Fisica lll trabajo

11

Click here to load reader

Transcript of Fisica lll trabajo

Page 1: Fisica lll trabajo

Tarea

1-) Si se carga un globo por frotamiento con un tejido de lana, éste se pegará por las paredes. ¿Por qué? . ¿El globo podrá después caer? . ¿Por qué?

El globo está cargado, podemos suponer que negativamente, entonces al acercarlo a la pared provoca por inducción, que las cargas de las partículas que forman la pared se reordenen, quedando las partículas positivas más cerca del globo y las negativas más alejadas. Hay que fijarnos que la pared no se ha cargado, sólo se han redistribuido sus cargas, pero el globo "ve" cargas positivas cerca de él con lo que se queda pegado a la pared. Poco a poco el globo va perdiendo su exceso de carga negativa, por eso se termina cayendo.

2-) “Tubo de rayos catódicos”

Es un dispositivo de visualización inventado por William Crookes en 1875. Se emplea principalmente en monitores, televisores y osciloscopios, aunque en la actualidad se están sustituyendo paulatinamente por tecnologías como plasma, LCD, LED o DLP.

-Funcionamiento

El monitor es el encargado de traducir y mostrar las imágenes en forma de señales que provienen de la tarjeta gráfica. Su interior es similar al de un televisor convencional. La mayoría del espacio está ocupado por un tubo de rayos catódicos en el que se sitúa un cañón de electrones. Este cañón dispara constantemente un haz de electrones contra la pantalla, que está recubierta de fósforo (material que se ilumina al entrar en contacto con los electrones). En los monitores en color, cada punto o píxel de la pantalla está compuesto por tres pequeños puntos de fósforo: rojo, azul y verde. Iluminando estos puntos con diferentes intensidades, puede obtenerse cualquier color.

Ésta es la forma de mostrar un punto en la pantalla, pero ¿cómo se consigue rellenar toda la pantalla de puntos? La respuesta es fácil: el cañón de electrones activa el primer punto de la esquina superior izquierda y, rápidamente, activa los siguientes puntos de la primera línea horizontal. Después sigue pintando y rellenando las demás líneas de la pantalla hasta llegar a la última y vuelve a comenzar el proceso. Esta acción es tan rápida que el ojo humano no es capaz de distinguir cómo se activan los puntos por separado, percibiendo la ilusión de que todos los píxeles se activan al mismo tiempo por el efecto de persistencia.

-La visualización vectorial

En el caso de un osciloscopio, la intensidad del haz se mantiene constante, y la imagen es dibujada por el camino que recorre el haz. Normalmente, la desviación horizontal es proporcional al tiempo, y la desviación vertical es proporcional a la señal. Los tubos para este tipo de usos son largos y estrechos, y además la desviación se asegura por la aplicación de un

Page 2: Fisica lll trabajo

campo electrostático en el tubo mediante placas (de desviación) situadas en el cuello del tubo. Esta clase de desviación es más rápida que una desviación magnética, ya que en el caso de una desviación magnética la inductancia de la bobina impide las variaciones rápidas del campo magnético (ya que impide la variación rápida de la corriente que crea el campo magnético).

“Experimento de millikan”

El experimento de la gota de aceite fue un experimento realizado por Robert Millikan y Harvey Fletcher en 1909 para medir la carga elemental (la carga del electrón).

El experimento implicaba equilibrar la fuerza gravitatoria hacia abajo con la flotabilidad hacia arriba y las fuerzas eléctricas en las minúsculas gotas de aceite cargadas suspendidas entre dos electrodos metálicos. Dado que la densidad del petróleo era conocida, las masas de las “gotas ", y por lo tanto sus fuerzas gravitatorias y de flotación, podrían determinarse a partir de sus radios observados. Usando un campo eléctrico conocido, Millikan y Fletcher pudieron determinar la carga en las gotas de aceite en equilibrio mecánico. Repitiendo el experimento para muchas gotas, confirmaron que las cargas eran todas múltiplos de un valor fundamental, y calcularon que es 1,5924|(17).10-19 C, dentro de un uno por ciento de error del valor actualmente aceptado de 1,602176487|(40).10-19 C. Propusieron que esta era la carga de un único electrón.

