar el resultado y los términos de la n-ésima fila. El

garante de este argumento se encuentra en las características observadas en los números, como por

ejemplo, suma de impares consecutivos y suma de números cúbicos.

En la tabla 4, tarea 2, opciones a, b y c se observa razonamiento inductivo, esto porque dada la

conjetura, se busca verificar si en casos distintos a los usados inicialmente, la conjetura es válida.

Es posible observar al menos dos razonamientos deductivos en esta tarea, uno correspondiente a

una demostración por inducción y otro a través del uso de propiedades de los números y las sumatorias

finitas. La demostración por inducción debe hacerse en dos pasos, en la primera, se debe garantizar que para el primer elemento, la fórmula es válida, luego se acepta que es válida para una fila k y se

muestra que para la fila k+1 también es válida. El garante de este razonamiento corresponde al

principio de inducción matemática.

Page 85: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

85 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

El otro tipo de argumento deductivo usado se puede observar en la siguiente secuencia:

2

1

2 1n

i

n n i

2

1 1 1

2 1n n n

i i i

n n i

2 23 nn n

3n

La expresión que se obtiene de esta secuencia es la siguiente:

2 2

1

2 1n

i

n n n i

Los garantes de este argumento se encuentran en las propiedades de las sumatorias de números

naturales.

Tarea 3

Teniendo en cuenta la tarea 3, presentada en páginas anteriores, es posible contar de diferentes

maneras el número de cuadrados blancos de la secuencia dada en la figura 3.

Figura 4 Figura 5

Figura 3. Figuras de una secuencia

Cada forma de conteo (figura 4) plantea un argumento diferente, en el que la conclusión es la

forma de contar los cuadrados de cualquier figura y los garantes corresponden a los patrones

observados.

Figura 3 Figura 4 Figura 3 Figura 4

Page 86: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

86 NÚMEROS Vol. 85 marzo de 2014

Figura 3 = -

Figura 4 = -

Figura 4. Diversas formas de conteo de los cuadros blancos

Cuando se verifica la conjetura para las posiciones 4, 5 y 6, y otras mayores como la 7, 10, 30,

50 u otra posición, se desarrollan razonamientos de tipo inductivo. En lo que sigue se presentan

razonamientos inductivos para cada una de las conjeturas presentadas en la tarea 3.

Primera situación

Posición Número de cuadrados

blancos observados

Aplicación de la

fórmula

4 20 4 4 1 20

5 24 4 5 1 24

6 28 4 6 1 28

10 44 4 10 1 44

Segunda situación

Posición Número de cuadrados

blancos observados Aplicación de la fórmula

4 20 2 4 2 202 4

5 24 2 5 2 242 5

6 28 2 6 2 282 6

10 44 2 10 2 442 10

Tercera situación

Posición Número de cuadrados

blancos observados Aplicación de la fórmula

4 20 2 2

4 2 204

5 24 2 2

5 2 245

6 28 2 2

6 2 286

10 44 2 2

10 2 4410

Page 87: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

87 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

En cada situación se evidencia la manera en que se cuentan los cuadrados blancos, hay que centrar la atención que dichas formas surgieron de un proceso abductivo, que fue refinado a partir de

uno inductivo.

En el ejemplo que se está siguiendo, un razonamiento deductivo puede presentarse en esta tarea

cuando habiendo llegado a diferentes fórmulas, se muestra que todas son equivalentes y llevan al

mismo resultado.

Figura 5. Argumento deductivo identificado en la validación

Procedimiento:

Opción 1 Opción 2

(x+2)2 x

2 (x+2)2+2x

=(x2+4x+4) x

2 =2x+4+2x

=4x+4 =4x+4

=4(x+1) =4(x+1)

De esta manera se verifica la equivalencia de las tres situaciones y los tres hallazgos. El garante de este razonamiento corresponde a las propiedades de los números naturales utilizadas en el

procedimiento, tales como el cuadrado de una suma, las propiedades conmutativa, asociativa y

distributiva.

Este razonamiento muestra que hay tres fórmulas equivalentes que podrían describir el número de cuadrados blancos de la figura en cualquier posición. Esta equivalencia no garantiza la validez de

alguna de las fórmulas, es posible que se hayan llegado a tres fórmulas erróneas pero equivalentes. La

manera de demostrar la validez de alguna de estas fórmulas se logra por medio de una demostración por inducción. Se usará este método para demostrar que la conjetura es válida, asumiendo la primera

situación. En esta se afirma que en la posición n hay 4(n+1) cuadrados blancos.

Para la tercera posición hay 4(3+1)=16, lo cual es verificable en las figuras 3 y 4 de la Figura 4.

Page 88: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

88 NÚMEROS Vol. 85 marzo de 2014

Se supone que se cumple para n, es decir que en la posición n hay 4(n+1) cuadrados blancos. Para poder demostrar para la posición siguiente,

n+1, se toma la construcción generalizada de la posición n, en ella hay un

cuadrado negro de n2 cuadrados negros y 4(n+1) cuadrados blancos a su

alrededor.

En la posición n+1, se amplía en el cuadrado la zona negra, una

columna a la derecha y una fila hacia arriba, con lo cual la zona negra tiene

(n+1)2 cuadrados negros.

Para completar el cuadrado grande con las zonas blancas que faltan,

que son 2(n+1)+1, se aumenta por cada cuadrado negro en la primera fila, un

cuadrado blanco arriba de éste y por cada cuadrado negro de la última columna se adiciona uno blanco a la derecha, para completar el cuadrado

blanco faltan 3 cuadrados, uno en cada una de las esquinas, dando así

4(n+1)+4 que es equivalente a 4(n+2), que es el número de cuadrados blancos para la posición n+1.

4. A modo de conclusión

En las tres tareas se muestran los tipos de argumentos en distintos momentos. En la siguiente tabla se puede evidenciar una manera de relacionar los procesos de visualizar y conjeturar con los

tipos de argumentos.

Proceso de

Conjeturar

Proceso de

Argumentar

ESTUDIO DE DATOS

VISUALIZACIÓN

IDENTIFICACIÓN

DE PATRONES

Y

FORMULACIÓN DE

CONJETURAS

VERIFICAR

Y

GENERALIZAR

ABDUCCIÓN

La visualización permite

identificar lo que es común,

presumir cosas y tratar de

establecer formas generales.

Por ejemplo: Se presentan varias

figuras, separándolas en que son X

o no X. Se pregunta por una figura

en particular y pedir si es X o no X.

De los casos estudiados

se extrae u expresa una

generalidad

(conjetura).

Por ejemplo: x, y, z y w cumplen la propiedad

X, luego esta propiedad

podría cumplirse en

todos los casos

similares.

Cuando se encuentran casos

en los que la conjetura no es

válida, se construye otra que

pueda incluir el caso no

válido para la anterior.

Por ejemplo: Se confrontan

las características de la figura

con las posibles

características de ser X y se

construye Y.

INDUCCIÓN

La visualización permite

determinar si en casos diferentes a

los estudiados inicialmente, se

La verificación de la

conjetura en diferentes

casos permite

La verificación de la

conjetura en diferentes casos

permite saber qué tan general

Page 89: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

89 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

evidencia la conjetura formulada.

Por ejemplo: Se presentan figuras

diferentes a las estudiadas

inicialmente, en las que se

observan las mismas regularidades.

reformulaciones de

esta, en las que se incluyen otros casos.

Por ejemplo: x e y

tienen la característica

X, la cual no se ve

exactamente igual en z.

Se produce X ̀ que se

observa en x, y y z.

podría ser.

Por ejemplo: x e y cumplen la

propiedad X. Resulta que z, w,

h y k también cumplen X. Se

podría pensar que X es

general.

DEDUCCIÓN

La visualización permite

identificar con claridad los

argumentos deductivos que se usan

en la validación de una conjetura.

Por ejemplo: Una persona plantea

una secuencia p, q, r y s de

argumentos deductivos para

validar una conjetura. Otra

persona, visualiza estos

argumentos en el contexto dado,

para identificarlos con claridad.

Se expresa la

generalidad, desde lo

simbólico o verbal.

Por ejemplo: Dada la

situación se generaliza

de forma escrita,

algunas veces usando

lenguaje algebraico.

Se usan métodos de

demostración pertinentes para la validación de los

argumentos.

Por ejemplo: Usando la

característica de X se deduce

la situación.

Tabla 6. Relaciones entre los procesos de conjeturar y argumentar

Una aplicación de la tabla 6 en las tareas desarrolladas se presenta a continuación.

Tarea ABDUCCIÓN INDUCCIÓN DEDUCCIÓN

1

Las primeras intuiciones,

aseguran que la zona amarilla

es menor que la zona blanca.

Características de los triángulos

amarillos, las cuadrículas.

Cálculo de áreas.

Superposición de figuras.

2

Reconocimiento de suma de números impares.

Reconocimiento de números

cúbicos.

Regularidades entre las sumas de

números impares y los cúbicos. Relación entre la cantidad de

sumandos y el cubo.

Comprobación para el siguiente.

Planteamiento de la generalidad.

Prueba por inducción

matemática, haciendo uso de las premisas generadas en la

inducción.

Uso de propiedades de la

suma.

3 Los métodos gráficos de conteo

Las características de dichos

métodos y la generalidad extraída de

la verificación de casos.

Método inductivo.

Tabla 7. Procesos de conjeturar y argumentar a través de las tareas

En toda fase de desarrollo de la actividad matemática el proceso de argumentar debe estar presente con el objetivo de potenciar el pensamiento matemático y propiciar habilidades o

competencias argumentativas. Así pues, la actividad matemática debe estar en pro de la producción y

validación de conjeturas, generalidades, proposiciones, entre otros; para ello el proceso de argumentar

debe enriquecerse cada vez más.

Las habilidades de argumentar van desde identificar y analizar argumentos en textos o ambientes educativos, hasta construirlos. Por lo tanto, las actividades matemáticas deben generar

momentos de reflexión para que los procesos de conjeturar y argumentar aporten al desarrollo del

pensamiento matemático y al desarrollo de otro tipo de competencias que atañen a los distintos

campos del saber.

Page 90: Números, Revista de Didáctica

Actividades Matemáticas: Conjeturar y Argumentar I. Álvarez Alfonso, L. Ángel, E. Carranza, M. Soler-Alvarez

90 NÚMEROS Vol. 85 marzo de 2014

Bibliografía

Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay on

the case of proof. ZDM Mathematics Education. 40, 501-512.

Cañadas, M., Castro E. y Castro E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3° y 4° de Educación Secundaria Obligatoria en el problema de las baldosas. PNA, 2(3), 137-151.

Cañadas, M., Deulofeu, J., Figueiras, L., Reid, D. y Yevdokimov, O. (2008). Perspectivas teóricas en

el proceso de elaboración de conjeturas e implicaciones para la práctica: Tipos y Pasos. Revista

Enseñanza de las Ciencias. 6 (3), 431-441. De Gamboa, G. (2009). Prácticas e interpretaciones en torno a la argumentación matemática de

futuros maestros de educación primaria. Tesis de Maestría. Bellaterra, España: Universidad

Autonoma de Barcelona. Flores, A. (2007). Esquemas de argumentación en profesores de Matemáticas del bachillerato.

Educación Matemática. 19(1), pp. 63-98.

Mason, J., Graham, A., Pimm, D. y Gowar, N. (1988). Rutas y raíces hacia el algebra (C. Agudelo,

Ed. y Trad.). Tunja, Colombia: Universidad Pedagógica y Tecnológica de Colombia. (Trabajo original publicado en 1985).

Ministerio de Educación Nacional -MEN. (1998). Lineamientos Curriculares de Matemáticas. Bogotá,

Colombia. Editorial Magisterio. Planchart, O. (2002). La visualización y la modelación en el concepto de función. (Tesis inédita de

doctorado). Universidad Autónoma del Estado de Morelos, Cuernavaca, México.

Santaella, L. (2011). La evolución de los tres tipos de argumento: abducción, inducción y deducción. Universidad de Sao Paulo. Brasil. Versión electrónica disponible en

http://www.unav.es/gep/AN/Santaella.html. Documento recuperado el 16 de noviembre de 2012.

Soler-Alvarez, M. y Manrique, V. (2012). Proceso de descubrimiento matemático en clases de matemáticas:

los razonamientos abductivo, inductivo y deductivo. Documento de circulación interna. Bogotá. Toulmin, S. (2003).The uses of argument. Cambridge. Cambridge University Press.

Ingrith Álvarez Alfonso. Licenciada en Matemáticas de la Universidad Distrital Francisco José de Caldas. Magister en Educación y Magister en Docencia de las Matemáticas. Profesora del Departamento

de Matemáticas de la Universidad Pedagógica Nacional de Colombia y docente de la Licenciatura en

Educación Básica con Énfasis en Matemáticas de la Universidad Distrital Francisco José de Caldas.

José Leonardo Ángel Bautista. Licenciado en Matemáticas, Magister en Docencia de las Matemáticas

de la Universidad Pedagógica Nacional, y Magister en Matemáticas de la Universidad de los Andes.

Actualmente trabaja como docente del Departamento de Matemáticas de la Universidad de los Andes y

de la Universidad Pedagógica Nacional, y es integrante del grupo de Álgebra de ésta última.

Edwin Carranza Vargas. Licenciado en Matemáticas de la Universidad Pedagógica Nacional.

Especialista en Edumatica Universidad Autónoma de Colombia, estudios de Maestría en Matemáticas

Universidad Nacional de Colombia y Título de Maestría en Educación y TIC Universitat Oberta de

Catalunya. Actualmente trabaja en la Universidad Distrital Francisco José de Caldas y en la Universidad

Pedagógica Nacional.

María Nubia Soler-Alvarez. Licenciada en Matemáticas de la Universidad Pedagógica Nacional,

Magister en Ciencias - Matemáticas de la Universidad Nacional de Colombia. Actualmente trabaja en

Universidad Pedagógica Nacional y su área de interés es la argumentación y la prueba en la clase de

matemáticas. Coeditora de Tecné, Episteme y Didaxis - TED, revista dedicada a la Educación en

Ciencias, Matemáticas y Tecnologías. Vive en Bogotá. e-mail: [email protected]

Page 91: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 91-114

Actividad de estudio e investigación para la enseñanza de nociones de geometría

Ana Rosa Corica

Elisabeth Alejandra Marin (Universidad Nacional del Centro de la Provincia de Buenos Aires. Argentina)

Fecha de recepción: 2 de noviembre de 2012

Fecha de aceptación: 25 de septiembre de 2013

Resumen Presentamos resultados parciales del diseño e implementación de una actividad de

estudio e investigación, para la enseñanza de ángulos inscriptos en una circunferencia en

la escuela secundaria argentina. Con fundamento en la Teoría Antropológica de lo

Didáctico se diseñó un modelo epistemológico de referencia, en el que se describieron

nociones que le dan sentido al estudio de ángulos inscriptos en una circunferencia. Dicho

modelo constituyó la base para el diseño de la actividad de estudio e investigación. La

implementación se realizó en un curso de tercer año de la escuela secundaria. Se

involucró a los estudiantes en un nuevo tipo de trabajo, que implicó modificaciones a

nivel de mesogénesis, topogénesis y cronogénesis. En particular, los estudiantes resolvieron situaciones que les permitió explorar, conjeturar y validar.

Palabras clave Escuela secundaria, Didáctica, Enseñanza, Actividad de Estudio e Investigación,

Geometría, Ángulos, Circunferencia

Abstract We show partial results of the design and implementation of a study and research activity, for the teaching of inscribed angles in a circumference at the high school

Argentine. Based on the Anthropologic Theory of the Didactic we designed a reference

epistemological model, in which is described notions that to give meaning to the study of

inscribed angles in a circumference. The model was the stand for design of the study and

research activity. We realized the implementation in a third year course of high school.

The students were involved in a new kind of work, which implied changes a

mesogenesis, topogenesis and chronogenesis level. In particular, students solved

situations that allowed them to explored, to conjecture and validate.

Keywords High school, Didactic, Teaching, Study and Research Activity, Geometry, Angles,

Circumference

1. Introducción

La geometría es considerada como uno de los pilares de formación académica y cultural de las

personas, tanto por su aplicación en diversos contextos (Báez e Iglesias, 2007), como por su

contribución al desarrollo de habilidades como conjeturar, razonar deductivamente y argumentar de

manera lógica en procesos de prueba o demostración (Jones, 2002).

En los últimos años, la enseñanza de la geometría ha ganado interés por numerosos

investigadores (Ancochea, 2011; Báez, Iglesias, 2007; Barrantes, Blanco, 2005; Espinoza, Barbe y

Dinko, 2007; Gamboa y Ballestero, 2010; Gascón, 2002, 2003; Itzcovich, 2005; Roditi 2004; entre

Page 92: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

92 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

otros). En particular, el estudio de la geometría ha perdido espacio y sentido, tanto en escuelas como en la formación docente. De esta manera, se imposibilita a los estudiantes conocer otro modo de

pensar, que supone la posibilidad de utilizar propiedades de los objetos geométricos para poder

anticipar relaciones no conocidas, así como inferir y producir nuevas propiedades (Itzcovich, 2005). Investigaciones realizadas por Abrate, Delgado y Puchulu (2006) y Espinoza et al. (2007), indican que

los docentes priorizan la enseñanza en áreas de la matemática que excluyen a la geometría, y se

desplazan dichas nociones al final de los cursos. Esto implica la exclusión del estudio de nociones de

geometría o la realización de un estudio superficial de las mismas.

En particular, en la educación secundaria las nociones de geometría son presentadas a los

estudiantes como el producto acabado de la actividad matemática (Gamboa y Ballesteros, 2010;

Ancochea, 2011). Esto se corresponde con una de las difusiones de la actividad matemática que se

lleva a cabo en el seno de las instituciones escolares actuales: la monumentalización de los saberes (Chevallard, 2004). La misma es producto del olvido de la razón de ser de la mayoría de las

praxeologías matemáticas que se construyen en el aula, y se manifiesta con la ausencia escolar de las

principales cuestiones que dan origen a su estudio.

Las líneas recientes de investigación que propone la Teoría Antropológica de lo Didáctico (Chevallard, 1999; 2004, 2006, 2007, 2009a, 2009b) plantea la necesidad de introducir en los sistemas

de enseñanza proceso de estudio funcionales. Las Actividades de Estudio e Investigación constituyen

dispositivos didácticos que retoman la preocupación de la reconstrucción funcional de los saberes

matemáticos, como respuesta a ciertas cuestiones fundamentales. En este trabajo, presentamos resultados del diseño e implementación de una Actividad de Estudio e Investigación, que buscó

recuperar las principales cuestiones para el estudio de ángulos inscriptos en circunferencia en la

escuela secundaria argentina.

2. El diseño curricular de matemática en la educación secundaria y la enseñanza de

ángulos inscriptos en circunferencias

En el diseño curricular de matemática para la educación secundaria de la provincia de Buenos Aires (Dirección General de Cultura y Educación, 2008, 2009), se propone el estudio de ángulos

inscriptos en circunferencia en segundo y tercer año, destinado a alumnos entre 13 y 15 años. En

particular, en el bloque de geometría y magnitudes del diseño de segundo año, se propone el estudio

de lugar geométrico, y en especial de la circunferencia. Se plantea reconocer ángulos centrales, inscritos y semiinscriptos en una circunferencia, así como explorar y validar sus propiedades. Una vez

reconstruidas dichas propiedades, se sugiere el cálculo de las medidas de ángulos, para emplear las

mismas como entorno tecnológico.

Por otro lado, en el diseño de tercer año, en el bloque geometría y magnitudes, se propone el estudio de figuras planas. Se sugiere plantear problemas tales que permitan revisar los conocimientos

previos de los estudiantes sobre ángulos en la circunferencia. Por ejemplo, tareas que permitan el

análisis de figuras, tales como la identificación de ángulos inscritos, centrales, pares de ángulos

inscritos con el mismo ángulo central correspondiente.

Destacamos que el estudio propuesto en ambos diseños curriculares, sobre ángulos inscriptos en circunferencias, se encuentra desarticulado con relación a las restantes nociones que se proponen

estudiar. Se sugiere el inicio del estudio en segundo año de la secundaria, y que se retome al año

siguiente solo a modo de revisión. En el diseño curricular de tercer año, no se proponen tareas en las que se cuestionen las técnicas y tecnologías estudiadas en el año anterior, con la intención de

modificarlas y proseguir en la elaboración de nuevas.

Page 93: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

93 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

El estudio de ángulos inscriptos en circunferencias gesta un entorno tecnológico que justifica, en parte, el estudio de las propiedades y relaciones de los cuadriláteros cíclicos. Dichas nociones se

encuentran excluidas del diseño curricular de la escuela secundaria, y son en ellas donde consideramos

que cobra sentido el estudio de ángulos inscriptos en circunferencias.

3. Marco Teórico

En este trabajo se adopta como referencial teórico a la Teoría Antropológica de lo Didáctico y

sus últimos desarrollos (Chevallard, 1999, 2004, 2006, 2007, 2009a, 2009b). El constructo teórico

fundamental de la Teoría Antropológica de lo Didáctico (TAD), es la noción de praxeología u organización matemática (OM). Estas emergen como respuesta a una cuestión o conjunto de

cuestiones problemáticas que se denominan cuestiones generatrices. Las praxeologías constan de dos

niveles:

El nivel de la praxis o del saber hacer, que engloba un cierto tipo de tareas, así como las

técnicas para resolverlos.

El nivel del logos o del saber, en el que se sitúan los discursos que describen, explican y

justifican las técnicas que se utilizan, los que reciben el nombre de tecnología. Dentro del

saber se postula un segundo nivel de descripción-explicación-justificación (esto es, el nivel

tecnología de la tecnología) que se denomina teoría.

Junto a las OM, se distinguen las formas de organizar la enseñanza escolar de la matemática, que se describen en términos de praxeologías didácticas. La consideración de los diversos procesos

que conciernen a la construcción matemática permite identificar aspectos invariantes, es decir,

momentos que estructuran cualquier proceso de elaboración matemática, independientemente de sus características culturales, sociales, individuales o de otra índole. Así, el proceso de estudio se sitúa en

un espacio determinado por seis momentos didácticos: el momento del primer encuentro con un

determinado tipo de tareas; el momento exploratorio del tipo de tareas; el momento de construcción de un entorno tecnológico-teórico, que explica y justifica las técnicas puestas en funcionamiento y

permite la elaboración de nuevas técnicas; el momento de trabajo de la técnica, que provoca la

evolución de las técnicas existentes y la construcción de nuevas; el momento de la

institucionalización, que delimita y precisa aquellos elementos constituyentes de la organización

matemática construida; el momento de la evaluación de la praxeología construida.

Siguiendo las líneas recientes de investigación que propone la TAD, se plantea la necesidad de

introducir en los sistemas de enseñanza procesos de estudio funcionales, donde los saberes no

constituyan monumentos que el profesor enseña a los estudiantes, sino herramientas materiales y conceptuales, útiles para estudiar y resolver situaciones problemáticas. Las Actividades de Estudio e

Investigación (AEI) emergen como modelo didáctico para abordar la problemática. De esta manera, se

trata de superar la estructura binaria clásica de la enseñanza de la matemática, que se caracteriza por la

presentación de elementos tecnológicos – teóricos y luego tareas como medio para la aplicación de los

primeros.

Una AEI es, en principio, una organización didáctica donde la clase, bajo la dirección de un

profesor, va a hacer estudiar, reconstruir y hacer accesible a los alumnos una cierta Organización

Page 94: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

94 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Matemática Local1 (OML). Para esto es necesario partir de una cuestión generatriz Q cuyo estudio

produzca la elaboración de una respuesta R, y esta contenga los elementos esenciales de la OML

inicial. De esta manera, las AEI constituyen un proceso de estudio praxeológicamente finalizado, pues

se impone la condición de que R contenga los principales componentes de una OML previamente

determinada y conocida de antemano por la institución escolar.

Una enseñanza por AEI permite comenzar a enfrentar el problema de la monumentalización de

los saberes. Supone un cuestionamiento fuerte del contrato didáctico tradicional de la secundaria y

cambios a nivel de mesogénesis, topogénesis y cronogénsis (Chevallard, 1985, 2009b). Implica básicamente el estudio de cuestiones suficientemente ricas, vivas y fecundas que provoquen en los

estudiantes la necesidad de seguir aprendiendo, y que facilite abrir un proceso de investigación, que

permita explorar, conjeturar y validar.

4. Metodología

Proponemos una investigación cualitativa, de corte exploratorio y descriptivo. Se describen las

características de un dispositivo didáctico diseñado en una pedagogía de AEI para la escuela

secundaria, y se presentan algunos resultados de su implementación. La AEI propuesta se compone de

nueve situaciones en las que se involucra el estudio de ángulos inscriptos en la circunferencia.

Según el referencial teórico asumido, como actividad previa al diseño de la AEI es necesario elaborar un Modelo Epistemológico de Referencia (Bosch y Gascón, 2010). Dicho modelo es

elaborado por el investigador para realizar su estudio y no necesariamente coincide con la OM sabia

de la que proviene, aunque se formula en términos próximos a ésta y a la OM a enseñar. Este modelo tiene un carácter provisional, pues con fundamento en la Teoría de la Transposición Didáctica

(Chevallard, 1985) no existe un sistema de referencia privilegiado desde el que se observe, analice y

juzgue los saberes, pero se trata de una hipótesis de trabajo que es constantemente contrastada y

revisada (Gascón, 2011). Con fundamento en las cuestiones cruciales propuestas en el Modelos

Epistemológico de Referencia (MER) se diseñó la AEI.

4.1. Descripción del curso en el que se implementó la AEI

El curso en el que se implementó corresponde al tercer año de una escuela de educación

secundaria argentina. El grupo estaba constituido por 24 alumnos, cuyas edades oscilaban entre los 14

y 15 años. Este grupo, en segundo año solo había estudiado la identificación de ángulos inscriptos y

centrales en circunferencias, cuyas nociones son fundamentales para el desarrollo de la AEI propuesta.

Al momento de implementar, en el curso predominaba una enseñanza tradicional. El

protagonista del proceso de estudio era el profesor: es quien proponía las tareas, las técnicas y las

1 Chevallard (1999) introdujo la distinción de diferentes tipos de OM, según el grado de complejidad de sus

componentes:

Organizaciones Puntuales (OMP): Están generadas por lo que se considera en la institución como un

único tipo de tarea y está definida a partir del bloque práctico-técnico.

Organizaciones Locales (OML): Es el resultado de integrar diversas praxeologías puntuales. Cada

praxeología local se caracteriza por una tecnología que sirve para justificar, explicar, relacionar entre sí y

producir las técnicas de todas las praxeologías puntuales que la integran.

Organizaciones Regionales (OMR): Se obtienen mediante la coordinación, articulación y posterior integración de diversas praxeologías locales a una teoría matemática en común.

