Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

55
Indice Rodríguez M & Rodríguez W 2 IBT-UNAM Métodos físico-químicos en Biotecnología (2006-II) Presentado a: Dr. Roberto P. Stock Silberman

Transcript of Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Page 1: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Indice

Rodríguez M & Rodríguez W 2

IBT-UNAM

Métodos físico-químicos enBiotecnología (2006-II)

Presentado a:

Dr. Roberto P. Stock Silberman

Page 2: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Indice

Rodríguez M & Rodríguez W 2

INDICE

CAPITULO 1 INTRODUCCIÓN..................................................................................3

CAPITULO 2 RESEÑA HISTÓRICA ..........................................................................4

CAPÍTULO 3 PCR EN TIEMPO REAL ......................................................................7

3.1 DEFINICIÓN ............................................................................................................73.2 EL ENSAYO..............................................................................................................73.3 PRINCIPIO QUÍMICO DEL ENSAYO ..............................................................................8

3.3.1 Química no específica .....................................................................................93.3.2 Primers marcados con fluoróforos ................................................................12

3.4 INSTRUMENTACIÓN PARA EL PCR EN TIEMPO REAL.................................................193.5 ANÁLISIS DE LOS DATOS.........................................................................................23

3.4.1 Ensayos de cuantificación absoluta................................................................263.4.2 Ensayos de cuantificación relativa .................................................................26

3.6 ESTRATEGIAS DE NORMALIZACIÓN .........................................................................303.6.1 Cuantificación de ARN mensajero..................................................................31

CAPITULO 4 APLICACIONES DEL PCR EN TIEMPO REAL.............................36

4.1 VIROLOGÍA ...........................................................................................................364.2 MICROBIOLOGÍA CLÍNICA (COSTA, J. 2004) ............................................................374.3 INVESTIGACIÓN BIOMÉDICA....................................................................................39

4.3.1 Validación de los resultados de microarreglos de DNA.................................404.3.2 Identificación de mutaciones .........................................................................40

4.4 ORGANISMOS GENÉTICAMENTE MODIFICADOS (GMO) (BUSTIN, 2005) ..................414.5 APLICACIONES FUTURAS Y PERSPECTIVAS (VALASEK ET AL., 2005) ........................41

CAPITULO 5 TRAMPAS DEL RT-PCR EN TIEMPO REAL.................................43

5.1. CALIDAD DEL ARN...............................................................................................435.2. DETECCIÓN NO ESPECÍFICA....................................................................................445.3. DETECCIÓN ESPECÍFICA.........................................................................................455.4 LINEARIDAD DEL PASO DE REVERSOTRANSCRIPCIÓN................................................465.5 ANÁLISIS DE LOS DATOS.........................................................................................485.6 EL NIVEL UMBRAL..................................................................................................50

CONCLUSIONES ........................................................................................................52

REFERENCIAS BIBLIOGRÁFICAS.........................................................................53

Page 3: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Introducción

Rodríguez M & Rodríguez W 3

CAPITULO 1

INTRODUCCIÓN

En los últimos años, la reacción en cadena de la polimerasa en tiempo real (RT-PCR) ha

surgido como una metodología robusta y ampliamente utilizada en investigación biológica

ya que puede detectar y cuantificar cantidades muy pequeñas de secuencias específicas de

ácidos nucleicos. Como herramienta de investigación, la principal aplicación de esta

tecnología es la rápida y precisa valoración de cambios en la expresión de genes como

resultado de la fisiología, la fisiopatología o la evolución. Este método puede ser aplicado

a sistemas modelo para medir respuesta a estímulos de tipo experimental y para adentrarse

en los cambios potenciales a nivel proteico y funcional. De este modo, la fisiología puede

ser correlacionada con eventos moleculares para tener un mejor entendimiento de los

procesos biológicos.

En el campo del diagnóstico clínico de tipo molecular, el RT-PCR puede ser usado para

medir cargas virales o bacterianas, o en evaluación del estado de enfermedades como el

cáncer.

En la presente monografía se discuten los conceptos básicos de la técnica de PCR, la

química e instrumentación del RT-PCR y se incluyen aplicaciones presentes, desventajas

y perspectivas futuras para esta tecnología en las diferentes ramas de las ciencias

biomédicas y bioquímicas.

Esperamos que este documento sea una herramienta útil para los nuevos estudiantes y

curiosos que quieren obtener información básica de calidad y en idioma español acerca de

las tecnologías de punta para el desarrollo de procesos biológicos, bioquímicos y

biotecnológicos.

Page 4: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Reseña Histórica

Rodríguez M & Rodríguez W 4

CAPITULO 2

RESEÑA HISTÓRICA

El concepto de producir muchas copias de una molécula específica de ADN mediante un

proceso cíclico utilizando una enzima ADN polimerasa y oligonucleótidos que

funcionaran como primers fue expuesto por primera vez en un artículo en 1971 por

Kleppe y sus colegas. En ese momento la demostración práctica de esta teoría no fue

posible debido a la dificultad y el costo de producción de los oligonucleótidos, el no

contar con polimerasas termoestables y la ausencia de termocicladores automáticos.

La técnica de la reacción en cadena de la polimerasa

(PCR) fue llevada a cabo por Kary Mullis en 1983 (Saiki

et al., 1985; Mullis et al., 1987), razón por la que recibió el

Premio Nobel una década después. La gran utilidad de esta

técnica se difundió a principios de los ochenta por toda la

comunidad científica. Los nuevos equipos y las avanzadas

técnicas de secuenciación, así como los programas de

computación para la manipulación de datos que se fueron

sucediendo, permitieron el desarrollo de mejores ensayos

de PCR. La aparición de la Internet hizo posible el acceso

a bases de datos como GenBank, EMBL y DDBJ, las

cuales permitieron la comparación de secuencias en todo el

mundo. El uso de la Taq ADN polimerasa fue uno de los impulsos más importantes dados

a la tecnología de PCR (Saiki et al., 1988). Esta enzima fue incluso obtenida de forma

recombinante, con lo que se eliminaron funciones no deseadas de la enzima original. En

1990 ya se contaba con buffers de PCR, dNTPs, MgCl2 y Taq polimerasa de forma

comercial. El mejoramiento de los buffers incrementó considerablemente la actividad y la

estabilidad de las polimerasas.

Dr. Kary Mullis

Page 5: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Reseña Histórica

Rodríguez M & Rodríguez W 5

A principios de los años noventa Higuchi y sus colaboradores del Roche Molecular

Systems y de Chiron (1992; 1993) desarrollaron una técnica de PCR en la cual incluyeron

el bromuro de etidio (EtBr) en el medio de reacción, la cual se llevó a cabo bajo la luz

ultravioleta. Desde el año 1966, Le Pecq y Paoletti reportaron que este agente intercalante

del ADN de doble cadena fluoresce bajo la luz UV. Esta propiedad fue aprovechada para

grabar la acumulación de ADN utilizando una videocámara. Esta sencilla reacción

combinada con la videografía permitió el nacimiento del PCR en tiempo real, el cual

combina la enorme sensibilidad de la técnica de PCR con la precisión que asegura el

monitoreo “in situ” de los productos generados por esta reacción a través del tiempo.

La primera compañía que desarrolló la instrumentación necesaria para llevar a cabo el

RT-PCR fue Applied Biosystems en el año 1996, y desde entonces otras compañías como

BioGene, Bioneer, Bio-Rad, entre otras han desarrollado nuevos equipos. Una parte

importante de estas máquinas se utilizan en investigación académica, y de acuerdo a un

estudio realizado en el año 2003, de 406 investigadores entrevistados, el 48% piensa

realizar RT-PCR en su futuro trabajo (Arlington, 2003). La figura 2.1 muestra el numero

de publicaciones en la base de datos Medline que contienen la palabra “real time” y

“PCR” en el título o en el resumen. Como vemos, ocurrió un incremento del 43% entre el

2003 y 2004, donde aparecieron 3522 publicaciones (Valasek et al., 2005). Estos datos

demuestran que la técnica de RT-PCR se perfila como uno de los métodos de vanguardia

en las ciencias biomédicas, fundamentalmente en el diagnóstico molecular y la fisiología.

Figura 2.1 Curva de utilizaciòn de latécnica de PCR en tiempo real. Sepresenta el número de publicacionesen la base de datos de Medline quecontienen las palabras Real-time yPCR

Page 6: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Reseña Histórica

Rodríguez M & Rodríguez W 6

¿Por qué el PCR en tiempo real?

Mediante la técnica de PCR es posible amplificar un segmento de ADN de manera

exponencial, ya que después de cada ciclo se duplica la cantidad de ADN que existe si la

reacción ocurre con máxima eficiencia. La realidad es que las reacciones de PCR alcanzan

un plateau o meseta debido al agotamiento de los reactantes luego de numerosos ciclos

(Wittwer et al., 1997a). Además, la autohibridación de los productos cada vez más

numerosos contribuye al efecto de meseta, por lo que se hace imposible calcular la

cantidad de ADN de partida midiendo la cantidad de producto final. Es esta característica

del PCR convencional la que impone la necesidad del PCR en tiempo real. Dado que la

reacción de PCR en sus inicios amplifica el ADN de manera eficiente, y existe una

correlación entre el ADN de partida y el ADN formado durante la fase exponencial, es

posible cuantificar la cantidad de ADN de partida.

La principal meta del RT-PCR es distinguir y cuantificar de manera específica una

secuencia de ácido nucleico en una muestra incluso cuando ésta se presenta en pequeñas

cantidades. Durante la amplificación, la velocidad en que se llega a un nivel determinado

de fluorescencia (umbral) correlaciona con la cantidad de ADN que tenemos al inicio.

Además, el producto final puede ser caracterizado si se somete a incrementos de

temperatura para determinar en qué momento la doble cadena se separa. Este punto de

fusión es una propiedad única que depende de la longitud y de la secuencia nucleotídica

del producto.

Otra de las ventajas de la técnica de PCR en tiempo real es la cuantificación de ARN. Esto

es posible gracias al uso de las reverso transcriptasas, enzimas que generan ADN

complementario (ADNc) a partir de un templado de ARN. Bajo condiciones apropiadas,

la cantidad de ADNc generado por reversotranscripción es proporcional al número de

moléculas de ARN presente en una muestra dada. Entonces este ADNc puede ser el

templado para una reacción de PCR en tiempo real, utilizando su sensibilidad y precisión

para determinar cambios en la expresión de genes. Esta técnica es conocida como RT-

PCR en tiempo real y se ha convertido en el método más popular para la cuantificación de

los niveles de ARN mensajero (Bustin et al., 2000). Todo esto demuestra que la técnica de

PCR en tiempo real permite cuantificar con alta precisión tanto los niveles de ADN como

los de ARN.

Page 7: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 7

CAPÍTULO 3

PCR EN TIEMPO REAL

3.1 Definición

La Reacción en Cadena de la Polimerasa en tiempo real, también conocida como Real

Time PCR (RT-PCR) muestra la capacidad de monitorear el progreso de la reacción de

PCR a medida que esta ocurre. Los datos son colectados a lo largo del proceso de PCR y

no al final como se realizaba antes. Este método revolucionó la forma en que se usaba la

técnica de PCR para cuantificación de ADN y ARN. El RT-PCR usa moléculas de un

reportero fluorescente para monitorear la amplificación de productos durante cada ciclo de

reacción. Esta técnica combina los pasos de amplificación de ADN y la detección en un

único ensayo y evita tener que preparar geles de electroforesis para detectar los productos

amplificados. Un análisis apropiado de los datos y/o de la química también permite

eliminar la necesidad de realizar pruebas de Southern Blot o secuenciación de ADN para

identificación de los amplicones. Su simplicidad, especificidad y sensibilidad junto con su

potencial como técnica en aplicaciones futuras y la evolución hacia nuevos conocimientos

de la química, además de la confiabilidad en la instrumentación y protocolos mejorados,

han hecho del RT-PCT una tecnología altamente competitiva para la detección de ADN y

ARN.

3.2 El ensayo

La tecnología del RT-PCR está basada en la detección de una señal fluorescente

producida proporcionalmente durante la amplificación del ADN blanco (Fig. 3.1). Antes

que revisar la cantidad de ADN blanco producido después de un número fijo de ciclos, las

pruebas de RT-PCR determinan el punto en el tiempo durante el proceso de ciclado

cuando se detecta por primera vez la amplificación de un producto de PCR. Este se

Page 8: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 8

determina identificando el número del ciclo en el cual la intensidad de la emisión del

reportero marcado se levanta sobre el ruido de fondo.

Fig. 3.1 Representación esquemática de un ensayo de RT-PCR usando el método Taqman®

Este número del ciclo está referido como el ciclo umbral o “threshold cycle” (Ct). El Ct se

determina en la fase exponencial de la reacción de PCR y es inversamente proporcional al

número de copias del blanco. Por lo tanto cuanto más alto es el número de copias iniciales

de los ácidos nucleicos a amplificar, más pronto se observa un aumento significativo en

la fluorescencia, y son más bajos los valores de Ct. Los ensayos de RT-PCR son

altamente reproductivos (Fig. 3.2(A)) y pueden discriminar fácilmente entre valores

diferentes de cantidad de templado (Fig. 3.2 (B)).

