Cohen - Revolución en la ciencia

38
I. Bernard Cohen REVOLUCIÓN EN LA CIENCIA De la naturaleza de las revoluciones científicas, de sus etapas y desarrollo temporal, de los factores creativos que generan las ideas revolucionarias y de los criterios específicos que permiten determinarlas

Transcript of Cohen - Revolución en la ciencia

I. Bernard Cohen

REVOLUCIÓN

EN LA CIENCIA

De la naturaleza de las revoluciones científicas, de sus etapas y

desarrollo temporal, de los factores creativos que generan las ideas revolucionarias y de los criterios específicos que permiten

determinarlas

5

La revolución científica:

Primera aceptación de una revolución

en la ciencia

Varios historiadores —Roger.B. Merriman (1938), H. R. Trevor-Roper (1959),

E. Hobsbawm (1954) y J. M. Goulemot (1975), entre otros— han señalado las

numerosas revueltas, insurrecciones o revoluciones que se produjeron en forma casi

simultánea en Europa a mediados del siglo XVII, en Inglaterra, Francia, los Países

Bajos, Cataluña, Portugal, Nápoles y otros lugares. Era evidentemente una época de

crisis e inestabilidad, casi se diría de revolución generalizada, de la cual los hechos

geográficamente aislados entre sí no eran sino sus manifestaciones individuales. Los

observadores de la época advertían que se trataba de una situación de "crisis

generalizada", como la denominada Trevor-Roper. En un sermón pronunciado en la

Cámara de los Comunes el 25 de enero de 1643, Jeremiah Whittaker declaró que "éstos

son días de conmoción'' y que la "conmoción es universal: el Palatinado, Bohemia,

Germania, Cataluña, Portugal, Irlanda, Inglaterra" (véase Trevor-Roper 1959, 31,62 n.

1).

El siglo XVII también fue la época de la Revolución Científica. La primera

guerra civil inglesa, iniciada en 1642, se produjo cuatro años después de la aparición de

Dos nuevas ciencias, de Galileo, la obra fundadora de la ciencia del movimiento, y

cinco años después de la publicación del Discurso del método y la Geometría de

Descartes. Los Principia de Newton —el libro más importante e influyente de la

Revolución Científica— apareció en 1687, un año antes de la Revolución Gloriosa; su

autor lo dedicó a Jacobo II y a la Royal Society. En muchos sentidos la Revolución

Científica fue más extrema e innovadora que las revoluciones políticas del siglo, y sus

consecuencias han resultado más profundas y prolongadas. Pero el autor de estas líneas

no conoce a ningún, estudioso que haya relacionado la Revolución Científica con las

revoluciones contemporáneas a ella ni que haya propuesto que el espíritu revolucionario

que animó a los políticos podría ser el mismo que causó semejantes conmociones en las

ciencias.

Para evaluar la profundidad y la envergadura de la Revolución Científica no hay

mejor manera que comparar la ciencia que fructificó en el siglo XVII con su equivalente

más cercano de la Edad Media tardía. Uno de los problemas centrales es el del

movimiento (puesto que "desconocer el movimiento es desconocer la naturaleza"). Los

estudiosos medievales lo concebían en su sentido aristotélico general del paso de

potencia a acto. Por consiguiente, sus leyes no eran tan sólo las del desplazamiento local

(cambio de lugar) sino que abarcaban cualquier cambio que pudiera cuantificarse como

función del tiempo, como la ganancia o pérdida de peso con la edad, o la gra-

83

cia. Los estudiosos del movimiento local del siglo XIV advirtieron que éste podía ser

uniformemente o no uniformemente acelerado y demostraron por la vía matemática que

el efecto del movimiento uniformemente acelerado en un tiempo dado equivale al

movimiento uniforme en el mismo lapso si la magnitud de éste es igual a la media de

aquél. Pero los filósofos matemáticos de la época y los que analizaron su trabajo en el

siglo siguiente jamás sometieron estos principios matemáticos a la prueba de los hechos

físicos, por ejemplo, a la caída de los cuerpos. En cambio, Galileo abordó estos

principios, no como abstracciones matemáticas puras sino como leyes que rigen los

procesos y sucesos físicos reales en el mundo de la experiencia. Incluso puso a prueba y

confirmó la ley de la caída libre de los cuerpos mediante su célebre experimento del

plano inclinado, descrito en Dos nuevas ciencias. La elaboración galileana de esas leyes

no era menos matemática que la de sus antecesores del siglo XIV, pero él concebía su

matemática en un contexto físico y la sometía a la prueba experimental. Stillman Drake

(1978) descubrió que ciertas notas manuscritas de Galileo resultaban incomprensibles a

menos que se las considerara un conjunto de experimentos que lo condujo al

descubrimiento de esas leyes.

Este ejemplo demuestra lo novedoso y revolucionario que fue descubrir los

principios mediante la experimentación combinada con el análisis matemático, situar las

leyes de la ciencia en el contexto de la experiencia y someter la validez del cono-

cimiento a la prueba experimental. Tradicionalmente el conocimiento se había basado

en la fe y la intuición, la razón y la revelación. La nueva ciencia descartó tales métodos

para conocer la naturaleza y sentó la experiencia—la experimentación y la observación

crítica— como la base y la prueba última del conocimiento. Las consecuencias fueron

tan revolucionarias como la propia doctrina, porque el método no sólo sentaba el

conocimiento sobre bases enteramente nuevas sino que implicaba que los hombres y las

mujeres ya no estaban obligados a creer en la palabra de las autoridades eminentes;

podían someter cualquier juicio y teoría a la prueba de la experiencia controlada. Lo

importante en la nueva ciencia del siglo XVII no eran el prestigio ni los conocimientos

del autor o el informante sino su honestidad al informar, su comprensión del método

científico y su habilidad como experimentador y observador. Un mero y humilde

estudiante estaba en condiciones de poner a prueba (y demostrar los errores) en la teoría

o las leyes expuestas por el científico más prestigioso. El conocimiento adquirió así un

carácter democrático, más que jerárquico; ya no dependía de la intuición de un puñado

de elegidos sino de la aplicación de un método correcto, accesible a cualquiera que

tuviese talento suficiente para aprehender los nuevos principios de experimentación y

observación y la manera de extraer conclusiones correctas de los datos. No es, pues,

sorprendente que durante la Revolución Científica se preste tanta atención a los

codificadores del método, hombres como Bacon, Descartes, Galileo, Harvey y Newton,

y sus escritos donde explicaban cómo desarrollar la Investigación científica. Los científicos del siglo XVII y de fines del XVI eran conscientes de que el

enfoque consistente en recurrir a la naturaleza era absolutamente novedoso. Este

enfoque salta a la vista en los libros sobre plantas y animales escritos a fines del siglo

XVI. No sólo muestran un nuevo realismo derivado del uso de la perspectiva, sino que

afirman explícitamente que las ilustraciones están tomadas de ejemplares vivos. El

herbario de Fuchs, 1542, muestra en una ilustración al artista y al grabador trabajando

frente a la planta que les sirve de modelo. La gran obra de Vesalius, La Construcción [o

la trama] del cuerpo humano (1543) contiene ilustraciones de todos los instrumentos de

84

disección. El mensaje es claro: "Hágalo usted mismo." El autor quería no sólo que sus

discípulos y lectores reprodujeran sus experimentos y confirmaran sus descubrimientos,

y luego siguieran adelante para agregar al tesoro común del conocimiento, sino también

demostrar que su libro revolucionario se basaba en hechos experimentales, susceptibles

de ser sometidos a prueba.

Esta fascinación del siglo XVI ante la naturaleza se revelaba también en las

actitudes de hombres y mujeres frente al descubrimiento de nuevos mundos, sobre todo

las Américas del Norte y el Sur. Les interesaban no sólo las configuraciones de la Tierra

y los yacimientos geológicos sino también las formas de vida animal y vegetal. ¿Eran

animales distintos de los europeos por no haber tenido que sufrir el diluvio bíblico? ¿O

eran el fruto de una creación especial, posdiluviana? Preguntas perturbadoras, porque

las respuestas parecían contrarias a las Escrituras. Y todavía más perturbador era el

problema de los nativos del Nuevo Mundo.

En la primera década del siglo XVII se produjo una conmoción mundial cuando

el telescopio de Galileo reveló por primera vez la verdadera configuración de los cielos.

Marjorie Nicholson ha descrito la avidez de los europeos para conocer cada nueva

revelación del telescopio de Galileo y cómo sus descubrimientos eran aprovechados

rápidamente por los poetas. Una obra de teatro escrita por Ben Johnson en 1620,

titulada Newes from the New World [Nuevas del Nuevo Mundo], no se refiere a América

sino al cielo, en especial a la Luna, y menciona el telescopio; su título conserva el

espíritu de Galileo, quien llamó la crónica de sus descubrimientos El mensaje [o El

mensajero] de las estrellas (las dos son traducciones correctas del latín Sidereus

Nuncius). La obra de Johnson, como anuncio de una novedad, es el equivalente

humorístico del trabajo .de Monardes sobre la flora medicinal de América, titulado

Joyfull Newes out of the Newe Founde Worlde [Jubilosas nuevas del mundo

recientemente descubierto]. Era un comienzo simbólico de la revolucionaria novedad de

las ciencias. Porque Galileo no sólo anunció nuevos hechos e información sino que

llegó rápidamente a la conclusión de que sus observaciones con el telescopio refutaban

el sistema de Ptolomeo (lo cual era cierto) y confirmaban el de Copérnico (lo cual era

falso). (1)

Muchos de los libros más influyentes de la Revolución Científica llevan en sus

títulos la palabra "nuevo". En 1609, Kepler publicó su Astronomía nueva, basada en

principios físicos. El último libro de Galileo (1638) lleva por título Dos nuevas

ciencias; tal vez éste no era el título elegido por el autor, pero en la introducción al libro

3, dedicado al movimiento, dice que ha descubierto muchas cosas nuevas y dignas de

mención. Tartaglia tituló su obra Nueva ciencia (1537). Von Guericke publicó una

crónica de los experimentos revolucionarios con la novedosa bomba de vacío bajo el

título de Nuevos experimentos realizados en Magdeburgo (1672). Boyle empleó la

palabra "nuevo" en los títulos de muchos de sus libros. En 1600, William Gilbert

publicó un trabaja con el sugestivo título de Oh the Magnet... a New Physiology,

Demostrated by Many Arguments and Experiments [Sobre él imán... una nueva

fisiología, demostrada con muchos argumentos y experimentos]. Dedicó su

"conocimiento de la naturaleza, que es casi "enteramente nuevo é inaudito" a "vosotros,

auténticos filosofadores, hombres honestos, que buscáis el conocimiento no sólo en los

libros sino también en las mismas' cosas". Sabía que por el momento eran muy pocos

los que se dedicaban a "esta nueva manera de filosofar".

Junto con el nuevo tipo de conocimiento y los nuevos métodos para obtenerlos,

la Revolución Científica también creó nuevas instituciones para el progreso, registro y

difusión de los descubrimientos. Eran sociedades y academias de científicos de la 85

misma mentalidad (y personas interesadas en la ciencia) que se reunían para realizar

experimentos en conjuntó, reproducir experiencias efectuadas en otras partes, escuchar

informes sobre los trabajos realizados por los miembros y enterarse de las novedades

provenientes de otros grupos y países. El surgimiento de una comunidad científica es

una de las características destacadas de esta revolución. Hacia la década de 1660

aparecieron academias nacionales permanentes en Francia e Inglaterra; ambas

publicaban periódicos oficiales para difundir los trabajos de sus miembros.

El ejemplo de Isaac Newton demuestra la importancia de ser elegido .miembro

de tales corporaciones. En 1671, Isaac Barrow (su antecesor como titular de la Cátedra

Lucasiana) presentó el novedoso telescopio reflector de Newton ante la Royal Society

en Londres. El invento fue recibido "con aplausos" y poco después Newton ingresó a la

institución. Encantado por el reconocimiento que le tributaban sus colegas londinenses,

Newton inquirió por carta cuándo se reunía la sociedad, porqué deseaba informar sobre

sus experimentos con la luz y el color, los mismos que constituían la base de su nuevo

telescopio. Con toda la soberbia de la juventud, Newton escribió al secretario de la

sociedad que lo había invitado a incorporarse que su descubrimiento era el

"descubrimiento más extraño" efectuado hasta él momento en las operaciones de la

naturaleza. Esta avidez por compartir su descubrimiento con sus nuevos colegas

científicos muestra un marcado contraste con su renuencia posterior a publicar (o per-

mitir que se publiquen) sus hallazgos e indica la importancia que tiene para un científico

la admisión formal en la comunidad reconocida.

