Integración Numérica (I Parte)

download Integración Numérica (I Parte)

of 81

Transcript of Integración Numérica (I Parte)

  • 8/17/2019 Integración Numérica (I Parte)

    1/81

    Numerical Differentiation & Integration

    Elements of Numerical Integration I

    Numerical Analysis (9th Edition)

    R L Burden & J D Faires

    Beamer Presentation Slidesprepared byJohn Carroll

    Dublin City University

    c 2011 Brooks/Cole, Cengage Learning

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    2/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 2 / 36

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    3/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 2 / 36

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    4/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 2 / 36

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    5/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 2 / 36

    I d i T id l R l Si ’ R l C i M i P i i

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    6/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 2 / 36

    I t d ti T id l R l Si ’ R l C i M i P i i

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    7/81

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 3 / 36

    Introduction Trapezoidal Rule Simpson’s Rule Comparison Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    8/81

    Introduction   Trapezoidal Rule   Simpson s Rule   Comparison   Measuring Precision

    Introduction to Numerical Integration

    Numerical Quadrature

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 4 / 36

    Introduction Trapezoidal Rule Simpson’s Rule Comparison Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    9/81

    Introduction   Trapezoidal Rule   Simpson s Rule   Comparison   Measuring Precision

    Introduction to Numerical Integration

    Numerical Quadrature

    The need often arises for evaluating the definite integral of a

    function that has no explicit antiderivative or whose antiderivativeis not easy to obtain.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 4 / 36

    Introduction Trapezoidal Rule Simpson’s Rule Comparison Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    10/81

    Introduction   Trapezoidal Rule   Simpson s Rule   Comparison   Measuring Precision

    Introduction to Numerical Integration

    Numerical Quadrature

    The need often arises for evaluating the definite integral of a

    function that has no explicit antiderivative or whose antiderivativeis not easy to obtain.

    The basic method involved in approximating b 

    a   f (x ) dx  is called

    numerical quadrature. It uses a sum

    n i =0 a i f (x i ) to approximate

     b a   f (x ) dx .

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 4 / 36

    Introduction Trapezoidal Rule Simpson’s Rule Comparison Measuring Precision

    http://find/http://goback/

  • 8/17/2019 Integración Numérica (I Parte)

    11/81

    Introduction   Trapezoidal Rule   Simpson s Rule   Comparison   Measuring Precision

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials

    The methods of quadrature in this section are based on the

    interpolation polynomials.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 5 / 36

    Introduction Trapezoidal Rule Simpson’s Rule Comparison Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    12/81

    Introduction   Trapezoidal Rule   Simpson s Rule   Comparison   Measuring Precision

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials

    The methods of quadrature in this section are based on the

    interpolation polynomials.

    The basic idea is to select a set of distinct nodes {x 0, . . . , x n } fromthe interval [a , b ].

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 5 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    13/81

    p p p g

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials

    The methods of quadrature in this section are based on the

    interpolation polynomials.

    The basic idea is to select a set of distinct nodes {x 0, . . . , x n } fromthe interval [a , b ].Then integrate the Lagrange interpolating polynomial

    P n (x ) =

    i =0 f (x i )Li (x )

    and its truncation error term over [a , b ] to obtain:

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 5 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    14/81

    p p p g

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials (Cont’d)

       b a 

    f (x ) dx  =

       b a 

    i =0

    f (x i )Li (x ) dx  +

       b a 

    i =0

    (x  − x i ) f (n +1)(ξ (x ))

    (n  + 1)!  dx 

    =n 

    i =0

    a i f (x i ) +  1

    (n  + 1)!

       b a 

    n i =0

    (x  − x i )f (n +1)(ξ (x )) dx 

    where ξ (x ) is in [a , b ] for each x  and

    a i  =

       b a 

    Li (x ) dx ,   for each i  = 0, 1, . . . , n 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 6 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    15/81

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials (Cont’d)The quadrature formula is, therefore,

       b 

    f (x ) dx  ≈n 

    i =0

    a i f (x i )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 7 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    16/81

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials (Cont’d)The quadrature formula is, therefore,

       b 

    f (x ) dx  ≈n 

    i =0

    a i f (x i )

    where

    a i  =

       b a 

    Li (x ) dx ,   for each i  = 0, 1, . . . , n 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 7 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    17/81