3.3 Principio químico del ensayo

El RT-PCR puede utilizar fluoróforos generales de unión no específica a ADN como el

Bromuro de Etidio o el SYBR Green I, sondas de hidrólisis (Sondas 5’ nucleasa), sondas

de hibridización, molecular beacon o sondas de secuencias específicas (Ej. Scorpions®).

Desnaturalización

Alineamiento del primer/ hibridización de sonda

PrimerSonda

Fluoresceína

PolimerasaHibridado

Extensión

Page 9: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 9

Fig. 3.2 Reproducibilidad y precisión del RT-PCR. Análisis de una placa de 96 pozos que contiene réplicasdel mismo templado. El ensayo fue llevado a cabo en un instrumento Stratagene MX 4000 usando el métodoTaqman®. El promedio de Ct para las 96 reacciones es 23±0.3. (B) Dos reacciones mezcladas, ajustadas portriplicado. Una contiene 1x103 copias de templado de ADN y marca un Ct de 23.1±0.15. La otra tiene 2x103

copias de templado de ADN y marca un Ct de 24.1±0.1. Esto corresponde exactamente al valor esperado deDCt de 1. (Bustin, S. 2005)

3.3.1 Química no específica

En general, los agentes intercalantes usados en la química no específica son fluoróforos

que aumentan notablemente la emisión de fluorescencia cuando se unen a ADN de doble

cadena (ADNdc). El más utilizado en RT-PCR es el SYBR Green I (Fig. 3.3), el cual

interacciona con el surco menor del ADNdc, emitiendo 1000 veces más fluorescencia que

cuando está libre en solución. El incremento de ADN en cada ciclo se refleja en un

aumento proporcional de la fluorescencia emitida. El SYBR Green I absorbe luz en una

longitud de onda de 480 nm y la emite a 520 nm. (Fig. 3.4) (Valesek M y Repa J, 2005).

Ciclos

Ciclos

Fluorescencia

Fluorescencia

Page 10: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 10

Los polimorfismos bialélicos pueden ser detectados por la combinación de

amplificaciones aleloespecíficas con la detección de SYBR Green I. Las amplificaciones

alelo específicas toman ventaja de la inhabilidad relativa de la Taq polimerasa para

extender primers que están mal apareados con su blanco en el extremo 3’. El ensayo es

llevado a cabo en dos tubos separados, cada uno de los cuales contiene un par de primers

específicos de una u otra variante de SNP. Aunque estarán siendo amplificados los alelos

con errores de apareamiento, esto ocurre mucho menos eficientemente que para los alelos

bien apareados, retardando su amplificación y obteniendo valores de Ct mucho mayores.

La especificidad del ensayo puede ser mejorada con el uso de primers tipo tallo-asa para

el PCR alelo-específico, ya que estos son mejores que los lineales porque discriminan

entre secuencias cercanas relacionadas. (Hazbon, et al., 2004)

Figura 3.3. Representación de la interacción de SYBR green I con el ADN de doble cadena.

Una ventaja importante en la química noespecífica es que el diseño y ajuste de losensayos es directo y los costos de materialesson bajos (sin tener en cuenta el costo delaparato de RT-PCR). Esto hace que seaparticularmente atractivo para el análisis depolimorfismos de nucleótidos simples (SNP),el cual ha llegado a ser el marcador deselección para la identificación de múltiplesgenes asociados con enfermedades complejascomo cáncer o diabetes.

Figura 3.4 Fluorescencia del SYBR green I con elADN de doble cadena.

Page 11: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 11

El uso de análisis de curvas de disociación para identificar diferentes amplicones, evita la

necesidad de realizar reacciones de amplificación separadas. Siguiendo el ensayo de PCR,

el producto de ADNdc es fundido en ADN de cadena sencilla (ADNcs) por un ciclo en el

que se incrementa la temperatura y colectando los datos de fluorescencia en cada escalón

de temperatura. La magnitud de la reducción en la fluorescencia del SYBR green se debe

a su relajamiento desde el ADNdc, suministrando una cantidad de ADNdc disociado en

cada paso, mostrado en cada ciclo de la curva de disociación. (Fig. 3.5).

Además, como diferentes amplicones pueden fundir a diferentes temperaturas, el SYBR

Green I puede ser usado para distinguir diferentes alelos por su temperatura de fusión

(Tm). Por ejemplo, la enfermedad de Huntington es causada por un número expandido de

repeticiones CAG en el gen de Hungtington y la curva de disociación de un sujeto normal

muestra un único pico de fusión, mientras que los individuos que padecen la enfermedad

presentan dos picos. (Elenitoba-Johnson, et al., 2001).

Muchos sistemas de tubos cerrados que han sido desarrollados pueden usarse en

combinación con el análisis de punto de fusión de productos del PCR para identificar

tanto variantes homocigotas como heterocigotas, (Wittwer, et al., 2003) y ha sido posible

desarrollar ensayos triples que usan SYBR Green I y curvas de disociación para

identificar diferentes genes blanco en el mismo tubo. (Hernández, et al., 2003).

El principal inconveniente de los agentes intercalantes es su baja especificidad, debido

que se unen de manera indistinta a los productos generados inespecíficamente o a dímeros

de primers, muy frecuentes en las reacciones de PCR. Para mejorar la especificidad se

Fig. 3.5 Análisis de la curva de disociación deSYBR Green I. A primera vista, se observa lavelocidad en que se pierde el SYBR green I amedida que aumenta la temperatura. El ejemplomuestra un rango de datos entre 72°C y 90°C. Elpequeño pico en 74,5 °C se debe probablementea la formación de producto dimérico, ya que estees el único pico que ocurre en la muestra NTC.EL pico principal aparece alrededor de 85,5°Caunque hay algunos con una diferencia de perfilfácilmente distinguible y un pico en 86.5°C.Estos diferentes perfiles muestran diferentesproductos de PCR. (Bustin, S. 2005)

Page 12: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 12

deben emplear condiciones de reacción óptimas y una selección cuidadosa de primers

para disminuir el riesgo de formación de dímeros. (Costa, J., 2004). Además, es

recomendable iniciar reacciones de síntesis de ADN a temperaturas elevadas (Hot start

PCR), lo cual disminuye de forma notable el riesgo de amplificaciones inespecíficas.

3.3.2 Primers marcados con fluoróforos

A pesar de su atractivo, hay varios problemas asociados con el uso de marcadores no

específicos. En particular, hay un ensanchamiento del rango de fusión y la compresión de

la Tm entre genotipos, lo cual puede dar resultados ambiguos. Además, los agentes

intercalantes de ADNdc pueden redistribuirse durante la fusión liberando el agente desde

los heterodúplex de bajo punto de fusión y redistribuyéndose hacia los de alto punto de

fusión.

El uso de primers marcados para el análisis de fusión evita estos problemas pues tienen la

ventaja de que no se usan sondas específicas para cada ensayo. El uso de un primer con

fluoróforo marcador y otro primer sin marcar posibilita obtener perfiles de fusión del

amplicón inmediatamente después de que se completa la reacción de PCR y resultan en

curvas de fusión de forma distinta para diferentes alelos, incluyendo aquellos que tienen

diferencias en una única base. (Grundy et al., 2003)

Otro método hace uso del principio de transferencia de energía fluorescente mediante

resonancia (FRET). En este, se presenta una interacción dependiente de la distancia entre

los estados excitados de dos marcadores diferentes, en los cuales la excitación se

transfiere de una molécula donadora a una molécula aceptora a distancias alrededor de 70

– 100 Å sin la emisión de un fotón. Como resultado, la emisión del fluoróforo reportero es

reprimida. En general, uno de los primers de amplificación tiene el reportero y un

dominio represor unido a una estructura tallo-asa en su extremo 5’ .Cuando está en

solución, la emisión de fluorescencia del reportero es reprimida. Una señal fluorescente

sólo se genera cuando los oligonucleótidos marcados se incorporan en el producto de

amplificación. (Fig. 3.6).

Page 13: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 13

La síntesis de primers marcados se ha simplificado mucho recientemente mediante el uso

del mismo tipo de estructuras tallo-asa, pero solamente con un fluoróforo reportero, el

cual se autoreprime con base en la secuencia que sigue. Estos primers, conocidos como

LUX®, se reprimen cuando están libres en solución, fluorescen débilmente cuando se

desnaturalizan y emiten una luz fuerte cuando se incorporan al ADN. La fluorescencia

diferencial de los primers marcados permite el uso de PCR para determinación específica

de alelos en un solo tubo. (Fig. 3.7)

Sondabeacon

Gen blanco

Gen blanco

Emisión de fluorescencia

Fig. 3.6 Sondas marcadas con fluoróforos. a) Eldiseño original usa un p r i m e r con unaestructura tallo-asa que tiene en su extremo 5’un fluoróforo y un represor al final de laestructura. b) Durante el primer ciclo de PCRlos primers se extienden y se vuelventemplados durante los siguientes ciclos dePCR. Esto lineariza la estructura tallo-asa,separa el donador y aceptor y resulta enemisión de fluorescencia desde el fluoróforo(Mocellín et al., 2003)

Fig 3.7. Primers LUX®. Un primer contiene unfluoróforo, el otro no se encuentra marcado. Elprimer fluorogénico tiene una secuencia corta finalde 4–6 nucleótidos en el extremo 5’ que escomplementaria al extremo 3’ del primer. Laestructura tallo-asa resultante provee un a represiónóptima del fluoróforo atacado. Cuando se incorporael primer dentro del producto de A D N d c, elfluoróforo deja de reprimir y se emite una señal.(Bustin, S. 2005)

Page 14: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 14

Sondas de hibridización específicas

Son sondas marcadas con dos tipos de fluoróforos, un donador y un aceptor. El proceso

también se basa en la transferencia de energía fluorescente mediante resonancia (FRET)

entre las dos moléculas. Las más utilizadas son las sondas de hidrólisis, conocidas

comercialmente como Taqman®, las sondas conocidas como molecular beacons, los

scorpions y las sondas FRET.

a) Sondas de hidrólisis: Son oligonucleótidos marcados con un fluoróforo donador en el

extremo 5’ que emite fluorescencia al ser excitado y un aceptor en el extremo 3’ que

absorbe la fluorescencia liberada por el donador. Para que esto ocurra, las moléculas

donadora y aceptora deben estar espacialmente próximas. Además, el espectro de emisión

de la primera se ha de solapar con el espectro de absorción de la segunda. En la tabla 3.1

se relacionan los fluoróforo más empleados y sus espectros de excitación y emisión.

Mientras la sonda está intacta, la fluorescencia emitida por el donador es absorbida por el

aceptor. Sin embargo, durante la amplificación de ADN templado, la sonda se hibrida con

su cadena complementaria. Al desplazarse a lo largo de la cadena, en su acción de

síntesis, la ADN polimerasa de Thermus aquaticus, que tiene actividad 5’ exonucleasa,

hidroliza el extremo libre 5’ de la sonda, produciéndose la liberación del fluoróforo

donador. Como donador y aceptor están ahora espacialmente alejados, la fluorescencia

emitida por el primero es captada por el detector (Fig. 3.8).

Las sondas de hidrólisis ofrecen precisión similar que la que ofrecen los ensayos seguidos

con SYBR Green I (Wilheim et al., 2003a), pero éstas además dan gran seguridad de

alcanzar la especificidad. Debido a esto, el uso de sondas de hidrólisis es un método

recurrente para la genotipificación. Dos sondas fluorogénicas, marcadas con dos

marcadores espectralmente diferentes, pueden ser utilizadas para discriminar entre alelos

nativos y mutantes. Si se detecta la amplificación de una muestra de ADN desconocido

por la identificación del fluoróforo del alelo nativo y no por la del alelo mutado, la

muestra se considera como homocigoto del tipo nativo y, de forma inversa, si se encuentra

fluorescencia del marcador de identificación del mutante, se clasifica como homocigoto

de la cepa mutante. Si se presentan marcajes de ambos fluoróforos, esta se designa como

heterocigota para los dos alelos.

Page 15: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 15

TABLA 3.1 Principales moléculas fluorescentes empleadas como marcadores en la PCR a tiempo real(Costa J, 2004)

Fig. 3.8 Resumen de la química asociada a las sondas Taqman®

Page 16: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 16

b) Molecular beacons: Son sondas parecidas a las anteriores. Tienen una molécula

donadora en el extremo 5’ y una aceptora en el extremo 3’ pero, además, presentan una

estructura secundaria en forma de asa, en la que reside la secuencia de unión específica

con el ADN diana.

Los extremos permanecen plegados cuando la sonda no está hibridada, lo que conlleva a

que donador y aceptor estén muy cerca uno de otro. En esta conformación la fluorescencia

emitida por el donador es absorbida por el aceptor y no es captada por el lector del equipo.

Sin embargo, al hibridar con el ADN blanco la sonda se abre, alejándose donador y

aceptor, pudiéndose detectar la fluorescencia emitida por el primero (Fig. 3.9).