El trabajo de Newton sobre la luz y el color es el primero en varios sentidos: la

primera obra científica que publicó el primer trabajo sobre la física del color, fundador

de esa disciplina; el primer gran descubrimiento científico que aparece como artículo en

una revista especializada. Y otro rasgo destacable es que describe los experimentos y las

conclusiones teóricas del autor, sin exponer un sistema cosmológico ni una doctrina

teológica; es ciencia lisa y llana, en el sentido que tiene el término desde entonces hasta

la actualidad. Un rasgo revolucionario de la incipiente comunidad científica fue la creación de

una red formal de comunicaciones. Estas se efectuaban en parte mediante los viajes y la

correspondencia, pero principalmente a través de las publicaciones especializadas y los

informes. La efímera Accademia del Cimento [Academia del Experimento] creada por

Galileo publicó los resultados de sus trabajos en un tomo de Sagi (1667) en italiano.

Estos aparecieron en versión inglesa en 1684, en un tomo cuya carátula mostraba

alegóricamente cómo la academia italiana cedía su tradición a la Royal Society

londinense. Las Philosophical Transactions de ésta última publicaba artículos en inglés

y latín. También sé publicaban ediciones especiales para los lectores de Europa

continental, con traducciones latinas de los artículos en inglés. Los resúmenes, o

versiones abreviadas, de Philosophical Transactions aparecían en inglés pero eran

traducidos rápidamente al francés, en tanto los trabajos de la Académie des Sciences

francesas aparecían en versión inglesa. Un importante número de grandes obras

científicas de la época apareció en los idiomas locales, no en latín como muchos creen.

Algunos ejemplos: Galileo: Diálogo sobre los dos principales sistemas del mundo

(italiano, 1632; trad. inglesa, 1661; trad. latina, 1635); Descartes: Geometría (francés;

1637; latín, 1649,1659); Newton: Óptica (inglés, 1704; latín, 1706). Otros ejemplos son

Dioptrique de Descartes (1637), Traité de la lumière de Huygens (1690) y

Micrographia, or some Physiological descriptions of Minute Bodies (1665).

86

El funcionamiento de la red de información se advierte en la frondosa correspondencia

de Henry Oldenburg, el primer secretario de la Royal Society. En 1668, Oldenburg

escribió una carta a Huygens, que residía en París, para expresar el deseo de la

corporación de que les comunicara "lo que había descubierto sobre el tema del

movimiento", aun si consideraba que "todavía no estaba en condiciones de publicarlo".

Le solicitó que "les comunicara su teoría, junto con los experimentos sobre los que la

fundamentaba". Huygens accedió al pedido y señaló que "no dudaba de que esa

sociedad le acordaría el honor del descubrimiento, asentándolo en su Registro con su

nombre". El texto arribó unos meses más tarde y fue entregado a Christopher Wren para

su estudio. Luego se "efectuaron varios experimentos" para someter a prueba la teoría

de Huygens y también la de Wren, pero el aparato era imperfecto, y se dieron

instrucciones de repetir las experiencias una semana después. No tardaría en surgir una

disputa entre Huygens y Wren en cuanto a la autoría del descubrimiento. Aquél envió

un informe a la Royal Society con sus últimos resultados escritos en "una cifra o

anagrama" a ser inscrita en el Registro a fin de "asegurar sus descubrimientos o

invenciones para el futuro" hasta tanto "considerara oportuno explicarlos en lenguaje

corriente". Veinte años después, Edmond Halley instó a Newton a registrar sus

descubrimientos mediante un informe a la Royal, Society, a fin de asegurar su autoría.

Todavía se puede hallar el trabajo De Motu, escrito en el otoño boreal de 1684, en el

Registro; posteriormente, Newton lo amplió en los célebres Principia.

El papel cumplido por las sociedades y academias científicas para establecer la

autoría de los descubrimientos y las invenciones revela otro aspecto de gran importancia

de la Revolución Científica. Esta fue la primera revolución de la historia consagrada a

un proceso continuo más que a un objetivo final. Se dijo anteriormente que las

revoluciones políticas y sociales aspiran a un fin claramente determinado, la

instauración de un Estado o sistema social, aun cuando ese fin resulte inalcanzable en el

futuro inmediato. La nueva ciencia, en cambio, fue concebida casi desde el comienzo

como un proceso de descubrimiento, una búsqueda inacabable. Se tomaron recaudos

para publicar y difundir los hallazgos, instalar laboratorios y observatorios, jardines

zoológicos y botánicos donde se pudieran efectuar nuevos descubrimientos. El proceso

de cambio continuo quedó institucionalizado bajo la forma de periódicos especializados

para difundir los nuevos hallazgos, registros para asentar la prioridad de los

descubridores y premios para los avances más revolucionarios. Ninguna otra revolución

o proceso revolucionario, que se sepa, ha institucionalizado a tal grado el proceso

continuo de las futuras revoluciones. Era, en verdad, algo nuevo bajo el sol.

Pero a pesar de la concepción de que la ciencia era una búsqueda incesante de la

verdad, también se esperaba que los avances científicos redundarían en inventos

prácticos y mejoras en la medicina, en beneficio de la humanidad. Estas ideas aparecen

ya a principios del siglo XVII, en los tratados metodológicos de Bacon y Descartes. En

su Discurso del método (1637) éste escribió que, si contara con el apoyo de un hombre

rico, podría lograr importantes mejoras en artes prácticas tales como la agricultura

mecanizada, la medicina y la sanidad. La misma idea aparece una y otra vez en Bacon,

quien sostiene que la ciencia —el conocimiento de la naturaleza— permitirá al hombre

controlar su ambiente y le otorgará nuevos poderes. Sabiamente Bacon agrega que tales

aplicaciones prácticas poseen mayor valor como "anticipos y garantías de la verdad"

que como medios para una vida más cómoda. Quiere decir que los principios de la

ciencia, con sus bases empíricas, pueden encarnarse en aparatos ver-

87

daderos. Las máquinas funcionales que incorporan los nuevos principios o se basan en

ellos son la prueba palpable de la verdad de esos principios.

Aparte de estos aspectos revolucionarios, ¿qué logró la Revolución Científica en

el terreno del progreso de la ciencia básica? Como ya se ha dicho, las leyes galileanas

de caída libre de los cuerpos reemplazaron las leyes abstractas del movimiento.

Además, la caída libre —un tipo de movimiento acelerado— combinada con el

movimiento horizontal uniforme, daba como resultado la trayectoria parabólica dé los

proyectiles, como también demostró Galileo. La ciencia del magnetismo tuvo sus

inicios en el mismo siglo XVII. Kepler formuló las tres leyes del movimiento planetario

que llevan su nombre y elaboró el moderno sistema heliocéntrico que muchos llaman

copernicano. Newton inició la ciencia del color y además creó un sistema matemático

que abarca la nueva física terrestre y celeste. Su principio de la gravitación universal dio

cuenta de las leyes de Kepler y de las de la caída de los cuerpos y pudo explicar las

mareas oceánicas y la forma de la Tierra. Puso incluso las bases para la exitosa pre-

dicción de un cometa con cuatro o cinco décadas de anticipación. La física newtoniana,

en la sencillez de sus explicaciones y la magnitud de sus aplicaciones, fue sin duda una

fuerza revolucionaria.

Pero la revolución en el conocimiento de la naturaleza no sólo abarcó las cien-

cias físicas. También las biológicas se mostraban activas, como lo demuestra el

descubrimiento de la circulación de la sangre, efectuado por Harvey, que revolucionó la

fisiología. En este terreno, como en el de la ciencia del movimiento, la revolución atacó

ciertas falsedades antes no cuestionadas. Así como la predicción de los aristotélicos (si

no del mismo Aristóteles), de que los cuerpos más pesados caen más rápidamente que

los livianos en proporción a su peso, es falsa —como lo demuestra el experimento

correspondiente— asimismo Galeno se equivocaba al afirmar que la sangre fluye y

refluye por las venas y pasa de un lado a otro del corazón a través de los poros del

septum o tabique cardíaco interno.

La revolución científica vista por sus contemporáneos

Aunque era difícil negar los enormes progresos de la ciencia en los siglos XVI y

XVII, algunos observadores preferían calificarlos de mejoras en lugar de revoluciones,

y otros incluso negaban que se hubiera producido algún avance. Los trabajos escritos a

fines del siglo XVII y principios del XVIII, por ejemplo, en la polémica denominada la

Batalla de los Libros o Querella entre los Antiguos y los Modernos —de la que

participaron Fontenelle, Glanvill, Perrault, Swifjt, Temple y Wotton— prefieren el

concepto de "mejora" en el conocimiento, incluso en la ciencia y la medicina, al de

"revolución". Esto es tanto más sorprendente, por cuanto Swift y Fontenelle hablaban de

revolución en otros contextos, y este último utilizaba el término y concepto para

referirse a la nueva matemática. Al vindicar la superioridad de los "modernos" sobre los

"antiguos" y los grandes logros de lo que ahora se llama la Revolución Científica, estos

autores (con una excepción) aparentemente descartaron la palabra "revolución". Lo

mismo hizo Thomas Sprat en su defensa de la Royal Society (1667), una obra dedicada

a resaltar los logros de la nueva ciencia y los cambios que ésta produciría en todos los

terrenos, incluso el del lenguaje. (2) Sus temas son la innovación y el progreso, no la

revolución.

88

A fines del siglo XVII, algunos autores empezaron a reconocer la existencia de

revoluciones en la ciencia. No aparecen definiciones nítidas e inequívocas de ello antes

del final de ese siglo, aunque Gilbert, Galileo, Kepler, Harvey y otros hablan subrayado

el carácter innovador de su obra. Pero una carta escrita en italiano en 1637 hace una

clara referencia al carácter revolucionario del descubrimiento de Harvey.

Se trata de un documento de inestimable valor para el estudio de la revolución

científica, porque revela claramente que los observadores contemporáneos advertían el

carácter revolucionario de los nuevos descubrimientos científicos, pero a la vez que les

resultaba sumamente difícil hallar un término que lo expresara. La carta está fechada el

mismo año de la aparición del Discurso del método y la Geometría de Descartes. Su

remitente era el sacerdote y científico romano Raffaello Magiotti y estaba dirigida a otro

sacerdote, el florentino Famiano Michelini, para informar a sus amigos, entre ellos el

anciano Galileo, sobre el descubrimiento de Harvey en fisiología, publicado en 1628,

"Está es la circulación que hace la sangre en nosotros", escribió. Es "suficiente para

trastornar toda la medicina, así como la invención del telescopio volvió la astronomía

patas para arriba y la brújula [hizo lo mismo con el] comercio y la artillería con el arte

militar" (Galileo 1890,17:65).