A partir de 1900, mientras era profesor en la Universidad de Chicago, Millikan, con la importante aportación de Fletcher, trabajó en el experimento de la gota de aceite con el que midió la carga de un único electrón. Después de una publicación sobre sus primeros resultados en 1910, las observaciones contradictorias de Felix Ehrenhaft iniciaron una controversia entre los dos físicos. Después de mejorar su configuración experimental, publicó su estudio seminal en 1913.

Su experimento mide la fuerza contra la gravedad en las minúsculas gotas de aceite cargadas suspendidas entre dos electrodos metálicos. Conociendo el campo eléctrico, se determina la carga en la gota. Repitiendo el experimento para muchas gotas, Millikan demostró que los resultados podían ser explicados como múltiplos enteros de un valor común 1,592.10-19 C, la carga de un único electrón.

En la época de los experimentos de la gota de aceite de Millikan y Fletcher, la existencia de las partículas subatómicas no era universalmente aceptada. Experimentando con los rayos catódicosThomson descubrió en 1897 unos corpúsculos (como él los llamó) negativamente cargados, con una masa unas 1000 veces más pequeña que la de un átomo de hidrógeno. Resultados parecidos habían sido encontrados por George Francis FitzGerald y Walter Kaufmann. La mayoría de lo que entonces se conocía acerca de la electricidad y el magnetismo, sin embargo, podría explicarse sobre la base de que la carga es una variable

Page 3: Fisica lll trabajo

continua, de la misma forma que muchas de las propiedades de la luz pueden explicarse el tratarla como una onda continua en lugar de como una corriente de fotones.

La llamada carga elemental e es una de las constantes físicas fundamentales y su valor exacto es de gran importancia. En 1923, Millikan, ganó el Premio Nobel de física, en parte debido a este experimento.

Aparte de la medición, la belleza del experimento de la gota de aceite reside en que es una simple y elegante demostración práctica de que la carga está en realidad cuantizada. Thomas Edison, quien había considerado la carga como una variable continua, se convenció después de trabajar con el aparato de Millikan y Fletcher. Este experimento ha sido repetido por generaciones de estudiantes de física, aunque es bastante caro y difícil de hacer correctamente.

-Procedimiento experimental

Aparato

El aparato de Robert Millikan incorpora un par de placas metálicas paralelas horizontales. Al aplicar una diferencia de potencial entre las placas, se crea un campo eléctrico uniforme en el espacio entre ellas. Se utilizó un anillo de material aislante para mantener las placas separadas. Cuatro agujeros se cortaron en el anillo, tres para la iluminación con una luz brillante, y otra para permitir la visualización a través de un microscopio.

Una fina niebla de gotas de aceite se roció a una cámara por encima de las placas. El aceite era de un tipo utilizado normalmente en aparatos de vacío y fue elegido porque tenía una presión de vapor extremadamente baja. El aceite ordinario se evaporaría bajo el calor de la fuente de luz causando que la masa de la gota de aceite cambiara durante el transcurso del experimento. Algunas gotas de aceite se cargaban eléctricamente a través de la fricción con la boquilla cuando fueron rociadas. Como alternativa, la carga podría llevarse a cabo mediante la inclusión de una fuente de radiación ionizante (como un tubo de rayos X). Las gotas entraban en el espacio entre las placas y, debido a que estaban cargadas se podía hacerlas subir y bajar al cambiar el voltaje a través de las placas.