Fig. 3.9 Molecular beacons

El uso de los molecular beacons proporciona un nivel adicional de especificidad, ya que

es muy poco probable que falsos amplicones o primers-dímeros posean secuencias blanco

para ellos, la generación de fluorescencia es exclusiva de la síntesis de los amplicones

analizados. (En: www.molecularbeacons.org)

c) Scorpions: Son moléculas bifuncionales que contienen un primer covalentemente

unido a una sonda (Fig. 3.10). Las moléculas también contienen un fluoróforo que puede

interactuar con un represor (quencher) para reducir la fluorescencia. Cuando las

moléculas se usan en una reacción de PCR, el fluoróforo y el represor se separan

generando un incremento en la luz emitida (Fig. 3.11). Las ventajas de los scorpions se

basan en que la sonda está acoplada físicamente al primer. Esto significa que la reacción

que se lleva a cabo para generar la señal es un cambio unimolecular. En contraste con las

colisiones bimoleculares requeridas por otras tecnologías tales como Taqman® o

molecular beacons. Las ventajas de un cambio unimolecular son significativas, pues la

reacción es instantánea y ocurre antes que cualquier reacción inespecífica o colateral

Page 17: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 17

como los realineamientos de los amplicones o el plegamiento inadecuado del templado.

Esto conduce a señales más fuertes, a un diseño más confiable de la sonda, a tiempos de

reacción más cortos y a una mejor discriminación. Los scorpions son primers con una

estructura tallo-asa que contiene un fluoróforo y un represor. La estructura tallo asa está

separada del primer por un “bloqueador”, el cual es una estructura con modificaciones

químicas que previene que se copie la estructura tallo asa del primer. Durante la reacción

de PCR, los primers scorpions se extienden para formar los productos del PCR. En la

etapa de alineamiento del ciclo de PCR, las secuencias de la sonda en la cola del primer se

curvan para hibridar la secuencia blanco en el producto del PCR (Fig. 3.11). Como la cola

del scorpion y el producto del PCR forman parte de la misma hebra de ADN, la

interacción es intermolecular. La secuencia blanco generalmente se escoge para estar a 3

bases del extremo 3’ del primer scorpion.

d) Sondas FRET: El sistema se compone de dos sondas que se unen a secuencias

adyacentes del ADN blanco. Una de las sondas lleva un donador en el extremo 3’ y la otra

un aceptor en el extremo 5’. Cuando las sondas están hibridadas, los dos fluoróforos están

próximos. Al ser excitado, el donador transfiere su energía al aceptor que, a su vez, emite

la fluorescencia que detecta el lector del equipo (Fig. 3.12).

Fig. 3.10. Elementos de un primer Scorpions

Page 18: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 18

Fig. 3.12 Sondas FRET

Fig. 3.11 Reacción de un primer Scorpion

Fig. 3.12 Sondas FRET

Page 19: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 19

En todos estos sistemas, el incremento de ADN en cada ciclo se corresponde con un

aumento de hibridación de las sondas, lo que conlleva un aumento en la misma proporción

de fluorescencia emitida. El empleo de sondas garantiza la especificidad de la detección y

permite identificar polimorfismos o mutaciones puntuales, pero su costo es más elevado

que el SYBR Green I y la optimización de las condiciones de la reacción resulta más

difícil.

e) Otras sondas

Hay más químicas de sondas disponibles, todas con ventajas y desventajas. Entre ellas se

cuentan los Hybeacons, los cuales requieren solo un fluoróforo y hace uso de las

propiedades de represión del ADN. Esto los hace fáciles de diseñar y sintetizar. (French et

al., 2002). Las sondas Light up están compuestas de naranja de tiazol conjugada a

péptidos de ácidos nucleicos (PNA) y combina las excelentes propiedades de los PNA,

que permiten el uso de sondas más cortas con un extraordinario aumento en la

fluorescencia. Las sondas Eclipse® son sondas lineales que tienen un marcador del surco

menor (MGB su sigla en inglés), un represor en el extremo 5’ y el fluoróforo en el

extremo 3’ (Bustin et al, 2004a).

3.4 Instrumentación para el PCR en tiempo real

Un requerimiento imprescindible para llevar a cabo con efectividad esta técnica es la

utilización de una instrumentación adecuada que permita detectar la señal fluorescente y

grabar el proceso de la reacción de PCR. Los instrumentos deben emitir y detectar

longitudes de onda específicas simultáneamente, por lo que el basamento químico de esta

técnica y la instrumentación están estrechamente relacionados.

Hasta el momento existen tres formas fundamentales para suministrar la energía de

excitación para los fluoróforos: mediante lámparas, diodos emisores de luz (LED) o láser.

Las lámparas son instrumentos de emisión de amplio espectro, mientras que el de los

LEDs y lásers es más restringido. Los equipos que presentan lámparas (generalmente de

tungsteno halógeno o cuarzo tungsteno halógeno) pueden incluir filtros que limitan la luz

emitida a longitudes de onda de excitación específicas. Entre ellos se encuentran el ABI

Prism 7000 de Applied Biosystems, el Mx4000 y Mx3000P de Stratagene, y el iCycler iQ

de Bio-Rad. El sistema de LED está representado por el LightCycler de Roche, el

SmartCycler de Cepheid, el Rotor-Gene de Corbett y el DNA Engine Opticon 2 de MJ

Page 20: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 20

Research. La única máquina que utiliza láser para la excitación hasta el momento es el

ABI Prism 7900HT (Valasek et al., 2005).

Para colectar los datos, la energía de emisión de los fluoróforos también debe ser

detectada en longitudes de onda específicas. Los detectores están representados por

cámaras acopladas a dispositivos de carga, tubos fotomultiplicadores u otro tipo de

fotodetectores. Generalmente se emplean filtros o canales para detectar pequeños rangos

de longitudes de onda. Usualmente se pueden detectar varias longitudes de onda discretas

simultáneamente, lo que permite correr múltiples ensayos en un solo tubo de reacción.

Otra porción importante de la instrumentación consiste en un termociclador efectivo para

llevar a cabo las reacciones de PCR. Es muy importante que estos mantengan una

temperatura consistente a lo largo de todos los tubos de ensayo dado que pequeñas

desviaciones de la temperatura resultan en errores graves de cuantificación (Wilhelm et

al., 2000; Zuna et al., 2002). Un bloque de calentamiento (Peltier o por resistencia) o el

calentamiento por aire, o una combinación de ambos, son los más utilizados. Los bloques

calentadores cambian la temperatura más lentamente que los calentadores de aire, lo que

resulta en ciclos más largos.

La instrumentación del PCR en tiempo real no estaría completa sin un hardware de

computación y un software de análisis de datos apropiado. Los softwares simplifican el

análisis de los datos arrojando los resultados en forma de gráficos que muestran la

amplificación y disociación de los productos. Las curvas de amplificación permiten el

análisis cinético y la cuantificación del ADN de partida, mientras que las curvas de

disociación revelan las características, entre ellas la pureza, del producto final de la

reacción.

El primer termociclador de PCR en tiempo real fue

producido por Appied Biosystems de forma comercial en

1997, el ABI 7700 (Fig. 3.13). El sistema de detección de

este equipo consiste en un termociclador conectado a un

láser y a un sistema óptico CCD (dispositivo de carga

acoplada, el cual genera una respuesta eléctrica

proporcional a la luz que captó). Este equipo detecta un

rango de fluorescencia desde 500 a 660nm. La

fluorescencia se induce emitiendo luz láser simultáneamente a todas las muestras a través

Fig. 3.13 ABI 7700

Page 21: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 21

de un arreglo múltiple de fibras ópticas. Las emisiones de fluorescencia resultantes de la

interacción con los fluoróforos viajan en reversa y son detectadas por la cámara CCD, las

cuales son medidas cada 7 segundos y posteriormente se analizan por el software. Este

instrumento puede utilizarse para análisis basados en agentes intercalantes, molecular

beacons y sondas de hidrólisis. Las corridas demoran aproximadamente 2 horas.

Posteriormente, Roche Diagnostics comenzó la distribución del Light Cycler (Fig. 3.14),

el cual utiliza pequeños capilares de vidrio como tubos de reacción (Wittwer et al., 1989;

1997b; ). Estos capilares se colocan en un muestrario en forma de carrusel dentro de una

cámara de aire termostatada, cuya rotación asegura la homogeneidad de la temperatura del

sistema. La combinación de un volumen de muestra pequeño, la forma cilíndrica de los

capilares y el ajuste de la temperatura mediante el aire, permite obtener gradientes de

temperatura muy pronunciados que se traducen en tiempos más

cortos de reacción, con el consecuente incremento de la

especificidad. Este sistema utiliza un potente diodo emisor de luz

azul para la excitación en vez de un delicado láser y la

fotodetección se realiza con tres diodos que tienen tres filtros de

longitudes de onda diferentes, lo cual permite combinar distintos

fluoróforos simultáneamente. Una corrida completa de PCR con

40 ciclos puede tomar sólo de 15 a 20 minutos..

El Rotor-Gene de Corbett

Research (www.corbettlifescience.com, Fig. 3.15)

utiliza un diseño de rotor de centrífuga que tiene

numerosas ventajas (Fig. 3.16):

1-Uniformidad óptica: Cada tubo pasa frente la

misma fuente de luz excitatoria, la cual atraviesa las

paredes laterales, y la fluorescencia emitida retorna al

mismo sistema de detección, en este caso un tubo

fotomultiplicador. Esto determina que no haya

necesidad de realizar la calibración óptica del equipo,

por lo que no se necesita un fluoróforo de normalización.

Fig. 3.14. Light Cycler

Fig. 3.15. El Rotor-Gene

Page 22: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 22

El Rotor-Gene utiliza varios LEDs de diferentes longitudes de onda que están. acoplados

a un filtro de banda estrecha. Este equipo además tiene un paso óptico pequeño y menos

complejo que el de los sistemas que utilizan fibra óptica, los cuales tienden a ser lentos,

frágiles y caros. De acuerdo a las necesidades del operador, el sistema de detección cuenta

con filtros “band pass” (que permiten el paso de rangos discretos de longitudes de onda y

por ende se prefieren para los ensayos de multiplexing) y filtros “high pass” (a través de

los cuales pasan todas las longitudes de onda por encima de un valor de corte

determinado, lo que incrementa la sensibilidad de la detección).

2-Rápida recolección de los datos: Todos los tubos pasan por el detector cada 150

milisegundos.

3- Al igual que en el Light Cycler, la rotación garantiza la uniformidad de la temperatura

del aire del sistema. Además no hay diferencia entre los tiempos de equilibración térmica

entre pozos durante los cambios de temperatura. Los fabricantes garantizan que entre

muestra y muestra la variación de temperatura es menor a 0.01 grados Kelvin. El rotor

opera a velocidad normal cuando está calentando (Aproximadamente 500 rpm), y al

enfriar incrementa la velocidad, por lo que la fuerza centrifuga que se ejerce sobre cada

muestra asegura que no haya condensación y las burbujas de aire son eliminadas

automáticamente.

Fig. 3.16. Vista Interior del Roto-Gene

Page 23: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 23

3.5 Análisis de los datos

El análisis cuantitativo de los datos se traduce en la evaluación de las curvas de

amplificación, en las que se representa la fluorescencia detectada versus el número de

ciclos de PCR (Fig. 3.17). La sensibilidad del equipo está determinada por el ciclo al cual

la fluorescencia emitida se incrementa por encima del ruido de fondo. El número de

copias del templado se puede determinar con alta precisión a partir del número de ciclos

que se suceden para que la señal alcance un determinado nivel de fluorescencia llamado

umbral, el cual debe interceptar la curva en la fase exponencial, y es determinado de

manera arbitraria. Este punto debe seleccionarse entre dos ciclos sucesivos, por lo que

debe ser un número fraccionario.

Ploteo ΔRn vs Número de ciclo, donde ΔRn = (Rn+) – (Rn-) siendo:

Rn+ = Intensidad de emisión del PCR con molde Intensidad de emisión de la referencia pasiva

Rn- = Intensidad de emisión del PCR sin molde (NTC) Intensidad de emisión de referencia pasiva

Fig. 3.17. Curva de amplificación

Page 24: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 24

Donde la referencia pasiva debe ser un ácido nucleico idéntico a la muestra que estamos

analizando pero sin el fragmento de secuencia correspondiente al templado, de esta forma

tenemos un control negativo perfecto.

Las curvas de amplificación constan de tres partes diferentes:

1) La fase inicial donde no se puede medir a acumulación del producto de PCR pues

hay pocos cambios en la señal de fluorescencia, lo que define la línea basal

2) La fase exponencial, donde la fluorescencia cambia a medida que se forman más

productos

3) La fase de meseta, donde no se distinguen cambios en la fluorescencia a pesar de

que se siguen acumulando productos

Para cada muestra, el número de ciclos necesarios para interceptar el valor umbral se

llama “ciclo umbral” o “threshold cycle” (Ct). El Ct es inversamente proporcional al

número de copias iniciales del ADN muestra. Por tanto, si graficamos el logaritmo de la

cantidad inicial de ADN de estándares de concentración conocida versus el Ct, el

resultado es una línea recta. En cada corrida de PCR en tiempo real debemos analizar

muestras estándar de concentración inicial conocida, de esta forma estamos determinando

el rango dinámico de detección de nuestro método, requisito indispensable para publicar

resultados de calidad. Se pueden analizar diferentes diluciones decimales del mismo

estándar, preferentemente en cuadruplicados. Para presumir la reproducibilidad de

nuestros resultados, debemos tener desviaciones estándar menores a 0.2 unidades de Ct.

