INECUACIONES LINEALES CON DOS INCÓGNITAS · 2015-12-20 · el blog de mate de aida CSII:...

10
el blog de mate de aida CSII: programación lineal pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes formas: ax + by > c ax + by c ax + by < c ax + by c Los pasos a seguir para encontrar las soluciones son los siguientes: 1º.- Se considera la función: b c x b a y asociada a la inecuación y se dibuja su gráfica, que es una recta. 2º.- Las soluciones buscadas son los infinitos puntos de uno de los dos semiplanos que determina esa recta. Para decidir cuál de los dos semiplanos es la solución, se toma un punto P cualquiera que no pertenezca a la recta, y se sustituyen sus coordenadas en la inecuación; si la verifican, el semiplano al que pertenece P es la solución. En caso contrario la solución será el otro semiplano. 3º.- Estudiamos la inclusión o no de la recta o frontera en la solución (dependerá de si tenemos o no los signos y ). Ejemplo: Resolvamos la inecuación: x + y < 2 Representemos la ecuación asociada x + y = 2 y = 2 – x. Todo punto de esta recta puede escribirse de la forma (x,2-x). Puntos de la recta son: (-2,4), (- 1,3) (0,2), (1,1) y (2,0). Si tomamos los puntos (-1,4), (0,3), (0,4), (1,2), …, que están situados por encima de la recta, ninguno de ellos cumple la inecuación x + y < 2. Los puntos (-1,1), (0,0), (0,1), (1,0) (1,-1), …, situados por debajo de la recta x + y = 2, cumplen todos ellos la inecuación x + y < 2. Por tanto, las soluciones de la inecuación x + y < 2 son todos los puntos del semiplano situado por debajo de la recta. Ejercicio: (1 pág. 98) Encuentra el conjunto de soluciones de las inecuaciones siguientes: a) 0 7 y x b) 0 3 2 y x c) 3 y d) 5 x SISTEMAS DE INECUACIONES CON DOS INCÓGNITAS Un sistema de inecuaciones lineales con dos incógnitas es el conjunto de dos o más inecuaciones de primer grado, que deben satisfacerse a la vez. Para su resolución, se procede de la manera siguiente: - Se resuelve cada inecuación por separado. - El conjunto solución del sistema, también llamado región factible, está formado por las soluciones comunes a todas las inecuaciones. Ejemplo: resolvamos el sistema lineal con dos incógnitas: 10 5 0 3 4 y x x y 4 3 0 3 4 x y x y . El semiplano solución es el marcado arriba y a la izquierda. 10 5 10 5 x y y x . El semiplano solución es el marcado a la derecha.

Transcript of INECUACIONES LINEALES CON DOS INCÓGNITAS · 2015-12-20 · el blog de mate de aida CSII:...

el blog de mate de aida CSII: programación lineal pág.1

INECUACIONES LINEALES CON DOS INCÓGNITAS

Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede

transformar en otra equivalente a una de las siguientes formas:

ax + by > c ax + by c ax + by < c ax + by c

Los pasos a seguir para encontrar las soluciones son los siguientes:

1º.- Se considera la función: b

cx

b

ay asociada a la inecuación y se dibuja su gráfica, que es una

recta.

2º.- Las soluciones buscadas son los infinitos puntos de uno de los dos semiplanos que determina esa

recta. Para decidir cuál de los dos semiplanos es la solución, se toma un punto P cualquiera que no

pertenezca a la recta, y se sustituyen sus coordenadas en la inecuación; si la verifican, el semiplano al

que pertenece P es la solución. En caso contrario la solución será el otro semiplano.

3º.- Estudiamos la inclusión o no de la recta o frontera en la solución (dependerá de si tenemos o no los

signos y ).

Ejemplo: Resolvamos la inecuación: x + y < 2

Representemos la ecuación asociada x + y = 2

y = 2 – x.

Todo punto de esta recta puede escribirse de la

forma (x,2-x). Puntos de la recta son: (-2,4), (-

1,3) (0,2), (1,1) y (2,0).

Si tomamos los puntos (-1,4), (0,3), (0,4), (1,2),

…, que están situados por encima de la recta,

ninguno de ellos cumple la inecuación x + y < 2.

Los puntos (-1,1), (0,0), (0,1), (1,0) (1,-1), …,

situados por debajo de la recta x + y = 2,

cumplen todos ellos la inecuación x + y < 2.

Por tanto, las soluciones de la inecuación x + y <

2 son todos los puntos del semiplano situado por

debajo de la recta.

Ejercicio: (1 pág. 98)

Encuentra el conjunto de soluciones de las inecuaciones siguientes:

a) 07 yx b) 032 yx c) 3y d) 5x

SISTEMAS DE INECUACIONES CON DOS INCÓGNITAS

Un sistema de inecuaciones lineales con dos incógnitas es el conjunto de dos o más inecuaciones de

primer grado, que deben satisfacerse a la vez. Para su resolución, se procede de la manera siguiente:

- Se resuelve cada inecuación por separado.