Organizaciones Globales (OMG): Surgen al agregar varias praxeologías regionales a partir de la

integración de diferentes teorías.

Page 95: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

95 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

validaba. Esto implica una reducción del topos del alumno a hacer y decir lo que indica el profesor. Las clases se desarrollaban en 3 encuentros semanales (2 encuentros de 60 minutos y un encuentro de

120 minutos), y los estudiantes se encontraban dispuestos en equipos de trabajo compuestos por 2 o 3

integrantes.

Durante la implementación de la AEI, se trató de instalar una dinámica de estudio en correspondencia con el marco teórico adoptado en la investigación. Las clases se focalizaron en que

los estudiantes propongan las técnicas para resolver las situaciones y que justifiquen sus producciones.

Posteriormente a la resolución de cada situación, se realizaron discusiones de las propuestas brindadas por cada grupo, lo que permitió confrontar las distintas resoluciones y evaluar las técnicas construidas.

Los debates permitieron realizar una síntesis de lo aportado por los alumnos y así institucionalizar los

nuevos saberes reconstruidos.

4.2. Recolección de registros y análisis

En la implementación el profesor tuvo carácter de observador participante. Se registró en audio

general cada una de las sesiones que involucró la implementación, y el profesor realizó notas de campo antes y después de cada sesión. En todas las clases, el profesor proporcionó a los estudiantes

las tareas a resolver y al finalizar cada sesión, recogió la totalidad de las producciones escritas. Se

escanearon y se devolvieron a los estudiantes en la sesión inmediata siguiente, para garantizar que los alumnos no realizaran modificaciones a sus resoluciones luego de cada sesión, para asegurar la

continuidad de su trabajo y para que ellos dispongan permanentemente de sus registros. Para analizar

los protocolos se los segmentó en episodios correspondientes a cada situación. En este trabajo se

indican algunos resultados de la implementación de la AEI, y los efectos producidos en un curso

habituado a la enseñanza demarcada por el paradigma de la monumentalización de los saberes.

5. Modelo Epistemológico de Referencia

En este apartado se describe un Modelo Epistemológico de Referencia (MER) en relación a las

propiedades y relaciones de los cuadriláteros cíclicos, que se gesta a partir de la cuestión generatriz

0Q : ¿Cuáles son las propiedades y relaciones de los cuadriláteros cíclicos?

Un cuadrilátero es cíclico si está inscripto en una circunferencia, es decir si todos sus vértices están sobre ella. La condición necesaria y suficiente para que un cuadrilátero sea cíclico es que los

ángulos opuestos sean suplementarios. La cuestión 0Q aquí es concebida en sentido fuerte, es decir,

una cuestión problemática que debe ser estudiada, y no se puede responder dando una simple

información. Se requiere una respuesta basada en la construcción de OMs, es decir, un conjunto de tareas, técnicas, definiciones, propiedades que permiten describir y justificar el trabajo realizado. A

partir de la cuestión generatriz inicial, se derivaron siete OMs relacionadas y fundamentales para el

estudio de cuadriláteros cíclicos. En la figura 1 se indican las OMi, que integran al MER, junto al tipo

de tareas que las representan (i

), y las relaciones que se establecen entre ellas.

Page 96: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

96 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

3OM

Γ3 : Calcular el área de

cuadriláteros cíclicos

2OM

Γ2 : Establecer la relación entre los

lados opuestos y diagonales de un

cuadrilátero cíclico

5OM

Γ5: Establecer

relaciones entre los

ángulos inscriptos y

otros elementos de la

circunferencia

6OM

Γ6 : Establecer

relaciones entre figuras

semejantes

4OM

Γ4 : Establecer

propiedades y

relaciones entre

elementos de

figuras planas

7OM

Γ7 : Resolver triángulos

1OM

Γ1: Establecer la propiedad

de los ángulos opuestos de

un cuadrilátero cíclico

Q0: ¿CUÁLES SON LAS-PROPIEDADES Y RELACIONES DE LOS

CUADRILÁTEROS CÍCLICOS?

Figura 1. Modelo Epistemológico de Referencia

En particular, el estudio del tipo de tareas que compone a 1OM conduce a estudiar la propiedad

de los ángulos opuestos de un cuadrilátero cíclico. Es decir, su estudio permite establecer que los

ángulos opuestos de un cuadrilátero cíclico son suplementarios. La 2OM lleva al estudio de la

relación entre los lados opuestos y diagonales de un cuadrilátero cíclico. Esta relación, corresponde al Teorema de Ptolomeo: En todo cuadrilátero inscribible en una circunferencia, la suma de los

productos de los pares de lados opuestos es igual al producto de sus diagonales. La 3OM conduce al

estudio de la expresión del área de un cuadrilátero cíclico, que se denomina fórmula de Brahmagupta.

La fórmula se puede obtener a partir del teorema del coseno y teniendo en cuenta que los ángulos

opuestos del cuadrilátero cíclico son suplementarios. De esta manera, el hacer del tipo de tareas que

involucra 1OM ( 1 : Establecer la propiedad de los ángulos opuestos de un cuadrilátero cíclico),

2OM (2

: Establecer la relación entre los lados opuestos y diagonales de un cuadrilátero cíclico) y

3OM (3

: Calcular el área de cuadriláteros cíclicos) consolidan elementos tecnológicos

fundamentales del MER. Mientras que las relaciones entre los ángulos inscriptos y otros elementos de

la circunferencia, que emergen del hacer del tipo de tareas que involucra la 5OM (5

: Establecer

relaciones entre los ángulos inscriptos y otros elementos de la circunferencia) justifican el hacer del

tipo de tareas que conforman a 1OM , 2OM y 3OM .

La 4OM conduce al estudio de propiedades y relaciones entre elementos de figuras planas. Y

La 6OM conduce al estudio de las relaciones entre figuras semejantes. El hacer del tipo de tareas que

involucra la 4OM (4

: Establecer propiedades y relaciones entre elementos de figuras planas) y

la 6OM (6

: Establecer relaciones entre figuras semejantes), consolidan parte de una tecnología que

justifica el hacer de 2OM .

Page 97: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

97 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

La 7OM conduce al estudio de las relaciones trigonométricas. La tecnología que se gesta en el

hacer de la 7OM ( 7 :

Resolver triángulos), junto a la gestada en 6OM justifica el hacer del tipo de

tareas que involucra 3OM .

Así mismo, el estudio de las relaciones entre los ángulos inscriptos y otros elementos de la

circunferencia ( 5OM ), como el estudio de las relaciones entre figuras semejantes ( 6OM ) requieren de

las propiedades y relaciones entre elementos de figuras planas ( 4OM ). Y el estudio de relaciones

trigonométricas, que emergen del hacer del tipo de tareas que constituye a la 7OM , requiere del

entorno tecnológico que se gesta en 6OM .

Siguiendo los objetivos de la investigación, a continuación sólo desarrollamos una parte del

MER, la cual corresponde a la 5OM . La misma se genera a partir de la cuestión generatriz

50Q : ¿Cuáles son las relaciones que se establecen entre los ángulos inscriptos en una circunferencia y

otros elementos de la misma?

La 5OM se sitúa en el nivel de una OM Local (OML), y se encuentra conformada por una

articulación de cinco OM puntuales (OMP2), que se indican a continuación junto al tipo de tareas (Ti)

que las representan.

1,1T : Establecer la

relación entre un ángulo

inscripto en un arco de

circunferencia y el

ángulo central

correspondiente cuando

uno de los lados del

ángulo inscripto pasa

por el centro de la

circunferencia

3,1T : Establecer la

relación entre un

ángulo inscripto en un

arco de circunferencia

y el ángulo central

correspondiente

cuando el centro queda

exterior respecto al

ángulo inscripto

1,2T: Establecer la

amplitud de los

ángulos inscriptos

en una

semicircunferencia

1OMP

1T : Establecer la

relación entre un

ángulo inscripto

en un arco de

circunferencia y

el ángulo central

correspondiente

2OMP

2T : Establecer

la relación entre

los ángulos

inscriptos en un

mismo arco de

circunferencia

2,1T : Establecer la

relación entre un

ángulo inscripto en un

arco de circunferencia y

el ángulo central

correspondiente cuando

el centro queda interior

respecto al ángulo

inscripto

5OMP

5T : Establecer la

relación entre los

ángulos inscriptos

y los ángulos

semiinscriptos en

un mismo arco de

circunferencia

3OMP

3T : Establecer la

relación entre un

ángulo

semiinscripto en

un arco de

circunferencia y

el ángulo central

correspondiente

4OMP

4T : Determinar la

relación entre los

ángulos

semiinscriptos en un

mismo arco de

circunferencia

5

0Q : ¿CUÁLES SON LAS RELACIONES QUE SE ESTABLECEN ENTRE LOS ÁNGULOS

INSCRIPTOS EN UNA CIRCUNFERENCIA Y OTROS ELEMENTOS DE LA MISMA?

Figura 2. Tipos de tareas que componen a la OM5

2 Cada OMP se identifica por OMPi, siendo i el número de la OMP correspondiente.

Page 98: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

98 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

La OMP1 se encuentra representada por el tipo de tareas 1T : Establecer la relación entre un

ángulo inscripto en un arco de circunferencia y el ángulo central correspondiente. La técnica para

abordar 1T consiste básicamente, en determinar el ángulo inscripto y el ángulo central correspondiente

y establecer relaciones geométricas en los triángulos determinados en el interior de la circunferencia.

Así mismo, 1T se compone de tres tareas jT ,1 que comparten ciertas características, pero

presentan leves diferencias en cuanto a su hacer, que nos conducen a distinguirlas:

1,1T : Establecer la relación entre un ángulo inscripto en un arco de circunferencia y el ángulo

central correspondiente cuando uno de los lados del ángulo inscripto pasa por el centro de la

circunferencia.

2,1T : Establecer la relación entre un ángulo inscripto en un arco de circunferencia y el ángulo

central correspondiente cuando el centro queda interior respecto al ángulo inscripto.

3,1T : Establecer la relación entre un ángulo inscripto en un arco de circunferencia y el ángulo

central correspondiente cuando el centro queda exterior respecto al ángulo inscripto.

El hacer de estas tres tareas permite concluir en el siguiente teorema:

Todo ángulo central en un arco de circunferencia es igual al doble del ángulo inscripto

correspondiente” o “todo ángulo inscripto en un arco de circunferencia es igual a la mitad

del ángulo central correspondiente.

El teorema constituye la tecnología fundamental que justifica parte del hacer de las tareas

constitutivas de las restantes OM que definen a la 5OM .

La OMP2 se encuentra representada por el tipo de tareas 2T : Determinar la relación entre los

ángulos inscriptos en un mismo arco de circunferencia. La técnica para abordar 2T consiste en

determinar la amplitud del ángulo central correspondiente a los ángulos inscriptos mediante el

resultado tecnológico gestado en OMP1. El estudio de 2T permite consolidar el siguiente resultado

tecnológico:

Los ángulos inscriptos en una circunferencia que abarcan un mismo arco de circunferencia

son congruentes.

En particular, de 2T distinguimos la tareas 2.1T : Establecer la amplitud de los ángulos

inscriptos en una semicircunferencia, su hacer permite concluir en el siguiente resultado tecnológico:

Todos los ángulos inscriptos que abarcan una semicircunferencia tienen una amplitud de 90º.

La OMP3 se encuentra representada por el tipo de tareas 3T : Establecer la relación entre un

ángulo semiinscripto en una circunferencia y el ángulo central correspondiente. El hacer de 3T

permite consolidar el siguiente resultado tecnológico:

Page 99: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

99 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

La amplitud del ángulo central es el doble de la amplitud del ángulo semiinscripto.

La OMP4 se encuentra representada por el tipo de tareas 4T : Determinar la relación entre los

ángulos semiinscriptos en un mismo arco de circunferencia. El hacer de 4T encuentra justificación en

el entorno tecnológico gestado en OMP3 y permite consolidar el siguiente resultado tecnológico:

Los ángulos semiinscriptos en un mismo arco de circunferencia tienen la misma amplitud.

Finalmente, la OMP5 se encuentra representada por el tipo de tareas 5T : Determinar la relación

entre los ángulos inscriptos y los ángulos semiinscriptos en un mismo arco de circunferencia. El hacer

de 5T encuentra justificación en los resultados tecnológicos gestados en OMP1 y OMP3, y permite

concluir en el siguiente resultado tecnológico:

El ángulo inscripto y el ángulo semiinscripto en un mismo arco de circunferencia tienen la

misma amplitud.

6. La Actividad de Estudio e Investigación

La AEI propuesta se diseñó a partir de considerar los tipos de tarea que representan a OMP1 y a

OMP2 en el MER. Si bien, la OM5 contempla otras OMP, el diseño se ajustó a las limitaciones de la

institución en la que se implementó el dispositivo didáctico. Al momento de seleccionar un curso para

realizar la implementación, nos enfrentamos a la dificultad de disponer de aquel en que los estudiantes conocieran las nociones básicas fundamentales de geometría para abordar las situaciones, y que el

profesor del curso estuviese dispuesto a destinar suficiente espacio temporal para el estudio de las

nociones que proponemos en la AEI. Así, los tipos de tareas T1 y T2 se corresponden inmediatamente con los contenidos establecidos en el diseño curricular y acorde a los tiempos cronológicos propuestos

por el profesor del curso que permitió el desarrollo de la investigación.

El estudio de 50Q conduce a la formulación de “cuestiones derivaras” ( iq ), que involucran el

estudio de tipo de tareas ( it ), a partir de las que se establecen las situaciones que realizarán los

estudiantes. El estudio de dichas tareas proporcionan una respuesta ( iR ) que en conjunto, contribuyen

a la elaboración de la respuesta R a 50Q

. El siguiente esquema presenta las conexiones entre las

respuestas iR que emergen del estudio de cada it .

Page 100: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

100 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

5

0Q : ¿Cuáles

son las

relaciones que se

establecen entre

los ángulos

inscriptos en

una

circunferencia y

otros elementos

de la misma?

𝑅

1

2R 3q

: ¿Cómo

determinar la amplitud

de ángulos inscriptos

en una circunferencia?

4q : ¿Qué relaciones

se establecen entre los

ángulos inscriptos en

un mismo arco de

circunferencia?

5q : ¿Cómo

determinar un lugar

geométrico?

3t

1

2t

2

2t

4t

1

5R

2

5R

3

5R

3R

4R

2q : ¿Qué relación se

establece entre el

ángulo inscripto en un

arco de circunferencia

y el ángulo central

correspondiente?

2t

2R

1R

1q : ¿Cómo determinar

ángulos inscriptos y

ángulos centrales en un

mismo arco de

circunferencia?

1t

Figura 3. Esquema de la AEI

De 50Q se derivan cinco cuestiones fundamentales. La primera es 1q : ¿Cómo determinar

ángulos inscriptos y ángulos centrales en un mismo arco de circunferencia?, y conduce al estudio de

1t : Determinar ángulos inscritos y ángulos centrales en un mismo arco de circunferencia. El

propósito de este tipo de tareas es recuperar el trabajo realizado por los alumnos en años anteriores y

alcanzar una mayor comprensión sobre los ángulos inscriptos y centrales determinados en una

circunferencia. Este tipo de tareas permite la elaboración de la respuesta 1R : Al trazar un ángulo

inscripto en un arco de circunferencia sólo se puede trazar un único ángulo central cuya amplitud

puede ser entre 0° y 360°. Mientras que se pueden trazar infinitos ángulos inscriptos en un mismo

arco de circunferencia y pueden tener una amplitud entre 0º y 180º.

La segunda cuestión que se formula es 2q : ¿Qué relación se establece entre el ángulo inscripto

en un arco de circunferencia y el ángulo central correspondiente? Esta cuestión conduce al estudio de

2t : Establecer la relación que existe entre los ángulos inscriptos y los ángulos centrales en un mismo

arco de circunferencia. Este tipo de tareas se corresponde con 2T definida en el MER.

El estudio de 2t permite elaborar la respuesta 2R : Todo ángulo central en un arco de

circunferencia es igual al doble del ángulo inscripto correspondiente o todo ángulo inscripto en un

Page 101: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

101 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

arco de circunferencia es igual a la mitad del ángulo central correspondiente. Aquí se establece la relación entre un ángulo inscripto y un ángulo central en un mismo arco de circunferencia,

considerando las conclusiones obtenidas en 1R y otras relaciones y propiedades estudiadas por los

alumnos en años anteriores.

La tercera cuestión que se propone es 3q : ¿Cómo determinar la amplitud de ángulos inscriptos

en una circunferencia? Esta cuestión conduce al estudio de 3t : Determinar la amplitud de ángulos

inscriptos en una circunferencia. Este tipo de tareas se corresponde con 1T definida en el MER.

La elaboración de la respuesta a 3q (12R ) no aporta nuevos elementos tecnológicos. Para su

obtención se requiere del empleo del entorno tecnológico gestado a partir del estudio de 1t , y trabajar

sobre la técnica producida en 2R . Así se logra una rutinización y posterior naturalización de dicha

técnica.

La cuarta cuestión que se propone es 4q : ¿Qué relaciones se establecen entre los ángulos

inscriptos en un mismo arco de circunferencia? Esta cuestión conduce al estudio de las siguientes

tareas asociadas al tipo de tareas 2t :

12t : Determinar la relación entre ángulos inscriptos en un mismo arco de circunferencia.

22t : Determinar la amplitud de los ángulos inscriptos en una semicircunferencia.

Con 12t y

22t

se busca poner a prueba la potencia de las técnicas institucionalizadas y obtener

nuevas respuestas que favorezcan la construcción de una respuesta a 50Q .

Para el estudio de 12t es fundamental el saber que se consolida en 2R , y que permite la

elaboración de 3R : Los ángulos inscriptos en una circunferencia que abarcan un mismo arco de

circunferencia son congruentes. Las respuestas 2R y 3R aportan tecnologías para el estudio de 22t y la

elaboración de 4R : Todos los ángulos inscriptos que abarcan una semicircunferencia tienen un

amplitud de 90º.

Finalmente, la quinta cuestión que se formula es 5q : ¿Cómo determinar un lugar geométrico?

Esta cuestión conduce al estudio de 4t : Definir un lugar geométrico. Para elaborar una respuesta a 5q ,

es fundamental la aplicación de técnicas institucionalizadas en el estudio de las tareas anteriores, y

además su estudio permite elaborar tres respuestas que presentan características similares:

La respuesta 15R es elaborada a partir de 4R , y permite determinar la circunferencia que pasa por

los vértices de un triángulo rectángulo cualquiera.

La respuesta 25R es elaborada a partir de un trabajo realizado en forma empírica y argumentado

con fundamentos provenientes de 2R . Se justifica la construcción de un conjunto de puntos que surge

a partir del conocimiento de un ángulo inscripto.

Page 102: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

102 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Y la respuesta 35R es construida considerando las conclusiones obtenidas en la respuesta 2

5R y

en 2R .

A continuación se presentan las situaciones que se derivan de los tipos de tareas descriptos, y

algunos resultados de las producciones de los estudiantes.

6.1. Situación 1

La situación 1 se corresponde con 1t . Su estudio se realizó en la primera sesión, en un encuentro

de 120 minutos.

Situación 1

1.1 En los siguientes esquemas se encuentran dibujados ángulos inscriptos en un arco de

circunferencia. Dibuja, para cada uno de ellos, un ángulo central que abarque el mismo arco de circunferencia.

Esquema 1

Esquema 2

Esquema 3

1.2 En los siguientes esquemas se encuentran dibujados ángulos centrales en un arco de circunferencia. Dibuja, para cada uno de ellos, un ángulo inscripto en el mismo arco de circunferencia.

Esquema 4

Esquema 5

Esquema 6

Teniendo en cuenta lo realizado en el ítem 1.1 y 1.2, compara el trabajo con tu compañero y responde:

a) Considerando un ángulo inscripto en un arco de circunferencia, ¿Cuántos ángulos centrales en el

mismo arco de circunferencia es posible determinar? Justifica.

b) Considerando un ángulo central, ¿cuántos ángulos inscriptos en el mismo arco de circunferencia es

posible determinar? Justifica.

c) ¿Qué amplitud puede tener un ángulo central? ¿y un ángulo inscripto? Justifica.

d) ¿Dónde se encuentra el centro O respecto al ángulo inscripto? Justifica.

Page 103: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

103 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

En el estudio de esta situación el momento prioritario lo constituyó el momento exploratorio. En principio, los estudiantes manifestaron dificultades para trazar los ángulos inscriptos correspondientes

a cada ángulo central. Esto requirió de intervenciones del docente para lograr en los estudiantes

recuperar dichas nociones fundamentales para el desarrollo de la AEI. La situación generó la discusión acerca de la unicidad o no de las construcciones de ángulos inscriptos y ángulos centrales en un arco

de circunferencia, y de esta manera se preparó el terreno para el acceso de los alumnos en

producciones más argumentativas, y todo el proceso deductivo que implican las situaciones que se

proponen a continuación.

En particular, en las producciones de los estudiantes no se observan elementos tecnológicos

explícitos. Por ejemplo, para el inciso 1.2 a) el Grupo 4 indica:

Figura 4. Resolución de la situación 1 1.2 a) por el Grupo 4

En el protocolo se registra una respuesta sin indicar el por qué de la misma. Este tipo de

respuesta también fue recurrente en los restantes grupos.

Para el inciso1.2 b), en general, los grupos concordaron con la respuesta aportada por el Grupo 4:

Figura 5. Resolución de la situación 1 1.2 b) por el Grupo 4

Si bien, en este protocolo los estudiantes emplean términos adecuados para dar respuesta a la consigna, se encuentra carente de justificación. Destacamos que en general, los estudiantes emplearon

el término varios, muchos, todos los que sean posibles, para referirse a los infinitos puntos del arco de

circunferencia. Esto lo atribuimos a la corta experiencia escolar de los estudiantes en torno al estudio

de la noción de infinito, que se debería enriquecer a lo largo de toda la formación secundaria.

Con relación a los restantes incisos que contempla la situación, la respuesta obtenida de los estudiantes fue satisfactoria. En particular, los estudiantes responden a las consignas como si se tratara

de una demanda de información del profesor. No se evidencia la necesidad de justificar las respuestas

si no es por insistencia del profesor. Esto se logró en las instancias donde se discutieron las respuestas

aportadas por los diferentes grupos.

6.2. Situación 2

La situación 2 se origina a partir de 2t . El estudio de la situación se desarrolló en 3 encuentros

de 60 minutos cada uno. Esta situación tuvo como propósito reconstruir el teorema que establece la

relación entre un ángulo inscripto en un arco de circunferencia y el ángulo central correspondiente.

Los alumnos debieron establecer la relación entre ángulos, considerando las distintas posiciones del

centro O respecto al ángulo inscripto, y analizadas en la situación 1. En particular, se pretendió que los alumnos recuperaran propiedades conocidas y a partir de ellas elaborar otras nuevas. Pues según

Sadovsky, Parra, Itzcovich y Broitman (1998) el hecho de inferir a partir de datos y propiedades,

relaciones que no están explicitadas, llevan a establecer los resultados de manera independiente a la

experimentación y esto forma parte del trabajo en geometría.

Page 104: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

104 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Situación 2

Trazar una circunferencia de centro O y radio r. Ubicar tres puntos (A, B y C) en la circunferencia de

tal manera que el ángulo

ABC sea de 30º y el lado AB pase por el centro de la misma. Sin utilizar el

transportador, responde las siguientes preguntas:

a) ¿Es posible determinar la amplitud del ángulo central

AOC ? ¿Por qué?

b) Determina un punto D, en el arco AB que no contiene al punto C, de tal manera que el ángulo

DOC sea recto. ¿Es posible conocer el valor del ángulo inscripto

DBC ? Justifica.

c) Determina en el arco AC que no contiene al punto B, un punto E de tal manera que el ángulo

AOE tenga una amplitud de 20º. ¿Es posible determinar la amplitud del ángulo inscripto

EBC ? ¿y

del ángulo central

EOC ? Justifica.

d) ¿Qué relación se establece entre cada ángulo inscripto determinado en los ítems anteriores y el

ángulo central correspondiente a cada uno de ellos? e) ¿Podrías afirmar que dicha relación es válida para todo ángulo inscripto? Justifica.

En general, para el inciso a) los alumnos pudieron determinar la amplitud del ángulo central correspondiente al ángulo inscripto trazado, y recuperaron técnicas provenientes de la situación 1. Esto

permitió trabajar con argumentos deductivos llegando al resultado de manera independiente de la experimentación. Para llegar a esta instancia, algunos grupos tuvieron que transitar por la práctica de

medir con el transportador para tener una aproximación del valor del ángulo y enfrentarse a que los

integrantes de cada grupo obtuvieran diferentes resultados. Esto los hizo desconfiar de lo que se dibuja

y se observa, y buscar otras técnicas para dar respuesta. Con esta situación se puso en evidencia que los dibujos son sólo representantes de los objetos geométricos, pues en geometría ver y dibujar no es

suficiente.

Como ocurrió en la situación 1, las producciones de los estudiantes se encontraban carentes de

elementos tecnológicos explícitos, lo que requirió en las instancias de discusión, constantes

intervenciones del profesor para que los estudiantes los indicaran.

En los incisos que siguen se registraron algunas producciones donde los estudiantes explicitaron

algunos elementos tecnológicos por iniciativa propia. Por ejemplo, para el inciso b) el Grupo 6 indicó

en forma escrita:

Figura 6. Resolución de la situación 2 b) por el Grupo 6

Page 105: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

105 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Para el inciso c), el Grupo 1 indicó:

Figura 7. Resolución de la situación 2 c) por el Grupo 1

Estas producciones constituyen un gran avance en relación a lo obtenido en las situaciones

anteriores. Los estudiantes comenzaron a evidenciar vestigios de la necesidad de explicitar el entorno

tecnológico, sin necesidad de que el profesor lo requiera.

Con relación al inciso d) se logró que los estudiantes revisen sus producciones anteriores y puedan establecer la relación entre ángulos inscriptos y centrales. Mientras que el inciso e) los condujo

a cuestionarse la validez de la respuesta dada al inciso d).

La situación 2 permitió a los estudiantes concluir en el siguiente teorema, que constituye una

pieza vital en la organización que se reconstruye.

Todo ángulo central en un arco de circunferencia es igual al doble del ángulo inscripto

correspondiente” o “todo ángulo inscripto en un arco de circunferencia es igual a la mitad

del ángulo central correspondiente.

6.3. Situación 3

La situación 3 se gestó a partir de 3t . El estudio se realizó en una sesión de 60 minutos. El

objetivo fue hacer vivir el momento del trabajo de la técnica. Se pretendió que los alumnos empleen

técnicas que emergieron del hacer de la situación 2 y lleguen a utilizarlas de manera natural.