En 1637 aún no había llegado el momento de hallar una palabra o concepto

como "revolución" para expresar el carácter radical del descubrimiento de Harvey. Pa-

saría más de medio siglo antes de que pudiera decirse que el descubrimiento de la cir-

culación sanguínea iniciaría una "revolución en la medicina". Magiotti empleó el verbo

rivolgere ("bastante a rivolger tutta la medicina"), que significa "revolver" o

"trastornar" y en ocasiones "volcar". Pero debió explicar el sentido del término a fin de

que sus lectores lo comprendieran, .ya que no era usual en la época que los descu-

brimientos trastornaran (es decir, revolucionaran) una ciencia. Por eso Magiotti com-

paró las consecuencias con dos grandes avances de la tecnología: la pólvora y la brújula

magnética. Bacon sostenía que esas dos innovaciones tecnológicas, junto con la

imprenta de tipos móviles, habían provocado los cambios más drásticos en el mundo

moderno. (Obsérvese que Bacon tampoco disponía del término "revolución" ni del

concepto que el mismo implica en su sentido actual.) Magiotti afirmaba, en realidad,

que ese nuevo fenómeno de volver una disciplina científica patas para arriba, para el

cual no existía un término ni un concepto nítido que lo designara y que aún no era una

clase de suceso claramente comprobada, era como esos inventos extraordinarios que

cambiaban el carácter del comercio internacional, la exploración y la guerra. Más aun,

para despejar todas las dudas, comparó el descubrimiento de Harvey con lo que hasta

entonces —el año 1637— constituía el hallazgo más dramático, más subversivamente

revolucionario, jamás realizado en cualquier rama de la ciencia: la revelación galileana

de los nuevos fenómenos celestes, que de un solo y poderoso golpe demostraba que el

sistema de Ptolomeo era falso y que durante miles de años los astrónomos habían

escrito acerca del cielo sin conocer la verdadera naturaleza de los cuerpos celestes. Así,

Harvey había demostrado que el sistema de Galeno era falso y que, por consiguiente, el

sistema médico basado en la fisiología galénica debería ser reemplazado. Por eso

Magiotti comparaba el efecto del descubrimiento de la circulación sanguínea con "la

invención del telescopio", que "volvió la astronomía patas para ari-ba". Aquí no emplea,

como antes, el verbo "rivolgere" sino "rivoltare" que significa no sólo "revolver"' sino

también "volver patas para arriba", "volver lo de adentro afuera" y, por extensión, "dar

vuelta", "volcar".

89

El término "revolución" apareció como calificativo del descubrimiento de

Harvey en un ensayo escrito años después, en el siglo XVII, por sir William Temple. El

empleo de la palabra por este autor permite advertir las primeras etapas de la aparición

del concepto moderno de revolución. En el ensayo titulado "Of Health and Long Life",

escrito probablemente antes de 1686 (véase Woodbridge 1940, 212), Temple se refiere a

la elaboración de los antiguos sistemas médicos de Hipócrates y Galeno, los intentos de

Paracelso por "derrocar todo el esquema de Galeno" y su introducción del "uso de

medicinas químicas"; luego analiza a Harvey y la circulación de la sangre. Temple

(1821, I: 73) calificó esta sucesión de acontecimientos, los "grandes cambios o

revoluciones en el imperio físico", esto es, en el imperio de la "física" o medicina. La

palabra "imperio" sugiere que Temple no se refería al nuevo concepto de un solo hecho

drástico; sino al uso tradicional de "revolución" en la frase "revoluciones de los

imperios". Así lo confirma el hecho de que en otro escrito ("Heroic Virtue", 1821,

I:104) el autor concibe la revolución de los imperios como un desarrollo o sucesión de

acontecimientos. Por otra parte, el mismo Temple no creía en la revolución de Harvey y

sostenía que a pesar de "las expectativas de que introduciría grandes innovaciones

generales en la práctica de la física", la doctrina de la circulación "no ha tenido ese

efecto". En su Ancient and Modern Learning [1960 (1963), 71] Temple generalmente

toma partido por los antiguos: sostiene que los libros de los antiguos son los mejores y,

que, en las palabras de Alfonso el Sabio, lo único que vale la pena en la vida es "madera

vieja para quemar, vino viejo para beber, viejos amigos con quienes conversar y viejos

libros para leer". Se pregunta "cuáles son las ciencias en las que se supone que nos

destacamos". Desde hace 1500 años no aparece un filósofo digno de mención, "salvo

que Descartes y Hobbs pretendan serlo". En astronomía no halla "nada nuevo... a la

altura de los antiguos" salvo que sea el sistema copernicano, ni tampoco en la física que

no sea la circulación sanguínea de Harvey". Pero a Temple no le cabe duda de que

"aunque sean ciertos", "estos dos grandes descubrimientos no han introducido cambios

en las conclusiones de la astronomía ni en la práctica de la física". Por eso, aunque les

han proporcionado "gran honor a sus autores", esos descubrimientos han sido "de escasa

utilidad para el mundo" (págs. 56-57 y 71).

El tema de la revolución en la medicina también aparece en Nouveaux dialogues

des morts, de Fontenelle, publicado en 1683, que contiene un diálogo entre el médico y

fisiólogo alejandrino Erasístrato y William Harvey (llamado Hervé). Erasístrato inicia el

diálogo con un resumen de las "maravillas" (choses merveilleuses) relatadas por

Harvey: la sangre circula por el cuerpo, las venas transportan la sangre desde las

extremidades hasta el corazón, luego la sangre sale del corazón y penetra en las arterias,

que la transportan hacia las extremidades. Reconoce el error de los médicos de la

antigüedad, convencidos de que la sangre circulaba muy lentamente desde el corazón

hasta las extremidades, y asegura que el mundo está agradecido con Harvey por "haber

abolido el antiguo error". Pero en el diálogo siguiente, aunque reconoce que los

modernos son mejores científicos que los antiguos y poseen mayores conocimientos

sobre la naturaleza, Erasístrato afirma que "no son mejores médicos", "porque los

antiguos curaban a los enfermos tan bien como los médicos de la nueva época".

Harvey replica con la observación de que muchos pacientes habían muerto a

causa de que se desconocía la circulación sanguínea. "Entonces —pregunta

Erasístrato—, ¿realmente creéis que vuestros descubrimientos son útiles?" Cuando

Harvey asiente, Erasístrato pregunta por qué el número de muertos que llega a los

Campos 90

Elíseos es tan grande como antes. "¡Aja! —dice Harvey—, si mueren, la culpa es suya,

no de los médicos." La réplica de Harvey culmina con una observación optimista para el

futuro, cuando el mundo habrá tenido tiempo suficiente para hallar la aplicación útil de

descubrimientos efectuados muy recientemente", ya que con el paso del tiempo se verán

"muy grandes consecuencias". En la traducción inglesa de John Hughes (Fontenelle

1708), Erasístrato comenta acerbamente que habrá "no such Revolutions, take my Word

for it" [no habrá tales Revoluciones, creed en mi palabra]. En otras palabras, el hombre

adquirió tempranamente "cierta Medida de Conocimientos útiles" y podrá hacerle

algunos agregados pero jamás podrá superarla. El diálogo culmina con una observación

pesimista: todo cuanto descubran los hombres sobre el cuerpo humano será en vano,

porque "la Naturaleza no se dejará frustrar" y cada uno morirá en el momento indicado.

Este diálogo posee gran interés en el contexto actual. En primer lugar,

Fontenelle compara el descubrimiento de Harvey ("hallar un nuevo Conducto en el

Cuerpo del Hombre") con el de un astrónomo que encuentra una "nueva Estrella en los

Cielos": los dos son de escasa o nula utilidad práctica. En segundo lugar, aunque se

aferra estrictamente a la filosofía cartesiana, el autor refuta la afirmación del Discurso

del método, de que la investigación médica, si cuenta con el apoyo suficiente, producirá

una extensión indefinida de la duración de la vida. Por último, cabe observar que la

observación de Fontenelle (por boca de Erasístrato) de que [no habrá revoluciones] en la

medicina, es la antítesis directa de su propio reconocimiento de la revolución en la

matemática.

El hecho de negar una posible revolución se puede considerar una muestra del

rechazo general que sufrió el gran descubrimiento de Harvey entre los médicos

franceses (véase Roger 1971, 13,169). A pesar del ferviente apoyo brindado por

Descartes a ese descubrimiento, a Fontenelle le resultaba inconcebible que pudiera tener

grandes consecuencias para la medicina. Más aun, consideraba que no habría

revoluciones en la medicina. La frase "no such Revolutions"[no habrá tales

revoluciones] dicha por Erasístrato sin duda expresaba las convicciones de Fontenelle,

pero sus propias palabras eran un tanto diferentes. En la versión de John Hughes,

Erasístrato dice: "No habrá tales Revoluciones, creed en mi Palabra." En cambio, el

original francés dice: "Sur ma parole, rien ne changer" [creed en mi palabra, nada

cambiará].

La palabra "revolución" aparece en una carta del físico y químico Robert Boyle

fechada en noviembre de 1656, pero en el contexto de esfuerzo intelectual en relación

con la divinidad.

Os relato una Historia tan trivial a fin de que advirtáis a qué Grado de Locura lo lleva al

hombre insensato su frívolo atrevimiento: a qué extrañas Necedades es sometido el

Espíritu por la impúdica Insolencia de algunos. En cuanto al dominio Público, los

Hechos Recientes han sido tan Completos y totales que las Noticias se limitan a cuanto

sucede dentro de los Muros de Westminster, de modo que por ahora a lo sumo puedo

Transcribir o, en el mejor de los casos, Anticipar, los Periódicos. Cómo resultará

nuestro nuevo Representante, si es que lo tendremos, es algo que no me atrevo a

conjeturar: sobre todo por Escrito; sólo no dejaré de confesar que mis Esperanzas y

Temores obedecen a Motivos muy particulares; y que las Nubes de las cuales espero

vendrán lluvias fértiles o Furiosas Tormentas todavía no están en sus Vapores invisibles

y no condensados. En cuanto a nuestras Preocupaciones Intelectuales; espero con cierta

confianza una Revolución, de la cual la Teología saldrá muy Perdedora y la Verdadera

Filosofía florecerá, tal vez más allá de las esperanzas de los Hombres. (British Library

Harley MS 7003, folios 179/80)

91

Este autor no ha hallado ninguna afirmación similar de Boyle en un contexto

científico (ni James Jacob lo menciona en su libro sobre Boyle como revolucionario,

1979). Sin embargo, considerando la verbosidad de los escritos del científico, habría

que ser muy audaz para afirmar que tal referencia no existe.

Se ha dicho antes que muchos científicos del siglo XVII eran conscientes del

carácter novedoso de sus hallazgos y lo expresaban en los títulos de sus obras, y que los

más grandes entre ellos (Gilbert, Kepler, Galileo, Descartes, Harvey, Newton) se

expresaban públicamente sobre la cualidad no tradicional de su obra, a la vez que

adoptaban poses revolucionarias para señalar los errores de los autores antiguos y

medievales.

Hay un magnífico manifiesto de la nueva ciencia incipiente en la conclusión de

Experimental Philosophy, de Henry Power (1664). "Esta es la Era —dice— en que la

Filosofía llega con la fuerza de la primavera."'Tanto da que los peripatéticos traten de

detener el flujo de la marea" como que "impidan el desborde de la Filosofía libre". "Es

necesario deshacerse de la vieja Basura y derribar los Edificios podridos", porque éstos

"son los tiempos en que se pondrán nuevos Cimientos de una Filosofía magnífica, que

jamás será derribada". La nueva filosofía, dice, "estudiará empíricamente, a través de

los sentidos, los Phaenomena de la Naturaleza, deduciendo las Causas de las cosas de

los Originales de la Naturaleza, tal como observamos que son reproducibles por el Arte

y la infalible demostración de la Mecánica". Este "y ningún otro es el camino para erigir

una Filosofía nueva y permanente".

En los escritos de Fontenelle, de los primeros años del siglo XVIII, aparece una

afirmación moderna y explícita sobre la revolución en la matemática. El autor se refiere

al cálculo, inventado por Newton y Leibniz, que de todo punto de vista era la hazaña

intelectual más auténticamente revolucionaria del siglo XVII. Fontenelle recurre una y

otra vez al nuevo concepto de revolución para subrayar el carácter extraordinario de esa

matemática, que otorgaba a los científicos poderes muy superiores a los que "cabría

esperar". Ya en los comienzos de la revolución, los meros principiantes eran más

capaces de resolver problemas que los matemáticos más sabios y expertos del pasado

reciente.

En el terreno de la medicina, el médico W. Cockbum se refiere a Paracelso

empleando el término "revolución" explícitamente en el nuevo sentido, e incluso sugiere

que la revolución es un rasgo del desarrollo de los sistemas médicos. Esto sucedió en

1728, poco después de la muerte de Newton.