- El conjunto solución del sistema, también llamado región factible, está formado por las

soluciones comunes a todas las inecuaciones.

Ejemplo: resolvamos el sistema lineal con dos incógnitas:

105

034

yx

xy

4

3034

xyxy . El semiplano solución es el marcado arriba y a la izquierda.

105105 xyyx . El semiplano solución es el marcado a la derecha.

el blog de mate de aida CSII: programación lineal pág.2

La intersección de ambos semiplanos es la solución del sistema.

Ejercicio: (3 pág. 98)

Encuentra el conjunto de puntos del plano que verifica el siguiente sistema de inecuaciones:

202

306

10025

306

yx

yx

yx

y

PROGRAMACIÓN LINEAL. DEFINICIONES

A veces, un problema de producción, financiero, de estrategia militar, etc, puede tener distintas

soluciones. En este caso, hemos de investigar la solución más conveniente. Este es un problema que se

presenta con frecuencia en las empresas. Se puede planificar la producción de diversas formas,

minimizando costes o maximizando beneficios.

La programación lineal es un conjunto de técnicas que pretende optimizar (maximizar o minimizar) una

función lineal de varias variables llamada función objetivo sujeta a una serie de restricciones

expresadas por medio de ecuaciones o inecuaciones lineales.

En todo problema de programación lineal se trata de hallar los posibles valores óptimos de una función

de la forma:

z = z1x1 + z2x2 + .......... + znxn

condicionada a que se cumplan las ecuaciones o inecuaciones:

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

............................................

...

...

2211

22222121

11212111

Con el signo se indica uno de éstos símbolos: =, <, >, , .

Si el valor óptimo buscado es el máximo, se dice maximizar la función, si es el mínimo, minimizar la

función.

La función z se llama función objetivo. Las ecuaciones o inecuaciones condicionantes son las

restricciones. El conjunto de puntos del recinto plano que delimitan las rectas representativas del

sistema constituyen la llamada región factible.

el blog de mate de aida CSII: programación lineal pág.3

Ejemplo 1:

Una fábrica de bombones tiene almacenados 500 kg de chocolate, 100 kg de almendras y 85 kg de

frutas. Produce dos tipos de cajas: la de tipo A contiene 3 kg de chocolate, 1 kg de almendras y 1 kg de

frutas; la de tipo B contiene 2 kg de chocolate, 1,5 kg de almendras y 1 kg de frutas. Los precios de las

cajas de tipo A y B son 13 € y 13,50 €, respectivamente. ¿Cuántas cajas debe fabricar de cada tipo

para maximizar su venta?

Primero simplificamos el problema construyendo una tabla:

A B TOTAL (kg)

CHOCOLATE 3 2 500

ALMENDRA 1 1,5 100

FRUTAS 1 1 85

PRECIO 13 € 13,50 €

Expresamos con ecuaciones e inecuaciones la información descrita:

Sea x = nº de cajas de tipo A

Sea y = nº de cajas de tipo B

Entonces, z=13x+13,50y, representa la cantidad de pesetas obtenida por la venta de cajas y, por lo

tanto, es la que debemos maximizar (función objetivo).

Las restricciones del problema vienen dadas por las siguientes inecuaciones:

3x + 2y 500

x + 1,5y 100

x + y 85

x 0

y 0.

La región factible del ejemplo anterior sería:

el blog de mate de aida CSII: programación lineal pág.4

PROGRAMACIÓN LINEAL PARA DOS VARIABLES.

MÉTODOS DE RESOLUCIÓN.

Método analítico:

Teorema fundamental:

“Si existe una solución única que maximice o minimice una función lineal objetivo, esta debe hallarse en

uno de los vértices de la región factible”.

Ejemplo 1:

Evaluamos la función z=13x+13,50y en cada vértice, para ver en cuál de ellos se obtiene el valor máximo:

z(P) = 13·85 + 0 = 1105 €

z(Q) = 13·55 + 13,5·30 = 715 + 405 = 1120 €

z( R) = 0 + 13,5·100/1,5 = 900 €

z(O) = 0 €

Por tanto, la función z alcanza su valor máximo en el punto Q=(55,30). Consecuentemente, el fabricante

deberá producir 55 cajas del tipo A y 30 del tipo B.

Un problema de programación lineal tiene infinitas soluciones cuando dos vértices de la región factible

son solución óptima. En este caso, todos los puntos que están situados sobre el segmento que une los

dos vértices son también soluciones óptimas.

Ejemplo 2:

Calcula la solución que hace mínima la función z=x+y, sujeta a las restricciones siguientes. ¿Cuántas

soluciones hay?

x 0

y 0

x + y 10

4x + 3y 60

Los vértices de la región factible son: A=(10,0); B=(15,0); C=(0,20); D=(0,10).