Por cada unidad de Ct que cambia en el resultado de una amplificación, se incrementa al

doble la concentración inicial de muestra calculada.

Para lograr una mayor exactitud en la cuantificación es necesario calcular al eficiencia de

la amplificación.

Durante la fase exponencial, la señal S puede ser representada por la ecuación 1 (Wilhelm

y Pingoud, 2003):

S= pNoεc (1)

Donde p es un factor de proporcionalidad que relaciona la concentración del producto de

PCR y la señal S, No es la cantidad de templado, ε es la eficiencia de la amplificación

(1≤ε≥2; donde ε=2 significa una eficiencia del 100%) y c es el número de ciclo.

Page 25: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 25

Si despejamos c tenemos la siguiente ecuación:

c= -(logε)-1(logNo +logp-logS) (2)

donde m=-(logε)-1 y b= -(logε)-1(logp-logS) y resulta la ecuación 3:

c= mlogNo + b (3)

Esta ecuación describe la relación lineal entre los valores de Ct y el logaritmo de la

concentración de templado No. Los parámetros m y b pueden determinarse por regresión

lineal a partir de valores (S;Ct) de estándares de templado de concentración conocida.

Despejando No obtenemos:

No = 10(Ct-b)/m (4)

La eficiencia puede ser entonces calculada como:

ε= 10-1/m (5)

Si sustituimos ε en la ecuación 4, obtenemos la ecuación 6:

No = ε(b-Ct) (6)

El máximo valor de ε es 2.0 (si se duplica la cantidad de producto en cada ciclo), pero los

valores experimentales de ε fluctúan entre 1.5 y 1.9. Si la eficiencia es baja disminuye la

sensibilidad del ensayo pero permite cuantificaciones con mayor precisión (mayor

reproducibilidad entre repeticiones).

El error en los valores de Ct resultan del ruido de fondo y del método de cálculo de Ct. En

ensayos altamente optimizados, podemos obtener errores estándares menores de ± 0.2

ciclos, asumiendo una eficiencia de amplificación del 100%, lo que implica que el error

relativo mínimo para la cuantificación está entre el 10 y el 20%.

El rango dinámico de esta técnica es extraordinariamente alto, con más de seis órdenes de

magnitud .

Para calcular la concentración inicial de nuestro templado se grafica el logaritmo decimal

de las concentraciones de los estándares versus el Ct. El resultado es una recta cuya

pendiente deberá ser teóricamente igual a –3.32 si tenemos una eficiencia de

amplificación del 100% (Ecuación 5). En la práctica, un ensayo es aceptable hasta con un

92% de eficiencia.

Page 26: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 26

El cálculo del rango dinámico se puede realizar en amplificaciones monoplex (un solo

blanco biológico) o en modelos multiplex (para dos o más blancos biológicos

amplificados simultáneamente).

Curvas de desnaturalización

Estas curvas representan la relación que existe entre la fluorescencia y la temperatura

(Fig.3.18.a). Se realizan para corroborar la identidad del amplicón luego del ensayo de

PCR, puesto que debe tener una temperatura de desnaturalización (Tm) específica. La

detección se puede realizar con intercalantes del ADN como el SYBR Green o con sondas

específicas como los Molecular Beacons. Otras como los Scorpions no pueden utilizarse

pues forman parte del producto de PCR, como tampoco se utilizan las sondas TaqMan,

dado que su señal depende de la hidrólosis de la sonda. Para la caracterización de los

productos de la reacción de PCR se utilizan más los agentes intercalantes del ADN,

mientras que las sondas específicas se usan para otros estudios como los de

genotipificación. En estas curvas la señal decrece gradualmente como resultado de la

disminución de la fluorescencia dependiente de la temperatura y posteriormente

disminuye de forma abrupta debido a la separación de las dos hebras de ADN. La

temperatura de desnaturalización o Tm se identifica como el punto más alto de la derivada

negativa de la curva de desnaturalización (Fig. 3.18.b). En esta representación además, el

área bajo el pico es proporcional a la cantidad de producto, por lo que las curvas de

desnaturalización también permiten cuantificar la cantidad de producto que tenemos si

contamos con estándares de concentración conocida (Wilhelm et al, 2003).

3.4.1 Ensayos de cuantificación absoluta

El objetivo es determinar el número exacto de moléculas de ADN o ARN presentes en

una muestra. El resultado estará expresado en las mismas unidades que los estándares de

la curva de calibración (número de copias, ng/mL,). Este tipo de cuantificaciones se

emplean para la detección y cuantificación de cargas virales, agentes patógenos o en la

terapia génica.

3.4.2 Ensayos de cuantificación relativa

Este tipo de cuantificaciones permite determinar cuantas veces (más o menos) ácido

nucleico se tiene de un templado o una muestra biológica determinada con respecto a un

tejido o muestra de referencia. Los resultados son expresados de manera relativa por lo

que no se necesita una curva de calibración con un estándar de concentración conocida.

Page 27: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 27

La aplicación más utilizada de este método es la comparación de los niveles de expresión

génica (mRNA) entre diferentes tejidos o en el tiempo, o la respuesta de un tejido a

diferentes tratamientos.

Primeramente debemos realizar una normalización de la cantidad relativa de cada muestra

respecto a un gen normalizador, preferentemente de expresión constitutiva en la célula

(control endógeno). Estos genes mantienen un nivel de expresión constante aún en

diferentes estados fisiológicos de la célula y no deben afectarse en respuesta a los

tratamientos que estamos evaluando, en caso de que así sea. Para que este método sea

exitoso el rango dinámico de la muestra y del control endógeno debe ser similar. Un

método sensible para evaluar si esta regla se cumple es calcular el ΔCt para diferentes

diluciones de la muestra y del gen normalizador.

ΔCt = Ct (muestra)-Ct (normalizador), donde Ct (muestra) y Ct (normalizador) es el ciclo

al cual la muestra y el normalizador respectivamente alcanzan el nivel umbral de

fluorescencia en el ensayo de PCR en tiempo real. El cálculo de ΔCt se realiza para

diferentes diluciones del templado y de la referencia, y se grafica la dilución analizada vs

el resultado del ΔCt para cada una. Esta evaluación tiene como propósito determinar la

eficiencia de amplificación entre diferentes concentraciones de ARNm tanto para la

muestra como para el control endógeno, y demostrar que para una misma muestra, la

proporción obtenida entre el mARN templado y la referencia sea siempre la misma. Si la

Fig.3.18. Resultado de una curva de desnaturalización de un producto de PCR y un controlnegativo. El producto de PCR tiene una Tm aparente de 87.5°C, mientras que el control negativocontiene dímeros de primers con una Tm aparente de 83°C. a)Curva de disociación. B)Representación del pico de desnaturalización

Page 28: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 28

eficiencia de amplificación de la muestra y de la referencia son similares, el resultado de

esta gráfica debe ser una línea recta de pendiente prácticamente 0 ó menor de 0.1, como se

muestra en la Fig. 3.19.

Aquí como vemos el valor de la pendiente de la gráfica es de 0,0471. Es de esperar que el

valor de ΔCt sea mayor en la muestra que en el normalizador, teniendo en cuenta que el

nivel de expresión del mensajero sea mayor en el normalizador, por lo que ΔCt debe ser

un valor positivo, aunque puede ser negativo también.

Luego procedemos al cálculo del ΔΔCt (Livak y Schmittgen, 2001):

ΔΔCt =ΔCt (muestra)- ΔCt (calibrador),

donde la muestra puede ser el nivel de expresión mRNA en riñón, pulmón, etc de un gen

X y el calibrador puede ser el nivel de expresión de ese mismo gen en cerebro (tejido de

referencia).

Entonces el ΔΔCt se calcula para diferentes tejidos así como la expresión relativa de

mRNA, que está dada por la ecuación:

Expresión relativa = 2 -ΔΔCt

Si el tejido de referencia a comparar es el de menor expresión de mensajero, su valor de

ΔCt será el mayor y el nivel de expresión de las muestras siempre aumentará respecto a la

referencia, pero de igual forma puede disminuir.

Fig. 3.19. Ejemplo de una curva de calibración.

Page 29: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 29

Para ejemplificar este modelo, mostramos la evaluación de la expresión del gen c-myc en

cuatro tejidos diferentes: hígado, riñón, pulmón y cerebro. Se emplea como control

endógeno o normalizador, la expresión de la enzima gliceraldehído 3-fosfato

deshidrogenasa (GAPDH) en estos tejidos. La normalización de los tejidos se lleva a cabo

calculando:

ΔCt pulmón = Ct (c-myc)pulmón- Ct (GAPDH)pulmón

ΔCt hígado = Ct (c-myc) hígado – Ct (GAPDH) hígado

y así sucesivamente con los otros dos tejidos.

Luego calculamos ΔΔCt y la expresión relativa de c-myc en pulmón, hígado y riñón

tomando como referencia el valor de ΔCt en cerebro:

ΔΔCt pulmón = ΔCt pulmón - ΔCt cerebro

ΔΔCt hígado = ΔCt hígado - ΔCt cerebro

ΔΔCt riñón = ΔCt riñón - ΔCt cerebro

y graficamos la expresión relativa de c- myc tomando como referencia los niveles en

cerebro como se muestra a continuación:

Otros ensayos de cuantificación relativa se han realizado utilizando como controles

endógenos la expresión de β-actina, β2-microglobulina y ARN ribosomal. La selección del

calibrador depende del tipo de relación que queremos calcular. El diseño más simple es

utilizar el control no tratado como calibrador, en el caso en que estudiemos expresión

diferencial entre muestras tratadas y no tratadas. En este caso, el ΔΔCt del calibrador es 0

y su expresión relativa 20 es igual a 1, por definición. Un resultado similar se obtiene

Page 30: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 30

cuando analizamos el aumento de la expresión de un gen a través del tiempo y el

calibrador representa la cantidad de mensajero a tiempo cero.

3.6 Estrategias de normalización

El principio de cuantificación mediante la técnica de PCR en tiempo real parece muy

simple: mientras más copias de templado tenemos, menor número de ciclos de PCR serán

necesarios para alcanzar el nivel umbral. Pero en la práctica, la relación entre el número

de copias del templado y el Ct no es tan sencilla. En primera instancia, lograr

cuantificaciones reproducibles a partir de templados que se encuentran poco abundantes

(<1000 copias) en una mezcla compleja de ácidos nucleicos constituye muchas veces una

tarea problemática (efecto Monte Carlo, Karrer et al., 1995). En segundo lugar, hay que

tomar en cuenta que muchas muestras biológicas pueden contener inhibidores de

reversotranscriptasas, polimerasas u otros reactivos utilizados en las reacciones de PCR,

por lo cual es necesario investigar la presencia de estos inhibidores cuando queremos

poner a punto un ensayo de cuantificación específico. Una manera fácil de lograrlo, por

ejemplo, es realizando un RT-PCR en tiempo real de referencia, en el cual adicionamos

una cantidad conocida de ARN y medimos las variaciones en los valores de Ct (Smith et

al., 2003).

En tercer lugar, es necesario aplicar una adecuada estrategia de normalización que permita

controlar la cantidad de material de partida, las variaciones en la eficiencia de

amplificación y las diferencias entre muestras. A pesar de las numerosas estrategias que se

han puesto en práctica, el máximo problema de la normalización para el PCR en tiempo

real sigue en pie: los experimentos de RT-PCR en tiempo real para cuantificar la cantidad

de ARN a partir de muestras biológicas complejas. Existen variaciones en la cantidad de

ARN expresado entre células de diferentes linajes o que se encuentran en distintos estados

de diferenciación. Para el caso de las muestras de sangre, la citometría de flujo

(Raaijmakers et al., 2002) y los anticuerpos acoplados a perlas magnéticas (Deggerdal y

Larsen, 1997) han permitido separar subpoblaciones celulares definidas. Sin embargo,

para las biopsias de tumores sólidos no existe prácticamente ninguna forma de separar o

contar células, a lo que se une la alta heterogeneidad celular inherente a este tipo de

patología: células cancerosas, epiteliales, estromales, componentes del sistema inmune y

del sistema vascular contribuyen a formar la masa tumoral. Esta variabilidad nos permite

Page 31: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 31

sin embargo generar resultados cualitativos, pero debemos ser muy cuidadosos si

queremos realizar un análisis cuantitativo. Afortunadamente, con la técnica de captura por

microdisección utilizando láser se puede cuantificar la cantidad de ARN mensajero

proveniente de un corte de tejido como número de copias del templado por área de

disección (Fink et al., 1998).