Método

Inicialmente, las gotas de aceite se dejan caer entre las placas con el campo eléctrico apagado. Muy rápidamente alcanzan la velocidad terminal debido a la fricción con el aire en la cámara. Se enciende entonces el campo y, si es lo suficientemente grande, algunas de las gotas comenzarán a subir. (Esto se debe a que la fuerza eléctrica hacia arriba FE es mayor que la fuerza gravitacional hacia abajo Fg, de la misma forma los trozos de papel puede ser recogidos por una barra de caucho cargada). Se selecciona una gota para observar la probable caída y se mantiene en el centro del campo de visión conectando y apagando el voltaje alternativamente hasta que todas las otras gotas habían caído. El experimento se continúa entonces con esta única gota.

La gota se deja caer y se calcula su velocidad terminal v1 en ausencia de campo eléctrico. La fuerza de fricción que actúa sobre la gota puede ser calculada usando ley de Stokes:

Page 4: Fisica lll trabajo

donde v1 es la velocidad terminal (es decir, la velocidad en ausencia de campo eléctrico) de la gota que cae, η es la viscosidad del aire, y r es el radio de la gota.

El peso Fg es el volumen V multiplicado por la densidad ρ por la viscosidad y la aceleración de la gravedad g. terminal de la gota de aceite no hay aceleración. Así la fuerza total que actúa sobre ella debe ser cero. Así las dos fuerzas FE y Fg deben cancelarse una a otra (esto es, FE = Fg). Esto implica que:

Una vez se ha calculado r, Fg puede calcularse fácilmente.

Ahora el campo se vuelve a encender, y la fuerza eléctrica sobre la gota es:

donde q es la carga de la gota de aceite y E es el campo eléctrico entre las placas. Para placas paralelas:

donde V es la diferencia de potencial y d es la distancia entre las placas.

Una de las formas concebibles para calcular q sería ajustar V hasta que la caída dela gota de aceite se mantenga estable. Entonces podríamos igualar FE con Fg. Pero en la práctica esto es muy difícil hacerlo con precisión. Además, la determinación deFE resulta difícil debido a que la masa de la gota de aceite es difícil de determinar sin volver de nuevo a la utilización de la Ley de Stokes. Un enfoque más práctico es hacer deV hasta un poco mauyor para que la gota de aceite se eleve con una nueva velocidad terminal v2. Entonces:

Page 5: Fisica lll trabajo

“Generador de Van der Graff”

Es una máquina electrostática que utiliza una cinta móvil para acumular grandes cantidades de carga eléctrica en el interior de una esfera metálica hueca. Las diferencias de potencial así alcanzadas en un generador de Van de Graff moderno pueden llegar a alcanzar los 5 mega voltios . Las diferentes aplicaciones de esta máquina incluyen la producción de rayos X, esterilización de alimentos y experimentos de física de partículas y física nuclear.

-Descripción

El generador consiste en una cinta, transportadora de material aislante motorizada, que transporta carga a un terminal hueco. La carga es depositada en la cinta por inducción en la cinta, ya que la varilla metálica o peine, está muy próxima a la cinta pero no en contacto. La carga, transportada por la cinta, pasa al terminal esférico nulo por medio de otro peine o varilla metálica que se encarga de producir energía.

3-) Diferencias y analogías entre un campo gravitatorio y un campo eléctrico

- Se dice que existe un campo eléctrico en una región del espacio si una carga eléctrica colocada en un punto de esa región experimenta una fuerza eléctrica.

- Se dice que existe un campo gravitatorio en una región del espacio si una masa colocada en un punto de esa región experimenta una fuerza gravitatoria.

Entre campo eléctrico y campo gravitatorio se pueden establecer las siguientes analogías:

- Ambos campos son centrales, ya que están dirigidos hacia el punto donde se encuentra la masa o la carga que los crea.

- Son conservativos porque la fuerza central solamente depende de la distancia.

- La fuerza central que define ambos campos es inversamente proporcional al cuadrado de la distancia.

Las diferencias entre ellos:

1- El campo gravitatorio es universal; existe para todos los cuerpos. El campo eléctrico sólo existe cuando los cuerpos están cargados de electricidad.