    Introduction to Numerical Integration

    Quadrature based on interpolation polynomials (Cont’d)The quadrature formula is, therefore,

       b 

    f (x ) dx  ≈n 

    i =0

    a i f (x i )

    where

    a i  =

       b a 

    Li (x ) dx ,   for each i  = 0, 1, . . . , n 

    and with error given by

    E (f ) =  1

    (n  + 1)!

       b a 

    n i =0

    (x  − x i )f (n +1)(ξ (x )) dx 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 7 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    18/81

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 8 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    19/81

    Numerical Integration: Trapezoidal Rule

    Derivation (1/3)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 9 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    20/81

    Numerical Integration: Trapezoidal Rule

    Derivation (1/3)

    To derive the Trapezoidal rule for approximating b 

    a   f (x ) dx , let x 0  = a ,x 1  = b , h  = b − a 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 9 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    21/81

    Numerical Integration: Trapezoidal Rule

    Derivation (1/3)

    To derive the Trapezoidal rule for approximating b 

    a   f (x ) dx , let x 0  = a ,x 1  = b , h  = b − a  and use the linear Lagrange polynomial:

    P 1(x ) =   (x  − x 1)(x 0 − x 1) f (x 0) +   (x  − x 0)(x 1 − x 0) f (x 1)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 9 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    22/81

    Numerical Integration: Trapezoidal Rule

    Derivation (1/3)

    To derive the Trapezoidal rule for approximating b 

    a   f (x ) dx , let x 0  = a ,x 1  = b , h  = b − a  and use the linear Lagrange polynomial:

    P 1(x ) =   (x  − x 1)(x 0 − x 1) f (x 0) +   (x  − x 0)(x 1 − x 0) f (x 1)

    Then

       b a  f (x ) dx    =

       x 1x 0

    (x  −x 1)

    (x 0 − x 1) f (x 0) +  (x 

     −x 0)

    (x 1 − x 0) f (x 1)

      dx 

    + 1

    2

       x 1x 0

    f ′′(ξ (x ))(x  − x 0)(x  − x 1) dx .

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 9 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    23/81

    Numerical Integration: Trapezoidal Rule

    Derivation (2/3)The product (x  − x 0)(x  − x 1) does not change sign on [x 0, x 1], so theWeighted Mean Value Theorem for Integrals   See Theorem can be applied

    to the error term

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 10 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    24/81

    Numerical Integration: Trapezoidal Rule

    Derivation (2/3)The product (x  − x 0)(x  − x 1) does not change sign on [x 0, x 1], so theWeighted Mean Value Theorem for Integrals   See Theorem can be applied

    to the error term to give, for some ξ   in (x 0, x 1),

       x 1

    x 0

    f ′′(ξ (x ))(x  − x 0)(x  − x 1) dx 

    =   f ′′(ξ )

       x 1x 0

    (x  − x 0)(x  − x 1) dx 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 10 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    25/81

    Numerical Integration: Trapezoidal Rule

    Derivation (2/3)The product (x  − x 0)(x  − x 1) does not change sign on [x 0, x 1], so theWeighted Mean Value Theorem for Integrals   See Theorem can be applied

    to the error term to give, for some ξ   in (x 0, x 1),

       x 1

    x 0

    f ′′(ξ (x ))(x  − x 0)(x  − x 1) dx 

    =   f ′′(ξ )

       x 1x 0

    (x  − x 0)(x  − x 1) dx 

    =   f ′′(ξ )

    x 3

    3 −  (x 1 + x 0)

    2  x 2 + x 0x 1x 

    x 1

    x 0

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 10 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    26/81

    Numerical Integration: Trapezoidal Rule

    Derivation (2/3)The product (x  − x 0)(x  − x 1) does not change sign on [x 0, x 1], so theWeighted Mean Value Theorem for Integrals   See Theorem can be applied

    to the error term to give, for some ξ   in (x 0, x 1),

       x 1

    x 0

    f ′′(ξ (x ))(x  − x 0)(x  − x 1) dx 

    =   f ′′(ξ )

       x 1x 0

    (x  − x 0)(x  − x 1) dx 

    =   f ′′(ξ )

    x 3

    3 −  (x 1 + x 0)

    2  x 2 + x 0x 1x 

    x 1

    x 0

    =   −h 3

    6  f ′′(ξ )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 10 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    27/81