3.6.1 Cuantificación de ARN mensajero

El PCR en tiempo real es muy utilizado para la cuantificación de los niveles de ARN

mensajero, pero existen muchos problemas que pueden afectar la calidad de los

resultados, entre los que se encuentra la variabilidad inherente al ARN, la variabilidad de

los protocolos de extracción y diferencias en la eficacia de la reverso transcripción, entre

otros. Es por esto que se hace imprescindible utilizar un método de normalización de los

resultados que nos permita una cuantificación lo más cercana posible a la realidad

(Huggett et al., 2005).

A) Tamaño de la muestra

La primera forma de minimizar el error experimental es partiendo de masas o volúmenes

de tejido similares a partir del cual aislaremos nuestro ácido nucleico templado.

Desgraciadamente grupos de muestras del mismo tamaño no siempre son representativos

entre sí. Cuando trabajamos con cultivos celulares en monocapa, muchas veces se

dificulta la estimación de la densidad celular, no sólo por la pérdida debido a la

mortalidad sino por cambios morfológicos y fisiológicos que pueden ocurrir en las

células. Se hace evidente entonces que asegurar muestras de igual tamaño, densidad o

peso, minimiza los errores pero no es suficiente.

B) Cuantificación de ARN

Una cuantificación precisa y de calidad del ARN que queremos reverso transcribir es

esencial para lograr muestras de partida homogéneas. Existen muchos métodos para

cuantificar ARN, y entre los más precisos está el uso del reactivo ribogreen, el cual se

intercala de manera precisa en los ácidos nucleicos de doble cadena y es mucho más

sensible que el bromuro de etidio. De esta forma, si tenemos una preparación

relativamente pura de ARN celular y medimos la cantidad de ARN ribosomal (el cual

Page 32: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 32

consta de muchas estructuras secundarias) por unión al ribogreen, podemos inferir que el

resto de nuestro ARN, sea mensajero o de transferencia, también conserva una buena

integridad. Se utiliza el ARN ribosomal como referencia pues representa

aproximadamente del 85 % al 95% de todo el ARN celular, mientras que el ARN

mensajero se encuentra entre el 2 y el 5%, por tanto se asume que la relación

ARNr:ARNm no cambia entre grupos de análisis, lo cual no siempre es válido. Los

niveles de ARNr varían menos en condiciones que afectan a los de ARNm (Schmittgen y

Zakrajsek, 2000), por lo que su utilización como normalizadores se ha vuelto más

confiable que muchos genes de referencia. Un reporte reciente donde se comparan los

niveles de expresión de ARN entre células nucleadas de la sangre en resposo o activadas,

reveló que el ARNr 18S es el blanco de referencia más estable.

En este tipo de análisis podemos realizar una electroforesis, donde debemos observar dos

bandas bien definidas que corresponden al ARNr 28S y 18S, siendo la de 28S mucho más

intensa debido a que, en condiciones normales, este ARNr se encuentra al doble de la

concentración del ARNr 18S (Fig.3.20.a). También podemos utilizar un bioanalizador

(Agilent Bioanalyser) donde, de manera similar a una cromatografía, separamos los ARNr

y se visualiza el cromatograma por tinción con ribogreen. Los tiempos de retención de los

ARNr 28S y 18S ya son conocidos (Fig.3.20.b). No obstante, la normalización de una

muestra respecto al ARN total tiene la desventaja de no controlar las variaciones

inherentes a la reverso transcripción o a las reacciones de PCR.

C) ADN genómico

La cuantificación de ADN genómico para la normalización pudiera parecer una buena

estrategia, por cuanto no se necesita hacer un paso previo de reverso-transcripción, pero la

realidad es que existen inconvenientes. Por ejemplo, cuando las células están proliferando,

tenemos mucho más ADN, lo que puede representar el doble de la información genética

para células eucariotas. En el caso de las bacterias o las células tumorales, podemos tener

8 copias o más de la información genética de un cierto loci comparado con células que no

se replican. De esta forma aunque partamos de una cantidad de células similar, existe

mucha variabilidad en la cantidad de ADN genómico extraído. Otro problema es la

carencia de protocolos altamente estandarizados para una purificación de ADN genómico

de calidad.

Page 33: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 33

D) Genes de referencia

Se utilizan en los ensayos de cuantificación relativa que describimos previamente. Una de

las ventajas de esta técnica es que tanto el gen a cuantificar como el normalizador, son

detectados utilizando el RT-PCR en tiempo real. Existen numerosas publicaciones que

subrayan el hecho de que no existe ni un solo gen de referencia universal, pues todos se

regulan de alguna forma y ninguno se expresa constitutivamente en todos los tipos

celulares y bajo cualquier condición experimental. Muchos de los genes de referencia

“clásicos” ampliamente utilizados como normalizadores en los RT-PCR en tiempo real

son genes regulados, hecho que se conoce desde mucho antes de que surgiera la técnica de

PCR en tiempo real. Tal es el caso del ARNr 18S, el cual se sobreexpresa frente a una

infección con citomegalovirus, o del gen que codifica para la GAPDH, el cual se

transcribe de manera similar en diferentes tejidos de rata, pero esto no correlaciona con las

cantidades de ARN mensajero encontradas en dichos tejidos. A pesar de estas evidencias,

estos genes de referencia se siguen utilizando como normalizadores sin un proceso previo

de validación. Reportes recientes han demostrado que muchos de estos genes no pueden

utilizarse como normalizadores. Una de las peores situaciones que se pueden presentar es

que el gen de referencia se vea afectado por las condiciones que queremos evaluar.

La validación de los genes de referencia está sujeta también a los problemas de la

normalización. El grado de variabilidad aceptable para un gen de referencia depende de la

ARNr 28S

ARNr 18S

b

Fig. 3.20. Ejemplo de una cuantificación de ARNr de buena calidad mediante (a) Gel deagarosa y (b) Agilent Bioanalyser.

Page 34: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 34

resolución requerida. Aún cuando el gen de referencia seleccionado sea variable, esto no

interesa siempre que la diferencia entre grupos sea mayor que la variación del gen de

referencia. Si un ARN de referencia tiene un error de 1 log puede no ser ideal, pero es

suficiente para medir cambios en los templados de 2 log o más.

Existen muchos programas sustentados en la plataforma de Excel que permiten el análisis

de muchos genes de referencia. El programa Gnorm permite la elección del gen de

referencia apropiado mediante el cálculo de la media geométrica de la expresión del

ADNc candidato. En este programa se toma como factor de normalización la media

geométrica entre pares de genes internos de referencia que muestran un perfil de

expresión similar, partiendo del principio de que pares de genes que presenten patrones de

expresión estables entre sí, son genes de control adecuados. (Vandesompele et al., 2002).

E s t e s o f t w a r e s e e n c u e n t r a d i s p o n i b l e e n e l s i t i o

(http://www.genomebiology.com/2002/3/7/research/0034/). No obstante, este modelo

requiere de una extensa validación práctica para identificar la combinación adecuada de

genes de referencia para cada experimento en particular, siendo los mejores candidatos

para esto los genes coexpresados. El programa BestKeeper también selecciona el gen de

referencia menos variable a partir de las medias geométricas y se encuentra disponible en

el sitio http://www.gene-quantification.de/BestKeeper-1.zip.

Un tercer programa llamado Norm-Finder, no sólo mide la variación del normalizador

sino que establece una gradación entre los genes de referencia potenciales en términos de

cuánto difieren entre los diferentes grupos de estudio, entendiéndose esto como diferentes

condiciones experimentales.

Muchos autores han sugerido utilizar diversos genes de referencia en vez de confiar en un

solo transcripto. Este es un método robusto de normalización altamente favorable cuando

deben realizarse cuantificaciones muy precisas. Esta técnica no obstante está limitada por

problemas de disponibilidad de la muestra o el costo de las mismas.

E) Moléculas artificiales

Estas moléculas de ARN “artificiales” pueden ser obtenidas a partir de otro organismo en

el cual sus genes hayan sido clonados o pueden generarse de forma sintética. Dado que

conocemos su cantidad exacta, pueden ser adicionadas a la muestra en las etapas de

extracción de ARNm y así estarán sujetas a todos los errores experimentales que afectan

Page 35: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

PCR en tiempo real

Rodríguez M & Rodríguez W 35

al ARN de interés. Además no se verán afectadas por las fluctuaciones propias de los

sistemas biológicos que muchas veces afectan a los genes de referencia. Sin embargo, la

generación de estas moléculas “alien” no es asequible a muchos laboratorios, sobre todo

los que realizan pocos ensayos de RT-PCR en tiempo real. La adquisición comercial de

este tipo de estándares para la normalización permanece todavía como una idea teórica

que no ha sido validada.

En términos generales, una adecuada normalización es crítica para obtener resultados

biológicos relevantes. Dado que no existe una sola estrategia que sea aplicable a todas las

condiciones experimentales, la clave para una buena normalización en los ensayos de

PCR en tiempo real es la demostración de que el gen utilizado como referencia ha sido

correctamente validado (Bustin et al., 2005).

Page 36: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 36

CAPITULO 4

APLICACIONES DEL PCR EN TIEMPO REAL

La emergente tecnología del PCR en tiempo real ha demostrado su versatilidad y utilidad

en diversos campos de la investigación biomédica y el diagnóstico biomolecular, siendo la

limitante la imaginación de investigadores y fabricantes de nuevos equipos, productos y

servicios asociados a estas ramas del conocimiento.

Entre los campos de acción que más recurren a esta tecnología se cuentan la virología, la

microbiología clínica y la investigación biomédica, aunque existen otras como las

industrias alimenticias y farmacéuticas que han hecho o harán uso de esta tecnología.

En el presente capítulo se revisarán algunas de las aplicaciones actuales y las perspectivas

futuras de la tecnología del RT PCR.

4.1 Virología

El PCR en tiempo real ha sido extremadamente útil para el estudio de agentes virales

asociados a enfermedades infecciosas y ha ayudado a clarificar en alguna medida los

procesos infectivos de dichas enfermedades. La mayor parte de los ensayos que se

encuentran en la literatura muestran un aumento en la frecuencia de detección de virus

comparándolos con las técnicas tradicionales, lo cual ha hecho más atractivo el uso del RT

PCR en muchas áreas de la virología.

El RT PCR se ha hecho valioso en estudios generales de virología, desde la simple

confirmación de la presencia o ausencia de virus de diferentes enfermedades, o del

monitoreo de la actividad de genes específicos como resultado del crecimiento bajo

condiciones manipuladas. También se puede seguir la entrada alterada o replicación de un

virus causada por la modificación tejido-específica y permite comparar entre replicación

viral y expresión de genes celulares. (Mackay et al., 2002).

EL RT PCR ha mejorado la velocidad y el alcance de la medición de cepas virales y las

diferencias entre títulos de pacientes que muestran diferentes síndromes debidos a

Page 37: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 37

variaciones del mismo virus. (Furuta et al., 2001). También, los estudios epidemiológicos

han avanzado ya que con la técnica de RT PCR se puede medir con precisión la cantidad

de dos ácidos nucleicos blanco en una sola reacción. El uso de nuevas estrategias

químicas ha permitido una mejor discriminación de múltiples genotipos virales en un solo

recipiente y ha provisto una alternativa a los métodos de detección de virus basados en

ensayos de morbilidad y mortalidad.

El uso del RT PCR ha suministrado datos más profundos sobre el papel de algunos

compuestos que tienen inhibición en la reacción de PCR como también ha dado luz sobre

la eficiencia de diferentes métodos de extracción de ácidos nucleicos de un diverso tipo de

muestras. Esta capacidad de utilizar templados de diversos tipos de muestras, llena un

requerimiento importantísimo para un sistema ideal de detección, que es capaz de aplicar

una tecnología sencilla en muchos campos. Esta flexibilidad se destaca por la detección de

ácidos nucleicos virales, derivados en diferentes formas de plantas, animales, lodos

urbanos, fluido cerebroespinal, cultivo de tejidos, células sanguíneas mononucleares,

plasma, suero, saliva y orina.

También, condiciones críticas como sarcoma, carcinoma, neoplastia cervical intraepitelial

y desórdenes linfoproliferativos pueden ser fácilmente estudiados para investigar

relaciones directas o indirectas con infecciones virales. También, el seguimiento de la

carga viral por técnicas de RT PCR ha sido beneficioso para realizar seguimiento de

pacientes a quienes se les han trasplantado órganos.

Esta tecnología se está convirtiendo en una herramienta esencial en el aseguramiento de

vectores de terapia génica viral antes de su uso en pruebas clínicas. Adicionalmente, el

estudio de virus emergentes ha sido complementado con la técnica de RT PCR como

herramienta para demostrar relaciones existentes entre secuencias virales únicas, señales

clínicas y síntomas de cada paciente.

La velocidad y flexibilidad del RT PCR también ha sido de utilidad para los intereses

comerciales y ha sido usada para la detección de contaminación microbiana en

preparaciones de reactivos producidos a gran escala en sistemas de expresión eucarióticos.