Tres décadas después, el matemático Clairaut exaltó a Newton como el iniciador

de una revolución en la ciencia de la mecánica racional, una disciplina fronteriza que

abarcaba la matemática y la física. Resulta significativo este reconocimiento tan claro

de la dimensión revolucionaria de los aportes de Newton a la matemática pura y la física

matemática, porque sus hallazgos representan el apogeo de la Revolución Científica.

Así, los testimonios de la época confirman el juicio expresado en estas páginas y

subrayan que las disciplinas en las que se produjeron la mayoría de los avances

revolucionarios en el siglo XVII fueron la matemática pura y la mecánica racional. (3)

92

NOTAS

(1) Correlacionando las fases de Venus con su tamaño aparente (con aumento constante)

Galileo demostró que el planeta gira alrededor del Sol y no de la Tierra. Con ello refutó a

Ptolomeo. Pero confirmaba no sólo el sistema de Copérnico sino también el de Tycho Brahe, se-

gún el cual el Sol gira alrededor de la Tierra estacionaría, mientras los demás planetas giran

alrededor del Sol.

(2) Una obra tardía de la Querella entre los Antiguos y los Modernos, Recherches sur l´

origine des découvertes attribueés aux modernes… de Louis Dutens (1766; ediciones

posteriores en 1776, 1796 y 1812) contiene una apostilla al segundo párrafo que dice

"réyolution dans les sciences", frase que también aparece en todos los índices analíticos de la

obra a partir de la segunda edición. Sin embargo, el contexto indica que Dutens se refería a un

retomo, un redescubrimiento de verdades científicas conocidas —al menos por principio— en la

antigüedad.

Sprat no se refiere a las revoluciones en las ciencias, pero sí emplea el término (1667

(1958), 383).

(3) La obra general más completa sobre la revolución científica es The Scientific

Revolution 1500-1800, de A. R. Hall (Londres, 1957; ed. corregida, 1983). Esta se puede

complementar con Man and Nature in the Renaissance, de Allan G. Debus (Cambridge, 1978) y

The construction of Modern Science: Mechanism and Mechanics, de R. S. Westfall (Nueva

York, 1971; reed. Cambridge, 1977). En The Death of Nature (San Francisco, 1980), Carolyn

Merchant subraya el paso de la visión del mundo orgánica a la mecanicista. The Mechanization

of the World Picture, de E. J. Dijksterhuis (Oxford, 1961) es una obra clásica. Para una reseña

más reciente, véase The Scientific Revolution, de P. M. Harmon (Londres, 1983).

El estudio precursor sobre el enfrentamiento entre los antiguos y los modernos es

Histoire de la querelle des anciens et des modernes, de Hippolyte Rigault (París, 1856), que se

complementa con el ensayo de Ferdinand Brunetiere, "La formation de l'idée de progres au

XVIII siécle" en sus Etudes critiques sur l'histoire de la littérature française, cinquième sèrie

(París, 1893) y con La querelle des anciens et des modernes de H. Guillot (París, 1914). The

idea of Progress, de John Bury (Nueva York, 1932; reed. Nueva York, 1955), sitúa el problema

en una perspectiva histórica más amplia. El estudio más importante de la relación entre la

batalla de los libros y el surgimiento de la nueva ciencia y la filosofía baconiana es Ancients and

Moderns: A Study of the Background of the Battle of the Books, de Richard Foster Jones (St.

Louis, 1936), publicado en versión corregida y aumentada bajo el título de Ancients and

Moderns: A Study of the Rise of the Scientific Movement in Seventeenth Century England (St.

Louis, 1961; reed. Nueva York, 1982). Hay dos estudios importantes en Journal of the History

of Ideas: "The Genesis of the Concept of Scientific Progress" de Edgard Zilsel (1945, 6: 325-

349) y "The Querelle of the Ancients and the Moderns as a Problem for Renaissance

Scholarship" (1959, 20:3 - 22).

93

Kepler, Gilbert y Galileo:

¿Una revolución en las ciencias físicas?

Los estudiosos que han escrito sobre la revolución copernicana concluyen por lo

general que tal revolución se concretó con las innovaciones introducidas por Kepler y

Galileo. La realidad es que las ideas novedosas y audaces de estos dos científicos van

mucho más allá de la mera concreción copernicana. Galileo era un copernicano

acérrimo, convencido de que sus descubrimientos con el telescopio confirmaban las

ideas de su predecesor. Pero su 'aporte a la ciencia del movimiento mediante el análisis

matemático y la experimentación fue mucho más revolucionario que la obra de

Copérnico. También Kepler lo reivindicaba, pero en última instancia sólo conservó los

dos axiomas copernicanos más generales; que el Sol permanece inmóvil y que la Tierra

gira y rota. En lugar de la compleja maquinaria del De Revolutionibus, Kepler elaboró

un sistema astronómico del universo nuevo y diferente, que en sus aspectos esenciales

aún sigue vigente. También postuló una nueva base dinámica para toda la astronomía.

La reformulación a dos puntas de la ciencia astronómica por Kepler fue

"revolucionaria" en el más alto grado. Pero es necesario preguntarse si la revolución fue

privada, contenida en sí misma, o bien pública. Y en este último caso, si produjo, de por

sí y en su época, una revolución en la ciencia, o bien si fue una revolución en los

papeles hasta que Newton u otro científico posterior comprendió su potencial

revolucionario. Es necesario formular las mismas preguntas con relación a Galileo,

También se examinará brevemente la obra de William Gilbert, un contemporáneo

mayor que ellos, que fue revolucionario no sólo por fomentar el arte de la

experimentación, sino también por su idea de que la Tierra es un colosal imán esférico,

Este concepto le sugirió a Kepler que las fuerzas magnéticas planetarias pudieran ser las

causas dinámicas de los movimientos planetarios.

Kepler, el revolucionario enigmático

Estudioso de la dinámica planetaria (el análisis de las fuerzas que provocan los

movimientos de los planetas) y de una astronomía basada en causas físicas más que en

dogmas cinemáticos, Johannes Kepler fue en parte un auténtico hombre moderno,

aunque, al mismo tiempo, se aferraba a las tradiciones del pasado. Creía realmente en la

astrología (fue el último de los grandes astrónomos que a la vez fue un astrólogo

practicante), y su pensamiento científico estaba imbuido de lo que se ha llamado

misticismo del número y disputaba desde los primeros principios de la necesidad

cosmológica. Nada lo enorgullecía más que su temprano "descubrimiento" de una

relación

125

directa entre el número, el tamaño y la disposición de las órbitas planetarias y la

existencia de cinco (y sólo cinco) cuerpos geométricos regulares. Uno de sus mayores

descubrimientos se debió a que tuvo la suene de eliminar un importante error

matemático al introducir un segundo error que anulaba el primero. Fue uno de los

astrónomos más grandes de la historia, pero sería fácil recopilar un tomo de sus escritos

para demostrar que su pensamiento y su ciencia eran anticientíficos en alto grado.

El título de su gran tratado de 1609 proclama con audacia el carácter

revolucionario de su astronomía; dice que ha creado una Astronomia Nova. Lo es por

muchas razones, pero en el título Kepler subraya qué la nueva astronomía se "basa en

causas", que es una "Astronomia Nova AITIOΛΟΓHTOΣ" (1) (Los caracteres griegos

aparecen en el original impreso.) El subtítulo dice que el libro es una Physica Coelestis,

una física celeste. Aparentemente, el autor quiso indicar que iba un paso más lejos que

Aristóteles. El griego había escrito su metafísica después de su física, y Kepler

reemplazaba esa metafísica por su nueva física celeste. Poco antes de publicar el libro,

Kepler escribió a Johann Georg Brengger (1937,16: 54) que allí expondría su nueva

"filosofía, o física celeste, en lugar de la teología celeste, o metafísica, de Aristóteles".

En la introducción de Astronomia Nova explica que ha explorado o investigado "las

causas naturales de los movimientos" (3:20). Basta señalar qué Kepler no tuvo

predecesores ni contemporáneos para demostrar hasta qué punto era revolucionario

buscar las causas de los movimientos planetarios en las fuerzas celestes..Ni siquiera el

gran Galileo pudo concebir una dinámica celeste, un sistema de fuerzas que produce

movimientos. Fue por ello que Alexandre Koyré (1961, 166) pudo escribir que el "título

mismo de la obra de Kepler no predice sino que directamente proclama una revolución".

La astronomía kepleriana fue nada menos que una reformulación total de ésa

disciplina en cuanto a sus objetivos, métodos y principios. Antes de Kepler los fines de

los astrónomos habían sido puramente cinemáticos, es decir, trataban de elaborar una

especie de geometría celeste (basada en círculos sobre círculos) mediante la cual se

pudieran obtener posiciones planetarias concordantes con las observaciones. Kepler

trataba de hallar las causas físicas de los movimientos, esto es, la razón del movimiento,

y no se limitaba a inventar o mejorar esquemas geométricos. El Sol, según él, era la

sede de las fuerzas en cuestión y, por consiguiente, el centro del universo. Por ello, el

Sol verdadero —no el "Sol medio" de Copérnico— debía ser él punto común de

intersección de todos los planos orbitales de los planetas.

En cuanto a los métodos, aplicaba la matemática para hallar la curva orbital real

(tamaño, forma, orientación) producida por la fuerza solar, haciendo caso omiso de

limitaciones arbitrarias como el movimiento uniforme, la trayectoria circular u otras por

el estilo. Descubrió, tras ardua labor, que cada planeta recorre una elipse, es decir, una

curva convexa simple. En la mayoría de los casos (la excepción es Mercurio) la forma

de la elipse es casi circular, pero el Sol no ocupa el centro, ni siquiera un punto cercano

a él; es como si se tratara de una órbita circular (o elíptica cuasi-circular) con un Sol

notablemente excéntrico. También descubrió que el movimiento del planeta a lo largo

de la elipse no es uniforme sino regido por una ley de las áreas. Esta ley explica por qué

el desplazamiento del planeta es más rápido en el perihelio (el punto de la órbita más

cercano al Sol) y más lento en el afelio (el punto más alejado).

La astronomía kepleriana se basa en un conjunto de principios nuevos del

movimiento: una física celeste de las fuerzas directamente relacionada con el concepto

de cuerpo, Para él, un planeta o un satélite planetario (fue él quien introdujo la palabra

126

"satélite" en la astronomía) es un objeto físico sin vida, como una piedra; carece de

fuerzas internas o activas propias. Debido a su cualidad de inerte (Kepler la llamó

inercia), semejante cuerpo no puede ponerse ni mantenerse en movimiento por sus

propios medios, sino que requiere la acción de una fuerza motriz. De esta propiedad de

pasividad o inercia se desprende, evidentemente, que el cuerpo volverá al estado de

reposo cuando quiera y donde quiera que la fuerza motriz deje de existir o de actuar.

Esta conclusión, que puede no parecer muy revolucionaría para un lector del siglo XX,

se oponía en forma directa a dos milenios dé pensamiento filosófico y científico

dominado por la concepción aristotélica de que un cuerpo sólo entraría en estado de

reposo al alcanzar su "lugar natural". La doctrina del lugar natural supone un espacio

jerárquico en él cual los cuerpos pesados descienden "naturalmente" hacia un centro

mientras los cuerpos livianos ascienden. Los espacios por los que se desplazan los

cuerpos celestes difieren del espacio en el que se encuentran o se mueven los cuerpos

"terrestres" debido a las diferencias jerárquicas de naturaleza y composición íntima de

estos tipos de cuerpos. Evidentemente, para un copernicano acérrimo como Kepler,

aferrado al concepto de la Tierra móvil, resultaba necesario abandonar el dogma de los

lugares naturales y la doctrina asociada, la del espacio jerárquico. Al exponer los nuevos

principios del espacio isotrópico; no jerárquico, la inexistencia de los lugares naturales"

y la inercia de la materia, Kepler actualizaba las implicaciones de la idea copernicana de

que las mismas leyes físicas rigen para la Tierra, su Luna y los planetas. Los principios

físicos keplerianos de inercia, fuerza y movimiento significaron el fin del cosmos

aristotélico y prepararon el terreno científico para el advenimiento de Newton. Si los movimientos de todos los planetas están regidos directamente por la

acción del Sol (puesto qué sus órbitas son elipses de las cuáles el astro ocupa uno de los

focos; y los movimientos orbitales obedecen a una ley de las áreas calculadas con

respecto a aquél), entonces debe existir una fuerza dirigida por éste que actúa sobre

aquéllos. Esto se deriva del concepto kepleriano del carácter esencialmente inerte de los

planetas y la consiguiente necesidad de una fuerza qué los mantenga en movimiento

orbital. Kepler llegó a la conclusión de que esa fuerza debía ser magnética. Conocía la

demostración de William Gilbert de que la Tierra es un gran imán esférica Puesto que la

Tierra es un planeta, ¿por qué los demás planetas y el Sol no habrían de ser imanes? Las

orientaciones de las polaridades magnéticas del Sol y un planeta determinarían la

configuración elíptica, no circular, de la órbita.