    Numerical Integration: Trapezoidal Rule

    Derivation (3/3)

    Consequently, the last equation, namely

       x 1

    x 0

    f ′′(ξ (x ))(x  −

    x 0)(x  −

    x 1) dx  =−

    h 3

    6  f ′′(ξ )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 11 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    28/81

    Numerical Integration: Trapezoidal Rule

    Derivation (3/3)

    Consequently, the last equation, namely

       x 1

    x 0

    f ′′(ξ (x ))(x  −

    x 0)(x  −

    x 1) dx  =−

    h 3

    6

      f ′′(ξ )

    implies that

       b 

    f (x ) dx    =  (x  − x 1)2

    2(x 0 − x 1)f (x 0) +

      (x  − x 0)2

    2(x 1 − x 0)f (x 1)

    x 1

    x 0 − h 3

    12

    f ′′(ξ )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 11 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    29/81

    Numerical Integration: Trapezoidal Rule

    Derivation (3/3)

    Consequently, the last equation, namely

       x 1

    x 0

    f ′′(ξ (x ))(x  −

    x 0)(x  −

    x 1) dx  =−

    h 3

    6

      f ′′(ξ )

    implies that

       b 

    f (x ) dx    =  (x  − x 1)2

    2(x 0 − x 1)f (x 0) +

      (x  − x 0)2

    2(x 1 − x 0)f (x 1)

    x 1

    x 0 − h 3

    12

    f ′′(ξ )

    =  (x 1 − x 0)

    2  [f (x 0) + f (x 1)] −  h 

    3

    12f ′′(ξ )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 11 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    30/81

    Numerical Integration: Trapezoidal Rule

    Using the notation h  = x 1

    −x 0  gives the following rule:

    The Trapezoidal Rule   b a 

    f (x ) dx  = h 

    2[f (x 0) + f (x 1)] −  h 

    3

    12f ′′(ξ )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 12 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    31/81

    Numerical Integration: Trapezoidal Rule

    Using the notation h  = x 1

    −x 0  gives the following rule:

    The Trapezoidal Rule   b a 

    f (x ) dx  = h 

    2[f (x 0) + f (x 1)] −  h 

    3

    12f ′′(ξ )

    Note:

    The error term for the Trapezoidal rule involves f ′′, so the rule

    gives the exact result when applied to any function whose second

    derivative is identically zero, that is, any polynomial of degree one

    or less.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 12 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/http://goback/

  • 8/17/2019 Integración Numérica (I Parte)

    32/81

    Numerical Integration: Trapezoidal Rule

    Using the notation h  = x 1

    −x 0  gives the following rule:

    The Trapezoidal Rule   b a 

    f (x ) dx  = h 

    2[f (x 0) + f (x 1)] −  h 

    3

    12f ′′(ξ )

    Note:

    The error term for the Trapezoidal rule involves f ′′, so the rule

    gives the exact result when applied to any function whose second

    derivative is identically zero, that is, any polynomial of degree one

    or less.

    The method is called the Trapezoidal rule because, when f   is a

    function with positive values, b 

    a   f (x ) dx  is approximated by the

    area in a trapezoid, as shown in the following diagram.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 12 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    33/81

    Trapezoidal Rule: The Area in a Trapezoid

     y

     x a5 x 0  x 1 5 b

     y5 f ( x )

     y5 P1( x )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 13 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    34/81

    Outline

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 14 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    35/81

    Numerical Integration: Simpson’s Rule

    Simpson’s rule results from integrating over [a , b ] the second Lagrange

    polynomial with equally-spaced nodes x 0  = a , x 2  = b , and x 1  = a  + h ,where h  = (b − a )/2:

     y

     x a5 x 0  x 2 5 b x 1

     y5 f ( x )

     y5 P2( x )

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 15 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    36/81

    Numerical Integration: Simpson’s Rule

    Naive Derivation

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 16 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    N i l I i Si ’ R l

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    37/81

    Numerical Integration: Simpson’s Rule

    Naive DerivationTherefore

       b a 

    f (x ) dx    =

       x 2x 0

      (x  − x 1)(x  − x 2)(x 0

    −x 1)(x 0

    −x 2)

    f (x 0) +  (x  − x 0)(x  − x 2)(x 1

    −x 0)(x 1

    −x 2)

    f (x 1)

    +  (x  − x 0)(x  − x 1)(x 2 − x 0)(x 2 − x 1)

    f (x 2)

    dx 

    +

       x 2x 0

    (x  − x 0)(x  − x 1)(x  − x 2)6

      f (3)(ξ (x )) dx .