4.2 Microbiología clínica (Costa, J. 2004)

Las aplicaciones del RT PCR en el campo de la microbiología clínica no difieren mucho

de las que utilizan comúnmente las reacciones de PCR convencional. Entre ellas se

Page 38: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 38

cuentan el diagnóstico etiológico, el control del tratamiento con antimicrobianos y la

caracterización genética de agentes infecciosos. No obstante, es previsible que gracias a

sus indudables ventajas y a la sencillez de su empleo, la RT PCR haya ido reemplazando a

la PCR convencional y que su aplicación se extienda a un número cada vez mayor de

agentes infecciosos, implementándose progresivamente en la rutina asistencial. Algunas

empresas de diagnóstico (Roche Diagnostics, Artus, Abbott, Celera) han hecho ya una

apuesta decidida por la nueva tecnología y tienen disponibles, o los tendrán en breve, kits

para el diagnóstico de los agentes infecciosos de mayor interés comercial mediante

sistemas de PCR a tiempo real (VIH, VHB, VHC, citomegalovirus). Sin embargo, hay

muchas enfermedades infecciosas, con menor interés comercial, en las que el uso de

métodos moleculares de diagnóstico aporta indudables ventajas. La PCR a tiempo real,

combinada con los nuevos sistemas automáticos para la preparación de las muestras,

ofrece una plataforma ideal para el desarrollo de una gran variedad de pruebas

moleculares para la identificación o cuantificación de esos agentes infecciosos. Es el caso

de muchos virus, (familia de los Herpesvirus, virus respiratorios, enterovirus, virus JC,

virus BK, etc.) o de bacterias que no crecen en medios de cultivo como Tropheryma

wippeli, o que crecen mal como Bordetella pertussis o Bartonella o muy lentamente como

Mycobacterium tuberculosis. También, de micosis invasivas, especialmente por

Aspergillus ssp. o de infecciones parasitarias como las ocasionadas por Toxoplasma

gondii en líquido amniótico o en líquido cefalorraquídeo (LCR).

Otro campo potencial de aplicación del RT PCR es en la identificación de organismos

fácilmente cultivables, cuya detección rápida sea beneficiosa por algún motivo. Por

ejemplo, la identificación de Streptococcus del grupo B (S. agalactiae) en frotis vaginales.

La colonización del tracto genital de mujeres parturientas por este agente se relaciona con

un mayor riesgo de infección neonatal grave. El tiempo necesario para el aislamiento de

esta bacteria mediante cultivo es de 1-2 días, mientras que por PCR a tiempo real su

identificación se puede llevar a cabo en 30 min. La reducción del tiempo de diagnóstico

puede mejorar la prevención de esas infecciones en recién nacidos. En otros casos, como

la sepsis, la supervivencia del enfermo puede depender de un diagnóstico precoz del

agente causal que permita establecer el tratamiento antibiótico específico en etapas

tempranas del proceso. Probablemente en pocos años se habrán optimizado protocolos de

Page 39: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 39

PCR múltiple a tiempo real para la identificación de los 10 o 20 agentes más frecuentes de

la sepsis en unas pocas horas.

Lógicamente, la PCR a tiempo real no va a reemplazar al hemocultivo, porque la sepsis

puede estar ocasionada por una variedad de microorganismos mucho más amplia, pero la

demora en el tratamiento se podrá reducir en un número considerable de casos, lo que sin

duda puede mejorar el pronóstico de este grave proceso.

El éxito de un tratamiento no sólo se basa en un diagnóstico etiológico precoz, sino que en

muchas ocasiones la determinación rápida de la sensibilidad del agente causal a los

fármacos antimicrobianos puede ser determinante. La PCR a tiempo real proporciona

métodos ágiles y sencillos para la identificación de mutaciones puntuales asociadas con

resistencias a fármacos antimicrobianos. Por ejemplo, en apenas una hora se puede

determinar la presencia en heces de enterococos resistentes a vancomicina, facilitando el

control de la transmisión de este patógeno en los centros sanitarios. En los últimos años se

han desarrollado métodos sencillos para la detección rápida de mutaciones asociadas con

resistencias a meticilina en Staphylococcus aureus y a rifampicina y a isoniacida en

Mycobacterium tuberculosis. También se han descrito procedimientos para la

identificación de mutaciones asociadas con resistencia a agentes antivíricos, como la

lamivudina en VHB. Hoy día ya están disponibles kits comerciales para algunas

aplicaciones comentadas en este apartado y en el futuro irán apareciendo muchos otros.

Incluso para las enfermedades infecciosas menos frecuentes están, o estarán disponibles,

protocolos bien optimizados, sencillos y rápidos para que puedan ser implementados en la

rutina asistencial.

No obstante, hay que hacer hincapié en que esta potente metodología sólo será útil si los

laboratorios de microbiología clínica participan en programas de control de calidad bien

definidos por entes gubernamentales.

4.3 Investigación biomédica

Gran parte de los desarrollos alcanzados en la tecnología de RT PCR tuvieron sus inicios

en investigaciones puntuales que llegaron a términos comerciales. Este estudio primario

de diferentes fenómenos asociados a las disciplinas de biomedicina, bioquímica y

biotecnología es necesario tanto en empresas de diagnóstico como en empresas cuyos

departamentos de Investigación y Desarrollo son cruciales para sus futuros desarrollos.

Page 40: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 40

El RT PCR ha llegado a ser absolutamente común en la investigación básica dentro de las

ciencias biomédicas. Cuando se requieren datos de expresión genética para un proyecto

de investigación, está tecnología puede ser utilizada. Sin embargo, hay usos adicionales

que son particularmente útiles a la investigación básica. El RT PCR se puede utilizar para

genotipificar modelos de tipo knockout, knockin o de ratones transgénicos o para

determinar la eficacia de los métodos en sistemas de células animales o en cultivos

celulares. Con el uso del RT PCR para la discriminación de alelos, la detección de

polimorfismos en un solo nucleótido (SNP), que pueden predisponer a individuos a

enfermedades particulares, puede determinarse en poblaciones, facilitando así los estudios

epidemiológicos.

4.3.1 Validación de los resultados de microarreglos de DNA

Debido a la confiabilidad del PCR en tiempo real, muchos investigadores utilizan el

método de cuantificación relativa o absoluta de la expresión de genes para validar y

corroborar los resultados de los microarreglos de DNA o arreglos de oligonucleotidos

(Por ej: Affymetrix GeneChip). Los microarreglos son usados porque permiten que un

investigador observe de una manera “imparcial” cómo la manipulación experimental

puede afectar algunos de los miles de genes presentes en el microarreglo. Algunos

microarreglos pretenden contener el “genoma entero” de un organismo modelo y pueden

ser así teóricamente probados para determinar cambios en la expresión dentro del

“transcriptoma entero”. El problema es que puede haber artificios, y es difícil conseguir

datos cuantitativos confiables o con poder estadístico adecuado con la actual tecnología de

arreglos. Así muchos investigadores escogen el RT PCR como técnica de soporte para

validar y para cuantificar mejor los genes de interés de sus microarreglos.

4.3.2 Identificación de mutaciones

El RT PCR se ha usado idealmente para el análisis de mutaciones, incluyendo los

polimorfismos de un sólo nucleotido (SNP), substituyendo a menudo otras técnicas tales

como la secuenciación, análisis del polimorfismo conformacional de una sola hebra, y

análisis de polimorfismos de fragmentos de restricción. Para detectar mutaciones en la

secuencia, el análisis de la curva de fusión se hace automáticamente en el producto

Page 41: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 41

amplificado (amplicon) inmediatamente después del termociclado y de la medición de la

fluorescencia.

Aunque cualquiera de las químicas fluorescentes descritas en el numeral 3.3 de este

documento se puede utilizar para la detección de mutaciones, las sondas de hibridación

son de uso frecuente. Después de que se completa la reacción de PCR, las sondas de

hibridación se unen al amplicón en tándem, permitiendo que la energía fluorescente se

transfiera del donante al aceptor, el cual emite una señal. Como la temperatura de reacción

del recipiente aumenta durante el análisis de la curva de fusión, la sonda donadora se

disociará, dando como resultado una disminución en la fluorescencia. Si hay alguna

mutación en el amplicón (en la región de hibridación), la sonda donadora se unirá menos

fuertemente y disociará a una temperatura más baja. Así las mutaciones pueden ser

detectadas fácilmente observando un cambio en el punto de fusión del producto de PCR.

Este tipo de análisis puede también ser utilizado para genotipificar organismos

individuales o experimentales (Por ej: discriminación alélica).

4.4 Organismos genéticamente modificados (GMO) (Bustin, 2005)

La aprobación mundial de una gran cantidad de organismos genéticamente modificados

(GMOs), y los requisitos de etiquetado asociados, han dado lugar al desarrollo de métodos

basados en RT PCR para la detección de la presencia de GMOs en alimentos o en aditivos

para los mismos. La detección de organismos genéticamente modificados por RT PCR se

basa en la amplificación paralela del transgen y de un gen endógeno de referencia que

proporciona un control tanto para la pérdida de inhibición como para la capacidad de

amplificar el DNA blanco en la muestra. Además, para los análisis cuantitativos, la

amplificación del gen de referencia proporciona una estimación de la cantidad total de

DNA blanco presente en la muestra. Ubicar el DNA blanco es particularmente apropiado,

debido a la alta estabilidad de esta molécula bajo las condiciones extremas usadas durante

el procesamiento de algunos productos alimenticios.

4.5 Aplicaciones futuras y perspectivas (Valasek et al., 2005)

Cualquier necesidad de medir rápida y exactamente pequeñas de cantidades de ácidos

nucleicos representa un nicho potencial a futuro para las innovaciones basadas en RT

PCR. Ya que las máquinas se vuelven más rápidas, baratas, pequeñas, y más fáciles de

Page 42: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Aplicaciones

Rodríguez M & Rodríguez W 42

usar, el desarrollo de ensayos estandarizados, y los avances en microfluidos, la óptica, y

los termocicladores, se podrán cubrir más campos de aplicación. En el sector alimenticio y

la agricultura, la técnica de RT PCR puede probablemente ampliar el uso para detección e

identificación de microorganismos, parásitos u organismos genéticamente modificados.

Las ciencias forenses se pueden beneficiar de la sensibilidad, especificidad, y velocidad

de las técnicas de RT PCR, especialmente porque el tiempo es crucial para muchas

investigaciones criminales y el tamaño de la muestra puede ser limitado. La reducción en

el costo y la disminución en los tamaños de los equipos abren una puerta para el

diagnostico de enfermedades en áreas alejadas junto con los estudios epidemiológicos in

situ y pueden facilitar la transferencia de tecnologías científicas a los países en vías de

desarrollo. Ya que la demanda para medir la expresión genética es poco probable que

disminuya, nuevas generaciones de máquinas para RT PCR deben ser desarrolladas.

Como las computadoras, las primeras generaciones de máquinas deberán ser

relativamente más baratas y por lo tanto se incrementará el acceso global y el aumento de

la tecnología. La enseñanza del RT PCR podrá ser usada como una plataforma para

introducir conceptos claves en biología molecular, así como también una oportunidad para

dar a los estudiantes habilidades científicas relevantes. El RT PCR generará un foco de

atención hacia el transcriptoma, permitiendo a los investigadores entender mejor los

programas transcripcionales que son la base de la fisiología, la patofisiología, y

desarrollo.

La evolución de la ciencia y de la tecnología de la biología molecular puede ser vista

cronológicamente por épocas que están marcadas por la maduración del estudio de

biomoléculas particulares. Básicamente, el análisis del DNA (genómica) fue primero

realizado en el proyecto del genoma humano. Ahora, el análisis de los perfiles de

expresión del RNA (transcriptómica) está alcanzando madurez. El futuro inminente

promete grandes saltos en análisis de las proteínas (proteómica), y en lípidos biológicos o

intermediarios metabólicos (lipómica o metabolómica, respectivamente). Se espera que

los pedazos del rompecabezas biomolecular puedan ser juntados, conduciendo a una

comprensión más holística de la biología. Para formar una figura coherente, sin embargo,

serán necesarios avances paralelos en la adquisición, la compilación, y el análisis de

datos.

Page 43: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 43

CAPITULO 5

TRAMPAS DEL RT-PCR EN TIEMPO REAL

La cuantificación de ADN genera datos robustos que son informativos y reproducibles,

esto se debe a que la información contenida dentro del genoma es independiente del

contexto. De forma general, cada célula normal dentro de un organismo contiene la misma

secuencia de ADN, las mismas mutaciones y los mismos polimorfismos. El transcriptoma,

por otra parte, depende altamente del contexto celular y temporal, por lo que la

información que nos brinda es muy variable. Si esto lo combinamos con las limitaciones

técnicas inherentes a cualquier ensayo de RT-PCR en tiempo real, puede ser difícil

obtener resultados que puedan ser interpretados de una manera correcta. La calidad del

templado, la variación entre operadores y la subjetividad en el análisis de los datos son

sólo algunos de los aspectos técnicos que convierten al RT-PCR en tiempo real en una

técnica frágil que puede hacer difícil la correcta interpretación de los datos. Un ejemplo de

ello es la cuantificación de ARNm que proviene de biopsias como las derivadas de

colonoscopías, células aisladas o muestras obtenidas mediante la microdisección por láser,

donde la cantidad de templado es muy baja. Desgraciadamente bajo estas circunstancias la

cuantificación de ARNm por RT-PCR en tiempo real puede ser utilizada de manera

inapropiada para llegar a conclusiones nada comprometidas con la realidad. Por todo esto

existen dudas de que en el futuro, los análisis basados en el transcriptoma se vuelvan

técnicas de rutina (Bustin y Nolan, 2004b).