Page 106: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

106 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Situación 3

Determina los valores de α y β. Indica los procedimientos utilizados para hallar la solución.

a) b)

Esquema 7 Esquema 8

Los estudiantes determinaron la amplitud de los ángulos solicitados en la tarea, y justificaron los resultados obtenidos a partir de los datos conocidos y con el apoyo de las relaciones estudiadas,

independientemente de la experimentación. En particular, destacamos que el entorno tecnológico

explícito en los protocolos continúa siendo incompleto. Esto condujo nuevamente al profesor, en las instancias de discusión, a formular preguntas para que los estudiantes lo hagan explícito. Por ejemplo,

encontramos resoluciones como la siguiente:

Figura 8. Resolución de la situación 3 a) por el Alumno 4

En el protocolo se indican procedimientos y se da respuesta a la consigna sin explicitar el medio

tecnológico que justifica el hacer.

6.4. Situación 4

La situación 4, al igual que la situación 3, se corresponde con 3t . La situación se plantea en

forma coloquial, y se pretendió que los alumnos realicen sus propios esquemas y encuentren

relaciones entre los elementos involucrados. El estudio de la situación tuvo lugar en un encuentro de

60 minutos.

Situación 4

Resuelve las siguientes situaciones, justificando los procedimientos empleados.

a) ¿Es posible determinar la amplitud de un ángulo inscripto que abarca tres cuartos de circunferencia? ¿Por qué?

b) Si un ángulo inscripto ε es el doble de un ángulo inscripto cuyo ángulo central correspondiente es

de 135º ¿Podrías decidir la amplitud del ángulo inscripto ε y del ángulo central correspondiente?

Page 107: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

107 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Para dar respuesta al inciso a), en general, los alumnos realizaron un esquema para determinar los tres cuartos de circunferencia y el ángulo que debían calcular. La figura de análisis jugó un papel

importante en la situación. Permitió buscar razones y argumentos para justificar la amplitud de

ángulos inscriptos, tal como se observa por ejemplo en el siguiente protocolo:

Figura 9. Resolución de la situación 4 a) por el Alumno 5

Aquí observamos que el estudiante justificó su propuesta de manera adecuada. Del mismo

modo, para el inciso b) las respuestas registradas fueron satisfactorias.

6.5. Situación 5

La situación 5 se originó a partir de 1

2t . El estudio de la situación se desarrolló en un encuentro

de 60 minutos.

Situación 5

Dada la siguiente circunferencia de centro O y radio r, β un ángulo central y M un punto de la

circunferencia:

Esquema 9

a) ¿Es posible trazar tres ángulos inscriptos, α, ε y π, que tenga como ángulo central el ángulo β? Justifica.

b) ¿Qué relación existe entre las amplitudes de los ángulos inscriptos, α, ε y π? Justifica.

Los estudiantes elaboraron una técnica en base a lo estudiado hasta aquí, lo que provocó la aparición de una nueva tecnología para ser empleada en las próximas situaciones. La toma de decisión acerca de la ubicación de los vértices y los puntos por los cuales deben pasar los lados de los ángulos

involucra un razonamiento con tintes deductivos, y promueve la reflexión sobre ciertas condiciones

que deben cumplir los ángulos construidos.

Page 108: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

108 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

En general, los estudiantes comenzaron el trabajo trazando tres ángulos en el esquema dado,

como se puede observar en el protocolo del Alumno 19:

Figura 10. Resolución de la situación 5 por el Alumno 19

En el protocolo, se observa que el alumno ubicó los vértices de los ángulos inscriptos en el arco de circunferencia que contiene a M, aunque la respuesta que se indica es incompleta. Pues no es

adecuado considerar cualquier punto de la circunferencia, sino que es necesario explicitar cualquier

punto del arco de circunferencia que contiene a M. Por otro lado, la respuesta no se fundamenta utilizando un medio tecnológico explícito. Se pretendía que los alumnos recuperaran elementos

tecnológicos de la situación 1. Este tipo de respuesta, recurrente en las producciones de los alumnos,

requirió que en la instancia de discusión, interviniera el profesor para que los estudiantes puedan

concluir en el siguiente resultado tecnológico:

Los ángulos inscriptos en un mismo arco de circunferencia tienen la misma amplitud.

Luego, para responder a la segunda cuestión, los alumnos recuperaron elementos tecnológicos

que emergieron del hacer de la situación 2 y dedujeron que todos los ángulos inscriptos en un mismo arco de circunferencia tienen por ángulo central al ángulo β y por lo tanto tienen la misma amplitud.

De esta manera, la tecnología institucionalizada en el hacer de la situación 2, apareció como una

necesidad tecnológica para explicar el hacer de la situación 5. Finalmente, se institucionalizó que:

Los ángulos inscriptos en una circunferencia que abarcan un mismo arco de circunferencia

son congruentes.

6.6. Situación 6

La situación 6 se corresponde con 2

2t , y el estudio se desarrolló en un encuentro de 60 minutos.

Situación 6

Considera una circunferencia de centro O y radio AO , el diámetro AB y un punto cualquiera C

sobre la circunferencia. ¿Podrías determinar la amplitud del ángulo inscripto

ACB ? Justifica de dos

maneras diferentes.

Page 109: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

109 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

El objetivo de la situación fue que los alumnos puedan determinar la amplitud de los ángulos inscriptos en una semicircunferencia utilizando elementos tecnológicos que emergen del hacer de las

situaciones 2 y 5.

En particular, de los registros obtenidos destacamos las dificultades de los estudiantes para

justificar de otra manera el valor del ángulo inscripto. Esto requirió de intervenciones del docente para arribar a una respuesta. Finalmente, en un trabajo conjunto entre los alumnos y el profesor se concluyó

en que:

Todos los ángulos inscriptos que abarcan una semicircunferencia tienen una amplitud de 90°.

6.7. Situación 7

Las situación 7 se originó a partir de 4t . Se trata de una situación abierta en el sentido de que

los alumnos debieron decidir sobre cuáles son los datos y las incógnitas en el enunciado de la tarea. El

estudio de esta situación se llevó a cabo en una sesión de 60 minutos.

Situación 7

¿Es posible trazar la circunferencia que pasa por los vértices de un triángulo rectángulo? Justifica.

Los alumnos analizaron los datos con los que debieron construir la figura, determinaron si la

construcción era posible o no, y establecieron relaciones entre los datos conocidos y el dibujo a

obtener. La toma de decisiones acerca de la ubicación del centro de la circunferencia involucró un razonamiento con argumentos deductivos. Es decir, promovió la reflexión sobre los elementos de un

triángulo (lados y ángulos), las relaciones entre éstos y los elementos de una circunferencia (centro,

radio, diámetro, ángulo inscripto, ángulo central). Luego de discutir las respuestas aportadas por los

diferentes grupos, se concluyó en lo siguiente:

Es posible trazar la circunferencia que pasa por los vértices de cualquier triángulo

rectángulo porque para todo triángulo rectángulo la hipotenusa es diámetro de la

circunferencia que pasa por los tres vértices.

6.8. Situación 8

Las situación 8 se corresponde con 4t . Con esta situación se acercó a los estudiantes al

resultado que se arriba con el estudio de la situación 9. Si bien, lo que se realiza es en principio un

trabajo empírico, del que emerge la solución en forma casi inmediata, se involucra a los estudiantes en

una actividad de cuestionarse dicho resultado. Esto exigió que los alumnos argumenten a partir de

propiedades conocidas. El estudio de esta tarea se realizó en un encuentro de 60 minutos.

Page 110: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

110 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Situación 8

En una papel transparente dibuja un ángulo menor que 180º y haz un agujero en el vértice con la punta

de un lápiz.

Sobre un papel blanco señala un segmento AB y coloca la transparencia sobre el papel blanco de

modo que cada lado del ángulo pase por uno de los dos extremos del segmento AB .

Señala con el lápiz donde queda el vértice para cada solución posible de la transparencia.

¿Podrías inferir qué curva va describiendo el vértice? Encuentren argumentos que expliquen el

resultado obtenido.

En general, los estudiantes determinaron que la curva que se va describiendo es un arco de circunferencia. En el momento de argumentar el resultado obtenido, no se registraron elementos

tecnológicos explícitos. Las respuestas aportadas por los diferentes grupos no van más allá de indicar

lo que se obtuvo mediante el trabajo empírico. Se obtuvieron respuesta como la que se indica a

continuación:

Figura 11. Resolución de la Situación 8 por el Grupo 2

6.9. Situación 9

Las situación 9 se corresponde con 4t , y tiene como finalidad que los alumnos, considerando lo

realizado en la situación 8, logren trazar un conjunto de puntos sin utilizar la transparencia. El estudio

de esta situación se desarrolló en un encuentro de 60 minutos.

Situación 9

Considera un segmento AB , encuentra, por lo menos, tres puntos P tal que el ángulo

APB sea de 60º. ¿Es posible determinar el conjunto de puntos P que cumplen esta condición, sin utilizar la

transparencia? Justifica.

Page 111: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

111 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Aquí se propuso una situación donde los datos son la amplitud de un ángulo y un segmento, y la incógnita es el arco de circunferencia que representa el conjunto de vértices del ángulo dado, es decir

una tarea inversa a la realizada en la situación 3 y en la situación 4. En general, se obtuvieron

respuestas como la del Grupo 1.

Figura 12. Resolución de la Situación 9 por el Grupo 1

Los alumnos analizaron los datos con los que construyeron la figura, determinaron si la

construcción era posible o no, establecieron relaciones entre los datos conocidos y el dibujo a obtener. De esta manera, la presencia de una figura de análisis fue un referente importante en el hacer de la

situación.

Los estudiantes pusieron en práctica los elementos tecnológicos institucionalizados hasta el

momento y otros objetos matemáticos estudiados. Si bien, los alumnos trazaron un conjunto de puntos, considerando un segmento y el ángulo inscripto dado en el enunciado, en general, no interpretaron el

resultado obtenido. En los protocolos se observó que el entorno tecnológico explicitado se encuentra

incompleto, y en el hacer de la situación, el profesor tuvo la necesidad de realizar sugerencias que

permitan a los alumnos observar el trabajo y establecer relaciones entre los datos considerados.

Page 112: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

112 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

7. Reflexiones finales

Con fundamento en la Teoría Antropológica de lo Didáctico, se elaboró y describió las

características esenciales de un MER con relación a ángulos inscriptos en una circunferencia. Dicho

modelo constituyó la base para el diseño de la AEI.

Se realizó una primera implementación de la AEI, en un curso de tercer año de la educación

secundaria argentina, y habituado al estudio de la matemática de manera tradicional. Durante las diferentes sesiones, se involucró a los estudiantes en un nuevo tipo de trabajo, que implicó

modificaciones a nivel de mesogénesis, topogénesis y cronogénesis. Con relación a la mesogenésis, se

resolvieron situaciones que permitieron desplegar razonamientos propios del trabajo geométrico y que permitió institucionalizar el teorema de ángulos inscriptos en una circunferencia. En particular, los

estudiantes dedujeron a partir de los datos y utilizaron propiedades y relaciones que no se encontraban

explícitas en las situaciones. Analizaron los datos con los que se debían construir las diferentes figuras, determinaron si la construcción era posible o no, trataron a sus esquemas como figuras

generales y no como figuras particulares, establecieron relaciones entre los datos conocidos y el dibujo

a obtener, llegando a establecer el resultado independientemente de la experimentación. Esto resultó

ser una experiencia sumamente útil en el camino hacia comprender a una figura como el conjunto de

relaciones que la caracterizan y que pueden ser enunciadas en un texto.

Con relación a la topogénesis, se buscó que los estudiantes se responsabilizaran de validar las

técnicas propuestas. Esto requirió de constantes intervenciones del profesor, pues los estudiantes se

manifestaron resistentes a recuperar su topos en el proceso de estudio, como producto de la formación escolar vivida hasta el momento. Esta implementación también puso en evidencia cambios

cronogenéticos, en el sentido de que se requirió de mayores períodos de trabajo de los estudiantes para

realizar las tareas, porque fueron ellos quienes propusieron las técnicas para resolver.

De nuestro trabajo, destacamos las dificultades para desarrollar un dispositivo didáctico con las

características de una AEI en la escuela secundaria, en grupos fuertemente demarcados por el paradigma de la monumentalización de los saberes. Dentro de la ideología de las AEI, no conseguimos

darnos suficiente espacio para poder salir del camino que habíamos planeado recorrer y los encuentros

que producir. Para los estudiantes resolver una situación es dar respuesta a la demanda del profesor, que se caracteriza por la ausencia de un entorno tecnológico explícito, y de nuevas cuestiones que

deriven en la necesidad de seguir estudiando.

Si bien, la noción de AEI es una alternativa incompleta y limitada, consideramos que es una

propuesta viable en la escuela secundaria y permite comenzar a enfrentar el problema de la

monumentalización de los saberes. Aquí los estudiantes resolvieron situaciones que les permitió explorar, conjeturar y validar. Con la AEI diseñada se produjeron encuentros con una cierta OM que

perdió sentido su estudio en la escuela secundaria. Como se indicó en el MER, hay nociones

fundamentales que le dan sentido al estudio de ángulos inscriptos en circunferencia y que se encuentran ausente en el diseño curricular de la escuela secundaria. Serían de vital importancia volver

a recuperarlas para restablecer la razón de su estudio.

Bibliografía

Abrate, R.; Delgado,G.; Puchulu, M. (2006). Caracterización de las actividades de Geometría que proponen los textos de Matemática. Revista Iberoamericana de Educación [en linea], 39 (1).

Recuperado el 31 de Octubre de 2012, de http://www.rieoei.org/deloslectores/1290Abrate.pdf

Page 113: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

113 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

Ancochea, B. (2011). Las funciones de las calculadoras simbólicas en la articulación entre la geometría sintética y la geometría analítica en secuencia. En M. Bosch.; J. Gascón; A. Ruíz

Olavarría; M. Artaud; A. Bronner; Y. Chevallard; G. Cirade; C. Ladage; M. Larguier (Eds.). Un

panorama de la TAD (pp. 533-551). Barcelona: Centre de Recerca Matemática Báez, R. & Iglesias, M. (2007). Principios didácticos a seguir en el proceso de enseñanza y

aprendizaje de la geometría en la UPEL “El Mácaro”. Enseñanza de la Matemática, Vols. 12 al 16,

Número extraordinario, 67-87. Barrantes, M. y Blanco, L. J. (2005). Análisis de las concepciones de los profesores en formación

sobre la enseñanza y aprendizaje de la geometría. Números [en linea], 62, Recuperado el 01 de

Noviembre de 2012, de http://www.sinewton.org/numeros/numeros/62/Articulo02.pdf.

Bosch, M. & Gascón, J. (2010). Fundamentación antropológica de las organizaciones didácticas: de los “talleres de prácticas matemáticas” a los “recorridos de estudio e investigación”. En A.

Bronner, M. Larguier, M. Artaud, M. Bosch, Y. Chevallard, G. Cirade & C. Ladage (Eds.).

Diffuser les mathématiques (et les autres savoirs) comme outils de connaissance et d’action (pp. 49-85), Montpellier, Francia: IUFM de l’Académie de Montpellier.

Chevallard, Y. (1985). La transposition didactique ; du savoir savant au savoir enseigné, Paris: La

Pensée Sauvage. Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique.

Recherches en Didactique des Mathématiques. 19/2, 221-266.

Chevallard, Y. (2004). Vers une didactique de la codisciplinarité. Notes sur une nouvelle

épistémologie scolaire. En linea. Recuperado el 01 de Noviembre de 2012, de http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Vers_une_didactique_de_la_codisciplinarite.pdf

Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. En linea.

Recuperado el 01 de Noviembre de 2012, de http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Steps_towards_a_New_Epistemology.pdf

Chevallard, Y. (2007). Passé et présent de la théorie anthropologique du didactique. . En linea.

Recuperado el 01 de Noviembre de 2012, de

http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Passe_et_present_de_la_TAD-2.pdf Chevallard, Y. (2009a). La notion d’ingénierie didactique, un concept à refonder. Questionnement et

éléments de réponse à partir de la TAD. En linea. Recuperado el 01 de Noviembre de 2012, de

http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Cours_de_YC_a_l_EE_2009-2.pdf Chevallard, Y. (2009b). La notion de PER: problèmes et avancées. En línea. Recuperado el 01 de

Noviembre de 2012, de

http://yves.chevallard.free.fr/spip/spip/IMG/pdf/La_notion_de_PER___problemes_et_avancees.pdf Diseño Curricular para la Educación Secundaria 2 año (SB). (2008). Dirección General de Cultura y

Educación. Gobierno de la Provincia de Buenos Aires. Matemática. [En linea]. Recuperado el 01

de Noviembre de 2012, de

http://abc.gov.ar/lainstitucion/organismos/consejogeneral/disenioscurriculares/documentosdescarga/secundaria2.pdf

Diseño Curricular para la Educación Secundaria 3 año (SB). (2009). Dirección General de Cultura y

Educación. Gobierno de la Provincia de Buenos Aires. Matemática. [En linea]. Recuperado el 01 de Noviembre de 2012, de

http://abc.gov.ar/lainstitucion/organismos/consejogeneral/disenioscurriculares/documentosdescarga

/dc_ter1_08_cs_matematica.pdf Espinoza, L.; Barbé, J.; Dinko, D. (2007). El problema de la enseñanza de la geometría en la

Educación General Básica chilena y una propuesta para su enseñanza en aula. [En linea].

Recuperado el 01 de Noviembre de 2012, de

http://www4.ujaen.es/~aestepa/TAD_II/Comunicaciones_TAD_II/34%20-%20Espinoza_Barbe_congres_TAD_2.pdf

Gamboa, R.; Ballestero, E. (2010). La enseñanza y aprendizaje de la geometría en secundaria, la

perspectiva de los estudiantes. Revista Electrónica Educaré [En linea], 14 (2), ]. Recuperado el 01 de Noviembre de 2012, de http://www.revistas.una.ac.cr/index.php/EDUCARE/article/view/906.

Page 114: Números, Revista de Didáctica

Actividad de estudio e investigación para la enseñanza de nociones de geometría A. R. Corica, E. A. Marin

114 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

Gascón, J. (2002): Geometría sintética en la ESO y analítica en el Bachillerato. ¿Dos mundos completamente separados? Suma [En linea], 39. Recuperado el 01 de Noviembre de 2012, de

http://revistasuma.es/IMG/pdf/39/013-025.pdf.

Gascón, J. (2003). Efectos del autismo temático sobre el estudio de la Geometría en Secundaria. Desaparición escolar de la razón de ser de la Geometría. Suma [En linea], 44. Recuperado el 01 de

Noviembre de 2012, de http://revistasuma.es/IMG/pdf/44/025-034.pdf.

Gascón, J. (2011). Las tres dimensiones fundamentales de un problema didáctico El caso del álgebra elemental. Relime [En linea], 14 (2), Recuperado el 01 de Noviembre de 2012, de

http://www.clame.org.mx/relime.htm.

Itzcovich, H. (2005). Iniciación al estudio didáctico de la Geometría. Buenos Aires: El Zorzal.

Jones, K. (2002). Issues in the Teaching and Learning of Geometry. En L. Haggarty (Ed.), Aspects of Teaching Secondary Mathematics. Perspectives on practice (pp. 121-139). London:

RoutledgeFalmer.

Sadovsky, P.; Parra, C.; Itzcovich, H.; Broitman, C. (1998). La enseñanza de la geometría en el segundo ciclo en Documento de trabajo N° 5. Dirección de Currícula, Secretaría de Educación,

Gobierno de la Ciudad de Buenos Aires.

Roditi, E. (2004). Le Theoreme de lángle inscrita u college analyse dúne seance díntroduction. Petit x [En linea], 66. Recuperado el 01 de Noviembre de 2012, de http://www-irem.ujf-

grenoble.fr/revues/revue_x/fic/66/66x2.pdf.

Ana Rosa Corica. Doctora en Ciencias de la Educación por la Universidad Nacional de Córdoba en

Argentina. Licenciada en Educación Matemática y Profesora en Matemática y Física por la Universidad

Nacional del Centro de la Provincia de Buenos Aires. Investigadora Asistente del Consejo Nacional de

Investigaciones Científicas y Técnicas (CONICET). Investigadora del Núcleo de Investigación en

Educación en Ciencia y Tecnología (NIECyT). Docente de la cátedra de Didáctica de la Matemática en la

Facultad de Ciencias Exactas de la UNCPBA.

Elisabeth Alejandra Marin. Licenciada en Educación Matemática por la Universidad Nacional del Centro de la Provincia de Buenos Aires. Profesora de Matemática por el Instituto de Formación Docente

y Técnica Nº156 "Dr. Palmiro Bogliano". Es docente de Matemática en diversas escuelas de nivel

secundario en la ciudad de Azul (Provincia de Buenos Aires).

Page 115: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 115-137

A S

T R

O N

O M

Í A

Coord

inad

or: L

uis B

alb

uen

a C

astella

no

Club Astronómico del Instituto

Federico Fernández Porredón

(Instituto de Enseñanza Secundaria Profesor Martín Miranda. La Laguna. Tenerife. España)

Resumen El Club Astronómico del Instituto Profesor Martín Miranda de La Cuesta-La Laguna, es

un foro de debates, conferencias y observaciones relativos a una materia interdisciplinar:

la Astronomía. En el club participan alumnos de este centro de forma continuada desde el

año 1996 hasta la actualidad. El Club Astronómico cuenta también con la colaboración de ex alumnos que guardan este vínculo con el instituto, así como padres, madres y

profesores, tanto de nuestro centro como de otros homólogos de Tenerife. Desde su

origen se ha visto arropado por profesionales del Instituto de Astrofísica de Canarias

(IAC), que, de forma desinteresada, acuden a nuestra invitación premiándonos con

excelentes conferencias y proyectos, como veremos a lo largo de este artículo. Desde

estas páginas invitamos a profesionales de Secundaria a sumarse a iniciativas de este

tipo.

Palabras clave Astronomía, observaciones, foro, interdisciplinar, instituto.

Abstract The Astronomic Club of the secondary school Profesor Martín Miranda in La Cuesta, La

Laguna, is a forum for debating, conferences and observations related to this

interdisciplinary area: the Astronomy. Many students have taken part in this centre from

1996 up today. The Astronomic Club has the collaboration of old students that keep in

touch with us, as well as parents and teachers from this centre and from other secondary schools in Tenerife. Staff from Astrophysics Institute of Canarias has supported our

activity from its origins visiting us and giving excellent lectures and projects, as we will

see in this article. We invite all the secondary school staffs to participate in this kind of

initiatives.

Keywords Astronomy, observations, forum, interdisciplinary, secondary school.

1. Introducción

El año 1990 iniciamos una ruta que unos años después desembocaría en El Club Astronómico del Instituto, entonces I.B. San Hermenegildo y hoy IES Profesor Martín Miranda, en honor a José

Francisco, nuestro querido compañero y director durante muchos años.

Antes de seguir quisiera dejar constancia de mi agradecimiento a D. Pedro Morales Escuela,

conserje del Instituto pues sin su desinteresada y continuada colaboración esta historia habría sido muy

distinta.

Estimo que para dar una imagen, lo más fiel posible, de esta actividad extraescolar debo

contextualizarla. Es por eso que en algunos momentos de esta exposición me veré obligado al recurrir

a aspectos colaterales que ayuden a poner de manifiesto el cómo y el porqué de esta, para mí,

Page 116: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

116 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

apasionante aventura. Una travesía que aún hoy continuamos con el mismo entusiasmo e ilusión que

en sus comienzos pero con la experiencia y medios técnicos acumulados durante el largo recorrido.

El proyecto comenzó, sin saberlo entonces, desde el instante en que intentaba dar respuesta a la

curiosidad de un alumno: Profesor ¿y Júpiter puede verse? Estábamos tratando un problema de Física

en el cual dados algunos parámetros orbitales se pedía determinar la velocidad media de traslación del planeta. Mi respuesta fue que sí, pero no supe qué contestarle cuando me volvió a preguntar: ¿y esta

noche lo podemos ver? La búsqueda de la respuesta llevaba latente una gran dosis de entusiasmo que

contagió a otros alumnos y profesores. Es así que decidimos realizar una primera observación nocturna desde el Pico de las Nieves, en el kilómetro 13 de la carretera que conduce a Las Cañadas del

Teide. Allá fuimos dotados de planisferios, prismáticos, un cuaderno de campo y una cámara

fotográfica en la que se había instalado un carrete de diapositivas. Como no teníamos trípode, tiramos

las primeras fotos al cielo con la cámara apoyada en el techo del coche a la vez que probábamos con diferentes tiempos de exposición en espera del dictamen del revelado. Cuando días después tuvimos

las diapositivas entendimos que los tiempos de exposición aceptables para un objetivo de 50 mm de

focal, en el que cabe una constelación extensa como la de Orión, no debían superar los 20 segundos pues el movimiento aparente de los astros se apreciaba de forma notable. Tras unas cuantas salidas

teníamos localizadas la mayor parte de las constelaciones visibles desde Canarias e identificados a los

planetas que podían verse en esas fechas a unas horas prudenciales. El interminable puzle de la bóveda

celeste comenzaba a armarse para nosotros. Una de las primeras imágenes que nos daban constancia

de la visibilidad de Júpiter se añade a continuación.

Figura 1. La noche del 20 de febrero de 1991, el brillante Júpiter se encontraba junto al cúmulo del Pesebre

(M44), ambos dentro de un asterismo en forma de trapecio que caracteriza a la constelación de

Cáncer. La foto original es una diapositiva posteriormente digitalizada. En la parte inferior derecha

de la imagen también se aprecia el pentágono característico de la cabeza de la Hidra.1

1 Datos técnicos de la imagen de la Figura 1: 20/02/1991; 22:20 horas; Objetivo 50 milímetros; f/1,4; Exposición

15 segundos; ISO 100.

Page 117: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

117 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

2. La fotografía astronómica fue nuestra más importante herramienta de trabajo

Pronto apreciamos, en este embrión de Club Astronómico, que la fotografía astronómica era una

potente herramienta ya que el uso de diapositivas en el aula abría unas posibilidades didácticas tales

que facilitaban enormemente la labor del profesor en aquellos años en que las tecnologías de información y comunicación no tenían, ni de lejos, el desarrollo actual. Además, su belleza plástica

nos incitaba a salir de observación más a menudo con el aliciente de captar hermosos ejemplares

permitiéndonos reproducir fielmente zonas de la bóveda celeste y apreciar con exactitud,

características del cielo nocturno tales como: a) Los diferentes tipos de objetos celestes y sus magnitudes. b) El movimiento relativo de los astros durante la noche. c) Las distancias relativas entre

ellos. d) El desplazamiento de los planetas en relación a las estrellas, y consecuentemente los

movimientos retrógrados de los planetas, noche tras noche, especialmente el de Marte. e) Los

diferentes colores estelares. f) El color de los objetos débiles y lejanos.