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 16 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    N i l I i Si ’ R l

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    38/81

    Numerical Integration: Simpson’s Rule

    Naive DerivationTherefore

       b a 

    f (x ) dx    =

       x 2x 0

      (x  − x 1)(x  − x 2)(x 0

    −x 1)(x 0

    −x 2)

    f (x 0) +  (x  − x 0)(x  − x 2)(x 1

    −x 0)(x 1

    −x 2)

    f (x 1)

    +  (x  − x 0)(x  − x 1)(x 2 − x 0)(x 2 − x 1)

    f (x 2)

    dx 

    +

       x 2x 0

    (x  − x 0)(x  − x 1)(x  − x 2)6

      f (3)(ξ (x )) dx .

    Deriving Simpson’s rule in this manner, however, provides only an

    O (h 4) error term involving f (3).

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 16 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    N i l I t ti Si ’ R l

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    39/81

    Numerical Integration: Simpson’s Rule

    Naive DerivationTherefore

       b a 

    f (x ) dx    =

       x 2x 0

      (x  − x 1)(x  − x 2)(x 0

    −x 1)(x 0

    −x 2)

    f (x 0) +  (x  − x 0)(x  − x 2)(x 1

    −x 0)(x 1

    −x 2)

    f (x 1)

    +  (x  − x 0)(x  − x 1)(x 2 − x 0)(x 2 − x 1)

    f (x 2)

    dx 

    +

       x 2x 0

    (x  − x 0)(x  − x 1)(x  − x 2)6

      f (3)(ξ (x )) dx .

    Deriving Simpson’s rule in this manner, however, provides only an

    O (h 4) error term involving f (3). By approaching the problem in anotherway, a higher-order term involving f (4) can be derived.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 16 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    N i l I t ti Si ’ R l

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    40/81

    Numerical Integration: Simpson’s Rule

    Alternative Derivation (1/5)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 17 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    N merical Integration Simpson’s R le

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    41/81

    Numerical Integration: Simpson’s Rule

    Alternative Derivation (1/5)

    Suppose that f  is expanded in the third Taylor polynomial about  x 1.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 17 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    42/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (1/5)

    Suppose that f  is expanded in the third Taylor polynomial about  x 1.

    Then for each x   in [x 0, x 2], a number ξ (x ) in (x 0, x 2) exists with

    f (x ) =   f (x 1) + f ′(x 1)(x 

     −x 1) +

     f ′′(x 1)

    2

      (x 

     −x 1)

    2 + f ′′′(x 1)

    6

      (x 

     −x 1)

    3

    +f (4)(ξ (x ))

    24  (x  − x 1)4

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 17 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    43/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (1/5)

    Suppose that f  is expanded in the third Taylor polynomial about  x 1.

    Then for each x   in [x 0, x 2], a number ξ (x ) in (x 0, x 2) exists with

    f (x ) =   f (x 1) + f ′(x 1)(x 

     −x 1) +

     f ′′(x 1)

    2

      (x 

     −x 1)

    2 + f ′′′(x 1)

    6

      (x 

     −x 1)

    3

    +f (4)(ξ (x ))

    24  (x  − x 1)4

    and

       x 2

    x 0

    f (x ) dx    =

    f (x 1)(x  − x 1) +  f ′

    (x 1)2

      (x  − x 1)2 +   f ′′

    (x 1)6

      (x  − x 1)3

    +  f ′′′(x 1)

    24  (x  − x 1)4

    x 2x 0

    +  1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 17 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    44/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (2/5)

    Because (x  − x 1)4 is never negative on [x 0, x 2], the Weighted MeanValue Theorem for Integrals   See Theorem

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 18 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    45/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (2/5)

    Because (x  − x 1)4 is never negative on [x 0, x 2], the Weighted MeanValue Theorem for Integrals   See Theorem implies that

    1

    24

       x 2

    x 0

    f (4)(ξ (x ))(x  − x 1)4 dx    =   f (4)(ξ 1)

    24

       x 2

    x 0

    (x  − x 1)4 dx 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 18 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    46/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (2/5)

    Because (x  − x 1)4 is never negative on [x 0, x 2], the Weighted MeanValue Theorem for Integrals   See Theorem implies that

    1

    24

       x 2

    x 0

    f (4)(ξ (x ))(x  − x 1)4 dx    =   f (4)(ξ 1)

    24

       x 2

    x 0

    (x  − x 1)4 dx 

    =  f (4)(ξ 1)

    120  (x  − x 1)5

    x 2x 0

    for some number ξ 1   in (x 0, x 2).