5.1. Calidad del ARN

Anteriormente hemos destacado que la calidad del ARN templado es el factor más

importante para obtener resultados de relevancia biológica. Muchas muestras, en especial

las biopsias de tejido humano, son únicas, y por ende deben ser tratadas con extremo

cuidado, desde su colección, transporte y almacenamiento. Debe existir alta rigurosidad

Page 44: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 44

en los protocolos de extracción de ARN, el cual es extremadamente delicado. Un

templado adecuado para una reacción de RT-PCR en tiempo real debe cumplir con los

siguientes criterios:

1-Debe estar libre de ADN, especialmente si el templado es un gen sin intrones

2-No deben copurificar inhibidores de la reversotranscripción

3- La preparación debe estar libre de nucleasas para un almacenamiento adecuado

Existen muchos componentes dentro de la sangre y los tejidos que inhiben los ensayos de

RT-PCR. La sangre de los mamíferos en cantidades tan pequeñas como al 1% v/v inhibe a

la Taq polimerasa (Panaccio y Lew, 1991). El ácido húmico, polímero componente de las

muestras extraídas de suelo, inhibe las reacciones de PCR (Zhou et al., 1996), así como el

calcio proveniente de los alimentos (Rossen et al., 1992). Las drogas terminadoras de

cadena como el Aciclovir son también inhibidores de la Taq polimerasa, lo que lleva a

obtener resultados que son falsos negativos en determinados pacientes (Yedidag et al.,

1996). Algunos componentes de los medios de cultivo y de los agentes de extracción de

ácidos nucleicos, e incluso los palillos de madera utilizados para picar colonias

bacterianas, son algunos de los inhibidores más comunes de las reacciones de PCR (Lee et

al., 1995). Otros inhibidores son altamente específicos, como los provenientes del

músculo esquelético, los cuales frenan a la Taq polimerasa pero no a la polimerasa aislada

de Thermus thermophilus (Belec et al., 1998).

5.2. Detección no específica

En estos métodos se utilizan agentes intercalantes del ADN de doble cadena como el

SYBR Green (Ishiguro et al., 1995), el cual se adiciona a la mezcla de reacción y, aunque

no es específico, es muy utilizado para cuantificar ADN si el PCR se combina con curvas

de disociación que permitan evaluar la calidad del producto de reacción (Ririe et al.,

1997). Los ensayos que utilizan intercalantes del ADN que fluorescen tienen dos ventajas

respecto a los que se basan en sondas específicas:

1- Pueden incorporarse a protocolos optimizados que utilizan los mismos primers y

las mismas condiciones experimentales.

2- Son mucho más baratos.

Estas características convierten a los agentes intercalantes del ADN en herramientas útiles

para los primeros pasos en la optimización de las técnicas de PCR en tiempo real, por

Page 45: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 45

ejemplo, para determinar si existe alguna interacción entre los primers mediante el

análisis de curvas de disociación o para explorar de forma preliminar la técnica de

detección de múltiples amplicones antes de utilizar un ensayo basado en sondas

fluorescentes específicas.

Entre las desventajas de la detección no específica se encuentra la unión indiscriminada

hacia cualquier estructura de doble cadena, lo que produce fluorescencia en el control sin

templado debido a su unión a los dímeros de primers. Un segundo problema es que las

curvas de disociación para analizar la calidad del producto obtenido son absolutamente

necesarias, lo cual incrementa la complejidad de los análisis. Un tercer problema es que

muchas de estas moléculas son capaces de unirse a una sola molécula de amplicón, por lo

que la intensidad de la señal fluorescente luego de la radiación dependerá del tamaño del

ADN de doble cadena. Si asumimos similares eficiencias de amplificación, el PCR en

tiempo real de un templado más largo generará una mayor señal fluorescente.

5.3. Detección específica

El análisis específico de los templados requiere el diseño y la síntesis de una o varias

sondas fluorescentes. Algunas sondas pueden ser utilizadas además para realizar curvas de

disociación, lo cual provee otro nivel de control para el producto de la reacción. La mayor

ventaja de estas sondas es que aseguran un segundo paso de especificidad, la cual ya no

sólo radica en los primers utilizados. Los artefactos de la amplificación que pueden

ocurrir debido a un mal funcionamiento de los primers o a la formación de dímeros entre

ellos no genera señal fluorescente, lo cual obvia la necesidad de realizar un Southern Blot,

curvas de disociación o la secuenciación del producto luego del ensayo de PCR para

confirmar la identidad del amplicón. Las sondas además pueden ser marcadas con

diferentes fluoróforos, lo cual permite la detección simultánea de varios productos de

amplificación en una misma reacción de PCR (multiplexing). Dentro de las desventajas

del uso de sondas específicas se encuentra paradójicamente la no detección de los

artefactos que ocurren, los cuales siempre disminuyen la eficiencia del ensayo. Debido a

esto se hace necesario utilizar los fluoróforos intercalantes del ADN de doble cadena para

optimizar el tipo de primers a utilizar y las condiciones de la reacción, y de esta forma,

asegurarnos de que no ocurran apareamientos anómalos. El uso de las sondas específicas

es además costoso, cada templado requiere de su sonda particular, incrementando mucho

el costo en los ensayos de multiplexing.

Page 46: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 46

5.4 Linearidad del paso de reversotranscripción

La primera etapa de las reacciones de RT-PCR puede llevarse a cabo utilizando tres tipos

de primers ADNc diferentes: al azar, oligo-dT o primers específicos por el templado, los

cuales difieren significativamente entre sí respecto a la cantidad de ADNc que se obtiene.

Es necesario puntualizar además que la temperatura de desnaturalización de los primers al

azar y de los oligo-dT está muy por debajo de la temperatura óptima de funcionamiento de

las reversotranscriptasas termoestables, por lo que al ser utilizados deben preincubarse

previamente con el ARN a bajas temperaturas o deben ser modificados químicamente. La

compañía Ambion demostró que la reversotranscripción a partir de muestras biológicas

puede ocurrir aún sin la adición exógena de primers, dado que en los tejidos existen

primers internos. Esto por supuesto conlleva a una alteración de los resultados en el paso

de PCR posterior. El uso de primers al azar produce varios ADNc a partir de un templado

de ARN, por lo que este método es, por definición, no específico. Sin embargo rinde la

mayor cantidad de ADNc, lo cual es decisivo en la identificación de transcriptos que se

encuentran en bajas cantidades. Se ha demostrado que los hexámeros al azar pueden

sobreestimar la cantidad de templado hasta en 19 veces respecto a los primers secuencia-

específicos (Zhang and Byrne, 1999), además de que la mayoría del ADNc sintetizado

proviene del ARN ribosomal. La síntesis de ADNc utilizando oligo-dT es más específica

para el ARNm y es capaz de amplificar ARNm con estructuras secundarias significativas.

Debido a que el uso de los oligo-dT requiere de ARN de alta calidad, no se utilizan en los

casos en que el ARN se fragmenta, como el obtenido por microdisección con láser.

Los primers específicos por el templado de ARN constituyen la opción más sensible de

cuantificación (Lekanne et al., 2002). La relación lineal Ct vs cantidad de templado en una

reacción de RT-PCR en tiempo real utilizando oligonucleótidos específicos es más

amplia que para los ensayos donde se utilizan primers al azar, lo cual se ilustra muy bien

en la figura 5.1.

Page 47: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 47

El poder analítico del RT-PCR también depende de la eficiencia de conversión de ARN a

ADNc, lo cual recae sobre la enzima utilizada. Por otro lado, debe considerarse otro factor

importante conocido como el efecto “Monte Carlo”, una limitación inherente a toda

técnica de PCR donde se quiera amplificar un templado que se encuentran en pequeñas

cantidades formando parte de una mezcla compleja (Karrer et al., 1995). La eficiencia de

la amplificación entre templados individuales dentro de una población de ADNc depende

de su concentración: cada uno tiene una cierta probabilidad de ser amplificado o ignorado

una vez que sobrepasa cierto rango de dilución. Una explicación a este fenómeno puede

ser el considerar que la hibridación de los primers con cada molécula de templado en cada

ciclo de PCR es un evento azaroso. Bajo condiciones de exceso de primers, la

probabilidad de hibridación depende de la temperatura de hibridación, el tiempo y el

número de templados disponibles. Si la cantidad de templado es limitante y se encuentra

dentro de una mezcla compleja, disminuirá la eficiencia de su amplificación debido a que

Fig. 5.1.

Page 48: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 48

la probabilidad de hibridación con el primer será menor. Si estas diferencias ocurren

durante la fase exponencial de la amplificación, el reporte de la concentración final de ese

templado en particular será completamente errónea.

5.5 Análisis de los datos

El parámetro Ct se ha convertido en el más utilizado para realizar cuantificaciones

utilizando la técnica de RT-PCR en tiempo real. Anteriormente explicamos que el ciclo

umbral (Ct) se define como el ciclo donde la fluorescencia excede un valor umbral

“escogido” por encima del ruido de fondo. Aquí la palabra crítica es “escogido”, dado que

el ruido de fondo no es un valor absoluto y también se ve influenciado por las condiciones

de la reacción. Muchas veces, los valores de Ct no son indicativos de una amplificación

genuina, y en otros casos, una verdadera amplificación no provee un valor de Ct

significativo. Este último caso se da cuando el número de ciclos que determinan el ruido

de fondo se “escogen” de forma incorrecta, a partir de los cuales se establece la línea

umbral de fluorescencia. Normalmente, estos ciclos son los primeros antes de que el

producto de PCR se acumule de forma significativa al inicio de la fase exponencial, y

suelen ser del 3 al 15 (AB Prism 7700) o del 5 al 9 (instrumentos de Stratagene),

dependiendo del equipo. Muchas veces, la línea base de fluorescencia que se determina en

el experimento no es la apropiada para cada pozo de reacción. Un ejemplo de esto se

muestra en la figura 5.2, donde se muestra una comparación de dos curvas de

amplificación que tienen valores de ΔRn similares (0.023 vs 0.02) pero sólo uno de ellos

rebasa la línea umbral y da una respuesta positiva. Esto se debe a que la fluorescencia

verde se mantiene constante desde las primeras etapas del ensayo de PCR y comienza a

incrementarse a partir del mismo nivel de la fluorescencia umbral, sin embargo, la

fluorescencia representada por la línea roja sufre un descenso significativo de 0.015

unidades, por lo que el aumento de fluorescencia en la fase exponencial de amplificación

no rebasa la línea umbral. Este fenómeno puede darse por diferencias en la sensibilidad

química de los fluoróforos a los múltiples cambios de temperatura que ocurren

normalmente en toda reacción de PCR. Aquí no podemos decir que no ocurre

amplificación en el ensayo representado por el fluoróforo rojo, sino que es necesario

realizar un ajuste de la línea basal donde se incluya el ciclo donde la línea roja presenta la

menor fluorescencia (de 3 a 32 y no de 3 a 15 como estaba previamente determinada), lo

Page 49: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 49

cual se traduce en valores de Ct similares para ambos fluoróforos. Una analogía útil es la

comparación entre la altura que alcanzan dos personas al saltar: sólo podemos compararlo

si ambas saltan desde el mismo nivel.

Fig. 5.2

Page 50: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 50

5.6 El nivel umbral

El nivel umbral calculado por los equipos de PCR en tiempo real depende de la línea basal

y generalmente se predetermina para corridas estandarizadas. Sin embargo, este nivel

puede cambiarse en dependencia de las condiciones del ensayo y siempre debe estar

relacionado con el ΔRn más bajo y el más alto valor de Ct asociados con el menor número

de copias del templado. Es muy importante puntualizar dos aspectos relacionados con la

selección del nivel umbral:

1- No es necesario utilizar un mismo nivel umbral para cada corrida. Una misma corrida

puede ser analizada con múltiples valores umbrales y son referidas como “ventana de

valores dentro de un rango umbral” (Applied Biosystems).

2- El nivel umbral siempre debe interceptar la fase exponencial del ploteo de

amplificación. Si los valores de Ct son muy altos y los de ΔRn son muy bajos, claramente

no nos encontramos en una región definida de la fase exponencial, en cuyo caso hay que

ajustar el nivel umbral.

La utilización de múltiples niveles umbrales para el cálculo de Ct es la excepción, pero

muchas veces resulta necesario para cuantificar muestras que difieren mucho en cuanto a

la cantidad inicial de templado (Fig.5.3). Muchas veces existe tan poco ARNm que la

disminución del umbral conlleva a que el control de la reacción sin templado (NTC)

también arroje un resultado positivo. La interpretación de este resultado ha sido objeto de

numerosos debates. La situación es clara cuando por ejemplo, tenemos valores de Ct para

las muestras de 18 a 25 cuando el NTC tiene un valor de Ct de 39. No obstante el hecho

de que el NTC haya arrojado un resultado positivo (haya alcanzado el nivel de

fluorescencia umbral) debe ser resaltado en cualquier publicación. Cuando los valores de

Ct están por debajo de 30, es muy probable que exista contaminación en el laboratorio.