El concepto kepleriano de inercia no es el mismo que desarrollaron Galileo

(precisado luego por Descartes) y Newton. Pero su astronomía es más afín a la de

Newton que la de Galileo o Descartes porque establece la correlación de las órbitas y

los movimientos orbitales con las fuerzas que los producen. El hecho significativo no es

que Kepler haya equivocado la función fuerza (una fuerza inversamente proporcional a

la distancia en lugar de inversamente proporcional al cuadrado de la distancia), sino que

fuera capaz de concebir una fuerza celeste y que ésta fuera de alguna manera una

función inversa de la distancia.

En el prefacio de las Tablas rodolfinas, Kepler sostiene que un aspecto principal

(novedoso y revolucionario, sé diría hoy) de su obra es el haber "transferido la

astronomía en su conjunto de los círculos ficticios a las causas naturales". Dice que

Copérnico había elaborado su sistema a posteriori sobre la base de observaciones, pero

que la verdadera disposición del universo se podía demostrar a priori de la idea de la

creación y de la naturaleza y las propiedades de la materia/Incluso, añadió, semejan-

127

te demostración satisfaría al mismísimo Aristóteles, si estuviera vivo. Al apelar a las

causas últimas, creía haber superado a, Copérnico. Sin embargo, como le escribió a

Fabricio el 4 de julio de 1603 (1937,14:412), aún debía someter su hipótesis

astronómica a prueba y ratificarla mediante observaciones dé los cielos. En este sentido,

vale lo que Eric Aiton escribió al autor de estas líneas el 17 de marzo de 1979: "las

razones apriorísticas de Kepler no implican conclusiones necesarias sino probables".

No cabe duda de que Kepler tenía el proyecto de revolucionar la astronomía.

Personalidad introspectiva, anotaba el desarrollo de sus ideas y métodos en detalle.

Existen registros detallados del momento en que descubrió, por ejemplo, la tercera ley

de movimientos planetarios. En Astronomía Nova explicó minuciosamente y con todo

detalle las etapas de su revolución intelectual y su entrega a la misma; incluyó todos los

cálculos erróneos para que los lectores pudieran seguir paso a paso el desarrollo del

razonamiento que lo llevaría a descartar la astronomía circular tradicional y empezar a

estudiar otros tipos de curvas. Cuando el lector se cansa de leer folio tras folio de

cálculos que no conducen a nada, Kepler le recuerda cuánto más fatigoso fue para él

elaborar esos cálculos a mano. Kepler mandaba a imprenta sus resultados a medida que

los obtenía. La publicación de sus grandes obras —Mysterium Cosmographicum o El

enigma cosmográfico"(l596), Astronomía Nova (1609), Tablas rodolfinas (1627),

Harmonice Mundi o La armonía del mundo (1619) y Síntesis de la astronomía

copernicana (1618-1621)— significó el paso de la revolución intelectual a la revolución

en los papeles; los descubrimientos estaban impresos para que todos pudieran leerlos y

aprovecharlos.

¿Hubo una revolución en la ciencia? ¿Se puede afirmar que a partir de que

Kepler publicó sus descubrimientos, éstos alteraron la práctica de los astrónomos y se

convirtieron en parte integrante fundamental de su pensamiento? La respuesta parecer

ser negativa. En primer lugar, los astrónomos de la generación posterior a Kepler y

anterior a Newton no terminaron de aceptar la nueva astronomía. El pensamiento

astronómico dominante se centró en el sistema de vórtices de Descartes más que en la

dinámica de fuerzas celestes de Kepler. Por consiguiente, su descubrimiento no resiste

las dos primeras pruebas para determinar la existencia de una revolución en la ciencia.

Esto se debió en parte a que Kepler no supo elaborar una nueva mecánica que bastara a

los fines de la astronomía, como sí lo haría Newton más adelante, Kepler trató de

elaborar una dinámica celeste sobre bases aristotélicas modificadas, intento condenado

al fracaso.

Por otra parte, su idea de que pudieran existir fuerzas solares capaces de

extenderse en cientos de millones de kilómetros despertó una fuerte oposición. Galileo

no reconoció ni utilizó las tres leyes del movimiento planetario en su exposición de la

astronomía copernicana. En su Diálogo acerca de dos principales sistemas del mundo,

criticó el concepto kepleriano de que las fuerzas pueden transmitirse por el espacio de

manera tal que la Luna es la que produce las mareas. Si bien los astrónomos acabaron

por aceptar la ley de las órbitas elípticas (primera ley de Kepler), no comprendían la

función del segundo foco "vacío". Por otra parte, la ideado que las órbitas no fueran

combinaciones de círculos despertó una resistencia "natural", producto de prejuicios

seculares/Para muchos astrónomos, la ley de las áreas (segunda ley de Kepler) no era

útil sino conceptualmente confusa. En todo caso, como señaló su propio autor, la ley no

podía servir como base para efectuar cálculos precisos de las posiciones planetarias sino

que exigía el empleo de aproximaciones. En lugar de la ley de las áreas, los astrónomos

de la época entre Kepler y Newton tendían a apli-

128

car una aproximación directa basada en la rotación uniforme de un radio vector centrado

en el foco vacío (que así cumplía de alguna manera la función de ecuante). Pero las

leyes resultaban extrañas incluso para quienes estaban dispuestos a aceptarlas y

aplicarlas, puesto que no estaba demostrada su asociación causal o deductiva con los

principios fundamentales.

Muchos astrónomos comprendieron la ley armónica, o tercera ley (anunciada en

La armonía del mundo, de 1619, pero no en Astronomía Nova de 1609), que demostraba

la relación constante entre el cuadrado del período sideral del planeta y el cubo de su

distancia media del Sol. Pero la ley, aunque interesante, no poseía aplicaciones prácticas

ya que no permitía predecir ningún fenómeno, no obedecía a causas o razones o

justificaciones físicas manifiestas y no parecía ser más que otra de las muchas

curiosidades numéricas que poblaban la obra de Kepler. La ley no permitía calcular las

posiciones ni determinar las órbitas de los planetas. Una posible aplicación era la

predicción del período de un planeta a una distancia determinada del Sol, pero ése era

un problema de interés teórico más que práctico. Al igual que en la ley de las elipses y

la de las áreas, no se discernía un principio físico en la acción de la tercera ley.

Por otra parte; al abordar la astronomía kepleriana, se debe recordar que en su

resumen final (la Síntesis de astronomía copernicana) el autor no sólo formuló las tres

leyes del movimiento planetario que hoy llevan su nombre sino muchísimas más.

Algunas se referían a las relaciones entre el tamaño y el orden de los planetas, las reglas

para las excentricidades de sus órbitas: leyes que hoy se descartarían por ser meramente

numerológicas. La obra incluye el primer descubrimiento del autor: la ley que relaciona

el número y el tamaño de las órbitas con los cinco cuerpos regulares platónicos. Otra

dificultad planteada por la astronomía kepleriana era su combinación de principios

físicos mecánicos y animistas. No se trataba de una dinámica pura de las fuerzas físicas

y los movimientos causados por ellas. Por ejemplo, atribuía el movimiento orbital, o

revolución, de los planetas a la fuerza solar-planetaria (magnética), pero sostenía que la

rotación continua de la Tierra y el Sol se debía a un principio animista o espiritual. En

Kepler, "los principios animista y mecanicista se disputan la primacía como causantes

de los movimientos" (Gaspar 1959,296).

El hecho es que muy pocas obras de astronomía teórica o práctica anteriores a

los Principia de Newton (1687) mencionan las tres leyes del movimiento planetario, ni

mucho menos las fuerzas celestes que producen los movimientos orbitales. Parece

evidente, pues, que no hubo una revolución científica kepleriana antes de 1687.

Retrospectivamente se puede concluir que el proyecto de Kepler fue una revolución en

los papeles, no porque su autor fuera intelectualmente incapaz de elaborar un sistema

dinámico que explicara las leyes del movimiento planetario descubiertas por él, sino

porque no supo convencer a la mayoría de sus contemporáneos y sucesores inmediatos

de las bondades de su astronomía planetaria elíptica ni de su física celeste.

William Gilbert, experimentalista

William Gilbert, como Kepler, debe ubicarse entre los científicos

revolucionarios de principios del siglo XVII. En el subtítulo de De Magnete (1600),

donde expuso su novedosa ciencia, afirmó que su obra era una "Physiologia nova,

plurimis & argumentis & experimentis demonstrata", esto es, una "nueva fisiología" o

filosofía natural, una ciencia de la naturaleza "demostrada mediante muchos argumentos

y ex- 129

perimentos". La nueva filosofía natural era el magnetismo, y el título informaba al lector

que Gilbert indagaba en el imán o magneto (de magnete) o calamita, en los "cuerpos

magnéticos" (como el hierro imantado) y también en "ese gran imán, la Tierra". A lo

largo de la obra Gilbert destaca la importancia de la experimentación, un concepto que

implica el conocimiento basado en la experiencia práctica real, la demostración a través

de la práctica. En el latín posclásico los términos experimentum y experientia

significaban a la vez "experiencia" (en el sentido de "lo que todos saben") y

"experimento"; en la actualidad los dos significados son expresados por la palabra

francesa expérience y la italiana esperienza. Con ello Gilbert ponía el énfasis en la

experiencia práctica real (por ejemplo, la de los navegantes y los herreros), en el estudio

directo de la naturaleza mediante la experimentación y en el conocimiento basado en la

experiencia en lugar de la intuición o la especulación.

Reunió un cúmulo tan grande de información experimental nueva que, además

de destacar el hecho en el subtítulo de su obra, puso gran cantidad de asteriscos en los

márgenes para resaltar "nuestros propios descubrimientos y experimentos", algunos

mayores y otros menores, "según la importancia y la sutileza del asunto" (1900, ii). Un

buen ejemplo de su nuevo enfoque experimental es su investigación de la atracción que

ejerce el ámbar al ser frotado (libro 2, cap. 2). Fustiga a los filósofos de "nuestra propia

época" que "no hacen ninguna investigación, no se apoyan eh la experiencia práctica...

no progresan" (pág. 48):

Porque no son sólo el ámbar y el azabache (como ellos suponen) los que atraen

pequeños objetos; el Diamante, el Zafiro, el Rubí, la piedra Iris, el Ópalo, la Amatista,

la Vincentina y la Bristolla (una piedra o espato inglés), el Berilio y el Cristal hacen lo

mismo. También se han comprobado poderes de atracción similares en el vidrio (sobre

todo cuando es claro y traslúcido), las falsas gemas de vidrio o Cristal, el vidrio de

antimonio, y muchas clases de espatos de las minas, así como las Belemnitas. El Azufre

también atrae, lo mismo que el mástique y el lacre duro compuesto de laca teñida de

varios colores. La resina más bien dura atrae, lo mismo que el oropimente, pero con

menos fuerza; también lo hacen con dificultad, si el cielo está adecuadamente seco, la

sal gruesa, la mica blanca y el alumbre de roca.

El prefacio de De Magnete, dirigido "al lector ingenuo", es una de las

declaraciones de principios más estridentes de la Revolución Científica. Exalta la

superioridad de los "experimentos dignos de confianza" y los "argumentos

demostrados" sobre las "especulaciones probables y las opiniones de los profesores

vulgares de filosofía". El autor se refiere a "nuestra Filosofía... desarrollada... a partir de

las cosas cuidadosamente observadas", a "demostraciones reales y... experimentos que

se manifiestan claramente a los sentidos", y a "la gran gama de experimentos y

descubrimientos (mediante los cuales florecen todas las filosofías)". Describe el método

correcto para filosofar, que progresa "desde las cosas que son menos oscuras" a "otras

que son más notables" y por último a "las cosas ocultas y más secretas del globo de la

Tierra", de manera que "se hacen conocer las causas de aquellas cosas que sea por

ignorancia de los antiguos o negligencia de los modernos, permanecen desconocidas e

ignoradas" (folio ii).