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 18 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    47/81

    Numerical Integration: Simpson s Rule

    1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx  =   f (4)(ξ 1)

    120  (x  − x 1)5

    x 2x 0

    Alternative Derivation (3/5)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 19 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    48/81

    Numerical Integration: Simpson s Rule

    1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx  =   f (4)(ξ 1)

    120  (x  − x 1)5

    x 2x 0

    Alternative Derivation (3/5)

    However,  h  = x 2 − x 1  = x 1 − x 0, so

    (x 2 − x 1)2 − (x 0 − x 1)2 = (x 2 − x 1)4 − (x 0 − x 1)4 = 0

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 19 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    49/81

    Numerical Integration: Simpson s Rule

    1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx  =   f (4)(ξ 1)

    120  (x  − x 1)5

    x 2x 0

    Alternative Derivation (3/5)

    However,  h  = x 2 − x 1  = x 1 − x 0, so

    (x 2 − x 1)2 − (x 0 − x 1)2 = (x 2 − x 1)4 − (x 0 − x 1)4 = 0

    whereas

    (x 2 − x 1)3 − (x 0 − x 1)3 = 2h 3 and   (x 2 − x 1)5 − (x 0 − x 1)5 = 2h 5

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 19 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    50/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (4/5)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 20 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    51/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (4/5)

    Consequently,

       x 2

    x 0

    f (x ) dx    = f (x 1)(x  −x 1) +

     f ′(x 1)

    2

      (x 

     −x 1)

    2 +  f ′′(x 1)

    6

      (x 

     −x 1)

    3

    +  f ′′′(x 1)

    24  (x  − x 1)4

    x 2x 0

    +  1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 20 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/http://goback/

  • 8/17/2019 Integración Numérica (I Parte)

    52/81

    Numerical Integration: Simpson s Rule

    Alternative Derivation (4/5)

    Consequently,

       x 2

    x 0

    f (x ) dx    = f (x 1)(x  −x 1) +

     f ′(x 1)

    2  (x 

     −x 1)

    2 +  f ′′(x 1)

    6  (x 

     −x 1)

    3

    +  f ′′′(x 1)

    24  (x  − x 1)4

    x 2x 0

    +  1

    24

       x 2x 0

    f (4)(ξ (x ))(x  − x 1)4 dx 

    can be re-written as

       x 2x 0

    f (x ) dx  = 2hf (x 1) + h 3

    3  f ′′(x 1) +

     f (4)(ξ 1)

    60  h 5

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 20 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    53/81

    g p

    Alternative Derivation (5/5)

    If we now replace f ′′(x 1) by the approximation given by the SecondDerivative Midpoint Formula   See Formula

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 21 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    54/81

    g p

    Alternative Derivation (5/5)

    If we now replace f ′′(x 1) by the approximation given by the SecondDerivative Midpoint Formula   See Formula we obtain

       x 2

    x 0

    f (x ) dx    =   2hf (x 1) + h 3

    3

     1

    h 2

    [f (x 0)

    −2f (x 1) + f (x 2)]

    − h 2

    12

    f (4)(ξ 2)+

    f (4)(ξ 1)

    60  h 5

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 21 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    55/81

    g p

    Alternative Derivation (5/5)

    If we now replace f ′′(x 1) by the approximation given by the SecondDerivative Midpoint Formula   See Formula we obtain

       x 2

    x 0

    f (x ) dx    =   2hf (x 1) + h 3

    3

     1

    h 2

    [f (x 0)

    −2f (x 1) + f (x 2)]

    − h 2

    12

    f (4)(ξ 2)+

    f (4)(ξ 1)

    60  h 5

    =  h 

    3[f (x 0) + 4f (x 1) + f (x 2)]

     h 5

    12 1

    3f (4)(ξ 2)

     1

    5f (4)(ξ 1)

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 21 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    56/81

    g p

    Alternative Derivation (5/5)