Page 6: Fisica lll trabajo

2- El campo gravitatorio es siempre de atracción, mientras que el campo eléctrico puede ser de atracción (cargas de diferente signo) o de repulsión (cargas de igual signo).

3- La constante eléctrica K viene a ser (10exp20) veces mayor que la constante gravitatoria G. Lo que indica que el campo gravitatorio es muy débil comparado con el campo eléctrico.

4- Una masa, siempre crea un campo gravitatorio. Una carga eléctrica en movimiento además del campo eléctrico crea también un campo magnético.

La unidad de carga eléctrica en el S.I. el culombio. Un culombio es la carga que pasa por la sección transversal de un conductor en un segundo cuando la intensidad de la corriente es un amperio.

4-) ¿Pueden cortarse las líneas de fuerza?

Las líneas de fuerza no pueden cortarse ya que, en caso contrario, en el punto de intersección la fuerza que experimentaría una carga situada allí tendría dos direcciones posibles, lo cual no es posible.

5-) ¿Pueden cortarse dos superficies equipotenciales?

Dos superficies equipotenciales no se pueden cortar, porque si dos superficies equipotenciales se cortaran en un punto, entonces habría dos campos eléctricos en ese mismo punto y esto es imposible.

6-) ¿Cómo se obtiene los valores en un electrocardiograma?

El electrocardiograma es el gráfico que se obtiene con el electrocardiógrafo para medir la actividad eléctrica del corazón en forma de cinta gráfica continua. Es el instrumento principal de la electrofisiología cardiaca y tiene una función relevante en el cribado y la diagnosis de las enfermedades cardiovasculares.

El corazón tiene un sistema de conducción compuesto por fibras de músculo cardiaco especializadas en la transmisión de impulsos eléctricos. Aunque el corazón tiene inervación por parte del sistema simpático, late aun sin estímulo de este, ya que el sistema de conducción es autoexcitable. Se encuentra dentro de los distintos exámenes al corazón. Es por esto que no tenemos control sobre los latidos de nuestro corazón.

El sistema de conducción debe transmitir el impulso eléctrico de las aurículas a los ventrículos. Se compone de los siguientes elementos, el nodo senoauricular, el nodo auriculoventricular y haz de His, con sus ramas derecha e izquierda.

En el cuerpo humano se generan una amplia variedad de señales eléctricas, provocadas por la actividad química que tiene lugar en los nervios y músculos que lo conforman. El corazón, por ejemplo, conduce a un patrón característico de variaciones de voltaje. El registro y análisis de

Page 7: Fisica lll trabajo

estos eventos bioeléctricos son importantes desde el punto de vista de la práctica clínica y de la investigación. Los potenciales se generan a nivel celular, es decir, cada una de las células es un diminuto generador de voltaje.

7-) ¿Para qué y donde se utilizan los capacitores?

Los capacitores pueden conducir corriente continua durante sólo un instante (por lo cual podemos decir que los capacitores, para las señales continuas, es como un cortocircuito), aunque funcionan bien como conductores en circuitos de corriente alterna. Es por esta propiedad lo convierte en dispositivos muy útiles cuando se debe impedir que la corriente continua entre a determinada parte de un circuito eléctrico, pero si queremos que pase la alterna.

Los capacitores se utilizan junto con las bobinas, formando circuitos en resonancia, en las radios y otros equipos electrónicos. Además, en los tendidos eléctricos se utilizan grandes capacitores para producir resonancia eléctrica en el cable y permitir la transmisión de más potencia.

Además son utilizados en: Ventiladores, motores de Aire Acondicionado, en Iluminación, Refrigeración, Compresores, Bombas de Agua y Motores de Corriente Alterna.

Page 8: Fisica lll trabajo

Facultad Politécnica UNE

Tarea

de Física

Nombre: Franco Darío Mendoza Báez

Año: 2011