Probamos en la función objetivo cada uno de los vértices:

z(A) = 10 + 0 =10

z(B) = 15 + 0 =15

z( C) = 0 + 20 =20

z(D)= 0 + 10 = 10

El valor mínimo se obtiene en los vértices A y D. Por tanto, el problema tiene infinitas soluciones: los

puntos A=(10,0), D=(0,10) y todos los que pertenecen al segmento AD .

Un problema de programación lineal puede que no tenga solución debido a dos razones:

- porque la región factible sea vacía.

- porque la región factible no esté acotada y no se alcance nunca el valor óptimo.

el blog de mate de aida CSII: programación lineal pág.5

Método gráfico:

Para hallar gráficamente la solución de un problema de programación lineal de dos variables es

conveniente seguir los siguientes pasos:

1. Se representa la recta mx + ny = 0, obtenida de la función objetivo f(x,y) = mx + ny.

2. Se dibuja la región factible.

3. Se desplaza paralelamente la recta mx + ny = 0 hacia la derecha y/o izquierda, hasta que pase por

los puntos más alejados de la región factible. El punto común con la región factible más alejado

hacia la derecha es el óptimo máximo, el más alejado hacia la izquierda es el óptimo mínimo. Si en

algún caso nos ocurriera que dos vértices alcanzasen el máximo valor de la función objetivo,

entonces los alcanzarían también todos los puntos del segmento que los une.

Por tanto, las soluciones se encuentran sobre vértices o lados de la región factible.

Ejemplo 3:

Una empresa dedicada a la reparación de componentes eléctricos recibe el encargo de reparar

ordenadores y consolas de videojuegos. La empresa dispone de dos talleres de reparación. El primero

puede emplear 300 horas de trabajo, y necesita emplear 6 horas para cada ordenador y 5 para cada

consola. El segundo dispone de 200 horas y necesita 2 horas para reparar cada ordenador y 5 para cada

consola. Las ganancias netas que obtiene la empresa son de 100 € por ordenador y 100 € por consola. La

empresa desea una ganancia máxima. Responde a las cuestiones siguientes:

A. Formula algebraicamente el programa lineal correspondiente.

B. Encuentra, si existe, la región factible de soluciones.

C. Obtén, utilizando el método gráfico, las cantidades idóneas que deben repararse de cada artículo

para maximizar la ganancia de la empresa.

D. Responde a la cuestión anterior, utilizando el método analítico.

Simplificamos el problema construyendo una tabla:

Ordenadores Consolas Recursos

Taller 1 (h) 6 5 300

Taller 2 (h) 2 5 200

BENEFICIOS 100 € 100 €

Llamamos x al número de ordenadores que puede reparar cada taller e y al número de consolas que

puede reparar cada uno de los talleres.

A. El programa lineal

correspondiente al problema

es:

Maximizar: z = 100x + 100y

Sujeto a las restricciones:

6x + 5y 300

2x + 5y 200

x 0

y 0

el blog de mate de aida CSII: programación lineal pág.6

B. La región factible de soluciones está limitada por los vértices:

O=(0,0); P=(50,0); Q=(25,30); R=(0,40).

C. Desplazando la recta 100x + 100y, se obtiene el beneficio máximo para el punto Q=(25,30) de

la región factible.

D. Obtenemos el mismo resultado si evaluamos la función objetivo en cada uno de los vértices de

la región de soluciones. En estos puntos, la función objetivo toma los siguientes valores:

z(O) = 0

z(P) = 5000

z(Q) = 5500

z( r)= 4000

Luego el máximo beneficio obtenido por la empresa es de 5500 €, siempre que repare 25 ordenadores y

30 consolas.

Ejercicio: (8 pág. 98)

Maximiza la función yxz 23 , en el dominio definido por las inecuaciones siguientes:

02 xy 13 xy 20 x

el blog de mate de aida CSII: programación lineal pág.7

TRES PROBLEMAS CLÁSICOS.

El problema de producción

Una fábrica se dedica a producir distintos objetos, para los que utiliza distintos productos que posee

en cuantía limitada. Deseamos averiguar, conociendo los precios de venta de cada uno de los objetos,

qué cantidad ha de producir de cada uno de ellos para maximizar los ingresos por ventas.

Ejemplo 4:

En una bollería deseamos fabricar para el día de la fiesta local dos tipos de bollos A y B. El bollo de tipo

A tiene 500 gramos de masa y 250 gramos de crema. El bollo de tipo B tiene 250 gramos de masa y 250

gramos de crema. Si disponemos de 20 kg de masa y 15 kg de crema y el precio de venta lo fijamos en 2

€ el bollo A y 1,50 € el bollo B, ¿cuántos bollos de cada tipo tenemos que fabricar para que el beneficio

sea máximo?