    If we now replace f ′′(x 1) by the approximation given by the SecondDerivative Midpoint Formula   See Formula we obtain

       x 2

    x 0

    f (x ) dx    =   2hf (x 1) + h 3

    3

     1

    h 2

    [f (x 0)

    −2f (x 1) + f (x 2)]

    − h 2

    12

    f (4)(ξ 2)+

    f (4)(ξ 1)

    60  h 5

    =  h 

    3[f (x 0) + 4f (x 1) + f (x 2)]

     h 5

    12 1

    3f (4)(ξ 2)

     1

    5f (4)(ξ 1)

    It can be shown by alternative methods that the values ξ 1  and ξ 2  in thisexpression can be replaced by a common value ξ   in (x 0, x 2). Thisgives Simpson’s rule.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 21 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    57/81

    Simpson’s Rule

       x 2

    x 0 f (x ) dx  =

     h 

    3 [f (x 0) + 4f (x 1) + f (x 2)] − h 5

    90 f 

    (4)

    (ξ )

    The error term in Simpson’s rule involves the fourth derivative of f , so it

    gives exact results when applied to any polynomial of degree three or

    less.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 22 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    58/81

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 23 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    59/81

    Example

    Compare the Trapezoidal rule and Simpson’s rule approximations to

       20

    f (x ) dx   when f (x ) is

    (a)   x 2 (b)   x 4 (c)   (x  + 1)−1

    (d)√ 

    1 + x 2 (e)   sin x    (f)   e x 

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 24 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    60/81

    Solution (1/3)

    On [0, 2], the Trapezoidal and Simpson’s rule have the forms

    Trapezoidal:

       20

    f (x ) dx  ≈ f (0) + f (2)

    Simpson’s:   2

    0

    f (x ) dx  ≈  13

    [f (0) + 4f (1) + f (2)]

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 25 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    61/81

    Solution (1/3)

    On [0, 2], the Trapezoidal and Simpson’s rule have the forms

    Trapezoidal:

       20

    f (x ) dx  ≈ f (0) + f (2)

    Simpson’s:   2

    0

    f (x ) dx  ≈  13

    [f (0) + 4f (1) + f (2)]

    When f (x ) = x 2 they give

    Trapezoidal:   2

    0

    f (x ) dx  ≈ 02 + 22 = 4

    Simpson’s:

       20

    f (x ) dx  ≈  13

    [(02) + 4 · 12 + 22] =  83

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 25 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    62/81

    Solution (2/3)

    The approximation from Simpson’s rule is exact because its

    truncation error involves f (4), which is identically 0 when f (x ) = x 2.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 26 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    63/81

    Solution (2/3)

    The approximation from Simpson’s rule is exact because its

    truncation error involves f (4), which is identically 0 when f (x ) = x 2.

    The results to three places for the functions are summarized in the

    following table.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 26 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Trapezoidal Rule .v. Simpson’s Rule

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    64/81

    Solution (3/3): Summary Results

    (a) (b) (c) (d) (e) (f)

    f (

    x )

      x 2 x 4

    (x 

     + 1

    )

    −1  √ 

    1 +

     x 2 sin x e x 

    Exact value 2.667 6.400 1.099 2.958 1.416 6.389

    Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389

    Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421

    Notice that, in each instance, Simpson’s Rule is significantly superior.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 27 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Outline

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    65/81

    1   Introduction to Numerical Integration

    2   The Trapezoidal Rule

    3   Simpson’s Rule

    4   Comparing the Trapezoidal Rule with Simpson’s Rule

    5   Measuring Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 28 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    66/81

    Rationale

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 29 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    67/81

    Rationale

    The standard derivation of quadrature error formulas is based on

    determining the class of polynomials for which these formulas

    produce exact results.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 29 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    68/81

    Rationale

    The standard derivation of quadrature error formulas is based on

    determining the class of polynomials for which these formulas

    produce exact results.

    The following definition is used to facilitate the discussion of this

    derivation.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 29 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    69/81

    Rationale

    The standard derivation of quadrature error formulas is based on

    determining the class of polynomials for which these formulas

    produce exact results.

    The following definition is used to facilitate the discussion of this

    derivation.

    Definition

    The degree of accuracy or precision, of a quadrature formula is the

    largest positive integer n  such that the formula is exact for x k , for each

    k  = 0, 1, . . . , n .