La obra de Gilbert no es un mero registro de hallazgos empíricos; también

desarrolló teorías y formuló hipótesis. Su descubrimiento científico más profundo fue

que la Tierra misma es un gran imán con dos polos magnéticos, norte y sur. Afirmó

haber demostrado experimentalmente que una piedra imán bipolar perfectamente

esférica 130

gira sobre su eje, y de ahí concluyó que la Tierra rotaba, tal como había dicho

Copérnico. Pero Gilbert no era un copernicano, es decir, no le interesaba la traslación de

la Tierra, que para él no era una propiedad magnética.

La importancia de la afirmación de Gilbert sobre la gestación de una nueva cien-

cia no se ve disminuida por el hecho de que De Magnete no desarrolla su proyecto con

todo detalle. Vivió, cómo Kepler, en una época de transición, y por ello no es

sorprendente descubrir que "detrás de tanto regaño y fanfarronería hay un peripatético

moderado capaz de plagiar a quienes critica" (Heilbron 1979,169). Aunque Heilbron se

niega, con razón, a reconocer "en Gilbert a un héroe revolucionario" y a aceptar su

"fanfarronería renacentista", sí le reconoce el mérito de haber publicado "una de las

primeras monografías dedicadas a una rama particular de la física terrestre", uno de "los

primeros informes sobre una extensa serie de experimentos confirmados, vinculados

entre sí".

Pero a pesar de su fervor revolucionario, Gilbert no creó una nueva ciencia. Las

pruebas de la época y las obras sobre magnetismo escritas durante los cincuenta años

siguientes no muestran una transformación drástica de la disciplina. Su capítulo sobre la

atracción eléctrica, aunque novedoso y sorprendente, no llevó a los científicos a fundar

una nueva rama de la física; eso ocurrió en el siglo siguiente. Por consiguiente, su obra

no pasa las dos primeras pruebas, y ni los historiadores ni los científicos hablan de una

revolución gilbertiana. Por eso, el revolucionario produjo a lo sumo una revolución

incompleta en los papeles. De Magnete contiene, por cierto, las semillas de una

revolución, pero no la produjo.

A pesar de todo, la obra de Gilbert es señal y expresión de una revolución en

curso, en la que la ciencia pasaba de temas principalmente filosóficos y abstractos a

otros basados eh la experiencia, y en particular en esa ritma especial de la experiencia

que consiste en interrogar directamente a la naturaleza mediante el experimento.

La ciencia revolucionaria de Galileo

Galileo fue el primer y principal científico en desarrollar el nuevo arte de la

ciencia experimental. Su proyecto científico era tan revolucionario como el de Kepler y

de mayor envergadura que éste por cuanto incluía métodos y resultados que podían

afectar todas las ciencias; Sus obras, a diferencia de las de Kepler, gozaron de amplia

difusión, fueron traducidas a varios idiomas y ejercieron una gran influencia sobre el

pensamiento científico de su época. Influencia posiblemente amplificada por la fama

que 10 granjeó su juicio y condena. Galileo hizo una multitud de descubrimientos, pero

su actividad revolucionaria puede clasificarse en cuatro disciplinas distintas: la

astronomía telescópica, los principios y las leyes del movimiento, la manera de

relacionar la matemática con la experiencia y la ciencia experimental o de la

experimentación. (Existen buenos argumentos a favor de una quinta disciplina, la

filosofía de la ciencia, pero varios rasgos revolucionarios de este aspecto del

pensamiento galileano están subsumidos bajo los, rótulos de la ciencia experimental y la

relación de la matemática con la experiencia)

Hay muchos testigos de la obra revolucionaria de Galileo en la ciencia del mo-

vimiento. Además, varios físicos de mediados del siglo XVII—Christian Huygens, John

Wallis, Robert Hooke; Isaac Newton— reconocieron y aplicaron sus leyes y principios.

Historiadores y filósofos de la ciencia de los dos últimos siglos han

131

saludado su revolución. Además, los físicos y otros científicos; lo consideran un héroe

revolucionario, hasta el punto de exagerar su papel para atribuirle el origen de la ciencia

moderna y el método científico o experimental; así; como el descubrimiento de las dos

primeras leyes newtonianas del movimiento. En síntesis, Galileo parece pasar

fácilmente todas las pruebas de la revolución en la ciencia. La primera exposición pública de su ciencia revolucionaria data de 1610, cuando

dio a conocer la entrega inicial de sus exploraciones del cielo con el telescopio. En el

capítulo 1 de esta obra hemos visto cómo transformó Galileo sus experiencias visuales

individuales en conclusiones intelectuales sobre los cielos. Mediante los principios de la

analogía y de la óptica física demostró que la superficie de la (Luna, como la de la

Tierra, es escarpada y ondulada. Descubrió que el resplandor de la Tierra ilumina la

Luna, qué Júpiter tiene un sistema de cuatro lunas y que Venias tiene fases. Su

telescopio no sólo reveló nuevos datos sobre los cuerpos celestes conocidos —el Sol, la

Tierra, la Luna y los planetas— sino que puso al alcance de la vista una multitud de

estrellas (y lunas) jamás percibidas antes por ojos humanos. Gracias a sus descubrimientos y los de otros científicos, la humanidad tuvo su

primera visión real del cielo. Al relacionar las fases con el tamaño aparente de Venus,

demostró que el planeta gira alrededor del Sol, no de la tierra refutando así a Ptolomeo.

Todos estos descubrimientos corroboran, la tesis copernicana de que la Tierra es un

planeta más, que las similitudes entre la Tierra y los planetas superan las diferencias. A

partir de ellos, Galileo afirmó que había corroborado la exactitud del sistema

copernicano (a pesar de que sus descubrimientos, eran perfectamente compatibles con el

de Tycho Brahe, en el cual la Tierra inmóvil ocupa el centro mientras los demás

planetas giran alrededor del Sal, que ¿a su vez se traslada alrededor de la Tierra). (2) Estos descubrimientos revolucionaron la astronomía basada en la observación y

modificaron drásticamente el nivel de discusión de la astronomía copernicana. Antes de

1610, el sistema de Copérnico podía parecer un ejercicio intelectual, un esquema

computacional hipotético, un disparate filosófico ya que la Tierra no nos parece un

planeta (éstos aparecen a la vista como estrellas muy brillantes). Pero a partir de las

revelaciones de 1610 y sus secuelas, los científicos podían argumentar (y lo hacían) que

la Tierra en verdad era similar a los planetas y por lo tanto debía poseer el mismo tipo

de movimiento. Copérnico, tenía razón al afirmar que la Tierra es solo "un planeta

más". La única defensa contra el nuevo copernicanismo de orientación empírica era,

negarse a mirar por el telescopio o afirmar que lo que se veía era un artificio óptico o

una distorsión provocada por el lente y de ninguna manera una imagen verdadera de los

planetas. El hecho de que algunos filósofos muy inteligentes adoptaran esta postura

demuestra hasta qué punto era revolucionario y novedoso en esa época basar el

conocimiento de la naturaleza en las pruebas experimentales. La segunda disciplina en la que Galileo introdujo transformaciones

revolucionarias fue la ciencia del movimiento, tema considerado de fundamental

importancia para la filosofía natural; por ello en su diálogo sobre las Dos nuevas

ciencias (1638), tercera jornada, primer párrafo, se jactó de que presentaba "una ciencia

novísima sobre un tema muy antiguo" (Galileo 1974, 147). Se puede atribuir a Galileo

el descubrimiento de muchas leyes y principios del movimiento. Descubrió el

isocronismo del péndulo; es decir, el fenómeno por el cual un péndulo que oscila

libremente recorre arcos decrecientes en tiempos (casi) constantes. Mediante un

experimento espectacular demostró que cuerpos de distinto peso caen en el aire casi a

132

la misma velocidad y no a velocidades proporcionales a sus pesos (como pensaban los

aristotélicos y aún Hoy cree la mayoría de las personas que no han estudiado física).

Descubrió que la caída libre es una forma de movimiento uniformemente acelerado, es

decir; que la velocidad es proporcional al tiempo y la distancia al cuadrado del tiempo.

Introdujo el principio de la independencia de las velocidades vectoriales y el método

para combinarlas o componerlas, y lo aplicó al problema de la trayectoria de

proyectiles. Demostró que, por tratarse de una parábola, una pieza de artillería logra su

máximo alcance cuando existe un ángulo de inclinación de 45° entre el cañón y el

horizonte. Este análisis de la trayectoria parabólica del proyectil fue el primer esbozo de la

formulación del principio de movimiento de inercia. Expuso lo que constituye

aparentemente el primero de una serie de conceptos que, a través de transformaciones

sucesivas condujo a la ley newtoniana de inercia en 1687. Cabe señalar, empero, que el

análisis galileano del movimiento se mantiene principalmente en el nivel de la

cinemática. Dicho de otra manera, aunque la acción de las fuerzas estaba implícita en su

análisis, Galileo no trató de descubrir las fuerzas que producen (o causan) los

movimientos ni las relaciones matemáticas exactas entre unas y otros. En tercer lugar se puede mencionar el aporte de Galileo a la matemática. La

ciencia moderna, sobre todo la física, se caracteriza por la expresión matemática de sus

principios y leyes fundamentales. Este aspecto adquirió gran importancia en el siglo

XVII y alcanzó su máxima expresión en los Principios matemáticos de la filosofía

natural (o Principia) de Newton. El aspecto revolucionario de la metodología galileana

queda revelado en un ejemplo de la tercera jornada de Dos nuevas ciencias, referido al

''movimiento naturalmente acelerado". En la introducción al tema, el autor explica que

es perfectamente legítimo inventar cualquier tipo de movimiento y descubrir sus

propiedades en forma matemática, como se ha hecho con frecuencia en el pasado. Sin

embargo, él seguirá otro camino: "buscar y clarificar la definición más acorde con ese

[movimiento acelerado] que emplea la naturaleza". Al contemplar la caída de una piedra

"en reposo a cierta altura", concluye que la adquisición sucesiva de "nuevos

incrementos de velocidad obedece a "la regla más sencilla y evidente" (Galileo

1974,153-154), que es que el agregado se efectúa constantemente en la misma

proporción. De ahí que el aumento de velocidad será constante ya sea (a) en cada tramo

sucesivo y equivalente de la distancia recorrida, o bien (b) en cada lapso sucesivo y

equivalente de tiempo transcurrido. Tras descartar la regla de distancia equivalente con

argumentos lógicos, el autor desarrolla varias consecuencias matemáticas de la regla del

tiempo equivalente, entre ellas la de que en el movimiento uniformemente acelerado

"los espacios recorridos en tiempos cualesquiera son entre sí como los cuadrados de la

relación de sus tiempos" (es decir, las; proporciones con los cuadrados de los tiempos

son constantes). A continuación, Galileo se pregunta si "ésta es la aceleración empleada

por la naturaleza en el movimiento de caída de sus cuerpos". Para hallar la respuesta se debe realizar un experimento, procedimiento "habitual

y necesario en aquellas ciencias que aplican demostraciones matemáticas a las

conclusiones físicas" (Galileo 1974, 169). El experimento puede parecer bastante fácil,

pero para diseñarlo y luego para interpretar sus resultados se requería un profundo

conocimiento de los principios fundamentales de la ciencia moderna (véase más

adelante). La comparación del método de Galileo con los procedimientos aplicados por

los matemáticos-filósofos medievales, que habían explorado activamente el

133

tema del movimiento durante los siglos XII, XIII y XIV, (capítulo 5), permite apreciar

hasta qué punto aquél era novedoso y revolucionario. La matemática medieval se

desarrollaba en un plano de abstracción en el cual el movimiento era una categoría

general que abarcaba cualquier paso cuantificable de "potencia" a "acto" (la definición

de Aristóteles), que tanto podía ser el amor y la gracia como el movimiento local

(desplazamiento de un lugar a otro). De ahí la audacia de Galileo al desarrollar leyes

matemáticas que concordaran con los movimientos verificados en la naturaleza y fueran

ejemplos de ellos. Tampoco tenía precedentes el método de someter las leyes físicas

descubiertas a la prueba experimental, el cuarto gran aporte de Galileo a la ciencia.