Este último punto merece un comentario, ya que la cámara réflex nos permite tener el obturador

abierto el tiempo deseado, lo que unido al poder de acumular información que posee una placa

fotográfica, consigue que se lleguen a plasmar fielmente colores como el rojo anaranjado del

hidrógeno incandescente de las nebulosas de emisión (Figura 2). Colores que no podemos visualizar ni con los más potentes telescopios pues nuestros conos (células de la retina especialistas en la detección

del color) necesitan mayor intensidad de luz de la que nos llega desde las nebulosas. Esta circunstancia

la resume bien el refrán: Por la noche todos los gatos son pardos.

Figura 2. En esta foto de la constelación de Orión que obtuvimos con una técnica más depurada que la

anterior, se aprecian los colores de diferentes astros y el color anaranjado de las nebulosas de

Orión (M42, en el centro de la imagen) el bucle de Barnard (a 1600 años-luz) y La Roseta (abajo).

Con las experiencias adquiridas durante ese curso, se elaboró esta tabla para tener una referencia

de los tiempos máximos de exposición dependiendo de los objetivos fotográficos empleados y de la posición de los astros en la bóveda celeste en relación al ecuador celeste. El arco descrito en un tiempo

dado por un astro es menor cuanto más próximo esté al polo celeste, permitiéndonos mayor tiempo de

exposición sin que aparezcan trazos.

Page 118: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

118 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

Distancia del astro al ecuador celeste 0º (ecuador) 30º 45º 60º

F=28mm 35seg 40seg 50seg 75seg

F=50mm 20seg 23seg 28seg 40seg

F=200mm 5seg 5,5seg 7seg 10seg

Tabla 1. Tabla que elaboramos de forma experimental con los tiempos de exposición máximos para

diferentes objetivos, dependiendo de la posición del objeto en la bóveda celeste.

3. Llega la Astronomía como asignatura reglada… y el telescopio

La rápida evolución desarrollada en los conocimientos básicos de esta materia fue, en gran

parte, gracias a las conferencias impartidas por astrofísicos del IAC. Pero también a una la labor autodidacta. No quiero pecar de falsa modestia, y creo que debo añadir esta reflexión: mi formación

como licenciado en químicas hizo posible mi rápida evolución en este territorio interdisciplinar que es

la Astronomía. Es más, el estudio en los años 90 de esta materia me ayudó a atar cabos que me habían

quedado sueltos en los 70, y así llenar lagunas importantes en mi formación como químico. Sobre todo por lo que supuso para mí el conocimiento básico de la evolución estelar, y por tanto, el conocimiento

de la génesis de los elementos químicos. “A partir de la muerte de una estrella surgen los átomos de

los elementos químicos pesados que podrán dar lugar, o no, a través de la evolución, a seres tan

irrepetibles como los lectores de Números. En el caso de la Humanidad así fue”. 2 Reflexión del autor.

Es así que nos decidimos a dar un paso más. Elaborar un cuestionario y pasarlo entre los

alumnos del instituto sobre la aceptación que tendría la Astronomía como materia optativa ofertada

como EATP Enseñanzas y Actividades Técnico Profesionales). El grado de aceptación fue tan motivador que nos decidimos a elaborar una programación para impartir la asignatura optativa titulada

Astronomía y Astrofísica para los cursos de 2º y 3º de BUP (Bachillerato Unificado y Polivalente). La

programación fue enviada a la autoridad educativa. Tras su aprobación, comenzamos a impartirla el

curso 1991-92, curso en el cual el director del Instituto de Astrofísica de Canarias, el Profesor Dr. Francisco Sánchez Martínez dio una emotiva conferencia en nuestro instituto, precisamente sobre

Evolución estelar con la finalidad de apoyar el proyecto de impartir Astronomía de forma reglada en

un centro de Canarias.

Nuestro siguiente salto cualitativo fue adquirir un telescopio. Tras la aceptación por parte del Consejo Escolar compramos a Tycho, así decidieron bautizar los alumnos al telescopio refractor de

1000 mm de focal y 10 cm de apertura f/10 y montura ecuatorial que facilita el seguimiento de los

astros. El nombre del telescopio se eligió en honor al extraordinario y pintoresco astrónomo danés

Tycho Brahe, astrónomo en la corte de Praga que, por pocos años, no pudo conocer este invento de los holandeses. Con un telescopio perfeccionado por Galileo en 1609, este profesor de Matemáticas de la

Universidad de Padova, pudo demostrar que la teoría de Copérnico era correcta, dando comienzo con

ello al método científico. La compra fue un éxito, ya que, tras pasar por decenas de salidas observacionales, acampadas astronómicas y centenares de manos jóvenes, entusiastas e inexpertas, aun

sigue operativo 21 años después.

Page 119: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

119 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

Figura 3. Alumno de 3º de BUP observando a través de Tycho durante una acampada en Madre del Agua

(Vilaflor). Los telescopios refractores son ideales para actividades que exijan desplazamientos. El

hecho de que no tengan espejo sino lentes los hace más resistentes al uso fuera de un observatorio.

La presencia de un telescopio dotado con un filtro Mylar colocado en el objetivo, nos permitió realizar observaciones solares, surgiendo ahí el proyecto “Los recreos al Sol” en el que los alumnos,

debidamente informados sobre los riesgos que supone la observación solar, determinaban su actividad

diariamente cuantificando las manchas existentes en la fotosfera, que es la zona del Sol que podemos

ver directamente desde la Tierra, una capa gaseosa en la que la temperatura es de sólo 6.000 grados. Con estas observaciones obteníamos el número de Wolf, que es una forma de cuantificar la actividad

solar. Su expresión es: W=k(10xG+F). Donde W es el nº de Wolf, k es un factor de corrección entre

los diferentes observadores, G es el número de grupos observados, F el número de focos individuales;

k suele tener valor uno.

Con nuestras observaciones, elaboramos una tabla de resultados y los enviamos mensualmente a

una sede de recogida de datos solares ubicada en Bruselas, denominada SUNSPOT INDEX DATA

CENTER.

Figura 4. Fotografía de la fotosfera solar obtenida por un alumno de la época a través de “Tycho” dotado de

filtro Mylar. Las manchas solares son zonas más frías y oscuras de la fotosfera, ya que su temperatura

es de 4.000 grados y se forman por los movimientos convectivos de la atmósfera solar producidos por

la existencia de enormes campos magnéticos.

Page 120: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

120 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

4. Un observatorio para “Tycho”

Finalizando el curso 1992-93 presentamos al Consejo Escolar un presupuesto para la

autoconstrucción de una cúpula. En aquel momento se pudo abordar gracias, sobre todo, al

compromiso de muchas personas que se prestaron a trabajar durante el mes de julio de 1993. Ese compromiso aún continúa ya que son los propios miembros del Club, en su mayoría estudiantes, los

que se encargan de su mantenimiento. En el acto inaugural de nuestro observatorio pronunció una

conferencia D. Ignacio García de la Rosa, que era entonces director del Museo de la Ciencia y el

Cosmos.

Figura 5. Alumnos en plena faena de mantenimiento de la cúpula-observatorio.

Poco antes de fin de curso llegó al instituto la convocatoria de un Encuentro de Profesores de

Astronomía de ámbito nacional promovido por la Caja de Ahorros del Mediterráneo para celebrar a finales de septiembre del 93 en Alicante. Embargado por la buena marcha de nuestro proyecto, decidí

asistir, (entonces las clases comenzaban en octubre), y presenté una comunicación titulada La

fotografía Astronómica y su utilidad didáctica. Una de las comunicaciones que más me impactó fue la de un Inspector de Enseñanza Secundaria de Uruguay: el Dr. Gonzalo Vincino. En ella, además de

informarnos de que la asignatura de Astronomía existía como materia obligatoria en su país desde

finales del siglo XIX, resaltó un aspecto que me llamó mucho la atención: la tradición que tenían en los centros de enseñanza segundaria uruguayos los clubs de Astronomía, como elemento aglutinador

de los alumnos con su instituto, una vez concluido su periplo formativo.

5. Un club de Astronomía para el San Hermenegildo

Durante el curso 1993-94 recibimos la propuesta por parte de la Consejería de Educación de elaborar el currículo de una optativa de Astronomía. El desarrollo del currículo lo llevamos a cabo tres

profesores: D. José B. Navarro García, coordinador del Departamento Didáctico del Museo de la

Ciencia y el Cosmos, miembro del Programa Contenidos Canarios. D. Juan Antonio García Herrera, profesor del C.E.I. (Centro de Enseñanzas Integradas) de La Laguna, y quien suscribe D. Federico

Fernández Porredón, profesor del I.B. San Hermenegildo (La Laguna). La asignatura se llamaría

Taller de Astronomía. La aprobación del currículo se publicó en el BOC (Boletín Oficial de Canarias)

de 25 de mayo de 1995 en la resolución 981 de 8 de mayo de 1995. Llegados a este punto hay varios

motivos que nos llevan a constituir un Club Astronómico:

Page 121: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

121 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

1. La nueva asignatura atrajo un alumnado de los que dejan huella. 2. La propuesta que nos hace el IAC de realizar un intercambio basado en prácticas

astronómicas con un instituto danés, el Rodovre Gymnasium de Copenhague, nos exigió un

esfuerzo organizativo que nos animó a rentabilizar más nuestros recursos.

Merece la pena un breve comentario sobre esta primera experiencia internacional a la que seguirían muchas más. En Copenhague convivieron 28 alumnos de La Cuesta con los respectivos

compañeros y sus familias danesas, realizando además numerosas actividades y visitas incluida una

acampada astronómica en Jutlandia, y presenciaron dos partidos de fútbol de la selección española, la sub 21 y la absoluta. La experiencia, basada en el programa Lingua, estuvo repleta de anécdotas, casi

todas formativas y divertidas. Como aquella en la que, tras una presentación realizada por nuestros

alumnos sobre la astronomía en Canarias, tuvimos que participar en el salón de actos, poblado por

cuatrocientos espectadores, con la interpretación de alguna canción española, pues celebraban el vigésimo quinto aniversario de la inauguración del Rodovre Gymnasium y solicitaron la colaboración

de los españoles.

3. Pero el motivo principal para crear el CAI fue el deseo del alumnado y del profesorado de

otros centros, de realizar prácticas nocturnas frecuentes en el observatorio del instituto y rentabilizar estas instalaciones. En los estatutos de régimen interno se indica lo siguiente:

“Artículo 2º: Los fines del Club son: 1. La divulgación de la Astronomía en el área de

influencia del Instituto. 2. La realización de estudios y observaciones que contribuyan a esta

ciencia. 3. Fomentar el encuentro entre antiguos, nuevos alumnos y otras personas interesadas en la Astronomía con el objeto de desarrollar su afición a esta Ciencia. 4. Dar el mejor

aprovechamiento posible a las instalaciones y medios que el Instituto posee para le desarrollo

de Astronomía". En resumen el objetivo del proyecto es aglutinar en torno a nuestro Instituto, a los miembros de la comunidad escolar que manifiesten curiosidad e interés por la

Astronomía, materia que por su carácter interdisciplinar, puede interesar a muchas personas

de distinto ámbito cultural.

Figura 6. Alumnas de la primera promoción, estrenando club en el observatorio Galileo Galilei. Marta,

Gabriela, Larisa… ¡qué recuerdos! (Foto escaneada de una diapositiva).

Page 122: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

122 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

Nos estrenamos como club con otro intercambio, al igual que el anterior, por iniciativa del Instituto de Astrofísica de Canarias, y con motivo de la inauguración del Telescopio Nacional Galileo

(TNG), propiedad de la Universidad de Padua, recién instalado en el Observatorio del Roque de los

Muchachos. Se establece contacto con el Liceo Scientifico Statale Eugenio Curiel de Padova (Padua), Italia, donde participaron 30 alumnos. El motivo: la figura de Galileo Galilei, cuyo nombre acordamos

poner a nuestro observatorio.

6. El CAI como foro de actividades

El Club Astronómico del Instituto ha promovido o participado en diversos proyectos dentro del

ámbito de la Astronomía, como el intercambio anteriormente descrito. Veamos algunos de otros.

6.1. Primer Encuentro de profesores de Astronomía en Canarias

Una de las primeras apariciones públicas del CAI se produce con la celebración, en el Museo de

la Ciencia y el Cosmos y en el IES San Hermenegildo, del Primer Encuentro de Profesores de Astronomía de Enseñanza Secundaria de Canarias. El proyecto se gesta durante un curso de

Astronomía impartido por el que suscribe y convocado por el CEP (Centro de Profesores) de Icod de

los Vinos. El comité organizador del Encuentro estaba formado por los profesores de Enseñanza

Secundaria: D. Manuel Fernando Chinea Niebla, Dª Leandra Toste Cubas, Dª María José Fumero

Hernández y D. Federico Fernández Porredón.

I Encuentro de Profesores de Astronomía de Enseñanza Secundaria de Canarias

Dirigido a :

Profesores de Enseñanza Secundaria

Plazas que se convocan:

40

Intervienen: Federico Fernández Porredón

Graciano Afonso González Francisco Reyes Suárez

Erik Stengler

Loreto Reyes Sánchez Julen Sarasola Manich

Oswaldo González Sánchez

Nieves Mª Pérez Acosta

José Navarro García Miguel Angel Padrón Padrón

Juan Carlos Alcázar Hernández

Manuel Chinea Niebla Mª José Fumero Hernández

Leandra Toste Cubas

Fecha de celebración:

12,13 y 14 de marzo de 1999

Duración:

25 horas presenciales

Figura 7. Relación de ponentes de los Encuentros.

Page 123: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

123 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

6.2. La Comunidad Canaria comienza a impartir Astronomía en bachillerato

La Consejería de Educación nos propone la realización de un currículo de Astronomía para impartir en bachillerato con una dotación de cuatro horas semanales. Los profesores que lo desarrollan

son Dª María Gloria Estévez Romero, Dª Carmen Delia Pérez Hernández y D. Federico Fernández

Porredón, y el título de la asignatura es Astronomía Fundamental. El currículo de esta asignatura fue presentado en mayo del 98, como respuesta a la petición realizada por miembros de la Dirección

General de la Consejería. Comienza a impartirse durante el curso 1999-2000, esto repercute de forma

decisiva en la expansión del club Astronómico porque se produce un incremento del número de

alumnos que estudian Astronomía de forma reglada.

Figura 8. Algunos de los alumnos matriculados en la optativa de bachillerato que además pertenecían al

CAI junto a nuestra ponente en la conferencia de esa noche, Dª Cristina Hansen y su esposo, otro

entrañable amigo y ponente habitual del CAI, el Dr. Erik Stengler.

La Comunidad Canaria se convirtió así en la única del Estado en impartir una asignatura de

Astronomía en bachillerato. Esto quedó de manifiesto mediante la comunicación que presenté al

respecto en los III Encuentros para la Enseñanza de la Astronomía, celebrados en septiembre de 1999

en Granada y promovidos por ApEA (Asociación para la Enseñanza de la Astronomía).

6.3. El IES San Hermenegildo, centro coordinador del proyecto Comenius “Stars in the School”

En 2000 nos constituimos en centro coordinador del Proyecto Europeo Stars in the School, al

que se adhieren centros de Italia, Francia, Finlandia, Alemania, Rumania y Bulgaria. El proyecto se prolonga durante cuatro años y su finalidad es crear una red clubs astronómicos en centros europeos.

Durante el transcurso del proyecto se realizaron trabajos astronómicos de interés llevados a cabo

conjuntamente con los centros implicados.

Page 124: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

124 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

IES "San Hermenegildo" - La Laguna, Tenerife, SPAIN

Istituto Tecnico Commerciale Statale "A.Pitentino" - Mantova, ITALY

Liceo Scientifico Statale "Alfano da Termoli" - Termoli, ITALY

Lycee "Marie Curie" - Sceaux Cedex, FRANCE

Berufskolleg Bergish Land - Wermelskirchen, GERMANY

Pieksämäen Lukio – Pieksämäki, FINLAND

Railways Highschool – Craiova, ROMANIA Planetarium with Astronomical Observatory – Smolyan, BULGARIA

Figura 9. Logotipo del proyecto Comenius “Stars in the School”.

STARS IN THE SCHOOL

CÁLCULO DE LA DISTANCIA TIERRA – LUNA A

PARTIR DE LAS FOTOGRAFÍAS DE UN ECLIPSE

GRUPO SELENE

CLUB ASTRONÓMICO DEL INSTITUTO

IES San Hermenegildo

La autoría del presente trabajo corresponde al GRUPO SELENE compuesto por los alumnos de Astronomía del

IES San Hermenegildo, todos ellos de 3º de BUP:

Eduardo Abia Luño, Aarón Abril Torres, Jonay Abril Torres, Ricardo Fagundo Rivero, Saray Herrera Arteaga,

Sara Mesa Flores, Ángeles Méndez García.

Profesor coordinador: Federico Fernández Porredón

La Cuesta - La Laguna - Febrero de 2000

Figura 10. Portada de uno de los trabajos realizados durante el proyecto “Stars in the School”.

Page 125: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

125 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

6.4. En 2000 y 2002 se celebran sendas Ferias de Astronomía Escolar.

En 2000 se celebra la primera feria en el IES Viera y Clavijo de La Laguna, organizada por el Profesor D. Luis Balbuena Castellano y sus alumnos de Astronomía, y en su desarrollo colaboran los

alumnos del Club Astronómico del Instituto San Hermenegildo.

La segunda feria se celebra conjuntamente en ambos institutos, y lleva la denominación de

internacional por realizarse de forma simultánea en los centros Comenius adheridos a “Stars in the School”. En la sesión de clausura de la II Feria, celebrada en el salón de actos del IES San

Hermenegildo, el Dr. Francisco Sánchez Martínez, director del IAC, pronunció una conferencia

titulada Presente y futuro del Gran Telescopio Canarias.

Figura 11. Cartel anunciador de la II Feria Internacional de Astronomía Escolar.

6.5. El Club Astronómico en los VII Encuentros para la Enseñanza de la Astronomía

La séptima edición de estos Encuentros de carácter estatal, se celebró en julio de 2007 en el

Museo de la Ciencia y el Cosmos de Tenerife, siendo el profesor que suscribe presidente de la ApEA.

El alumnado del Club asumió un protagonismo desinteresado, siendo los monitores del Encuentro y

Page 126: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

126 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

realizando funciones de secretaría y asesoramiento. Además, los propios alumnos presentaron una comunicación con el título El Astronómico del Instituto…algo más que un Club y un audiovisual de

astrofotografía diseñado por ellos. Fueron calurosamente felicitados por asistentes y organización en

la jornada de clausura.

Figura 12. Convocatoria de los VII Encuentros. Los alumnos del CAI fueron los monitores del evento.

Page 127: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

127 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

“El astronómico del instituto…

algo más que un club”

Federico Fernández Porredón

y los miembros del Club Astronómico del

IES San Hermenegildo

José Luis Rubio da Costa 1º Bach.

Ana Mª Velázquez Galván 1º Bach.

Rubén Ángel Negrín Afonso 1º Bach.

VII ENCUENTROS ApEA

Tenerife 05/07/07

Figura 13. Portada de la presentación en Power Point que expusieron los alumnos del CAI en los VII

Encuentros para la Enseñanza de la Astronomía celebrados en el Museo de la Ciencia y el Cosmos.

6.6. En 2008 un nuevo telescopio para el Club

Gracias a la dotación económica conseguida mediante nuestra participación en los Proyectos de

Mejora, convocados por la Dirección General de Ordenación e Innovación Educativa, pudimos

adquirir un telescopio más acorde con el desarrollo alcanzado por el Club. Se trata de un Vixen SXD-VC 2000L, con un objetivo de 8 pulgadas y una distancia focal de 2000 mm. Dispone de un montura

SXD, que mediante el controlador Star Book, permite la búsqueda y auto guiado de múltiples cuerpos

celestes.

Figura 14. También hay profesoras entre los miembros del CAI. Tona, Cande y Rosa fotografíando un

eclipse parcial de sol.

Page 128: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

128 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

Figura 15. Eclipse parcial del día 4 de noviembre de 2013. En la Laguna llovía. Pero en la fase final del

eclipse, gracias a la insistencia de nuestras motivadas compañeras, se hizo un claro y

dispararon. Se aprecia un pequeño arco de la mordida lunar y algunas manchas en la fotosfera.

7. Las observaciones astronómicas del CAI

Tal vez las actividades más demandadas por el alumnado son las observaciones astronómicas,

que pueden ser diurnas o nocturnas. Las primeras ya se han comentado cuando se habló de “Los

recreos al Sol”.

7.1 Observaciones astronómicas nocturnas en el observatorio del instituto

Las observaciones nocturnas son sumamente atractivas para todos, pero deben programarse adecuadamente pues no están exentas de riesgo. Si estas observaciones son en el instituto, basta con

reunir a alumnos y padres a comienzo de curso, comentarles el proyecto y rogar que si creen que la

Page 129: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

129 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

madurez del alumno/a no hace recomendable su participación es mejor que lo deje para el próximo curso. La experiencia me dice que esta labor disuasoria es conveniente y eficaz, sobre todo si se hace

en presencia de todo el grupo de interesados. Una vez informados y debatidos los pros y los contras,

los padres interesados deben firmar una autorización para que su hijo/a participe en estas observaciones. No obstante, cada vez que se programe una observación nocturna se hará

imprescindible la autorización del padre o la madre del alumno/a para esa actividad. En la

convocatoria se hacía figurar el día, la hora y la duración aproximada de la observación. Los medios actuales: WhatsApp, email, etc. así como las webcam meteorológicas, facilitan mucho la labor de

desconvocar la actividad cuando el tiempo es adverso. Debe quedar muy claro que el profesor no se

hace cargo del alumno en caso de desconvocatoria por mal tiempo u otras razones. Este último aspecto

debe ser claramente informado en la reunión inicial con alumnos, padres y madres.

Figura 16. Alumnos de bachillerato miembros del Club manejando el telescopio durante una

observación. El alumno de la izquierda está localizando el astro con el Star Book, el de la

derecha está enfocando.

Page 130: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

130 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

Figura 17. Nebulosa de La Laguna, una región de formación estelar. En el punto 2 de este informe se

hizo referencia del color de este tipo de objetos. Foto obtenida por el autor a través del

telescopio.

Figura 18. Júpiter y sus lunas Io, Europa, Ganimedes y Calixto, fotografiadas desde nuestro observatorio

por alumnos habituales del CAI. Para Galileo, en 1609, esta imagen supuso un argumento

irrefutable, contrario a las tesis geocéntricas.

Page 131: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

131 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

7.1.1 Fotografía planetaria a través de telescopio con webcam

Las observación planetaria utilizando la técnica de grabar un video de tres minutos acoplando una

webcam doméstica al telescopio da unos espléndidos resultados, pues tratando el video con programas

adecuados se consigue un efecto similar a la eliminación de las turbulencias atmosféricas. Algo

parecido a sacar fotos a través de telescopio desde el espacio...

Figura 19. Proceso de obtención de imágenes planetarias a través de cámara web acoplada al telescopio

en el Observatorio Galileo del CAI. En la foto estábamos obteniendo la imagen de Venus en

fase (ver pantalla del ordenador). Otro hecho irrefutable descubierto por Galileo que obligaba

a sustituir el modelo geocéntrico.

Figura 20. “El señor de los anillos” a través de una webcam acoplada al telescopio. En la imagen se

aprecia la división de Cassini y detalles como la sombra del planeta sobre sus anillos y la

sombra de los anillos sobre el planeta.

Page 132: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

132 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

7.2 Observaciones astronómicas nocturnas fuera del instituto

A veces decidimos desplazarnos a zonas altas de la isla para realizar las observaciones para

encontrar un cielo con una menor contaminación lumínica.

Las indicaciones enumeradas el punto 7.1 alcanzan mayor vigor, si cabe, cuando la observación

exige un desplazamiento. La salida se ha de realizar solo si el tiempo es adecuado, sobre todo en lo

referente a ausencia de nubosidad y viento, ya que produce mucha frustración la presencia de claros y nubes especialmente, entre las personas que se están iniciando. En estas salidas han de colaborar

padres y madres aportando vehículos conducidos por ellos, y responsabilizándose de los menores de

edad, que debidamente autorizados por sus padres, transporten. Es muy aconsejable el uso de ropa de

abrigo adecuada, llevar un cuaderno de campo donde hacer las anotaciones, así como frutos secos y bebidas energéticas calientes (chocolate, café, té). El profesor debe llevar un laser verde, que se usará

siempre con precaución y mesura, para marcar constelaciones y objetos celestes.

Figura 21. Aunque la salida se programe adecuadamente, hay veces que aparece la bruma. Y en cierta forma

hasta se agradece, sobre todo si es pasajera. (Mirador de Chipeque a 1.850 m de altitud).

7.2.1 Observaciones desde el mirador de Chipeque

Una de las salidas observacionales más frecuentes la realizamos al mirador de Chipeque, situado en el punto kilométrico 26 de la carretera que conduce a Las Cañadas del Teide, a unos 1850

metros de altitud. Es un lugar seguro, accesible, amplio y que reúne buenas condiciones para la

observación astronómica del grupo. Es conveniente llegar antes de la puesta de sol para ubicarnos y

además poder disfrutar de ese espectáculo, enmarcado en una panorámica realmente espectacular con

mar de nubes, el Teide y la isla de La Palma, etc.

En cada salida observacional se marcan unos objetivos. Por ejemplo: 1º) Identificación de los

puntos cardinales a partir de la Estrella Polar con la finalidad de ubicarnos en el cielo. 2º)

Reconocimiento a simple vista de todas las constelaciones posibles, y de los planetas presentes durante esa noche en el cielo. 3º) Diferenciar las constelaciones zodiacales y las no zodiacales. 4º) Llevar

Page 133: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

133 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

relación de objetos celeste (cúmulos estelares, nebulosas y alguna galaxia) para su localización con

prismáticos y telescopio, etc.

Para grupos más avanzados los objetivos se amplían: 1) Determinación de los 10 primeros

astros visibles tras el anochecer, medir su altura y azimut e identificarlos. 2) Determinación de la

magnitud de esos astros. 3) Observación de sistemas estelares dobles o múltiples con prismáticos y

telescopio. 4) Iniciación a la astrofotografía, etc.

Figura 22. Conjunción Venus (abajo a la izquierda)-Mercurio (abajo a la derecha)-Júpiter (arriba).

Observación del día 24 de mayo de 2013 desde el Mirador de Chipeque.

Figura 23. La constelación de Orión desde el mirador de Chipeque en abril de 1993. El colorido

crepuscular se debe a partículas en suspensión en la alta atmósfera debido a la explosión del

volcán Pinatubo en Filipinas.