Bollo A Bollo B Disponible

Variable x y

gr de masa 500x 250y 20000

gr de crema 250x 250y 15000

Ingresos 2x 1,5y z=2x+1,5y

Las restricciones son:

x 0

y 0

500x + 250y 20000

250x + 250y 15000

Los vértices de la región factible son: A=(0,0); B=(40,0); C=(0,60); D=(20,40).

Resolución analítica:

z(A) = 0

z(B) = 80 €

z( C) = 90 €

z(D)= 100 €

La producción óptima la obtenemos en el vértice D=(20,40), para 20 bollos del tipo A y 40 bollos del

tipo B.

el blog de mate de aida CSII: programación lineal pág.8

El problema de la dieta

Una granja se dedica a la cría de una determinada clase de animales que se alimentan de varias clases

de piensos que contienen distintas clases de nutrientes (vitaminas, grasas, proteínas, …). El problema

consiste en determinar la cantidad de cada uno de los alimentos que han de constituir la dieta diaria de

los animales, teniendo en cuenta que, en la misma, debe haber unas cantidades mínimas de los citados

nutrientes y de forma que el coste sea mínimo.

Ejemplo 5:

Un ganadero debe suministrar un mínimo de 30 mg de vitamina A y de 35 mg de tipo B por kg de pienso

a sus animales. Dispone de dos clases de pienso R y S cuyos contenidos en mg de las vitaminas A y B por

kg de pienso vienen dados en la siguiente tabla:

R S

A 6 6

B 5 10

El pienso R vale 40 €/kg y el S vale 60 €/kg. ¿Cuántos kg de cada clase debe mezclar para suministrar

el pienso de coste mínimo?

Pienso R Pienso S Disponible

Variable (kg) x y

Vitamina A 6x 6y 30

Vitamina B 5x 10y 35

Coste 40x 60y Z=40x+60y Minimizar

Las restricciones son:

x 0

y 0

6x + 6y 30 x + y 5

5x + 10y 35 x + 2y 7

el blog de mate de aida CSII: programación lineal pág.9

La región factible no está acotada superiormente, pero como tenemos que minimizar la función, si

existe solución.

Los vértices de la región factible son: A=(7,0); B=(0,5); C=(3,2).

Resolución analítica:

z(A) = 280 €

z(B) = 300 €

z( C) = 240 €

La producción óptima la obtenemos en el vértice C=(3,2), para 3 kg de pienso del tipo R y 2 kg de pienso

del tipo S.

El problema del transporte

Una empresa posee fábricas en varias ciudades en las que produce un determinado producto. Este

producto lo comercializa en distintos puntos de venta. Cada fábrica posee una capacidad de producción

de un determinado número de unidades y cada uno de los puntos de venta ha de recibir un determinado

número de unidades. ¿Cuántas unidades de cada producto hay que producir en cada fábrica para que el

coste del transporte sea mínimo?

Ejemplo 6:

Dos fábricas de coches A y B producen 4000 y 5000 coches de un determinado modelo que se

distribuyen en tres ciudades R, S y T que admiten 2000, 3000 Y 4000 coches. El coste del transporte

en euros viene dado en la siguiente tabla:

R S T

A 10000 15000 20000

B 15000 12000 18000

¿Cómo deben distribuirse los coches para que el coste del transporte sea mínimo?

En euros, el planteamiento es el siguiente:

R S T Disponible

Reciben 2000 3000 4000

A x y 4000-x-y 4000

B 2000-x 3000-y x+y 5000

Coste 300000-50x 360000-30y 800000-20x-20y z=-70x+10y+1460000 Minimizar

Las restricciones son:

x 0

y 0

4000 - x - y 0 x + y 4000

2000 - x 0 x 2000

3000 - y 0 y 3000

x + y 0

Los vértices de la región factible son: A=(0,0); B=(2000,0); C=(0,3000); D=(2000,2000);

E=(1000,3000).

el blog de mate de aida CSII: programación lineal pág.10

Resolución analítica:

z(A) = 1460000 €

z(B) = 1320000 €

z(C) = 1490000 €

z(D) = 1340000 €

z(E) = 1420000 €

La producción óptima la obtenemos en el vértice B=(2000,0), es decir, para la siguiente distribución:

R S T

A 2000 0 2000

B 0 3000 2000

PASOS PARA RESOLVER UN PROBLEMA DE PROGRAMACIÓN LINEAL CON GEOGEBRA

Comienza construyendo una tabla con los datos, para simplificar el problema.

Escribe la función objetivo y las restricciones.

Encuentra la región factible y halla la posición de los vértices.

Evalúa el valor de la función objetivo en los vértices.

Compara tus resultados siguiendo el protocolo de la construcción.

Utiliza el deslizador para valorar lo que sucede.