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 29 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    70/81

    Rationale

    The standard derivation of quadrature error formulas is based on

    determining the class of polynomials for which these formulas

    produce exact results.

    The following definition is used to facilitate the discussion of this

    derivation.

    Definition

    The degree of accuracy or precision, of a quadrature formula is the

    largest positive integer n  such that the formula is exact for x k , for each

    k  = 0, 1, . . . , n .

    This implies that the Trapezoidal and Simpson’s rules have degrees of

    precision one and three, respectively.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 29 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    71/81

    Establishing the Degree of Precision

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 30 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    72/81

    Establishing the Degree of PrecisionIntegration and summation are linear operations; that is,

       b a 

    (αf (x ) + β g (x )) dx  = α

       b a 

    f (x ) dx  + β 

       b a 

    g (x ) dx 

    and

    n i =0

    (αf (x i ) + β g (x i )) = αn 

    i =0

    f (x i ) + β n 

    i =0

    g (x i ),

    for each pair of integrable functions  f   and g  and each pair of real

    constants α  and β .

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 30 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    73/81

    Establishing the Degree of PrecisionIntegration and summation are linear operations; that is,

       b a 

    (αf (x ) + β g (x )) dx  = α

       b a 

    f (x ) dx  + β 

       b a 

    g (x ) dx 

    and

    n i =0

    (αf (x i ) + β g (x i )) = αn 

    i =0

    f (x i ) + β n 

    i =0

    g (x i ),

    for each pair of integrable functions  f   and g  and each pair of real

    constants α  and β . This implies the following:

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 30 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    74/81

    Degree of Precision

    The degree of precision of a quadrature formula is n  if and only if the

    error is zero for all polynomials of degree  k  = 0, 1, . . . , n , but is notzero for some polynomial of degree n  + 1.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 31 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    75/81

    Degree of Precision

    The degree of precision of a quadrature formula is n  if and only if the

    error is zero for all polynomials of degree  k  = 0, 1, . . . , n , but is notzero for some polynomial of degree n  + 1.

    Footnote

    The Trapezoidal and Simpson’s rules are examples of a class of

    methods known as Newton-Cotes formulas.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 31 / 36

    Introduction   Trapezoidal Rule   Simpson’s Rule   Comparison   Measuring Precision

    Numerical Integration: Measuring Precision

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    76/81

    Degree of Precision

    The degree of precision of a quadrature formula is n  if and only if the

    error is zero for all polynomials of degree  k  = 0, 1, . . . , n , but is notzero for some polynomial of degree n  + 1.

    Footnote

    The Trapezoidal and Simpson’s rules are examples of a class of

    methods known as Newton-Cotes formulas.

    There are two types of Newton-Cotes formulas, open and closed.

    Numerical Analysis (Chapter 4)   Elements of Numerical Integration I   R L Burden & J D Faires 31 / 36

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    77/81

    Questions?

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    78/81

    Reference Material

    The Weighted Mean Value Theorem for Integrals

    Suppose f ∈ C[a b] the Riemann integral of g exists on [a b]

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    79/81

    Suppose f  ∈ C [a , b ], the Riemann integral of g  exists on [a , b ],and g (x ) does not change sign on [a , b ]. Then there exists anumber c   in (a , b ) with

       b a 

    f (x )g (x ) dx  = f (c )

       b a 

    g (x ) dx .

    When g (x ) ≡ 1, this result is the usual Mean Value Theorem forIntegrals. It gives the average value of the function f  over the

    interval [a , b ] as

    f (c ) =  1

    b − a    b 

    f (x ) dx .

    See Diagram

    Return to Derivation of the Trapezoidal Rule

    Return to Derivation of Simpson’s Method

    The Mean Value Theorem for Integrals

    1   b 

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    80/81

    f (c ) =  1

    −a 

    f (x ) dx .

    Return to the Weighted Mean Value Theorem for Integrals

     x 

     y

      f (c)

     y5 f ( x )

    a bc

    Numerical Differentiation Formulae

    http://find/

  • 8/17/2019 Integración Numérica (I Parte)

    81/81

    Second Derivative Midpoint Formula

    f ′′(x 0) =  1

    h 2[f (x 0

    −h )

    −2f (x 0) + f (x 0 + h )]

    − h 2

    12

    f (4)(ξ )

    for some ξ , where x 0 − h  < ξ