Page 134: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

134 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

Figura 24. Grupo de alumnos preparando la observación.

7.2.2. Acampadas astronómicas en Madre del Agua (Vilaflor)

Esta actividad la realizábamos todos los años, generalmente durante la semana después de

Semana Santa, de martes a jueves, aprovechando el comienzo del buen tiempo, la ausencia de luna llena y la lejanía, aún, del final de curso. El programa era apretado pues se trataba de hacer actividades

de senderismo y medio ambiente, educación física y astronomía. Para las actividades astronómicas

nocturnas, el alumnado se dividía en grupos; los más habituales eran los de mitología, observación a

simple vista y prismáticos, observación con telescopio y astrofotografía, de forma que durante la noche todos debían informar al resto, de forma rotativa, de lo que estaban haciendo y comunicarles sus

pequeños logros y avances implicándolos en su tarea.

Figura 25. Llegada del grupo, tras 9 kilómetros de caminata (desde la carretera al campamento). Se dan

las instrucciones propias del campamento y se reparten las habitaciones.

Page 135: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

135 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

Figura 26. Hasta una actividad de senderismo contiene connotaciones astronómicas en Vilaflor: alumnos

en el “Paisaje Lunar”.

El campamento de Madre del Agua, dada su altura, su ubicación y la ausencia de contaminación

lumínica, es ideal para la práctica astronómica y en especial para la astrofotografía. Han sido muchos

los alumnos que han encontrado, en la fotografía en general y en la astronómica en particular, una

fuente de creatividad que ha sido determinante, incluso, en su vocación profesional.

La fotografía de la figura 28 muestra las nebulosas Laguna (M8) y Trífida (M20) ambas en el

corazón de la Vía Láctea. Fue obtenida en el Campamento de Madre del agua en 1995 por Yago. Él

quería ser astronauta, hoy es ingeniero aeronáutico.

Figura 27. Datos técnicos: Objetivo 210 mm; Campamento "Madre del Agua". Vilaflor. Altitud 1.800 m;

Hora: 2:25 T.U.; f/9; T: 20 minutos; 400 ISO.

Page 136: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

136 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

A

S

T

R

O

N

O M

Í

A

7.2.3. Observaciones desde el Observatorio del Teide (O.T)

Han sido múltiples las ocasiones en que hemos presentado al I.A.C un proyecto de observación para un grupo de estudiantes y se nos ha concedido la plataforma existente en el O.T. para colocar

telescopios portátiles, así como el telescopio Mons para realizar observaciones puntuales. Sin lugar a

dudas, no es una casualidad que la comunidad científica internacional haya decidido instalar sus telescopios en suelo canario. La altitud, la ausencia de contaminación lumínica e industrial y la latitud

de las cumbres canarias, que hacen posible ver todo el hemisferio norte, y gran parte del sur, a lo largo

del año, las han hecho un referente mundial en el terreno de la astrofísica. No en vano el Observatorio

del Roque de los Muchachos, en la isla de La Palma, es conocido como Observatorio Norte Europeo.

Figura 28. Torres solares en el Observatorio del Teide bajo la atenta mirada de Orión.

Figura 29. Rubén, alumno de 1º de bachillerato, observando a través del telescopio Mons del

Observatorio del Teide.

Page 137: Números, Revista de Didáctica

Club Astronómico del Instituto F. Fernández Porredón

137 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

A S

T R

O N

O M

Í A

Reflexión final

El Club Astronómico del Instituto “IES Profesor Martín Miranda” agradece a Números, Revista de

Didáctica de las Matemáticas, la oportunidad de expresarse en sus páginas y se ofrece a seguir contando sus

actividades pasadas, como, por ejemplo, la diversidad de charlas de cualificados conferenciantes que han pasado

por nuestro humilde foro junto a futuras actividades. Gracias.

Nota de Cande

Soy miembro de la Sociedad Isaac Newton desde hace muchísimos años. Sin embargo, hoy les escribo,

como directora del I.E.S. Profesor Martín Miranda, para mostrar mi profundo agradecimiento a Federico

Fernández Porredón por su labor en la continuación, a pesar de su retiro profesional, del Club Astronómico del

Instituto (CAI). Su abnegada y vocacional dedicación ha contribuido al enriquecimiento científico de nuestro

alumnado y al prestigio de nuestro centro.

Muchas gracias, querido amigo.

Candelaria González Martín

Federico Fernández Porredón. Lugar de trabajo: IES. San Hermenegildo. La Cuesta-La Laguna,

Tenerife. Lugar de residencia: Bajamar, Tenerife. Catedrático de Física y Química jubilado. En 1991

introdujo la asignatura Astronomía y Astrofísica en su centro. Miembro de la sociedad de profesores

ApEA (Asociación para la Enseñanza de la Astronomía). Presidente de ApEA desde el congreso de

Granada (1999) hasta el de Tenerife (2007). Coordinador y autor del libro de texto para el segundo ciclo de ESO Iniciación a la Astronomía. En 2005 elaboro el CD-Rom El Cielo en el Aula, promovido por la

Consejería de Educación y CajaCanarias del cual se editan 4.000 ejemplares. Responsable del área

didáctica del grupo Shelios, participa desde 2004 en el proyecto La Ruta de las Estrellas.

Page 138: Números, Revista de Didáctica
Page 139: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton de Profesores de Matemáticas

http://www.sinewton.org/numeros ISSN: 1887-1984 Volumen 85, marzo de 2014, páginas 139-144

J U E

G O

S

Poliprismas

José Antonio Rupérez Padrón y Manuel García Déniz (Club Matemático1)

Resumen En este artículo se presenta un campo poco explotado de disecciones de prismas. Partiendo de un prisma unitario de proporciones 3x2x1 que llamamos “canónico” se construyen poliprismas de 2, 3, 4,… elementos. Estos poliprismas se ensamblan para formar un prisma de las mismas proporciones relativas. Partiendo de un modelo de disección del cubo, el Cubo de Rupe, se analiza el procedimiento para convertir el cubo en prisma, y los policubos en poliprismas, estudiando las variantes que aparecen.

Palabras clave Policubos. Poliprismas. Disección de prismas. Estudio de las posiciones relativas de prismas elementales al ensamblarlos. Número de poliprismas según los elementos que intervienen. Orientación espacial. Análisis de figuras en el espacio.

Abstract In this article a field of untapped dissections prisms is presented. Starting from a unitary prism proportions 3x2x1 we call "canonical" are built polyprisms 2, 3, 4, ... elements. These polyprisms assemble into a prism of the same relative proportions. Starting from a model cube dissection, Rupe's Cube, the procedure is analyzed to convert the cube to prism, and polycubes to polyprisms in studying the variants shown.

Keywords Polycubes. Polyprisms. Dissection of prisms. Study of the relative positions of elementary prisms to assemble. Number polyprisms as the elements involved. Spatial orientation. Analysis figures in space.

1. Introducción

En nuestro anterior artículo sobre juegos, adelantamos el caso de los poliprismas. Verdaderamente hemos encontrado poco escrito al respecto. Y, comparados con los puzles pensados y construidos alrededor de los policubos, son casi inexistentes. Por otro lado, podemos considerar que la mayoría de las disecciones de cubos dan lugar a poliprismas, pero aquí tenemos en cuenta dos características, dos principios fundamentales: partimos de la solución a un cubo diseccionado en varios policubos y transformamos los policubos en poliprismas según alguno de los criterios que explicamos en el artículo. De esta manera, uniendo los poliprismas obtenemos lo que llamábamos “un ladrillo”, un prisma rectangular de proporciones 9x6x3.

1 El Club Matemático está formado por los profesores José Antonio Rupérez Padrón y Manuel García Déniz, jubilados del IES de Canarias-Cabrera Pinto (La Laguna) y del IES Tomás de Iriarte (Santa Cruz de Tenerife), respectivamente. [email protected] / [email protected]

Page 140: Números, Revista de Didáctica

Poliprismas J. A. Rupérez Padrón y M. García Déniz

140 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

J

U

E

G

O

S

2. Poliprismas a partir de los policubos

Las piezas (policubos) que componen el Cubo de Rupe son seis. Desde un bicubo hasta un heptacubo. Es decir, formadas por 2, 3, 4, 5, 6 y 7 cubos elementales unidos por sus caras. Los tenemos dibujados a continuación.

Formar un cubo de dimensiones 3x3 con las seis piezas tiene al menos 54 soluciones, ya que la pieza roja, el hexacubo, limita el número de resultados al ocupar, en la mayoría de las construcciones, necesariamente el cubito central del Cubo. Con esto también se simplifica el estudio de las posibles soluciones.

Vamos a analizar que ocurre cuando convertimos cada uno de los cubos elementales del policubo en un prisma de dimensiones 3x2x1 (al que llamaremos “prisma canónico”), y los unimos por sus caras de forma congruente, es decir, que de las tres caras diferentes que presenta: la de dimensiones 3x2 (cara 6), la de 3x1 (cara 3) y la de 2x1 (cara 2), se han de adosar las de dimensiones iguales, no siendo válido el unir, por ejemplo, tres prismas por sus caras 2 con un cuarto prisma por su cara 6 como en la figura de color madera de la derecha.

Cuando queremos convertir los policubos en poliprismas, a partir de una solución del Cubo, vemos que existen seis posiciones del prisma según la cara y orientación que se presente.

Tales orientaciones son importantes porque al construir el poliprisma, la unión de los elementos se hace teniendo en cuenta la orientación de los cubos del policubo del modelo.

Por ejemplo, el tetracubo verde tal como está orientado en la pieza modelo y dado que presenta simetrías, da lugar a los siguientes seis poliprismas, todos distintos, y que presentan al frente las tres caras con dos orientaciones cada una.

Actuando de la misma manera con los otros policubos, elegimos luego las variantes que presentan la misma cara y orientación al frente para a partir de los policubos diseñar los poliprismas.

Tenemos seis biprismas posibles atendiendo a la cara que vemos al frente, pero está claro que solo tres son los modelos posibles: los unidos por la cara 2, los que lo hacen por la cara 3 y los que lo hacen por la cara 6.

Sin embargo, al considerar los triprismas, encontramos seis poliprismas diferentes con las siguientes uniones: por sus caras 2, por sus cara 3, por sus caras 6, dos por la cara 6 y el tercero por la cara 2 (que se puede considerar también formado por dos prismas unidos por la cara 2 y el tercero unido por la cara 6) o dos por la cara 6 y el tercero por la cara 3 (e igual consideración que antes), y por último, el que resulta de unir dos por la cara 2 y el otro por la cara 3, que es equivalente al que resulta de unir dos por la cara 3 y el otro por la cara 2 de uno de ellos. Luego, cada

Page 141: Números, Revista de Didáctica

Poliprismas J. A. Rupérez Padrón y M. García Déniz

141Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

J U E

G O

S

uno de ellos se puede ver con diferente orientación, por ejemplo, tres caras 2 al frente se pueden ver horizontal o verticalmente contiguas, es decir, unidas por su lado 1 o unidas por su lado 2 (los dos triprismas superiores de la figura).

Para el tetraprisma, encontramos 29 modelos distinguibles:

Para poliprismas de órdenes más elevados, el número de construcciones aumenta enormemente, quedando pendiente su cálculo, representación y estudio.

3. Poliprismas a partir de las piezas del Cubo de Rupe.

La solución del Cubo que hemos tomado como ejemplo se construye con las piezas que se indica.

Conservando la cara que vemos como cara “principal”, tomamos prismas cuyas caras anteriores son caras 6 en posición horizontal (6H).

Page 142: Números, Revista de Didáctica

Poliprismas J. A. Rupérez Padrón y M. García Déniz

142 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

J

U

E

G

O

S

Si hubiésemos tomado los poliprismas con sus caras 2 en posición vertical (2V), por ejemplo, las piezas necesarias serían las siguientes:

Comprobando que los poliprismas que intervienen son diferentes a los del caso anterior.

Por cada solución al Cubo de Rupe tendremos seis tipos de construcción si tomamos poliprismas, dos orientaciones por cada una de las caras posibles: orientaciones horizontal (H) o vertical (V) para las caras 6, 3 y 2.

En las siguientes figuras se representan para las caras 2 (horizontal: 2H), la 3 (horizontal: 3H y vertical: 3V) y la 6 (vertical: 6V)

Queda para el lector, como actividad que puede compartir con los alumnos, el desarmar cada uno de los “ladrillos” y ver qué poliprismas los constituyen. No obstante adelantamos algunas pistas.

Page 143: Números, Revista de Didáctica

Poliprismas J. A. Rupérez Padrón y M. García Déniz

143Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

J U E

G O

S

Cada una de los poliprismas presenta, para cada “ladrillo”, o una orientación o un acoplamiento diferente. En la pieza más sencilla, el biprisma, las piezas que intervienen, en el mismo orden que aparecen las figuras, son:

Hemos construido los ladrillos en el orden 6H, 2V, 2H, 3H, 3V y 6V, y las piezas se repiten, como era de esperar.

Si consideramos qué tetraprisma interviene en cada ladrillo, siguiendo el orden establecido, serían:

Y aquí vemos que las piezas son diferentes. ¿Ocurre también para el resto de los poliprismas que intervienen?

El triprisma presenta, entre otras, las variantes de la figura. ¿Cuál interviene en cada ladrillo, orientándola adecuadamente?

¿Y en el caso del heptaprisma, el más complicado de los que intervienen?

Y ya puestos, los dos que faltan:

Page 144: Números, Revista de Didáctica

Poliprismas J. A. Rupérez Padrón y M. García Déniz

144 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

J

U

E

G

O

S

La manipulación y posterior discusión de las construcciones que exponemos, implican un desarrollo de las capacidades de visión espacial, de orientación, sistematización, ordenación de resultados, análisis, etc., que son “ladrillos” esenciales en la formación científica y matemática.

¿Y para qué sirve esto, dirán nuestros lectores? Pues nosotros entendemos que es un posible modelo de investigación tridimensional, en el que aparece la posibilidad de modelización con piezas construidas en madera y pegamento o utilizar, como hemos hecho nosotros con Excel, un programa que permita dibujar las piezas tridimensionales y jugar con ellas. Posteriormente se puede construir el modelo que nos haya resultado más interesante.

Queda mucho por trabajar. Nosotros solamente hemos pretendido abrir un camino aparentemente poco explorado y permitir que quien quiera, quien se sienta motivado, explore un poco más allá.

Agradeceríamos que si alguien conoce alguna investigación en esta línea nos lo haga saber para rendirle el homenaje oportuno. Y si ese alguien, u otro, investiga en esta dirección y nos lo hace saber, que quede claro que aquí, en esta página, daremos cumplido conocimiento de lo que nos llegue.

Hasta el próximo pues. Un cordial saludo.

Club Matemático

Page 145: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 145-156

P R

O B

L E

M A

S

Tiempo de espera y algunas cosas más

Problemas Comentados XXXVI

José Antonio Rupérez Padrón y Manuel García Déniz (Club Matemático1)

Resumen El artículo consta de tres partes: en la primera exponemos los problemas planteados en la

Primera Fase del Torneo de Matemáticas para 2º de la ESO y resolvemos alguno de ellos;

en la segunda parte enunciamos los ejercicios propuestos en el Torneo de Primaria; y por

último planteamos varios problemas de diferentes fuentes, uno de la colección de

“Problemas de los abuelos”. Solucionamos el que nos ha llegado como propuesto en una

Oposición para ser resuelto sin aplicar un método algebraico, resolución que debía ser

entendible por alumnos de niveles elementales. Para las soluciones hemos aplicado

ecuaciones, gráficos del parte-todo o tablas de doble entrada, como ya es habitual,

orientando al provecho que se puede obtener en el aula con las diversas metodologías.

Palabras clave Torneos de problemas de matemáticas para Primaria y Secundaria. Métodos de

resolución sin álgebra.

Abstract The article consists of three parts: first we present the problems encountered in the first

phase of the Tournament Math 2nd year of ESO and solve any of them, in the second part

we state the exercises in the Tournament of Elementary School, and finally propose

several problems from different sources, one of the collection of "problems of

grandparents." We solve that has come to us as an “Oposición” proposed to be solved

without applying an algebraic method, resolution should be understood by students of

elementary level. For solutions we applied equations, graphs of part-whole or crosstabs,

as usual, guiding the advantage that you can get in the classroom with various

methodologies.

Keywords Tournament math problems for Primary and Secondary. Resolution methods without

algebra.

En nuestro anterior artículo decíamos textualmente “Con estas dos pruebas de los Torneos de

Secundaria y Primaria tenemos, pues, abundante entretenimiento para nuestra próxima cita en la

revista”.

¿Y qué tal les ha ido? No hemos recibido ningún correo con soluciones, dudas, ideas o

aplicaciones en clase. ¿Necesitan más tiempo para pensarlos?

Pues les vamos a dar un poco de tiempo más antes de poner nuestras soluciones. Bueno,

haremos algún comentario sobre algunos de ellos y daremos alguna solución o aproximaciones a las

mismas en otros casos.

1 El Club Matemático está formado por los profesores José Antonio Rupérez Padrón y Manuel García

Déniz, jubilados del IES de Canarias-Cabrera Pinto (La Laguna) y del IES Tomás de Iriarte (Santa Cruz de

Tenerife), respectivamente. [email protected] / [email protected]

Page 146: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

146 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

Los problemas de la Segunda Fase del Torneo de Secundaria:

Problema nº 1. La magia del espejo

A continuación tienes un dibujo y la representación de un espejo (las flechas señalan la

superficie reflectante).

Si colocamos el espejo sobre el dibujo en la posición que

dibujamos a continuación la imagen que se ve a través del espejo

junto con lo que queda fuera, es la misma que la anterior.

Encuentra todas las posiciones en que puedes colocar el espejo

para ver:

a) el círculo completo y 3 cuadrados

b) el círculo completo y 2 cuadrados

c) sólo 1 cuadrado

d) sólo 2 cuadrados

Este problema es muy simple y sólo requiere una buena visión espacial. Está basado en una de

las actividades presentes en la Exposición Matemáticas 2000 de la que ya hemos hablado. Es una

manera lúdica de trabajar la geometría, muy atractiva para los muchachos y muchachas de estas

edades y, naturalmente, muy educativa.

Problema nº 2. Jugando con los dados

Candelaria y Pino son dos amigas que se han inventado un juego de dados

con las siguientes reglas:

Lanzan dos dados sucesivamente y calculan la resta de puntos entre el

mayor y el menor.

Si resulta una diferencia de 0, 1 ó 2 entonces Candelaria gana una ficha.

Si resulta 3, 4 ó 5 es Pino quien gana una ficha.

Comienzan con un total de 20 fichas y el juego termina cuando no quedan

más.

¿Te parece que en este juego tienen las mismas posibilidades de ganar?

Si tuvieras que jugar, ¿qué jugador preferirías ser?

También es muy simple. Constituye una primera aproximación

al estudio del azar y al cálculo de probabilidades. Si tabulamos los

resultados posibles y puesto que en el enunciado no se estipula que

intervenga el orden de los lanzamientos en el cálculo de la diferencia

(cosa que se recalca al decir que se calcula la resta de puntos entre el

mayor y el menor), hay 36 posibles resultados:

12 de los resultados favorables a Pino y 24 favorables a

Candelaria. De ahí se concluye fácilmente que el juego no da la misma

Primer dado

1 2 3 4 5 6

Seg

un

do d

ad

o 1 0 1 2 3 4 5

2 1 0 1 2 3 4

3 2 1 0 1 2 3

4 3 2 1 0 1 2

5 4 3 2 1 0 1

6 5 4 3 2 1 0

Page 147: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

147 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

P R

O B

L E

M A

S

posibilidad de ganancia a los dos jugadores. De tener que jugar, evidentemente la opción es jugar en el

puesto de Candelaria.

Problema nº 3. Aterriza como puedas

Miguel de la Peña, es un piloto novato de Canarias Airlines, y se

encuentra en un avión a 5000 metros de altura y, para aterrizar,

está descendiendo a razón de 200 metros cada 5 kilómetros, que

es justo la trayectoria exacta para aterrizar en el aeropuerto

internacional de San Borondón.

a) Dibuja, haciendo una gráfica, el itinerario de bajada hasta llegar al aeropuerto.

b) ¿A qué distancia se encuentra el avión del citado aeropuerto?

c) ¿A partir de qué distancia del aeropuerto se podrían construir edificios de 30

metros de altura, para que, con un margen superior de 10 metros, el avión de

Miguel no choque con ellos?

Este problema parece adolecer de alguna información importante, que debe suponer el alumno.

¿Cuál? Pero lo realmente interesante es analizar cómo proceden nuestros alumnos ante una situación

como ésta. ¿Qué piensan ustedes?

Problema nº 4. La tarjeta de crédito

Los dieciséis dígitos de una tarjeta de crédito están escritos en sus

casillas de modo que la suma de tres cifras contiguas cualesquiera

del número es 18. ¿Podrías averiguar el número completo si sólo

recordamos los dos dígitos que aparecen a continuación?

No parece tampoco especialmente difícil y el número de soluciones diferentes se presenta

abundante. ¿O no?

Problema nº 5. Albóndigas

En cinco platos se han repartido cien albóndigas. Los platos 1º y 2º tienen en

total 52; entre el 2º y el 3º hay 43; el 3º y el 4º suman 34; mientras que en los

platos 4º y 5º hay 30. ¿Cuántas albóndigas hay en cada plato?

Podrá ser resuelto mediante aritmética, utilizando un diagrama partes/todo, o con el

uso del álgebra.

Veamos la solución algebraica:

Si llamamos A, B, C, D y E a la cantidad de albóndigas contenidas en los platos en el orden

mencionado, tendremos dos informaciones relevantes que podremos expresar así:

A + B + C + D + E = 100

Page 148: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

148 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

(A + B) + (B + C) + (C + D) + (D + E) = 52 + 43 + 34 + 30 = 159

es decir:

A + 2B + 2C + 2D + E – (A + B + C + D + E) = 159 - 100 = 59

De la combinación de ambas obtenemos B + C + D = 59

Y combinando esta última con cada una de las cuatro informaciones simples dadas por el

problema vamos obteniendo las cantidades de cada plato.

5916

43

B C DD

B C

5227

25

A BA

B

5925

34

B C DB

C D

3014

16

D EE

D

El valor de C puede salir de cualquier combinación a partir de las informaciones existentes y se

obtiene que C = 18.

Solución: las cantidades de albóndigas en los platos serían las siguientes:

A = 27, B = 25, C = 18, D = 16 y E = 14

Nos quedaría comprobar los resultados, primero las sumas de albóndigas en los pares de platos,

y luego el total de ellas.

27 + 25 = 52; 25 + 18 = 43; 18 + 16 = 34; 16 + 14 = 30

27 + 25 + 18 + 16 + 14 = 100

Añadiríamos, además de ¡buen provecho!: ¡¡buenos platos para contener tantas albóndigas!!

Y estos son los problemas del Torneo de Primaria:

Problema 1. Juego de monedas alternadas.

Alex colocó seis monedas sobre una regla,

de manera que hacia arriba quedan tres

caras y tres cruces de forma alternada.

Objetivo: Coloca las tres caras juntas y las tres cruces juntas.

Reglas: Sólo puedes mover las monedas de dos en dos, y además deben estar juntas sin

intercambiar el orden en el que se encuentran.

Ejemplo:

Page 149: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

149 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

P R

O B

L E

M A

S

Mi amiga Lola dice que es capaz de ganar el juego en sólo cuatro movimientos. ¿Serás tú

capaz de realizar la misma hazaña? ¡PUES ADELANTE!

A partir de la posición inicial:

Los cuatro movimientos necesarios son los siguientes:

Estos problemas de intercambio son muy conocidos; sus grandes divulgadores fueron Dudeney

y Loyd. Tanto en la Exposición Matemáticas 2000 como en el Komando Matemático de la Sociedad

Canaria “Isaac Newton” de Profesores de Matemáticas, aparecen en sus distintas versiones (tres o

cuatro piezas por bando) y presentaciones (monedas, fichas, vasos, etc.).

Problema 2. Amarrando triángulos

El abuelo Isidro, tiene cuatro árboles sembrados en dos

líneas, y se dispone a amarrar una cuerda alrededor de tres

de ellos. ¿De cuántas formas puede hacerlo? ¡A POR ELLO!

¿Y si fueran seis árboles? ¿Y si fueran ocho?

Page 150: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

150 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

Problema 3. Ninguna en tres en raya

El tres en raya es un juego aburrido si estas sólo, pero usando el

mismo tablero, ¿cuántas fichas del mismo color, serás capaz de

colocar sin hacer ningún tres en raya, ni en las filas, ni en las

columnas, ni en las diagonales? ¡VAMOS!

Es muy fácil quedarse corto si se parte de la situación de tablero

vacío y se van añadiendo las fichas. Resulta más sencillo iniciar el

razonamiento a partir del máximo de fichas colocadas.

No pueden ser 9, porque habría tres en raya por todos lados. No pueden ser 8, porque en el

mejor de los casos habría cuatro posiciones de tres en raya.

¿Serán 7? Si se colocan de manera que los dos espacios vacíos sean

contiguos habrá tres posiciones de tres en raya; y si se colocan en espacios

separados habrá dos posiciones de tres en raya.

Habrá, pues, que colocar 6 fichas sin hacer tres en raya.

¿Habrá más soluciones?

Problema 4. No tengo cambio

En esto, que se encuentran dos profesores de Matemáticas:

-¿Tienes cambio de un euro? – le dijo Déniz a Manolo

- Deja ver, tengo bastante suelto…pues mira no tengo. – Le contesta Manolo.

-¿Cómo va a ser eso?, déjame ver… – dice Déniz – es verdad, no tienes cambio… es más,

no se puede tener mayor cantidad de dinero en calderilla, sin tener cambio de un euro.

Si para Déniz, la calderilla son las monedas más pequeñas de un euro (50, 20, 10, 5, 2 y 1

céntimo). ¿Cuánto dinero tenía Manolo?

¡¡¡ADELANTE!!!

Problema 5. Pintando baldosas

El patio del colegio donde estudia

mi amiga Avelina es rectangular,

y el piso está cubierto de baldosas

cuadradas (todas iguales). Avelina

las tiene contadas, el patio mide

120 por 40 baldosas. Lo sabe

porque jugando el otro día pintó

una línea recta de una esquina a la

opuesta, y luego la maestra le

hizo limpiar todas las que había

marcado. ¿Cuántas baldosas tuvo

que limpiar Avelina por hacer

ruindades?

Page 151: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

151 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

P R

O B

L E

M A

S

PISTA: Se sabe que para un mismo problema siempre hay varias formas de llegar a la

solución, pero si quieres un consejo, primero cuenta las que marcarías en unos ejemplos

pequeños antes de aventurarte a buscar la solución del grande. ¡ÁNIMO!