Su elaboración matemática de las leyes del movimiento uniforme,

uniformemente acelerado y el de los proyectiles, entre otros, expresa un rasgo general

de la ciencia del siglo XVII cuya importancia es imposible exagerar: la idea de que las

leyes fundamentales de la naturaleza deben ser matemáticas. La primacía de la

matemática asumió distintas formas a lo largo del siglo. Por ejemplo, en el nivel más

elemental, podía significar la mera cuantificación, el empleo de medidas numéricas. O

bien se podía aplicar el dogma platónico de que las verdades del universo se deben

descubrir mediante la matemática con prescindencia de la observación y la

experimentación, que las propiedades matemáticas son más importantes que la

concordancia con el mundo de la experiencia. Como se señaló anteriormente, durante

buena parte de la historia de la humanidad se consideró que los círculos encamaban la

perfección, por lo que eran la figura más adecuada para las trayectorias de los cuerpos

celestes. Galileo se pronunció en contra de tales concepciones abstractas de las

propiedades geométricas; sostuvo que podían existir distintas figuras geométricas

apropiadas para los diferentes fenómenos. Desde luego que la idea de que la matemática

era la expresión más elevada de una ciencia era muy anterior al siglo XVII: la obra

maestra de Ptolomeo en astronomía llevaba por título La sintaxis (o composición)

matemática. Pero hay una diferencia entre esas visiones tradicionales de la matemática

y la nueva ciencia: para Galileo debía existir una armonía entre el mundo de la

experiencia y la forma matemática del conocimiento, y se alcanzaba mediante el

experimento y la observación crítica.

Sin embargo, Galileo no se refería a la matemática tal como se la entiende hoy,

es decir, al empleo de ecuaciones algebraicas, proporciones mixtas (del tipo "la

distancia es proporcional al cuadrado del tiempo"), derivadas o el cálculo diferencial e

integral, sino más bien a secuencias numéricas. Ejemplo de ello es la regla de que las

velocidades de un cuerpo en caída libre al cabo de sucesivos intervalos de tiempo

iguales entre sí son como los números naturales (o enteros) a partir de la unidad, o que

las distancias recorridas en sucesivos intervalos iguales de tiempo son entre sí como los

números impares o que las distancias recorridas en tiempos cualesquiera son como los

cuadrados. En El ensayador (1957, 237-238), aparece una célebre afirmación sobre la

matemática de la naturaleza en la que Galileo demuestra que las consideraciones

geométricas son tan importantes como las reglas numéricas. "La filosofía [la filosofía

natural, la ciencia] está escrita en el gran libro del universo que se encuentra siempre

abierto ante nuestros ojos"; pero ese libro"es incomprensible si uno no aprende antes a

comprender su lenguaje y a leer las letras en las que está compuesto. Está escrito en el

lenguaje de la matemática y sus caracteres son triángulos, círculos y otras figuras

geométricas sin las cuales es humanamente imposible comprender una sola de sus

palabras". Lo importante, entonces, en la matemática

134

galileana no es que haya introducido alguna innovación en la disciplina en sí sino su

afirmación clara y vigorosa sobre la necesidad de expresar los fenómenos naturales en

términos matemáticos, hallar leyes matemáticas de la naturaleza basadas en la

experimentación y la observación.

En cuanto a la metodología de la experimentación científica, cabe expresar una

advertencia. Muchos estudiosos (sobre todo John Herman Randall (h.)) han realizado

investigaciones en busca de los precursores de la metodología científica de Galileo. En

opinión del autor de estas líneas, muchos historiadores cometen el grave error de no

establecer una ciara distinción entre afirmaciones abstractas o preceptos sobre el método

y la actividad científica real. El tema de la experimentación y la manera de realizar la

investigación científica aparece en muchos autores italianos del siglo XVI, pero cabe

cuestionar si en verdad se trata de referencias a la experimentación, por cuanto ninguno

de esos individuos se dedicó a la investigación científica. Por otra parte, el latín y las

lenguas romances utilizan la misma palabra como sinónimo de experimento,

experiencia y en general para lo que todos saben.

El mejor ejemplo del método de abordar un problema determinado mediante la

realización de un experimento es la célebre anécdota de cómo Galileo dejó caer dos

objetos de distinto peso desde la altura de una torre. Las crónicas sensacionalistas del

ataque de Galileo a los aristotélicos mediante una exhibición pública en la Torre de Pisa

son indudablemente falsas. Sin embargo, un apunte en sus cuadernos dice que dejó caer

pesos "desde una torre". Con ello se preguntaba si el "sentido común" tradicional tenía

razón al afirmar que la velocidad de los cuerpos pesados en caída libre es proporcional a

sus respectivos pesos. Galileo utilizó otro experimento para verificar su hipótesis de que

la caída libre de los cuerpos sufre una aceleración uniforme. El problema, en lenguaje

actual, sería averiguar si el aumento de la velocidad de un cuerpo en caída libre es

directamente proporcional al tiempo transcurrido. Aquí se revelan muchas de las

dificultades que surgen al realizar un experimento para hallar la respuesta a esta clase de

pregunta. Ya que resulta imposible determinar esta relación en forma directa. Por

consiguiente, Galileo somete a prueba otra ley, consecuencia lógica de la anterior: que

la distancia es proporcional al cuadrado del tiempo. Tampoco esta prueba está al alcance

de sus posibilidades, porque la velocidad de un cuerpo en caída libre supera sus

posibilidades de medición. Por consiguiente, "diluye la gravedad", como dice él mismo,

efectuando sus experimentos sobre un plano inclinado. Entonces descubre que la ley del

cuadrado del tiempo supera la prueba experimental. Desde luego» como gran

experimentador, Galileo reconoció la importancia de efectuar pruebas con distintas

inclinaciones del plano: en todos los casos la ley superó la prueba. Aquí no se entrará en

detalle sobre la resolución matemática de los componentes de la gravedad según el

ángulo de inclinación del plano. Baste señalar que en este célebre ejemplo se revelan los

procesos intelectuales y las complejidades de la "ciencia" necesaria para diseñar un

experimento capaz de poner a prueba una ley aparentemente sencilla: que la distancia es

proporcional al cuadrado del tiempo.

Así además de reconocer que el razonamiento matemático abstracto sobre el

movimiento en general podía aplicarse a los movimientos reales observados en la

naturaleza, y de descubrir la técnica que permitiera someter las leyes matemáticas a la

prueba experimental; Galileo también supo tener en cuenta las diferencias entre las

situaciones ideales y experimentales. Por ejemplo, mediante un experimento descubrió

que si dos cuerpos de distinto peso caen desde una torre, el más pesado llega al

135

suelo un poco antes que el otro; atribuyó esa pequeña diferencia a la fricción del aire y

la capacidad relativa de los cuerpos pesados y livianos de superar esa resistencia.

Concluyó que en la situación ideal, es decir, en el vacío o en el espacio, la caída sería

idéntica para los dos cuerpos. Además de realizar experimentos para poner a prueba una hipótesis, Galileo

exploró experimentalmente distintas fenómenos. Tras un estudio cuidadoso de los

manuscritos galileanos, Stillman Drake ha podido reconstruir varios de esos

experimentos de tipo exploratorio, que bien podrían ser la clave de la idea del

movimiento inercial y que aparentemente le permitieron descubrir las leyes del

movimiento uniforme y acelerado por una vía un tanto distinta de la descrita en Dos

nuevas ciencias.

Por cierto que Galillo no fue el primer científico que aplicó el método

experimental, pero sí fue uno de los primeros grandes científicos que incluyó la

experimentación como parte integrante de su ciencia, junto con e1 análisis matemático.

Más aun, la combinación de uno y otro (como en el experimento del plano inclinado) le

ha ganado con justicia un lugar entre los fundadores del método científico de

investigación.

Sus numerosos experimentos y observaciones astronómicos encarnan dos

características revolucionarias de su filosofía científica (según explica Stillman Drake

en su correspondencia con el autor de este libro). Una es la afirmación de Galileo de que

las "experiencias sensatas y las demostraciones necesarias" tienen "prioridad sobre los

dogmas, sean filosóficos o teológicos". Hubo que esperar hasta el siglo XIX para que

"la mayoría de los científicos adoptaran una postura similar". El segundo aspecto del

enfoque galileano relacionado con el anterior (y que según Drake es "la principal

innovación de su ciencia, mencionada por Galileo en muchas obras") es "la falta de

mérito de la autoridad para resolver una cuestión científica". En Cuerpos en el agua,

sostiene que "la autoridad de Arquímedes no es más válida que la de Aristóteles;

Arquímedes tuvo razón porque sus conclusiones concordaban con los experimentos".

Según Drake, "para Galileo, lo único novedoso que había en su ciencia eran sus

descubrimientos, elocuentes de por sí". Se puede coincidir; con Drake en que Galileo

sólo "consideraba que aplicaba a la física el mismo método que Ptolomeo había

aplicado con tanto éxito a la astronomía; es decir, la medición esmerada, aplicada

geométrica y aritméticamente a una predicción susceptible de ser puesta a prueba, sin

entrar en consideraciones causales en el sentido antiguo [aristotélico], ni [recurrir a]

principios metafísicos".

Cuando sus descubrimientos alcanzaron amplia difusión, Galileo fue reconocido

como reformador o renovador de la ciencia del movimiento. Walter Charleton, en su

Physiologia de 1654 —obra consagrada principalmente a la filosofía natural atomista

antigua y nueva, pero que contiene una excelente exposición de los descubrimientos en

la ciencia del movimiento realizados por Galileo, Gassendi y Descartes— no deja lugar

a dudas en cuanto al carácter novedoso de los estudios de Galileo. Afirma que la hazaña

del "Gran Galileo" fue ''sentar las bases de… la Naturaleza del Movimiento" que

produjo una "subversión" de "la Doctrina de Aristóteles al respecto" (pág. 435). Dice

desconocer "Investigación alguna por parte de los Antiguos" sobre "la PROPORCIÓN o

Relación en la que "aumenta" la velocidad en el "movimiento Descendente de los

cuerpos", descubierta por Galileo. Además, "el Gran Galileo" había efectuado una

"incomparable Indagación en los misterios más recónditos de la Naturaleza" (págs. 435-

455).

136

En la literatura científica del siglo XVII se presenta a Galileo no sólo como el

descubridor de las leyes del movimiento y el refutador de Aristóteles, sino también

como el gran estudioso de los cielos mediante un telescopio. En su ensayo "Modern

Improvements of Useful Knowledge" (1676, 18-19), Joseph Glanvill dedica una página

entera a los descubrimientos de Galileo:

En la siguiente Época después [de Tycho Brahe], que es la nuestra, se ha hecho un uso

excelente de sus Descubrimientos y los de su Antecesor, el afamado Copérnico; y se ha

elevado la Astronomía a la más noble altura y Perfección de que jamás haya gozado

entre los Hombres. Se necesitaría un Volumen para describir todos y cada uno de los

Descubrimientos como corresponde: Pero mi Plan sólo permite una breve mención: Por

consiguiente, para ser breve, empiezo por Galileo, considerado Autor del famoso

Telescopio; aunque en verdad la gloria de la primera Invención de ese excelente Tubo

corresponde a Jacobus Metius de Amsterdam: si bien fue mejorado por el noble Galileo,

quien fue el primero, en aplicarlo a las Estrellas; con cuya incomparable Ventaja

descubrió la Naturaleza de la Galaxia, las 21 Nuevas Estrellas que componen la

Nebulosa en la Cabeza de Orión, las 36 que las unen en aquella otra en Cáncer, las

Ansulae Saturni, las Asseclae de Júpiter, de cuyos Movimientos compuso una

Efemérides. Se cree que mediante estas Lunulae se podrá determinar la distancia de

Júpiter de la Tierra así como la distancia de los Meridianos, lo que sería de mucha

utilidad, puesto que esto siempre se ha medido mediante Eclipses Lunares, que suceden

una o dos veces en el año; mientras que las oportunidades para Calcular mediante la

ocultación de estos nuevos Planetas serán frecuentes, puesto que ocurren unas 480

veces en el año. Además (para apresurarnos), Galileo descubrió las extrañas Fases de

Saturno de las cuales una es ob-longa y luego redonda, el incremento y decrecimiento

de Venus, como la Luna; las Manchas en el Sol, y su Revolución sobre su propio Eje; la

libración de la Luna, reunida de las varias posiciones de sus Maculae; y diversas otras

Rarezas maravillosas y útiles, desconocidas en toda la Antigüedad.