La situación es diferente cuando los niveles de Ct para la muestra y el NTC son

comparables, lo que normalmente ocurre con bajos niveles de templado. Cuando

analizamos múltiples muestras y sólo uno de los replicados tiene un valor positivo de Ct,

la muestra puede estar contaminada. Se recomienda siempre utilizar dos pozos para los

NTC: uno que debe ser sellado antes de la adición de las muestras, los controles positivos

y los estándares y el otro debe ser sellado al final para así detectar cualquier

contaminación si hay diferencias significativas entre los valores de Ct de ambos NTCs.

Page 51: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Trampas del RT-PCR en tiempo real

Rodríguez M & Rodríguez W 51

Fig. 5.3. A. Curva de amplificación donde el nivel umbral seleccionado de 0.12 no detecta resultados

claramente positivos. B. La reducción manual de la línea umbral permite tomar en cuenta los resultados

positivos de Ct para todas las muestras, donde también se incluye ahora el NTC (morado).

Page 52: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Conclusiones

Rodríguez M & Rodríguez W 52

CONCLUSIONES

Como hemos visto a través de todo este trabajo, la técnica de PCR en tiempo real es

altamente poderosa y puede generar resultados reproducibles con significado biológico.

Sin embargo, está más que demostrado que hay que tomar muchas precauciones durante

la planeación, la ejecución del ensayo y el análisis e interpretación de los resultados. En el

futuro será necesario introducir nuevos estándares y reportar todo el procedimiento para

establecer guías confiables que puedan validar los resultados experimentales y que sean

utilizadas por los editores para la revisión rigurosa de las publicaciones. En resumen, el

PCR en tiempo real es una técnica que debe ser tratada con respeto.

Page 53: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Referencias bibliográficas

Rodríguez M & Rodríguez W 53

REFERENCIAS BIBLIOGRÁFICAS

Applied Biosystems: Data analysis on the ABI PRISM 7700 sequence detection system: settingbaselines and thresholds.(http://www.appliedbiosystems.com/support/tutorials/pdf/data_analysis_7700.pdf).

Arlington, VA. (2003) Bioinformatics. The market for real-time PCR reagents andinstrumentation.

Belec, L., Authier, J., Eliezer-Vanerot, MC., Piedouillet, C., Mohamed, AS., Gherardi, RK..(1998) Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR fromskeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle. Nerve,Aug;21(8):1064-7.

Bustin, S.A. (2005). Real-Time PCR. En: Encyclopedia of Diagnostic Genomics and proteomics(J. Fuchs, M. Podda, eds.). New York: Marcel Dekker, pp. 1117 – 1125.

Bustin, S.A., Nolan, T. (2004a). Chemistries. En: A-Z of quantitative PCR. (Bustin S.A. Eds.)URL press: La jolla, CA.

Bustin, SA. (2000) Absolute quantification of mRNA using real-time reverse transcriptionpolymerase chain reaction assays. J. Mol. Endocrinol, 25: 169-93.

Bustin, SA., Benes, V., Nolan, T., Pfaffl, MW. (2005) Quantitative real-time RT-PCR--aperspective. J. Mol. Endocrinol, Jun;34(3):597-601.

Bustin, SA., Nolan, T. (2004b) Pitfalls of quantitative real-time reverse-transcription polymerasechain reaction. J. Biomol. Tech, Sep;15(3):155-66.

Costa, Joseph. (2004). Reacción en cadena de la polimerasa a tiempo real. Enferm. Infecc.Microbiol. Clin. 22 (5): 299-305.

Deggerdal, A., Larsen, F. (1997) Rapid isolation of PCR-ready DNA from blood, bone marrowand cultured cells, based on paramagnetic beads. Biotechniques, Mar;22(3):554-7.

Elenitoba-Johnson, K.S.; Bohling, S.D.; Wittwer, C.T.; King, T.C. (2001). Multiplex PCR bymulticolor fluorimetry and fluorescence melting curve analysis. Nat. Med. 7, 249–253.

Fink, L., Seeger, W., Ermert, L., Hanze, J., Stah,l U., Grimminger, F., Kummer, W., Bohle, RM.(1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med,Nov;4(11):1329-33.

French, D.J.; Archard, C.L.; Andersen, M.T.; McDowell, D.G. (2002). Ultra-rapid DNA analysisusing HyBeacon probes and direct PCR amplification from saliva. Mol. Cell. Probes 16, 319–326.

Furuta, Y., Ohtani, F., Sawa, H., Fukuda, S., Inuyama, Y., (2001). Quantitation of varicella-zostervirus DNA in patients with ramsay hunt syndrome and zoster sine herpete. J. Clin. Microbiol., 39,2856 -2859.

Gundry, C.N.; Vandersteen, J.G.; Reed, G.H.; Pryor, R.J.; Chen, J.; Wittwer, C.T. (2003).Amplicon melting analysis with labeled primers: A closed-tube method for differentiatinghomozygotes and heterozygotes. Clin. Chem. 49, 396–406.

Hazbon, M.H.; Alland, D. (2004). Hairpin primers for simplified single-nucleotide polymorphismanalysis of Mycobacterium tuberculosis and other organisms. J. Clin. Microbiol. 42, 1236–1242.

Hernández, M.; Rodríguez-Lazaro, D.; Esteve, T.; Prat, S.; Pla, M. (2003). Development ofmelting temperature-based SYBR Green I polymerase chain reaction methods for multiplexgenetically modified organism detection. Anal. Biochem. 323, 164–170.

Page 54: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Referencias bibliográficas

Rodríguez M & Rodríguez W 54

Higuchi, R., Dollinger, G., Walsh, PS., Griffith, R. (1992) Simultaneous amplification anddetection of specific DNA sequences. Biotechnology (N Y), Apr;10(4):413-7.

Higuchi, R., Fockler, C., Dollinger, G., Watson, R. (1993) Kinetic PCR analysis: real-timemonitoring of DNA amplification reactions. Biotechnology (N Y), Sep;11(9):1026-30.

Huggett, J., Dheda, K., Bustin, S., Zumla, A. (2005) Real-time RT-PCR normalisation; strategiesand considerations. Genes. Immun. 2005 Jun;6(4):279-84.

Información general: www.gene-quantificaction.info/

Ishiguro, T., Saitoh, J., Yawata, H., Yamagishi, H., Iwasaki, S., Mitoma, Y. (1995) Homogeneousquantitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of afluorescent intercalater. Anal. Biochem, Aug 10;229(2):207-13.

Karrer, EE., Lincoln, JE., Hogenhout, S., Bennett, AB., Bostock, RM., Martineau, B., Lucas, WJ.,Gilchrist, DG., Alexander, D. (1995) In situ isolation of mRNA from individual plant cells:creation of cell-specific cDNA libraries. Proc. Natl. Acad. Sci, Apr 25;92(9):3814-8.

Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., Khorana, HG. (1971) Studies onpolynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNApolymerases. J. Mol. Biol, Mar 14;56(2):341-61.

Le Pecq JB, Paoletti C. (1966) A new fluorometric method for RNA and DNA determination.Anal. Biochem, Oct;17(1):100-7.

Lee, AB., Cooper, TA. (1995) Improved direct PCR screen for bacterial colonies: woodentoothpicks inhibit PCR amplification. Biotechniques, Feb;18(2):225-6.

Lekanne Deprez, RH., Fijnvandraat, AC., Ruijter, JM., Moorman, AF. (2002) Sensitivity andaccuracy of quantitative real-time polymerase chain reaction using SYBR green I depends oncDNA synthesis conditions. Anal. Biochem, Aug 1;307(1):63-9

Livak, KJ., Schmittgen, TD. (2001) Analysis of relative gene expression data using real-timequantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402-8.

Lloyd, H. Advances in PCR technology. Personal Communication.

Mackay I.M., Arden, K.E., Nitsche, A. (2002). Real Time PCR in virology. Nucleic AcidsResearch: 30, 6, 1292-1305.

Mocellin, S., Rossi, CR., Pilati, P., Nitti, D., Marincola, FM. (2003)Quantitative real-time PCR: apowerful ally in cancer research.Trends. Mol. Med, May;9(5):189-95.

Mullis KB, Faloona FA. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzedchain reaction. Methods. Enzymol, 155:335-50.

Panaccio, M., Lew, A. (1991) PCR based diagnosis in the presence of 8% (v/v) blood. NucleicAcids Res, Mar 11;19(5):1151.

Raaijmakers, MH., van Emst, L., de Witte, T., Mensink, E., Raymakers, RA. (2002) Quantitativeassessment of gene expression in highly purified hematopoietic cells using real-time reversetranscriptase polymerase chain reaction. Exp. Hematol, May;30(5):481-7.

Ririe, KM., Rasmussen, RP., Wittwer, CT. (1997) Product differentiation by analysis of DNAmelting curves during the polymerase chain reaction. Anal. Biochem, 245:154-160.

Rossen, L., Norskov, P., Holmstrom, K., Rasmussen, OF. (1992) Inhibition of PCR bycomponents of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J.Food. Microbiol, Sep;17(1):37-45.

Page 55: Métodos físico-químicos en Biotecnología (2006-II) Dr. Roberto P ...

Referencias bibliográficas

Rodríguez M & Rodríguez W 55

Saiki, RK., Gelfand, DH., Stoffel, S., Scharf, SJ., Higuchi, R., Horn, GT., Mullis, KB., Erlich,HA. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNApolymerase. Science, Jan 29;239(4839):487-91.

Saiki, RK., Scharf, S., Faloona, F., Mullis, KB., Horn, GT., Erlich, HA., Arnheim, N. (1985)Enzymatic amplification of beta-globin genomic sequences and restriction site analysis fordiagnosis of sickle cell anemia. Science, Dec 20;230(4732):1350-4.

Schmittgen TD, Zakrajsek BA. (2000) Effect of experimental treatment on housekeeping geneexpression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods,Nov20;46(1-2):69-81.

Smith, RD., Brown, B., Ikonomi, P., Schechter, AN. (2003) Exogenous reference RNA fornormalization of real-time quantitative PCR. Biotechniques, Jan;34(1):88-91.

Tevfik Dorak, M. (2006) Real-time PCR. (http://dorakmt.tripod.com/genetics/realtime.html).

The PCR Encyclopedia. (http://www.pcr-encyclopedia.com/example-review.html).

University of Iowa DNA Facility. (2006) Real-time or Kinetic PCR.

Valasek, M.A.; Repa, J. J. (2005). The power of real time PCR. Adv. Physiol. Educ. 29, 151-159.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.(2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging ofmultiple internal control genes. Genome Biol, Jun 18;3(7):RESEARCH0034.

Wilheim J and Pingoud A. (2003) Real-time polymerase chain reaction. Chem. Bio. Chem, 4:1120-28.

Wilhelm, J., Pingoud, A., Hahn, M. (2003) Real-time PCR-based method for the estimation ofgenome sizes. Nucleic. Acids. Res, 31:e56.

Wilhelm,J., Hahn, M., Pingoud, A. (2000) Influence of DNA target melting behavior on real-timePCR quantification. Clin. Chem, 46: 1738-43.

Wittwer, C.T.; Reed, G.H.; Gundry, C.N.; Vandersteen,J.G.; Pryor, R.J. (2003). High-resolutiongenotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49, 853–860.

Wittwer, CT., Fillmore, GC., Hillyard, DR. (1989) Automated polymerase chain reaction incapillary tubes with hot air. Nucleic. Acids. Res, 17: 4353-57.

Wittwer, CT., Herrmann, MG., Moss, AA., Rasmussen, RP. (1997a) Continuous fluorescencemonitoring of rapid cycle DNA amplification. BioTechniques, 22: 134-138.

Wittwer, CT., Ririe, KM., Andrew, RV., David, DA., Gundry, RA., Balis, UJ. (1997b) TheLightCycler: a microvolume multisample fluorimeter with rapid temperature control.BioTechhniques, 22: 176-181.

Yedidag, EN., Koffron, AJ., Mueller, KH., Kaplan, B., Kaufman, DB., Fryer, JP., Stuart, FP.,Abecassis, M. (1996) Acyclovir triphosphate inhibits the diagnostic polymerase chain reaction forcytomegalovirus. Transplantation, Jul 27;62(2):238-42.

Zhang, J., Byrne, CD. (1999) Differential priming of RNA templates during cDNA synthesismarkedly affects both accuracy and reproducibility of quantitative competitive reverse-transcriptase PCR.. Biochem J, Jan 15;337 ( Pt 2):231-41.

Zhou, J., Bruns, MA., Tiedje, JM. (1996) DNA recovery from soils of diverse composition. Appl.Environ. Microbiol, Feb;62(2):316-22.

Zuna, J., Muzikova, K., Madzo, J., Krejci, O., Trka, J. (2002) Temperature non-homogeneity in rapid airflow-based cycler significantly affects real-time PCR.BioTechniques, 33: 508, 510. 512.