Problema 5.- Pintando baldosas

El patio del colegio donde estudia mi amiga Avelina es rectangular, y el piso está cubierto

de baldosas cuadradas (todas iguales). Avelina las tiene contadas, el patio mide 120 por

40 baldosas. Lo sabe porque jugando el otro día pintó una línea recta de una esquina a la

opuesta, y luego la maestra le hizo limpiar todas las que había marcado. ¿Cuántas

baldosas tuvo que limpiar Avelina por hacer ruindades?

PISTA: Se sabe que para un mismo problema siempre hay varias formas de llegar a la

solución, pero si quieres un consejo, primero cuenta las que marcarías en unos ejemplos

pequeños antes de aventurarte a buscar la solución del grande. ¡¡¡ÁNIMO!!!

Ahora a completar lo presentado y hacer lo que no hemos tocado.

¡Ah! Y no tarden mucho. ¡Ya se están preparando los Torneos del año 2014!

Nosotros, mientras, les hemos preparado un par (o dos) de problemas nuevos para pensar y

resolver.

El primero es de nuestra habitual serie “Los problemas de los abuelos”. Y dice así:

Los LEDs

A la entrada del colegio de Mario y Andrea hay una

pantalla como ésta, con trece LEDs (Light-

Emitting Diode: ‘diodo emisor de luz’) que se encienden

para dibujar las cifras desde el 0 hasta el 9 (podemos ver

cómo se ilumina el 4 – Figura1).

A cada LED corresponde un interruptor con el mismo

número del LED. Un alumno, al pasar por los

interruptores apaga todos los LEDs. Un segundo alumno

pulsa todos los interruptores pares, cuyas luces quedan Figura 1 Figura 2

Page 152: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

152 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

encendidas (tal como se ve en la figura 2, no se aprecia ninguna cifra). Igualmente, un

tercer alumno pasa y pulsa todos los interruptores múltiplos de 3, encendiendo los LEDs

apagados y apagando los encendidos. Así continúan pasando hasta un total de 13 alumnos

y cada uno pulsa los interruptores múltiplos de su ordinal. Después de que pase el

decimotercero, ¿qué cifra es la que dibujan los LEDs encendidos?

El segundo está tomado del libro “Pitagoras si diverte. 77 giochi matematici”, a cargo de Gilles

Cohen y editado por Bruno Mondadari:

Las cifras

Un número de dos cifras multiplicado por el producto de sus cifras da como resultado

336. ¿De qué número se trata?

Y el tercero, tomado de la sección “El problema de este número” a cargo de José Paulo Viana,

de la revista portuguesa “Educaçao e Matemática” (nº 119, de septiembre/octubre de 2012), nos indica

lo siguiente:

Tiro al blanco

En el Gran Concurso de Tiro de Torres Nuevas, cada

concursante disparaba cinco veces. Acertar en el centro daba

derecho a 20 puntos, mientras que las restantes zonas del

blanco valían 15, 10, 5, 2 y 1.

Las cuatro mejor clasificadas quedaron empatadas con 61

puntos. Por casualidad, sabemos que:

El último tiro de Marcia valió 15 puntos.

Cuatro de los cinco tiros de Inés acertaron en la misma zona

del blanco.

Ninguna de ellas falló un tiro, excepto Sofía que falló el

blanco en el primer disparo.

El primero y el último tiro de Carolina fueron en el centro.

Por suerte, fue posible ordenar a las cuatro tiradoras aplicando una norma del reglamento

que decía: «En caso de empate, tiene ventaja quien acertara más veces en el centro.»

¿A quién fueron atribuidas las medallas de oro, plata y bronce?

Y rematamos con este último que tiene una curiosa historia. Llegó vía teléfono móvil a uno de

nuestros amigos, Luis Ángel Blanco Fernández, asesor del Centro de Profesores del Norte de Tenerife

y colaborador de nuestras tareas de resolución de problemas en el Proyecto Newton, con la indicación

de ser un problema que había aparecido en una Oposición. Pero se indicaba expresamente que debería

ser resuelto de manera comprensible para alumnos de Primaria y, a ser posible, de manera gráfica.

Dice así:

Solteros y casados

En un pueblo, los 2/3 de los hombres están casados con los 3/5 de las mujeres. Sabiendo

que no hay nadie casado fuera del pueblo, ¿qué fracción de personas está soltera?

Desde luego, el problema es políticamente incorrecto. Su redacción debe ser de la época

preconstitucional. Supone que todos los matrimonios son heterosexuales y que no existe el divorcio la

separación, la viudedad y las segundas nupcias. Pero es válido para su resolución matemática y, sobre

todo, para un debate en la clase sobre las circunstancias anteriormente señaladas.

Page 153: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

153 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

P R

O B

L E

M A

S

Este problema presenta una seria dificultad para los alumnos debido al mal aprendizaje de las

fracciones, los ejercicios descontextualizados que aparecen en los libros de texto y la abundancia de

problemas mal contextualizados que no incluyen nunca referentes distintos para las fracciones

involucradas.

Resolución algebraica:

Datos: Hay H hombres y M mujeres

Objetivo: ¿Qué fracción de personas está soltera?

Relación: Los 2/3 de H están casados con los 3/5 de M

No hay nadie casado fuera del pueblo.

Diagrama: Utilizaremos como herramienta lógica el lenguaje algebraico.

La ESTRATEGIA a utilizar es la ORGANIZACIÓN DE LA INFORMACIÓN

Plantearemos:

Habitantes del pueblo: M + H

Casados: 2 3

3 5H M

Solteros: 1 2

3 5H M luego

2 3

3 5H M , de donde

9

10H M

La fracción pedida es:

1 2 9 216

5 6 21 73 5 2 29 1915 67 19

15 1510 10

H M M M Msolteros H M

Fhabitantes M H M H

M M M

Solución:

Los habitantes solteros del pueblo suponen un 7/19 del total de habitantes.

Resolución gráfica:

Representaremos la situación en un diagrama PARTES/TODO, muy adecuado cuando se

trabaja con fracciones.

Hombres Mujeres

(Nota: Aunque parezcan las dos partes iguales, son diferentes; ligeramente superior la de las

mujeres. Para que no resulte confuso deberá dibujarse sobre un papel cuadriculado.)

Page 154: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

154 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

Ahora representaremos solamente los hombres y mujeres casados, modificando las dimensiones

de los rectángulos de tal manera que la superficie que representa los hombres casados sea la misma

que la de los rectángulos que representan a la fracción de mujeres casadas:

2/3 de los HOMBRES están casados 3/5 de las MUJERES están casadas

Al estar la superficie de los hombres casados dividida en dos y la de las mujeres casadas en tres,

tenemos un m.c.m. de seis. Las partes de hombres casados han de subdividirse en tercios y las partes

de mujeres casadas en medios para poder operar con ellos, obteniéndose así fracciones que pueden

sumarse, es decir, con un denominador común.

Pero lo que se haga con los casados ha de hacerse también con los solteros, siendo así que

tenemos 19 partes en el total de habitantes del pueblo.

Lo que nos interesa es contabilizar la fracción de habitantes solteros: 3/19 + 4/19 = 7/19.

Respuesta:

Los habitantes solteros del pueblo suponen un 7 / 19 del total de habitantes.

Page 155: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

155 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

P R

O B

L E

M A

S

Se nos ocurre una versión políticamente correcta, cambiando el contexto:

Tornillos y tuercas

Tenemos dos cajas con tornillería. En una hay tornillos de diferentes tipos y, en la otra,

tuercas también diferentes. Hemos intentado unir cada tornillo con una tuerca adecuada y

lo hemos conseguido con los 2/3 de los tornillos y los 3/5 de las tuercas. Sabiendo que no

quedó ninguna posibilidad de encajar los tornillos y tuercas restantes, ¿qué fracción de

tornillería está desemparejada?

Ahora es políticamente correcta, pero… ¿no suena un tanto raro? Aunque se presta a otras

consideraciones tales como que partiendo de una cantidad total de tornillos y tuercas, digamos 114:

¿cuántos tipos de tornillos diferentes hay como mínimo? ¿Y como máximo? Similares cuestiones con

las tuercas. Ampliando de esta manera el problema, se abren nuevas líneas de investigación.

Cuando le dimos nuestra solución al amigo Luis, éste nos contestó rápidamente. Veamos sus

indicaciones.

Estuve estudiando la solución al problema de solteros y casados. La solución algebraica es la

misma que obtuve yo. En cuanto a la solución partes/todo, aunque es correcta da lugar a cierta

confusión. El diagrama PARTES/TODO en un principio despista un poco en la medida que parece

suponer que en el pueblo hay igual número de Hombres que de Mujeres al hacer las dos partes

aparentemente iguales.

Yo lo hice de otra manera para evitar dicha confusión. Es simplemente otra forma de enfocar la

resolución gráfica teniendo en cuenta que no soy un experto en matemáticas pero que procuro

hacerlo de la manera más sencilla para que sea comprensible por alumnado de primaria. Represento

las fracciones correspondientes teniendo en cuenta la relación de igualdad no de hombres y mujeres

del pueblo sino la de hombres y mujeres CASADOS. Así evitamos la confusión de que en el pueblo

parezca que hay el mismo número de hombres y mujeres.

Hombres del

pueblo

MMuujjeerreess ddeell

ppuueebblloo

Page 156: Números, Revista de Didáctica

Tiempo de espera y algunas cosas más. Problemas Comentados XXXVI J. A. Rupérez Padrón y M. García Déniz

156 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

P

R

O

B

L

E

M

A

S

Solapamos los hombres y las mujeres

casados y prolongamos las divisiones para

obtener partes iguales,

Y por último desagrupamos sabiendo que

la parte no coloreada representa la fracción de

personas solteras en el pueblo es decir 7/19

Maravilloso, ¿no?

Y quedamos así, como siempre, hasta el próximo artículo. Pero seguimos insistiendo: hagan

como Luis Blanco, resuelvan los problemas, utilícenlos con los alumnos y, sobre todo, aporten sus

comentarios a la revista, sus soluciones e, incluso, nuevas propuestas. O, simplemente, cuéntennos lo

sucedido en el transcurso de la clase en que probaron el problema. Eso nos alegraría mucho y también

al resto de lectores. Vamos, anímense…

Nos vemos en el próximo

Un saludo afectuoso del Club Matemático.

Page 157: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 157-178

E X

P E

R I E

N C

I A S

D E

A U

L A

C

oord

inad

or: C

arlo

s Du

qu

e Góm

ez

Los enigmas del Ogro de Halloween

Encarnación Rodríguez Francisco

(Centro de Educación Infantil y Primaria Calypo. Departamento MIDE I. UNED. España)

Resumen A través de un personaje fantástico que va dejando rastros en el colegio se plantean una

serie de enigmas matemáticos que tienen que resolver niños de 7 años. La solución a

todos los enigmas está al alcance de todos, ya que se pueden resolver utilizando diversas

estrategias, dependiendo de los conocimientos previos que cada cual tenga. El objetivo

no es que un solo niño lo logre, sino que a través de la cooperación todos los equipos

puedan llegar a la solución para así poder disfrutar todos juntos el tesoro del Ogro.

Palabras clave Medición, Geometría, Educación Primaria, investigación, aprendizaje cooperativo.

Abstract Through a fantastic character that leaves traces in school it will pose a series of

mathematical puzzles that children have to solve. The solution to all the puzzles is

available to all children, and that can be solved using different strategies depending on

prior knowledge that everyone has. Through cooperation all teams must arrive at the

solution, so that all of them can enjoy together the treasure.

Keywords Measurement, Geometry, Elementary Education, research, cooperative learning.

1. Introducción

En esta propuesta didáctica, cada tarea constituye una situación problemática que hay que

explorar y que desencadena procesos de razonamiento y experimentación junto con discusiones,

conjeturas y argumentaciones. Estas propuestas forman parte del contexto general del aprendizaje y

están estrechamente relacionadas con el resto de áreas. Momentos como el día de Halloween o

Navidad, que son muy importantes para el niño, ayudan a la aparición de personajes fantásticos que

proponen a los niños situaciones de investigación matemática. Estos personajes dotados de vida y que

provienen del mundo de la fantasía infantil animan al niño a explorar sus propios caminos y a

descubrir sus propias reglas junto con el desarrollo de actitudes positivas hacia las matemáticas. No

existe una única manera de hacer las cosas, sino que cada forma de resolver cada problema se verifica

por cómo se argumenta su validez. De esta forma cada niño define su propia interpretación del

mensaje y lo resuelve según su propio bagaje personal y creatividad. La verbalización del proceso de

resolución junto con argumentaciones del porqué de las afirmaciones es uno de los pilares de la

evaluación del aprendizaje. De esta forma, se rompen aquellas concepciones muy generalizadas sobre

las matemáticas escolares asociadas a respuestas cortas y objetivas.

2. Marco curricular

El currículo basado en Competencias Básicas, surge en España tras la publicación de la LOE

(2006). Las competencias básicas se definieron como la capacidad de poner en práctica de una forma

Page 158: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

158 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

integrada, en contextos y situaciones diferentes, los conocimientos, las habilidades y las actitudes

personales adquiridas. Por su parte, la competencia matemática se definió como «la habilidad para

utilizar y relacionar los números, sus operaciones básicas, los símbolos y las formas de expresión y

razonamiento matemático, tanto para producir e interpretar distintos tipos de información, como para

ampliar el conocimiento sobre aspectos cuantitativos y espaciales de la realidad, y para resolver

problemas relacionados con la vida cotidiana y con el mundo laboral»1. Esta definición implica por

un lado el conocimiento y manejo de los elementos matemáticos básicos y la puesta en práctica de

procesos de razonamiento que llevan a la solución de los problemas o a la obtención de información.

Por otro lado hace referencia clara a la posibilidad real de utilizar la actividad matemática en contextos

tan variados como sea posible. Por ello, su desarrollo «se alcanzará en la medida en que los

conocimientos matemáticos se apliquen de manera espontánea a una amplia variedad de situaciones,

provenientes de otros campos de conocimiento y de la vida cotidiana».

Además, la LOE2 en su desarrollo curricular señala que «el sentido de esta área en la

Educación Primaria es eminentemente experiencial, en donde los contenidos de aprendizaje toman

como referencia lo que resulta familiar y cercano al alumnado, y se abordan en contextos de

resolución de problemas y de contraste de puntos de vista».

Finalmente, Las directrices europeas para el desarrollo de la competencia matemática (informe

EURODICE, 2011) van encaminadas a adoptar un enfoque centrado fundamentalmente en el

desarrollo de competencias y habilidades más que en el desarrollo de contenidos teóricos. Para ello

propone una mayor interdisciplinariedad, un currículo basado en la resolución de problemas y en la

aplicación del conocimiento a contextos reales. Esto se consigue mediante el uso de nuevos métodos

de aprendizaje basados en la resolución de problemas contextualizados y en la investigación sobre

situaciones concretas, todo ello dentro de un marco de pensamiento crítico y aprendizaje activo. De

esta forma se separa de enfoques tradicionales relacionados con la ejercitación de los algoritmos y el

cálculo por sí solo.

3. Marco teórico

La resolución de problemas como una forma de desarrollar el curriculum de matemáticas surgió

en los años setenta y fue propugnado a partir de varios documentos entre los que destaca el informe

Cockcroft de 1982. La obra de Paulo Abrantes en Portugal basada principalmente en la resolución de

problemas a partir de situaciones contextualizadas y en el desarrollo de una educación matemática

para todos, abre un sinfín de oportunidades de investigación que se reflejan en una gran colección de

artículos que hacen referencia a la investigación matemática a través de proyectos, tareas y actividades

de investigación como eje de trabajo en el aula.

Cuando se habla de resolución de problemas, suelen surgir conflictos sobre lo que cada uno de

nosotros entendemos como problema y sobre las distintas maneras de interpretar lo que significa

resolverlos. Por esta razón se hace imprescindible definir el sentido que tiene la expresión «resolución

de problemas». Para ello, recojo las ideas de Paulo Abrantes (1996), entendiendo ésta en un sentido

más amplio relacionado con el trabajo en torno a situaciones problemáticas y procesos como

experimentar, conjeturar, probar, comunicar, discutir y generalizar. Así mismo en esta experiencia me

propuse que el trabajo que realizaran los niños constituyera una verdadera y significativa experiencia

matemática. Finalmente, mi objetivo fue desarrollar una parte curricular que generalmente queda

oculta en el currículo y que está relacionada con los procesos superiores de matematización.

1 Real Decreto 1513/2006, 8 de diciembre del 2006. Pp. 43059

2 Real Decreto 1513/2006, 8 de diciembre del 2006. Pp. 43095

Page 159: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

159 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Según las últimas aportaciones científicas, las investigaciones matemáticas conllevan procesos

complejos de pensamiento, requieren trabajo en equipo y creatividad por parte de los alumnos.

Abrantes señalaba una diferencia clara entre lo que era hacer y no hacer matemáticas.

Actividades de alto nivel cognitivo (formular, probar, demostrar conjeturas, argumentar, usar

procedimientos de naturaleza metacognitiva, etc.)

Actividades de bajo nivel cognitivo (ejercicios de repetición y las técnicas de cálculo)

Tras una revisión bibliográfica, encontré una gran colección de artículos, libros, propuestas y

experiencias. Sin embargo la mayor parte de éstos recogían experiencias concretas realizadas en el

ciclo superior de Primaria o en educación secundaria (Giménez, Santos y Ponte, 2002). En la siguiente

experiencia describo un proyecto de investigación matemática llevado a cabo en el primer ciclo de

primaria, en concreto, en el 2º curso (6-7 años). A través de él, trato de contribuir al conocimiento

práctico de las posibilidades que tienen los niños de primer ciclo de primaria de aprender y disfrutar de

las matemáticas mediante el desarrollo de tareas o proyectos de investigación matemática con el fin de

dar a conocer otra forma de enseñar y aprender alejada de planteamientos mecanicistas y rutinarios

basados únicamente en el uso de los algoritmos básicos y en el esquema de trabajo explicación-

ejercitación.

4. El proyecto «Los enigmas del Ogro de Halloween»

La fiesta de Halloween forma parte de la programación general del centro en el que trabajo. Una

forma muy fácil de contextualizar la actividad matemática es a través de situaciones didácticas

relacionadas con esta fiesta. Calabazas, monstruos gigantescos, esqueletos, vampiros…etc nos

ayudarán a comprender mejor las matemáticas.

En el proyecto se pueden diferenciar dos partes:

En la primera parte (1ª, 2ª y 3ª sesión) se trabajan noticias que llegan en varios periódicos

digitales sobre unos niños de Hamelin que se pierden en un bosque y se encuentran con un Ogro que

les plantea enigmas a cambio de dejarles libres, comerse una pizza o darles una parte de su tesoro. Los

niños alemanes piden colaboración ciudadana para lograr resolver los enigmas. De esta manera, los

niños de mi clase empiezan a ayudar a aquellos otros niños y les «envían» los resultados de sus

investigaciones. En esta primera parte el Ogro aparece como un personaje lejano, de otro país.

La segunda parte del proyecto (4ª, 5ª, 6ª y 7ª) se desarrolla a través de la repentina visita de un

ser misterioso que va dejando huellas. Al final los niños averiguan que ha sido el mismo Ogro de

Hamelin que se ha puesto en contacto con ellos para proponerles también una serie de enigmas y

ofrecerles a cambio una parte de su tesoro. En estas edades los niños conservan todavía una tremenda

creatividad y lo fantástico y mágico forma parte de su manera de entender el mundo.

4.1. Descripción del proyecto

En este apartado voy a explicar cómo se organizaron las sesiones, cuáles eran las características

de las tareas de investigación, los contenidos que se trabajaron junto con la metodología, los

materiales y recursos empleados.

Page 160: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

160 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

4.1.1. Temporalización y recursos

La actividad se llevó a cabo en el 2º curso de Educación Primaria durante las dos últimas

semanas antes de la fiesta de Halloween. Las sesiones duraron entre una hora y una hora y media cada

una. Los materiales necesarios para su realización fueron de uso frecuente en las escuelas: plastilina,

reglas, rotuladores, pinturas y la pizarra digital, que jugó un papel muy importante. El esquema que

siguieron las sesiones fue el siguiente:

Número de Sesión Contenido de la sesión

1ª Sesión 1ª noticia: «El enigma de la tarta»

2ª Sesión 2ª noticia: «El enigma de la pizza»

3ª Sesión 3ª noticia: «El enigma del donut»

4ª Sesión Investigación de las huellas misteriosas

5ª Sesión Organización de la información recogida

6ª Sesión 1er

enigma del Ogro: ¿Cómo seré de alto?

7ª Sesión 2º enigma del Ogro: La ropa para la gran gala

8ª Sesión y final 3er

enigma del Ogro: El problema de la cena de Halloween

9ª Sesión: evaluación La carta del Ogro: Las preguntas del Ogro

Tabla 1. Organización de las sesiones

4.1.2. Características de los enigmas del Ogro

Todas las tareas de investigación que les propone el Ogro comparten unas características

comunes que permiten que los alumnos exploren y desarrollen su propio camino de resolución.

Algunas de estas características son:

Variedad de situaciones de aprendizaje de naturaleza problemática y exploratoria.

Estructura: combinar varias formas de tareas, tanto de naturaleza abierta como otras más

concretas pero lo suficientemente flexibles como para que den lugar a distintos caminos de

exploración y resolución.

Pre-requisitos reducidos al mínimo, de forma que todos los niños puedan participar

independientemente de sus conocimientos anteriores.

El aprendizaje cooperativo como medio para que todos lleguen a conseguir el objetivo.

El papel del maestro reducido al de mediador entre el conocimiento y el alumno.

Evaluación participativa.

4.1.3. Contenidos de las propuestas

Los contenidos programados que se trabajan en el proyecto del Ogro son los siguientes:

Resolución de problemas que impliquen la realización de cálculos, medidas y situaciones en el

espacio y en el plano. Explicación oral del significado de los datos, la situación planteada, el

proceso seguido y las soluciones obtenidas.

Uso intuitivo de las operaciones con números naturales: suma para juntar o añadir;

multiplicación para calcular número de veces.

Page 161: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

161 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Utilización de técnicas elementales para la recogida y ordenación de datos en contextos

familiares y cercanos, y su representación gráfica.

La medida: estimación y cálculo de magnitudes de longitud. Comparación de objetos según

longitud, de manera directa o indirecta. Medición con instrumentos y estrategias no

convencionales; Medición con instrumentos convencionales y unidades usuales de objetos y

distancias del entorno.

Descubrimiento del carácter combinatorio de algunas experiencias.

Confianza en las propias posibilidades; curiosidad, interés y constancia en la búsqueda de

soluciones y gusto por la presentación ordenada y limpia de los cálculos y sus resultados.

Participación y colaboración activa en el trabajo en equipo y el aprendizaje organizado a partir

de la investigación sobre situaciones reales.

4.1.4. Metodología de las actividades

...las competencias matemáticas importantes para todo el alumnado no se

adquieren sin su involucración en actividades significativas, acompañadas de

los necesarios momentos de discusión y reflexión, y sin que desarrolle una

predisposición hacia las matemáticas. (Bishop y Goffree, 1986)3

Teniendo en cuenta que en la etapa de Educación Primaria el sentido de esta área es

fundamentalmente experiencial y teniendo en cuenta que la mejor forma de enseñar es mediante el

ejemplo, las sesiones se organizarán:

A partir del trabajo en torno a situaciones problemáticas y procesos como experimentar,

conjeturar, probar, comunicar, discutir y generalizar.

Buscando, recreando tareas que constituyan una verdadera y significativa experiencia

matemática para todos los niños.

Partiendo de lo manipulativo para llegar a lo formal: utilizando materiales estructurados

diversos y no estructurados.

Favoreciendo la interacción con el otro en los procesos de aprendizaje.

Propiciando el aprendizaje cooperativo que permita el contraste e intercambio de ideas, de

experiencias, de estrategias de aprendizaje y facilite la verbalización de las experiencias

realizadas.

Reflexionando junto al alumno sobre el desarrollo de las actividades que ha diseñado.

4.2. Narración de las sesiones

En esta parte voy a describir cada una de las sesiones que se desarrollaron en el proyecto. Como

he explicado anteriormente, las sesiones se pueden organizar en dos partes: aquellas en las que el Ogro

es un personaje que se encuentra en Alemania y el resto de las sesiones en las que el Ogro visita a los

niños en el colegio.

4.2.1. Los niños perdidos del bosque (1ª sesión)

En las semanas anteriores a Halloween empecé llevando cuentos ilustrados sobre personajes

relacionados con el miedo. Cuentos de momias, monstruos, vampiros y seres fantásticos inundaron el

aula de los niños. Cuando quedaban un par de semanas les conté una noticia que había leído en los

periódicos:

3 En Abrantes (1996): El papel de la resolución de problemas en un contexto de innovación curricular

Page 162: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

162 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

Once niños han desaparecido en el bosque del Ogro

El pasado 20 de octubre, once niños que se habían ido de acampada a un bosque cercano a la

localidad de Hamelin, decidieron hacer una excursión a un castillo abandonado por la noche. Al

entrar por la puerta principal la puerta se cerró de repente y apareció un Ogro. Era un Ogro

terrible y les dijo: Hoy es mi cumpleaños. Si resolvéis el enigma de la tarta podréis comérosla,

pero si no, ¡¡OS COMERÉ DE UN SOLO BOCADO!! El enigma es el siguiente: deberéis

cortar la tarta en once trozos utilizando sólo 4 cortes rectos. Los niños del bosque piden

colaboración ciudadana para poder descifrar el enigma.

Texto 1. Primera noticia de los niños desaparecidos en el bosque

Los niños rápidamente aceptan colaborar para resolver el enigma. Al principio no saben ni por

dónde empezar. Reparto celos para hacer los círculos y reglas y les animo a empezar. Al cabo de un

rato me dicen que sólo les salen 10 u 8 trozos y que el Ogro va a comerse a los niños. Decido darles

algunas pistas y realizo una tabla en la que tienen que ir registrando el número de trozos que les salen.

Nº de cortes 1 2 3 4

Nº de trozos 2 4

Tabla 2. Inicio del patrón de números

Hasta aquí todo bien pero en el siguiente corte, los niños tienden a pasarlo por el medio de

forma que sólo se obtienen 6 trozos. Algunos niños se han dado cuenta de que tienen 7 trozos con sólo

3 trazos. Les pido que expongan sus resultados en la pizarra y que comparen ambos esquemas.

Figura 1. Representación de los cortes realizados por los niños

Page 163: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

163 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Ahora pido que hagan un último trazo para obtener los 11 trazos. El cuaderno tiene tantos

borrones que cuesta mucho entender lo que quieren hacer. Muy pocos niños lo consiguen y los que lo

consiguen no saben explicar por qué. Les propongo que ayuden a sus compañeros a encontrar los

trozos, pero que no vale darles la solución, sino que tienen que explicárselo sin señalarles por donde

tiene que pasar la recta. Al final de la sesión, la mayoría de los niños han resulto el enigma. Alguno de

los niños sale a explicarlo a la pizarra. No saben muy bien cómo explicarlo verbalmente, pero

ayudándose de los dibujos lo explican de forma bastante clara.

Figura 2. Dibujos realizados por los niños para representar los cortes de la tarta

Vuelvo a la tabla y les pido que averigüen cuantos trocitos habrá para cinco cortes.

Nº de cortes 1 2 3 4 5

Nº de trozos 2 4 7 11

Tabla 3. Patrón de números que sigue la secuencia

Los niños están muy contentos, recogen los resultados en un sobre y se lo mandan a Roberto (el

conserje) para que lo envíe por correo.

4.2.2. La pizza del Ogro (2ª sesión)

Al día siguiente el periódico trae otra noticia:

Los niños desaparecidos en el bosque del Ogro logran resolver

el enigma gracias a los niños de 2ºA del colegio Calypo

Los once niños perdidos en el bosque del Ogro logran resolver el enigma gracias a la

colaboración ciudadana. Los niños dan las gracias públicamente a sus compañeros de 2º. El

Ogro, sorprendido por esta circunstancia, propone un nuevo reto a los niños: si queréis, podéis

marcharos a vuestra casa pero tengo aquí un trozo de pizza muy rico que os podéis comer si

resolvéis el próximo enigma. 7 niños deciden marcharse. El Ogro les dice que con sólo 3 cortes

rectos tienen que cortar este trozo de pizza en 4 porciones de la misma forma y tamaño. Se pide

colaboración ciudadana.

Texto 2. Segunda noticia de los niños desaparecidos en el bosque

Page 164: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

164 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

Los niños dibujan el triángulo y empiezan a hacer trazos pero no logran la solución. Decido dar

la vuelta al problema y les propongo que construyan un triángulo a partir de cuatro triángulos

pequeños e iguales con material manipulativo. Al cabo de unos minutos probando encuentran la

solución.

Figura 3. Representación de la repartición de la pizza

Sin embargo cuando les digo que representen en el papel los trazos sobre el triángulo grande

inicial, no son capaces y se hacen un lío haciendo trazos. Les propongo que empiecen a dibujar los

triángulos a partir de uno pequeño y así lo hacen aunque al dibujarlo lo hacen con las piezas separadas.

Aparentemente los niños perciben el todo como una suma de partes separadas y divisibles. Separaban

las partes incluso cuando estaban unidas. El hecho de que con material manipulativo hayan sido

capaces de resolver el reto, me hace preguntarme cómo hubiera cambiado el problema de las tartas si

lo hubieran hecho con un material que pudieran cortar y borrar con facilidad como la plastilina. A raíz

de esta reflexión planteo el tercer enigma:

4.2.3. El último enigma desde Hamelin (3ª sesión)

Los niños desaparecidos en el bosque del Ogro están

encantados con los enigmas y no quieren volver. El Ogro les

propone el tercer y último enigma

Los cuatro niños perdidos en el bosque del Ogro lograron también resolver el enigma de las

pizzas y se comieron su trocito. Los niños dan las gracias públicamente a la colaboración

ciudadana y les explica que se van a quedar con el Ogro un día más porque les ha prometido

parte de su tesoro si resuelven el tercer y último enigma. El Ogro les propone que con sólo 3

cortes rectos tienen que cortar un donut y obtener el máximo de trocitos.

Texto 3. Tercera noticia de los niños desaparecidos en el bosque

Nos ponemos manos a la obra, pero esta vez les doy plastilina y cuchillos de plástico para que

puedan manipular con facilidad. Tras muchos intentos casi todas las parejas han conseguido encontrar

9 trozos, salvo un niño que ha encontrado 10. Le pedimos que nos explique cómo lo ha resuelto y nos

cuenta que él ha partido el donut por la mitad y así ha conseguido los 10 trozos. Le felicitamos toda la

clase porque él ha logrado encontrar una solución nueva.

Page 165: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

165 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Figura 4. Obtención de los 10 trozos utilizando

las 3 dimensiones

Figura 5. Obtención de 9 trozos

utilizando 2 dimensiones

En este caso se observa que el hecho de utilizar material manipulativo (plastilina) introduce una

variable nueva que permite resolver los problemas de otra forma al introducir una nueva dimensión.

También deja de manifiesto que cuando un problema queda abierto pueden aparecer soluciones que

antes no se habían considerado. Cada uno interpreta la situación problemática desde su propio punto

de vista y eso puede dar lugar a cambios de perspectivas y a distintas soluciones, como la de CS.

4.2.4. Las huellas misteriosas (4ª sesión)

Cuándo los niños han llegado al cole se han encontrado unas huellas pintadas en el suelo,

rápidamente han pensado que eran de algún profesor o del conserje. Yo les he regañado porque no me

parecía bien que hicieran dibujos en el suelo porque luego Carmen (la limpiadora) le tocaba limpiarlo.

Los niños me aseguran que no han sido ellos y que habrá que investigar quien ha sido. Hacemos

grupos de investigación y decidimos que cada grupo se pusiera un nombre relacionado con Halloween

y que se pusiera un objetivo según lo que consideraban que había que investigar (ver tabla 4).

El primer grupo ha investigado sobre el tamaño de las huellas, cuánto miden las huellas,

dejándoles a ellos elegir el material y su interpretación sobre lo que significa hacer una medición. Han

pintado una huella en papel transparente y se la han ido llevando a otros sitios para poder compararla

directamente, han transportado la medida. Al final han utilizado su modelo con el del equipo que ha

representado la huella de los pies de los profes.

Foto 1. Dibujo del 3er

equipo con

los distintos pies de los maestros

Foto 2. Estrategia del 1er

equipo

con la copia en papel de vinilo de

la huella de la clase

Foto 3. Comparación de huellas

El segundo grupo ha elegido investigar sobre cómo estaban distribuidas las huellas para poder

hacer un posible itinerario de los pasos que había dado el personaje fantástico. Como en el baño no

había huellas y desaparecían en la entrada de emergencia, los niños llegaron a la conclusión de que

Page 166: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

166 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

llegó a la entrada del colegio se pintó los pies con un cubo de pintura abandonado y a la vuelta se

limpió las suelas con una toallita porque faltaban toallitas en clase. Señalan que además habían pies

que van del derecho y otros del revés, lo que significa que ha ido y ha dado la vuelta.

Foto 4. Representación inicial del itinerario de las huellas

El tercer grupo ha investigado sobre el tamaño de las huellas de los profesores y las ha

comparado con la huella que estaba en el suelo. Las han representado en un papel y han visto que la

más grande era la de un profesor pero que aun así era demasiado pequeña. La han medido con la regla

y han dicho que mide 30 centímetros. Al final se han dado cuenta de que en una huella del gigante

caben 4 pies o 6 manos como las de ellos.

Figura 6. Representación gráfica de superficie de las huellas

El cuarto grupo ha investigado sobre la distribución de los colores de las huellas, porque no

todas eran iguales. Han encontrado también huellas de dedos y han llegado a la conclusión de que era

un brujo porque tenía las huellas muy grandes y además olían a pintura, así que las tenían que haber

pintado.

Texto 4. Resultados de la investigación del grupo Colores

Page 167: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

167 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

El quinto grupo ha investigado sobre la cantidad de huellas que había en el colegio, pero se han

puesto a hacer el plano del colegio y no les ha dado tiempo a contarlas. Decido que es interesante

terminar la tarea entre todos, por lo que planifico una sesión para ayudarles a organizar los datos, los

diagramas y el mapa.

Figura 7. plano del colegio realizado por el grupo Calabazas

El sexto grupo ha decidido comparar huellas, para ver si eran todas iguales o pertenecían a

personas distintas. Se han dado cuenta que la huella del pie izquierdo era más pequeña que la del

derecho. Hemos organizado los datos en la pizarra.

Foto 5. Niños midiendo el largo de la huella izquierda Foto 6. Resultados de la investigación del grupo 6

El séptimo grupo ha medido las huellas pero ha utilizado las reglas pequeñas, así que han tenido

que unirlas para saber cuál es la medida. A pesar de que ya saben contar de 10 en 10, empiezan a

contar de uno en uno. Un compañero propone que cuenten de 10 en 10, utilizando la decena como

agrupación para el conteo. Les pregunto si se podría contar de otra manera que fuera más rápida. Un

niño, NL, propone que se puede contar utilizando el tamaño de las reglas 15+15=30; 30+7=37 cm. No

todos son capaces de sumar mentalmente de 15 en 15. Les ayudo a separar la decena de las unidades y

sumar primero las decenas y luego las unidades, aplicando la propiedad conmutativa y asociativa de la

suma:

Page 168: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

168 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

15 = 10+5

15+15 = 10+5+10+5 = 10+10+5+5 = 20+10 = 30

30+7 (de la otra regla) = 37 cm

Foto 7. Niños midiendo la huella

concatenando 3 reglas de 15 cm

Nombre del equipo Tarea que realizan

1.º) Vampiros Transportan la medida de la huella copiándola en un plástico transparente

2.º) Momias Realizan el itinerario de la huella

3.º) Halloween Buscan a los posibles autores de la huella y copian su pie en papel para luego

compararla

4.º) Colores Investigan la relación entre las huellas y los colores

5.º) Calabazas Realizan un mapa del colegio para situar las huellas

6.º) Zombis Miden la huella izquierda y derecha para compararlas

7.º) Fantasmas Miden todas las huellas para saber si son todas iguales

Tabla 4. Relación de equipos con las tareas que realizan

Al final deciden que puede ser Frankenstein porque se le puede dar la vuelta a los pies y que

cada pie puede ir por un lado, así que no tiene que dar la vuelta. Es un ser amorfo y deforme porque

tiene un pie de cada tamaño. Otro niño ha dicho que podían ser dos Ogros distintos porque tenían los

pies distintos pero el grupo ha concluido que sería imposible caminar con un solo pie.

Los niños se lo han pasado genial y han participado todos. En esta sesión los niños han medido,

han transportado medidas, han utilizado distintos instrumentos de medición, han comparado medidas,

han realizado itinerarios, han hecho un mapa de situación, han realizado gráficos de medidas y han

apuntado sus resultados. Todos estamos de acuerdo en que tenemos que mejorar un poco la limpieza

de los escritos porque se entiende muy mal. Solamente uno de los grupos no ha terminado su trabajo

porque a uno de sus miembros le encanta dibujar y se ha recreado haciendo el mapa del colegio, le

apetecía más eso que el objetivo que se había marcado. Queda todavía una tarea más por hacer: ayudar

a los niños a organizar los resultados de las investigaciones. Para ello, planteo al día siguiente una

nueva sesión para organizar los datos.

4.2.5. Organización de la información (5ª sesión)

Nada más llegar a clase los niños empiezan a buscar pistas o alguna nota por toda la clase, pero

no encuentran nada y se decepcionan un poquito. Sugieren que quizá hay algo que no han hecho bien

porque el monstruo no ha vuelto a clase. Un niño dice que se ha encontrado la ventana abierta (estaban

cerradas) y que quizá el monstruo ha entrado por la ventana y que ha visto algo que no le ha gustado.

Deciden que no han presentado bien sus cálculos y que hay que resolver el tema del orden.

Les digo que me parece bien y que si quieren yo les puedo ayudar a poner sus resultados en

limpio. Los niños reparten rápidamente sus cuadernos y se ponen manos a la obra. Empezamos a

Page 169: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

169 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

recordar las conclusiones y la primera que señalan es que un pie era más grande que otro. Les proyecto

la imagen del día anterior y empiezan a anotar en su cuaderno. Señalan que la línea tiene que pasar por

el medio porque es el lado más largo. Anotan el largo y el ancho y les sugiero que hagan una pregunta

que se pueda resolver con los datos que hemos puesto. La mayor parte escribe:

―¿Qué huella es más grande?

―La derecha.

La segunda conclusión está relacionada con la superficie que ocupan las huellas y los niños

recuerdan que en cada huella cabían 4 pies o 6 manos. Hacen su esquema y representan las huellas del

gigante en relación con las suyas.

Foto 8. cuaderno en el que representan el

tamaño de las huellas

Foto 9. cuaderno en el que representan la

superficie de las huellas en relación con el

tamaño de los pies y las manos

Finalmente deciden que les falta hacer el plano de las huellas para poder contarlas, cosa que

faltaba por averiguar. Les invito a dibujar el plano de las clases y del pasillo por donde supuestamente

entró el personaje fantástico. Proponen que hay que utilizar dos colores, uno para marcar las de la ida

y otro para las de la vuelta. Por último, calculan las huellas agrupando por partes:

11 en la clase de 2ºB

12 en la clase de 2ºA

4 en el pasillo de ida

4 en el pasillo de vuelta

Total: 31 huellas

Foto 10. Mapa de huellas Foto 11. Mapa de huellas y operación

Todos han hecho sus dibujos y esquemas y ya están satisfechos con lo que han hecho, ahora

falta que el personaje fantástico quiera venir.

Page 170: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

170 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

4.2.6. El enigma de las huellas (6ª sesión)

Los niños llegan al cole al día siguiente y vuelven a buscar por todas partes las pistas, pero no

encuentran nada y empiezan a pensar que algo no lo han hecho bien y se ponen muy tristes. A los diez

minutos aparece el conserje y les dice que ha llegado una carta a nombre de ellos. Los niños se ponen

muy contentos y me preguntan que si la pueden leer. En ella el Ogro les dice que les va a regalar un

tesoro si logran descifrar los tres enigmas pero que tienen que resolverlos todos y cumplir una serie de

requisitos, como explicar lo que han hecho, mostrar los resultados ordenadamente… Los niños

escuchan con atención el enigma en que les dice que tienen que averiguar su altura.

Foto 12. AA lee la carta que les ha escrito el Ogro Texto 5. La primera carta del Ogro

Los niños empiezan a decir alturas al azar sin pensar, un grupo lo relaciona con el paso: si

miden la distancia del paso podrán saber cuánto miden las piernas del gigante, pero hacen una relación

directa entre paso y longitud de las piernas. Quizá si supieran dividir y multiplicar hubieran podido

hacer una regla de tres y lo hubieran resuelto así. Les ayudo a recordar la relación entre longitud del

pie y altura: el profe más alto del colegio es el que tiene el pie más grande.

La mayor parte de los niños se da cuenta de que si caben dos huellas serán dos alturas, y

empiezan a buscar el pie que se ajusta mejor a la huella y miden su altura en la pared. Hacen la

relación 120+120=240 cm.

Page 171: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

171 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Foto 13. Pies puestos en línea para relacionar con la altura Foto 14. Medición de la altura de los niños

Hay un grupo que utiliza un pie de un niño y otro de otro y suma la altura de uno más la altura

de otro 131+127=258 cm. Sólo hay un grupo que no llega a la solución porque lo que hace es sumar la

distancia de dos de sus pies con la de la huella. 21+21+41= 83 cm. Comprobamos la altura que les da

y vemos que es imposible que el gigante sea tan pequeño.

Comprobamos la medida que nos ha dado a casi todos (aproximadamente dos metros y medio) y

la transportamos en la comba de clase. El gigante llegará casi hasta el techo de la clase. Finalmente

organizamos los resultados en el cuaderno:

Texto 6. Cuaderno en el que los niños explican sus conclusiones

4.2.7. La ropa para la gran gala (7ª sesión)

Al día siguiente no hay ninguna noticia del Ogro. Una niña propone que le escribamos una carta

para ver si así se anima y quiere venir al día siguiente. Nos ponemos manos a la obra y recordamos

cómo se escribe una carta.

Page 172: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

172 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

Texto 7. Carta de VR al Ogro Texto 8. Carta de CS al Ogro

Las cartas son geniales, en todas ellas llaman al Ogro amigo y le piden que por favor venga a

ponerles más pistas y que por favor no les coman porque quieren ser sus amigos. Algunos niños le

hacen preguntas: ¿cómo has llegado hasta la puerta?, ¿cómo has abierto la puerta?, ¿tienes poderes

mágicos?

Por fin llegan las cartas:

Queridos amigos pequeñines:

He recibido vuestras cartas y me he puesto muy contento. No os

preocupéis, soy vegetariano y desde hace mucho tiempo no como niños ¡PUAJJ!

¡¡QUE ASCO!!

Os voy a contestar a vuestras preguntas. Me llaman Ogro Verde

porque más bien soy verde, aunque me puedo camuflar como los camaleones y

cambiar de color, también tengo el poder de hacerme invisible. No tengo ningún

tornillo en la cabeza, y en efecto tal y como habéis descubierto tengo un pie más

grande que otro porque nací así, los Ogros somos un poco deformes.

¡¡¡Atchis!!! Vaya constipado que he cogido, estoy en la camita

tomando jarabe para la tos y sopita por eso no he podido mandaros en estos días

ningún enigma. Quiero deciros que estoy muy orgulloso de todos vosotros, sois

unos auténticos cerebritos y vuestros cuadernos están fenomenal. ¡Seguid así y

conseguiréis el tesoro!

Un abrazo muy fuerte, El Ogro verde

¡Muy bien niños! ¡Lo habéis logrado!

Ahora vamos a ver si conseguís resolver el segundo enigma:

ENIGMA 2

A una fiesta de Halloween me han invitado

Con mis mejores trajes y bien repeinado

Verde, rojo y azul son mis calzoncillos

Y mis jerséis morado y amarillo

¿De cuantas formas puedo ir vestido a la gran gala?

Texto 9. Cartas del Ogro a los niños

Se lee la carta, hacemos un dibujo en la pizarra y los niños empiezan a trabajar en sus equipos.

La mayoría de los grupos comienzan a resolver el problema haciendo esquemas de las posibles

combinaciones aunque sólo un grupo lo hace de forma sistemática. Un grupo no termina de

comprender bien lo que tiene que hacer y les propongo recortar las camisetas y los calzoncillos y

colorearlos de los colores indicados para así registrar las combinaciones. Finalmente con la ayuda de

los recortables lo solucionan. Una vez que terminan les propongo que expliquen a sus compañeros

cómo lo han hecho.

Page 173: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

173 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Foto 15. Material manipulativo creado por un grupo

Foto 16. Niños resolviendo el enigma Foto 17. Resultado combinaciones de ropa

Al final todos los equipos han encontrado las seis combinaciones y han señalado que le

recomiendan al Ogro que se ponga la amarilla y roja como la selección española. Los esquemas de los

niños cada vez son más claros y están mejor explicados. Poco a poco se esfuerzan en hacer las cosas

bien y en repartirse las tareas siendo conscientes que todos tienen que entender lo que están haciendo.

4.2.8. El problema de la cena de Halloween (8ª sesión)

A primera hora llega la última carta con el enigma de los invitados a la fiesta, les propongo que

anotemos las condiciones del Ogro para sentarse en la mesa y les pregunto cómo podemos resolverlo.

Alberto propone que utilicemos los botes de lápices para dibujar la mesa como en las tartas y que

utilicemos los pegamentos para representar las sillas de los 5 invitados. Les propongo que empiecen a

representar el problema y que empiecen a pensar cómo hay que colocarlos. La mitad de los equipos

solucionan el enigma y los otros cometen errores que corrigen cuando empiezan a revisar las

condiciones del Ogro.

Todos los trabajos están bien presentados y los esquemas están bien organizados. Los niños

celebran que han resuelto los enigmas y se preguntan cuándo llegará el tesoro del Ogro porque han

logrado resolver todos los problemas. Finalmente después del recreo encuentran una caja encima de la

mesa con el tesoro.

Page 174: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

174 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

¡¡Aunque sois tan pequeños como Pulgarcito tenéis un cerebro como Gulliver!!

A ver si sois capaces de resolver el último enigma y conseguir el tesoro

ENIGMA 3

5 en la fiesta conmigo somos

La momia, Frankenstein, Drácula y el hombre Lobo

Pero yo no aguanto a Drácula

Drácula no aguanta a Frankenstein

Frankenstein no aguanta a la momia

La momia no aguanta al hombre lobo

Y el hombre lobo no me aguanta a mi

¿Podéis descubrir una forma en que todos nos sentemos con

alguien a quien no odiemos?

Texto 10. Último enigma del Ogro

Figura 8. Organización de los monstruos en la mesa

Foto 18. Niños abriendo el cofre del tesoro

4.2.9. Sesión final y de evaluación. La petición del Ogro (9ª sesión)

A pesar de que ya habían pasado varias semanas de la visita del Ogro, los niños seguían

escribiéndole cartas pidiéndole que viniera a clase a ponerles más enigmas. Se me ocurre que es una

buena oportunidad para recoger información sobre la experiencia y decido volver a mandar al Ogro

para que les haga una serie de preguntas. Les leo la carta y les digo que tienen que escribir muy clarito

y ordenadamente para que el Ogro pueda entender todas sus respuestas. Los niños se enfadan un

poquito porque se ha ido a París, pero deciden contestarle a las preguntas.

Texto 11. Carta de JE al Ogro

Page 175: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

175 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Calypo, 8 de noviembre de 2012

Queridos amiguitos,

Espero que os haya gustado mi tesoro y siento mucho no haber podido estar con vosotros en la fiesta pero tenía una urgencia.

Unos niños de otro colegio de París me llamaron para que les pusiera unos enigmas y tuve que marcharme en el AVE. Tengo un

problema ¿Me podéis ayudar? Me gustaría que me echarais una mano para pensar nuevos enigmas para otros niños y para eso

necesito que me contestéis a algunas preguntas. Por favor, pensadlas bien porque así serán mejores y más divertidas la próxima vez.

¿Estáis preparados?

1. ¿Quieres que vuelva otra vez a ponerte nuevos enigmas? ¿Por qué?

2. ¿Te acuerdas de cuáles eran?

3. ¿Cuál enigma te ha gustado más? ¿Por qué?

4. ¿Cuál te ha parecido más difícil? ¿Por qué?

Texto 12. Carta del Ogro a los niños

5. Reflexiones finales

Cuando me puse a diseñar las tareas de este proyecto no sabía qué respuesta iban a tener por

parte de los alumnos y tampoco sabía cómo se las iban a ingeniar para resolver los enigmas ni si iban a

ser capaces de lograrlo. Mi experiencia me dice que los niños te sorprenden cada día y que las

actividades abiertas pueden sugerir un sinfín de oportunidades que a priori no se le ocurren al maestro.

Ante todo intenté que todas las tareas tomaran en cuenta los siguientes aspectos fundamentales:

Actividades contextualizadas dentro del marco temático de la fiesta de Halloween.

Variedad de situaciones de aprendizaje de naturaleza problemática y exploratoria.

Estructura: se propusieron 8 tareas relacionadas con un personaje de Halloween en las que se

combinaron varias formas de trabajo, una era de naturaleza abierta en las que no estaba ni

señalado el objetivo y en las otras siete se planteaba el objetivo pero no el camino que había

que seguir para llegar al resultado.

Todas las tareas excepto la de introducción (experiencia piloto) fueron planteadas dentro del

marco del aprendizaje cooperativo.

Pre-requisitos reducidos al mínimo, todos los niños podían participar independientemente de

sus conocimientos anteriores.

El papel del maestro reducido al de mediador, ya que era el personaje fantástico el que

planteaba el reto.

Una vez realizadas las actividades planteé una nueva carta en la que el Ogro les pedía ayuda

para diseñar nuevos enigmas a otros niños a través de una serie de preguntas (cuestionario). Tras la

lectura de los cuestionarios cabe destacar que:

Todos los niños están encantados con los enigmas y piden al Ogro que vuelva para que les

ponga más. Sólo una niña no quiere que venga porque le dan miedo los monstruos.

Page 176: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

176 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

La mayoría de los niños recuerdan todos los enigmas. El niño que menos enigmas recuerda,

registra 3.

El enigma que más les ha gustado no se puede señalar, porque cada uno es valorado por varios

niños.

El enigma que señala la mayoría como el más difícil es el del cálculo de la altura del Ogro.

Analizando el problema es comprensible ya que tenían que relacionar dos medidas distintas y

no era una relación directa.

Todos los niños escriben que lo que han aprendido ha sido el trabajo en equipo y el orden y

limpieza en los cálculos y esquemas.

Todos los niños, menos uno, prefieren el trabajo en equipo. Los más capacitados señalan que

así aprenden cosas de los demás que ellos no saben y los que tienen más dificultades señalan

que así pueden conseguir resolver enigmas «porque no soy tan listo».

Luego, han mejorado en su…

Confianza en el uso de la matemática

Gusto y persistencia para afrontar situaciones relacionadas con el uso de la Matemática

Capacidad de trabajo en equipo y cooperativo

Capacidad de organización y toma de decisiones

Capacidad de presentación y organización de sus trabajos

A modo de resumen podemos señalar que a través de este proyecto los niños han mejorado en

sus competencias:

Competencia lingüística: los niños han tenido que leer para poder comprender los enigmas y en

la fase de verbalización de los resultados y del proceso de resolución han tenido que esforzarse

para hacerlo de forma coherente, ordenada y clara. Los compañeros se han escuchado

atentamente y han compartido sus ideas o han rebatido sus hallazgos. Una sorpresa ha sido

que los niños han decidido comunicarse por escrito con el Ogro a través de cartas y

cuestionarios. Esta competencia también está relacionada con la mejora en la presentación y

organización de sus trabajos.

Competencia matemática: en un primer nivel, los niños utilizan y relacionan los números, las

operaciones básicas, los símbolos y las formas de expresión y razonamiento matemático para

resolver los distintos enigmas; y, en un segundo nivel, son capaces de utilizar el razonamiento

matemático para experimentar, conjeturar, probar, comunicar y discutir argumentando su

punto de vista frente al de los demás. Finalmente cabe señalar que esta competencia engloba

todo el ámbito actitudinal en relación con las matemáticas. A través de las respuestas de los

niños podemos concluir que los niños han mejorado sobre todo su confianza en el uso de la

matemática así como el gusto y persistencia para afrontar situaciones relacionadas con el uso

de la Matemática.

Competencia social y ciudadana: desde su punto de vista, tal y como señalan en sus

respuestas, los niños han aprendido a trabajar en equipo porque aprenden de los demás y

porque necesitan ayuda de los demás. Podríamos decir que ha mejorado su capacidad de

trabajo en equipo y cooperativo.

Competencia para aprender a aprender: aprender a aprender implica utilizar las estrategias

de aprendizaje de una forma cada vez más autónoma y disfrutar con el ejercicio de esa

autonomía. A través de las propuestas del Ogro el niño ha utilizado técnicas y hábitos de

trabajo para planificar y organizar su propio camino de resolución; integra y organiza la

información a través de esquemas, tablas, dibujos; revisa el trabajo realizado para mejorarlo e

intenta presentar los trabajos con orden y limpieza. Los propios niños señalan que el Ogro les

ha enseñado a ser más limpios con sus trabajos.

Page 177: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

177 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

E X

P E

R I E

N C

I A S

D E

A U

L A

Autonomía e iniciativa personal: el niño a través de las propuestas del Ogro ha sido capaz de

llevar sus ideas a la práctica, de planificar la acción, de llevarla a cabo y concluirla en

colaboración con los demás y apoyado por sus compañeros. Además, esto implica aceptar

responsabilidades, actuar, evaluar lo realizado, autoevaluarse, aprender de los errores, extraer

conclusiones y valorar las posibilidades de mejora. Después de cada tarea se valoraron estos

aspectos entre todos y se señalaron los objetivos a tener en cuenta en el siguiente enigma. Al

final de los últimos enigmas se puede decir que lograron un mejor reparto de tareas y una

mayor capacidad de organización y toma de decisiones.

Competencia emocional: el desarrollo de la competencia emocional siempre está asociado a

una relación positiva y comprometida con los otros. Como he señalado anteriormente, toda la

programación gira en torno a la idea de cooperación entre compañeros y ayuda mutua. El

Ogro establece en su primera carta que es condición imprescindible que todos los miembros

de cada equipo participe y se ayude, no dando lugar a actuaciones individuales. El grupo está

acostumbrado a la cooperación ya que el enfoque desde las áreas de mi tutoría desde el curso

anterior está basado en la colaboración y la ayuda mutua. En el cuestionario de los niños,

todos señalan que han aprendido a trabajar en equipo y a no pelearse, pero han aprendido

mucho más: a escuchar a sus compañeros, a defender sus ideas a través de la palabra, a

respetar las ideas de sus compañeros y a valorarlas.

En relación con el ambiente de aprendizaje podemos concluir que éste se ha caracterizado por

ser cooperativo, basado en el trabajo en equipo, apoyado en la confianza entre los alumnos y la

maestra y en donde los niños han mostrado autonomía y responsabilidad en las tareas propuestas. Este

ambiente probablemente se debe a:

Trabajo cooperativo, aprendizaje entre iguales en el resto de las áreas de la tutoría.

Sucesivas oportunidades de conseguir el éxito para todos los alumnos.

Evitar las comparaciones entre alumnos mediante calificaciones numéricas.

Paciencia y persistencia por parte de todos para esperar y apoyar a los que más dificultades

tienen.

Proporcionar un entorno seguro y cálido en el que el aprendiz se sienta libre y confiado para

probar, equivocarse, corregir y volver a probar.

En cuanto a las actividades podemos señalar que:

Las actividades son más apreciadas y recordadas por los alumnos cuando tienen un significado

para ellos y están contextualizadas (fiesta de Halloween).

Aumenta la confianza en sus capacidades cuando las desarrollan en equipo, lo que mejora su

interés y actitud ante situaciones problemáticas.

El uso de material manipulativo ayuda a comprender problemas que para algunos equipos se

les hace demasiado abstracto.

La actividad de la huella, que era totalmente abierta, sin objetivos y sin planteamiento

ninguno, dio lugar a una gran riqueza de oportunidades de aprendizaje matemático.

Posteriormente cabe destacar que ningún niño ha hecho referencia en el cuestionario a las

matemáticas, en cuanto a lo que ellos consideran que han aprendido. Parece que para ellos todo el

trabajo que han realizado no tiene que ver con ellas ni con la resolución de problemas. Habría que

preguntarse qué entienden ellos por matemáticas y por lo que significa resolver un problema. Por otro

lado sucede que, cuando las tareas tienen un significado o propósito real para ellos, estas actividades

son acogidas con mayor entusiasmo. Es el Ogro, y no la maestra, quien les está pidiendo que resuelvan

las situaciones y les recompensa con su tesoro.

Page 178: Números, Revista de Didáctica

Los enigmas del Ogro de Halloween E. Rodríguez Francisco

178 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

E

X

P

E

R

I

E

N

C

I

A

S D

E

A

U

L

A

Tabla 1. Organización de las sesiones ...................................................................................... 160

Tabla 2. Inicio del patrón de números ...................................................................................... 162

Tabla 3. Patrón de números que sigue la secuencia ................................................................. 163

Tabla 4. Relación de equipos con las tareas que realizan ........................................................ 168

Bibliografía

Abrantes, P. (2001). Revisión de los objetivos y la naturaleza de las matemáticas para todos en el

contexto de un plan de estudios nacional. En Giménez, (coord.) Matemáticas en Europa: diversas

perspectivas. Barcelona. Biblioteca de Uno.

Abrantes, P. (1996). El papel de la resolución de problemas en un contexto de innovación curricular.

UNO. Revista de Didáctica de las Matemáticas, 8, pp.7-18.

AAVV. (2004). Matemáticas re-creativas. Claves para la Innovación Educativa 29. Grao.

AAVV. (2004). La actividad matemática en el aula. Homenaje a Paolo Abrantes. Uno. Grao

Comisión De Las Comunidades Europeas (2005): Propuesta de recomendación del Parlamento

Europeo y del Consejo sobre las competencias clave para el aprendizaje permanente. 2005/0221

(COD), Bruselas ESPAÑA.

De Guzman, M. (2006). Para pensar mejor. Madrid. Pirámide.

De Guzmán, M. (1993). Tendencias innovadoras en educación matemática. Recuperado el 24/10/2012

de http:// www.oei.es/edumat.htm

Escorial, B. De Castro, C. (2011). La gran torre: Matemáticas en la Educación Infantil a través de un

proyecto de construcción. Números [en línea], 70. Recuperado el 20 de septiembre del 2013 de

http://www.sinewton.org/numeros/

EURYDICE (2002). Competencias clave. Un concepto en expansión dentro de la educación general

obligatoria. Recuperado de http://www.eurydice.org

EURYDICE (2011). Mathematics Education in Europe: Common Challenges and National Policies.

Education, Audiovisual and Culture. Executive Agency .November, 2011. Recuperado el

20/09/2012 de

http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/132EN.pdf

Fisher, Robert y Vince, Alan. (1998). Investigando las matemáticas. Libro 1. Akal.

Garragori, X. (2007). Currículo basado en competencias: aproximación al estado de la cuestión. Aula

de Innovación Educativa. Núm. 161. 47-55.

Gimenez, Santos y Ponte. (2002). La resolución de problemas en matemáticas. Claves para la

Innovación Educativa 12. Grao

Ley Orgánica 2/2006, de 3 de mayo, de Educación (LOE). BOE nº 106 (España), 4 de mayo del 2006.

PERRENOUD, P. (1997). 10 diez nuevas competencias para enseñar. Recuperado el 25/09/2012 de

http://redeca.uach.mx/competencias/Diez%20nuevas%20competencias%20para%20ensenar.pdf

Segarra, L. (2001). Colección de problemas matemáticos para todas las edades. Grao.

Encarnación Rodríguez Francisco es maestra de Educación Primaria en el CEIP CALYPO de

Casarrubios del Monte (Toledo). Es licenciada en Antropología por la UNED en donde obtuvo el Premio

Extraordinario Fin de Carrera. En la actualidad compagina su labor como maestra y formadora en

distintas asociaciones y centros de formación de maestros junto con sus estudios de doctorado en el

departamento MIDE I de la UNED en donde está desarrollando su tesis doctoral en el campo de la

investigación matemática y el desarrollo de la competencia matemática. [email protected]

Page 179: Números, Revista de Didáctica

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 179-181

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

L E

E R

M A

T E

M Á

T I C

A S

Cuando las rectas se vuelven curvas

Las geometrías no euclídeas

Joan Gómez

EDITORIAL RBA

ISBN: 9788498678567

160 páginas

Durante unos dos mil años, los matemáticos europeos vieron la geometría a través de los ojos de Euclides gracias a su magna obra Elementos de geometría. El tratamiento elegante que el matemático

griego hizo de esta disciplina propició que ésta fuera durante muchos años la rama fundamental del

saber matemático y fue determinante en la forma en la que se ha enseñado geometría en los colegios,

incluso hasta el día de hoy.

El enfoque de Euclides es riguroso: introduce una serie de definiciones, axiomas y postulados, y

a partir de ellos obtiene todas las proposiciones. Sin embargo, desde muy pronto este tratamiento no se

consideró perfecto. Los matemáticos empezaron a sospechar que uno de los postulados, el quinto1, no

era independiente de los demás, sino que podía ser deducido a partir de ellos. Innumerables intentos de ilustres matemáticos hicieron creer finalmente en la posibilidad de que este postulado fuera en realidad

independiente de los otros cuatro. De esta forma se llegó al convencimiento de que se podían

establecer “otras geometrías”, resultantes de los cuatro primeros postulados y la negación del quinto (y que son perfectamente coherentes desde el punto de vista lógico). Éstas son las llamadas geometrías

Page 180: Números, Revista de Didáctica

Cuando las rectas se vuelven curvas. Las geometrías no euclídeas. Joan Gómez Reseña: J. García Melián

180 NNÚÚMMEERROOSS Vol. 95 marzo de 2014

L

E

E

R

M

A

T

E

M

Á

T

I

C

A

S

no euclídeas. Joan Gómez, en su libro Cuando las rectas se vuelven curvas, presenta una introducción

de dichas geometrías, a nivel elemental.

El libro comienza exponiendo la llamada “geometría del taxi”, derivada de la “distancia del

taxi”. La intención es mostrar que es posible ver las cosas desde otro punto de vista si se cambia la

forma de medir distancias, preparando al lector para lo que está por venir.

A continuación se realiza un recorrido por la geometría euclídea, enunciando las principales definiciones y axiomas, y por supuesto los postulados. Mención aparte merece, naturalmente, el

quinto:

1 “Si una línea recta corta dos rectas de forma que los ángulos interiores

de un mismo lado son menores que dos ángulos rectos, las dos líneas

rectas, prolongadas indefinidamente, se encuentran en el lado en el cual

los ángulos son menores que dos ángulos rectos”.

Se proporcionan asimismo algunas propiedades equivalentes a este postulado; la más célebre de

ellas, debida a John Playfair, es la que en muchos textos se toma como quinto postulado y establece

que:

“Por un punto exterior a una recta se puede trazar una única recta paralela

a ella”

El tercer capítulo está dedicado a comentar varios intentos de demostración del quinto postulado a partir de los cuatro primeros. En particular, se citan los de Proclo, Omar Khayyam, Christopher

Clavio, John Wallis y Gerolamo Saccheri. Este último probó numerosos resultados consecuencia de

negar el quinto postulado con idea de alcanzar una contradicción que nunca llegó, pero no fue más allá

porque para él todos ellos eran “contra natura”.

No fue hasta la aparición de Nikolai Lobachevski y János Bolyai que se empezó a tener serias dudas de que el quinto postulado fuera en realidad dependiente de los otros (si bien Carl Friedrich

Gauss ya había considerado esta idea, aunque nunca se atrevió a hacerla pública). Ellos lo negaron

sustituyéndolo por este otro: “por un punto exterior a una recta pasan infinitas paralelas a ésta” y desarrollaron una geometría perfectamente lógica que hoy lleva el nombre de geometría hiperbólica,

también muchas veces conocida como geometría de Lobachevski. Para ilustrar esta geometría se

introducen la seudoesfera y el círculo hiperbólico, espacios en los que se dan los postulados de la

geometría hiperbólica. A renglón seguido se considera la geometría elíptica, debida a Bernhard

Riemann (esta es la geometría propia de una esfera, por ejemplo).

Se efectúan ciertas comparaciones entre las tres geometrías (euclídea, hiperbólica y elíptica),

destacándose sobre todo sus diferencias. A modo de ejemplo, citemos dos de las más llamativas. La

primera de ellas está relacionada con la suma de los ángulos interiores de un triángulo que, como es bien sabido, es siempre de 180 grados en la geometría euclídea. Esta suma es inferior a 180 grados en

la hiperbólica y superior a 180 grados en la elíptica, y de hecho depende del área del triángulo. La

segunda de las diferencias que muestra este libro entre las tres geometrías tiene que ver con el concepto de triángulos semejantes: estos solamente existen en la geometría euclídea. En las otras, dos

triángulos cuyos ángulos son iguales son automáticamente iguales (congruentes). Es decir, no hay

triángulos con la misma forma y distinto tamaño.

Para poder medir en la geometría hiperbólica se definen las funciones trigonométricas

hiperbólicas, y con su ayuda se establecen algunos resultados destacados de esta geometría. Por

ejemplo la fórmula para la longitud de una circunferencia de radio r resulta ser

Page 181: Números, Revista de Didáctica

Cuando las rectas se vuelven curvas. Las geometrías no euclídeas. Joan Gómez Reseña: J. García Melián

181 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

L E

E R

M A

T E

M Á

T I C

A S

Longitud 2r

k senhk

donde k es una constante de proporcionalidad y senh es la función seno hiperbólico, definida

por 2

x xe esenh x

. También se consideran las versiones correspondientes del teorema de Pitágoras

y los teoremas del seno y del coseno.

Finalmente, se dedica un capítulo a la geometría elíptica, concentrándose en el caso particular

de la esfera. Después de introducir la terminología de meridianos y paralelos en la misma, se centra la atención en los triángulos esféricos, destacando la propiedad importante anteriormente reseñada de

que la suma de sus ángulos es mayor que 180 grados.

El libro concluye con un apéndice en el que se menciona la relación de las geometrías no

euclídeas con la teoría de la relatividad, puesto que Einstein usó las ideas de Riemann para explicar su teoría: el universo es un espacio cuatridimensional, que se curva en cada punto por efecto del campo

gravitatorio.

En mi opinión, el libro es bastante ameno y constituye una asequible incursión a nivel elemental

en el mundo de las geometrías no euclídeas y su origen histórico. Las explicaciones son en general

claras y concisas y los capítulos 3 y 5 son bastante sugestivos. Sin embargo, los capítulos 7 y 8, siendo interesantes en sí mismos, me parecen un tanto desligados del resto del libro, puesto que la presencia

de la geometría en ellos es meramente testimonial. Pero en conclusión encuentro que este libro es una

lectura recomendable para los lectores interesados en la geometría en general.

Jorge García Melián (Universidad de La Laguna)

Page 182: Números, Revista de Didáctica
Page 183: Números, Revista de Didáctica

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 183-185

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

L E

E R

M A

T E

M Á

T I C

A S

Matemáticamente competentes… Para reír

Pablo Flores y Antonio Moreno

Editorial GRAÓ

ISBN:978-84-9980-360-9

134 páginas

El libro Matemáticamente competentes… Para reír contiene una compilación de viñetas

humorísticas relacionadas con las matemáticas que han aparecido en diarios y revistas

principalmente de España. Los autores recopilaron, organizaron y analizaron por mucho

tiempo estas historietas gráficas o viñetas. En un formato amigable y atractivo, las viñetas

están organizadas en seis capítulos y consideran variados temas relacionados con la

matemática y la educación matemática.

El primer capítulo del libro hace un análisis de la cultura y de la sociedad a través de las

viñetas, poniendo de manifiesto los valores de la cultura occidental que se relacionan con las

matemáticas, como por ejemplo el racionalismo, el progreso, etc.

Page 184: Números, Revista de Didáctica

Matemáticamente competentes…Para reír. Pablo Flores y Antonio Moreno Reseña: V. Giaconi

184 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

L

E

E

R

M

A

T

E

M

Á

T

I

C

A

S

El capítulo 2 es de especial relevancia, sobre todo para los profesores, ya que se

relaciona el contenido de las viñetas con las competencias evaluadas en la prueba PISA:

pensar y razonar; argumentar y justificar; comunicar; modelizar; plantear y resolver

problemas; representar; utilizar lenguaje y símbolos, fórmulas y operaciones y por último

emplear soportes y herramientas tecnológicas. Las competencias de PISA buscan representar

las capacidades matemáticas que debe tener un ciudadano común y corriente para

desenvolverse bien en la vida. Por ejemplo, relacionadas con la competencia de modelizar

aparecen viñetas donde se utiliza o se alude a un modelo matemático como la

proporcionalidad inversa.

Los capítulos 3 y 4 contienen chistes y viñetas donde los protagonistas son conceptos y

símbolos matemáticos como el misterioso infinito, el cero o la famosa x. Como ejemplo se

tiene el clásico chiste de que el ocho es un cero con cinturón.

Por supuesto no podían faltar también las viñetas asociadas a educación matemática,

que son el tema del capítulo 5. Hay viñetas donde se alude a las características o roles del

profesor de matemáticas o de los estudiantes de matemáticas. Es más, en las viñetas de este

capítulo uno puede darse cuenta de las distintas visiones que se tienen del profesor de

matemáticas, por ejemplo se los representa cómo profesores desconcertados con sus alumnos,

o blancos de la ira de estudiantes y padres, etc.

Por último, en el capítulo 6, se tienen chistes que no tocan directamente temas

matemáticos, pero que los sugieren. Por ejemplo, hay chistes que aluden al azar (un ejemplo

son los que sacan a relucir la célebre frase "Dios no juega a los dados").

En resumen, este es un libro para divertirse, sorprenderse y compartir las matemáticas y

las visiones que tenemos de ellas. Además, es un material que sirve para plantear temas en el

aula respecto a cómo la matemática se inserta en la vida cotidiana. Las viñetas del primer y

quinto capítulo permiten instalar en la clase temas de creencias sobre las matemáticas y su

enseñanza, que influyen en el aprendizaje de los niños. Por otro lado, las viñetas sobre

conceptos, fórmulas, etc. permiten aludir a ciertas propiedades e ideas matemáticas que no

siempre es fácil poner en la palestra. Un ejemplo es el chiste “¿Por qué no te integras?- le dice

una función a otra en una fiesta de funciones. ¿Para qué, si yo soy exponencial?- le responde

la otra” donde la clave está en que la integral de una exponencial es una exponencial. Otros

ejemplos son los chistes donde se juega con los conceptos de proporcionalidad o con la

comprensión de gráficos y diagramas estadísticos.

No hay duda de que para entender este libro hay que ser matemáticamente competente

para reír. Sin embargo, si alguna persona carece de competencias matemáticas para entender

alguna viñeta, puede ser una gran oportunidad para motivarse a desarrollar estas

competencias. Cuando uno no entiende un chiste, inmediatamente empieza a buscar qué fue

lo que no entendió, se dispone a resolver un problema, a ponerse en acción de pensar. De

hecho, muchas veces para entender las viñetas hay que resolver un problema matemático. Es

más en algunas se pone en juego la comprensión profunda de un concepto o idea matemática.

También hay otras, que quizás no aluden a propiedades matemáticas (como el chiste de que

el ocho es un cero con cinturón), pero sí nos acercan a la matemática, la hacen más amigable

o nos demuestran su importancia en la vida cotidiana.

Page 185: Números, Revista de Didáctica

Matemáticamente competentes…Para reír. Pablo Flores y Antonio Moreno Reseña: V. Giaconi

185 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

L E

E R

M A

T E

M Á

T I C

A S

Es difícil encontrar tareas que nos lleven a la acción de pensar tan eficazmente como un

chiste o una viñeta. Por ello estas viñetas pueden ser una poderosa herramienta para situar

temas en la clase de matemática y motivar (y motivarse) a aprender matemáticas. Citando a

los autores:

“Queremos infundir ánimos a través del humor para llegar a ser

MATEMÁTICAMENTE COMPETENTES PARA REÍR

Siempre con la intención de ser

MATEMÁTICAMENTE COMPETENTES PARA VIVIR”.

Valentina Giaconi (Ingeniera Matemática y estudiante de Doctorado de la Universidad de

Chile, realiza investigación en Educación Matemática)

Page 186: Números, Revista de Didáctica
Page 187: Números, Revista de Didáctica

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, páginas 187-189

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

I N F

O R

M A

C I O

N E

S

Congresos

I Congreso Argentino de Integración

de GeoGebra en la Matemática 2014

Fecha: 10, 11, 12 de Marzo 2014

Lugar: Caleta Oliva. Santa Cruz. Argentina

Organiza: Instituto de Geogebra del Golfo de San Jorge. Patagonia Austral

Información: http://institutes.geogebra.org/ar-san-jorge/

Problem@Web

International

Conference

Fecha: del 2 al 4 de Mayo de 2014

Lugar: Algarve. Portugal

Convoca: University of Algarve and the Institute of Education of the University of Lisbon

Información: http://www.fctec.ualg.pt/problemweb2014/

Cuarto Simposio Internacional ETM

Espacio de Trabajo Matemático

Fecha: 30 de junio a 4 de julio de 2014

Lugar: El Escorial. Madrid. España

Convoca: Cátedra UCM Miguel de Guzmán, Facultad de Ciencias Matemáticas,

Universidad Complutense de Madrid en colaboración con el Instituto de Matemática

Interdisciplinar (IMI)

Page 188: Números, Revista de Didáctica

188 NNÚÚMMEERROOSS Vol. 85 marzo de 2014

I

N F

O

R M

A

C

I

O

N

E

S

5ª Conferencia

Internacional sobre

Etnomatemática

CIEM-5

Fecha: del 7 a 11 de julio de 2014

Lugar: Maputo. Mozambique

XXVIII Reunión

Latinoamericana de

Matemática Educativa

Fecha: Del 28 de Julio al 1 de Agosto del 2014

Lugar: Barranquilla. Colombia

Convoca: Comité Latinoamericano de Matemática Educativa

Organiza: Universidad del Atlántico

Información: http://relme-clame.co/inicio.html

Congreso Internacional de Matemáticas

SEUL ICM 2014

Fecha: Del 13 al 21 de Agosto de 2014

Lugar: Seúl. Corea

Convoca: La Unión Matemática Internacional

Información: http://www.icm2014.org/

Page 189: Números, Revista de Didáctica

189 Sociedad Canaria Isaac Newton

de Profesores de Matemáticas Vol. 85 marzo de 2014

I N F

O R

M A

C I O

N E

S

V Reunión Pampeana de

Educación Matemática

Fecha: Del 20 al 22 de agosto de 2014

Lugar: Santa Rosa, La Pampa. Argentina

Convoca: Departamento de Matemáticas de Santa Rosa, La Pampa, Argentina

Información: http://www.jornadamatematicazonasur.cl

XI Congreso Argentino de

Educación Matemática

Fecha: Del 2 al 4 de Octubre de 2014

Lugar: Universidad Nacional de San Juan. San Juan. Argentina

Organiza: Sociedad de Educación Matemática y Universidad Nacional de San Juan

Información: http://www.soarem.org.ar/carem.html

Fecha: Del 3 al 7 de Mayo del 2015

Lugar: Tuxtla Gutiérrez, Chiapas, México

Convoca: El Comité Interamericano de Educación Matemática

Información: http://xiv.ciaem-iacme.org/

Page 190: Números, Revista de Didáctica
Page 191: Números, Revista de Didáctica

Sociedad Canaria Isaac Newton

de Profesores de Matemáticas

http://www.sinewton.org/numeros

ISSN: 1887-1984

Volumen 85, marzo de 2014, página 191

N O

R M

A S

P A

R A

L O

S A

U T

O R

E S

1. Podrá presentar sus artículos para publicar cualquier persona, salvo los miembros del Comité

editorial y los de la Junta Directiva de la Sociedad Canaria de Profesores de Matemáticas.

2. Los trabajos se enviarán por correo electrónico a la dirección: [email protected]

3. Los trabajos presentados para su posible publicación deben ser originales y no estar en proceso de

revisión o publicación en ninguna otra revista.

4. Los artículos remitidos para publicar deben tener las siguientes características:

Se enviarán en el formato de la plantilla que se encuentra en la página web de la revista.

Tendrán un máximo de 25 páginas incluidas notas, tablas, gráficas, figuras y bibliografía.

Los datos de identificación de los autores deben figurar en la última página: nombre, dirección

electrónica, dirección postal, teléfono. Con el fin de garantizar el anonimato en el proceso de

evaluación, esos datos sólo estarán en esta última página.

Al final del artículo se incluirá una breve nota biográfica (no más de cinco líneas) de cada uno

de los autores, en la que se puede incluir lugar de residencia, centro de trabajo, lugar y fecha

de nacimiento, títulos, publicaciones... Se indicarán las instituciones a las que pertenecen.

Hay que incluir un Resumen de no más de diez líneas y una relación de palabras clave;

también, en inglés, un Abstract y un conjunto de keywords.

Se hará figurar las fechas de recepción y aceptación de los artículos.

Tipo de letra Times New Roman, tamaño 11 e interlineado sencillo. Es importante no cambiar

el juego de caracteres, especialmente evitar el uso del tipo “Symbol” u otros similares.

Para las expresiones matemáticas debe usarse el editor de ecuaciones.

Las figuras, tablas e ilustraciones contenidas en el texto deberán ir incluidas en el archivo de

texto (no enviarlas por separado).

Las referencias bibliográficas dentro del texto deben señalarse indicando, entre paréntesis, el

autor, año de la publicación y página o páginas (Freudenthal, 1991, pp. 51-53).

Al final del artículo se incluirá la bibliografía, que contendrá las referencias citadas en el texto,

ordenadas alfabéticamente por el apellido del primer autor, de acuerdo con el siguiente modelo:

o Para libro: Lovell, K. (1999). Desarrollo de los conceptos básicos matemáticos y

científicos en los niños. Madrid: Morata.

o Para capítulo de libro, actas de congreso o similar: Fuson, K. (1992). Research on

whole number addition and subtraction. En Grouws, D. (ed.) Handbook of Research on

Mathematics Teaching and Learning, 243-275. MacMillan Publishing Company: New

York.

o Para artículo de revista: Greeno, J. (1991). Number sense as situated knowing in a

conceptual domain. Journal for Research in Mathematics Education, 22 (3), 170-218.

o Para artículo de revista electrónica o información en Internet: Cutillas, L. (2008).

Estímulo del talento precoz en matemáticas. Números [en línea], 69. Recuperado el 15 de

febrero de 2009, de http://www.sinewton.org/numeros/

5. Los artículos recibidos se someterán a un proceso de evaluación anónimo por parte de

colaboradores de la Revista. Como resultado del mismo, el Comité editorial decidirá que el trabajo

se publique, con modificaciones o sin ellas, o que no se publique.

6. El autor recibirá los comentarios de los revisores y se le notificará la decisión del Comité Editorial.

Si a juicio de los evaluadores el trabajo es publicable con modificaciones, le será devuelto al autor

con las observaciones de los árbitros. El autor deberá contestar si está de acuerdo con los cambios

propuestos, comprometiéndose a enviar una versión revisada, indicando los cambios efectuados, en

un periodo no mayor de 3 meses. De no recibirse en ese plazo, el Comité Editorial dará por sentado

que el autor ha desistido de su intención de publicar en la Revista.