Después de este párrafo, que deja al lector sin aliento, es sorprendente que

Glanvill dedicara apenas una breve mención a Kepler:

A continuación ha de mencionarse a Kepler, el primero que propuso la Hipótesis

Elíptica, efectuó Observaciones muy precisas y luminosas sobre los Movimientos de

Marte y escribió una Síntesis de la Astronomía Copernicana, con el Método más claro y

perspicuo, que contiene los Descubrimientos de otros y muchos e importantes que son

suyos; por no hablar de su Efemérides y su Libro sobre los Cometas.

Glanvill ni siquiera menciona la ley de las áreas ni la ley de la armonía; evidentemente,

no reconocía mérito al proyecto kepleriano de elaborar una nueva astronomía sobre las

causas físicas de los movimientos planetarios.

En los Principia Newton dice que Galileo conocía no sólo las dos primeras de

las tres leyes del movimiento sino también los dos primeros corolarios, que tratan de la

composición y resolución de las velocidades vectoriales. Por consiguiente, Newton

consideraba a Galileo el fundador de la mecánica racional, a la vez que atribuía a Kepler

un papel menor: el descubrimiento de la tercera ley, o ley armónica de los movimientos

planetarios y la observación de cometas, (Para un estudio de Newton y Kepler véase

Cohen 1975).

La astronomía del siglo XVII era indudablemente galileana. Como precursor en

el uso del telescopio, Galileo revolucionó la astronomía basada en la observación y se

137

ganó un lugar entre los fundadores de la ciencia moderna. Sus estudios de la caída libre

y su análisis de la trayectoria de los proyectiles y del movimiento sobre un plano

inclinado son ejemplos clásicos de la combinación del análisis matemático con la

experimentación. Sus leyes del movimiento uniforme y uniformemente acelerado

constituyen los cimientos de esta disciplina. Y el método de experimentación, sobre

todo aquel que permite alterar un solo parámetro por vez, aún lleva su nombre. Superó a

Kepler (que carecía de su gran don de llegar al conocimiento mediante la

experimentación) y a William Gilbert (que no poseía su genio matemático) y fue el

representante de los nuevos rasgos característicos de la Revolución Científica. Fue una

figura heroica de esa revolución y uno de los grandes fundadores de la ciencia moderna.

Con todo, su revolución no fue completa. Centró sus estudios del movimiento en

lo que hoy se llamaría el aspecto cinemático. Aunque comenzó a indagar en el papel de

la fuerza en los movimientos terrestres, no avanzó demasiado en ese terreno. A

diferencia de Kepler, no se ocupó de las fuerzas cósmicas, las fuerzas celestes o solares

que podrían ser responsables de los fenómenos planetarios. Pasó por alto los

descubrimientos de Kepler sobre las leyes de los movimientos planetarios y rechazó con

desdén su idea de que las fuerzas lunares pudieran actuar a distancia para causar las

mareas oceánicas. La revolución científica galileana exigía una etapa adicional, una

comprensión de la inercia y de las leyes terrestres y celestes generadoras de la

aceleración, sobre las cuales el propio Galileo apenas comenzó a pensar. Pasaría medio

siglo antes de que la revolución de Newton concretara la potencialidad de los hallazgos

galileanos y mucho más. Desde luego, no va en desmedro del hombre que ocupa un

sitial tan elevado en la historia de la ciencia, sostener que su revolución científica

requirió una revolución adicional y más profunda, y que sus grandes avances en materia

de las leyes y los principios del movimiento —acabados en sí mismos— fueron sólo las

etapas preliminares hacia el descubrimiento de una dinámica universal que constituiría

el punto culminante de la Revolución Científica. (3)

NOTAS

(1) En la introducción (1937, 3: 18), Kepler se refirió a la dificultad de leer obras científicas o

matemáticas en Latín, "idioma que no tiene artículos y carece de la felicidad del griego".

(2) Galileo consideró con justa razón que se trataba de imponer la astronomía copernicana sobre

la ptolemaica, y que el sistema de Tycho era una solución de compromiso que no merecía

consideración. En los sistemas de Copérnico y de Tycho, Venus gira alrededor del Sol. Pero si

la Tierra es similar a los planetas, ¿no debería girar alrededor del Sol? En otras palabras, los

descubrimientos de Galileo tendían aparentemente hacia una suerte de copernicanismo.

(3) Ninguna de las grandes obras de Kepler existe en inglés en versión completa, pero su

Mysterium Cosmographicum apareció en 1981 en traducción de Duncan con comentarios de

Eric Aiton. Edward Rosen tradujo al inglés The Dream [El sueño] (Madison, 1967) y

Conversations with Galileo's Sidereal Messenger [Conversaciones con el mensajero sideral de

Galileo] (Nueva York, 1965). Astronomical Revolution [Revolución astronómica] (1973), de

Alexandre Koyré, y la nota de Owen Gingerich en el D.S.B. (1973) son buenas introducciones a

la obra de Kepler. Un grueso volumen editado por Arthur y Peter Beer (Vistas in Astronomy)

[Perspectivas en astronomía] 1975,18), basado en varios simposios dedicados a Kepler,

contiene artículos en versión completa o condensada sobre todos los aspectos de su vida y obra.

Existen dos traducciones inglesas de la gran obra de Gilbert, On the Magnet: la de P.

Fleury Mottelay (1893) y la de Silvanus Thomson (1900; 1958). The De Mundo of William

Gilbert, de Suzanne Kelly (Amsterdam, 1965), y The De Magnete of William Gilbert, de Duane

H. D. Roller (Amsterdam, 1959) son dos monografías exhaustivas sobre Gilbert. Hay una

apreciación crítica actualizada de su obra en Heilbron 1979.

Existe una enorme cantidad de libros sobre Galileo, escritos en todos los idiomas. Un

simposio internacional realizado en 1983 permitía efectuar una buena reseña de las distintas

corrientes de investigación, qué será publicada bajo la dirección de Paolo Galuzzi. Esta servirá

de complemento de una colección editada por Ernan McMullin (1967), que contiene una

bibliografía de estudios galileanos realizados entre 1040 y 1964. Stillman Drake tradujo Dos

nuevas ciencias y el Diálogo sobre los dos sistemas del mundo y publicó un tomo de sus obras

breves (1957). Publicó los frutos de su largo estudio de la vida y obra de Galileo en su Galileo

at Work (19.78). Los Galilenh Studies (1939 (1978)) de Alexandre Koyré aún poseen

extraordinario valor, aunque han quedado parcialmente desactualizados a la luz de

investigaciones más recientes. En cuanto a introducciones sencillas a la obra de Galileo en su

contexto, véanse Birth of a New Physics, de Cohen (Garden City, 1960 (1985)) y Galileo

Galilei, de Ludovico Geymonat (Nueva York, 1965).

139

9

Bacon y Descartes

Una de las grandes preocupaciones del período de la Revolución Científica fue

la cuestión del método. La literatura sobre el tema refleja la conciencia de la nueva

época, en la que se consideraba que los principios y procedimientos sólidos eran más

importantes para el avance del conocimiento que la intuición y el intelecto. Los tratados

del siglo XVII en su gran mayoría comienzan con una discusión sobre método o

concluyen con una declaración metodológica. Una de las obras más importantes sobre el

tema — el Discurso del método, de Descartes (1637) — fue escrito (y publicado) como

introducción a tres trabajos científicos: Geometría. Meteorología y Dióptrica. Una de

las obras más leídas y citadas de Newton era metodológica: el "Escolio general",

conclusión de la segunda edición de los Principia (1713), donde se analizaba la

naturaleza de la explicación en la filosofía natural y el papel de la hipótesis.

El método resultó de importancia fundamental durante la Revolución Científica

porque el aspecto más novedoso de la nueva ciencia o la nueva filosofía era la

combinación de la matemática con el experimento. En épocas anteriores el

conocimiento era sancionado por las escuelas, los consejos, los sabios, y la autoridad de

los santos, la revelación y las Santas Escrituras; en cambio, en el siglo XVII se sostenía

que la ciencia se basaba en cimientos empíricos y en el buen sentido. Cualquiera que

comprendiese el arte de realizar experimentos podía poner a prueba las verdades

científicas, y este factor introducía una diferencia fundamental entre la nueva ciencia y

el conocimiento tradicional, fuese la ciencia antigua, la filosofía o la teología. Además,

el método, fácil de aprender, permitía a cualquiera realizar descubrimientos o hallar

nuevas verdades. Fue, pues, una de las fuerzas democratizantes más poderosas de la

historia de la civilización. El descubrimiento de la verdad había dejado de ser una gracia

concedida a unos pocos hombres y mujeres de dotes espirituales o mentales singulares.

En la presentación de su método, Descartes dijo: "Jamás he presumido de poseer una

mente más perfecta en ningún sentido que la de un hombre común" (Descartes 1965,4).

Ningún aspecto de la ciencia del siglo XVII fue tan revolucionario como el método y

sus consecuencias.

La Revolución Científica produjo dos destacados codificadores del método:

Francis Bacon y René Descartes. El primero ocupa un lugar ambiguo en la historia de la

ciencia porque no fue un científico e incluso desdeñó los grandes descubrimientos

efectuados en su época por Copérnico, Gilbert y Galileo. Descartes, en cambio, ocupa

un lugar destacado en la historia de la física y la matemática y además se lo considera

uno de los principales filósofos de la era moderna. En este capítulo se abordará el

problema de si existió una revolución baconiana o cartesiana en el siglo XVII, o bien si

estos dos hombres —al igual que Copérnico, Gilbert y Kepler— sólo clarificaron,

140

enfatizaron o (en cierta medida) inauguraron alguno de los rasgos fundamentales de la

Revolución Científica.

Francis Bacon, pregonero de la nueva ciencia

Generalmente se resume el aporte de Bacon a la Revolución Científica en cuatro

sectores: como filósofo de la ciencia abogó por un método nuevo para investigar la

naturaleza; destacó la importancia de clasificar las ciencias (y el conocimiento humano

en general); fue el primero en advertir que las aplicaciones prácticas de la nueva ciencia

mejorarían la calidad de vida y acrecentarían el dominio del hombre sobre la naturaleza;

y concibió una comunidad científica organizada (destacando la importancia de las

academias y asociaciones científicas). Como vocero del método inductivo —que en

combinación con la experimentación y la observación posee una importancia

fundamental en muchas ramas de la ciencia—, fue el pregonero de la nueva ciencia.

Fustigó la lógica deductiva pura por estéril, ya que no sirve para aumentar el

conocimiento. También atacó la antigua inducción, basada en la enumeración simple,

aplicable; solamente cuando la categoría de las cosas a las que se refiere es finita y

accesible (véase Quinton 1980,56-57), como en la afirmación de que todos los

miembros fundadores de la Royal Society son varones mayores de treinta años. Sostenía

que su nuevo método inductivo superaba la inducción aristotélica completa o perfecta

(inductio... quae procedit per enumerationem simplicem; en Novum Organum, libro 1,

aforismo 105) porque conducía a generalizaciones sobre todas las cosas, no sólo a una

propiedad compartida por todos los miembros de una enumeración finita. Bacon era

consciente de que no se puede demostrar la verdad de una inducción en sentido general.

La palabra "todos" implica siempre la posibilidad de que se descubra una excepción a la

generalización inductiva, puesto que ésta se basa —no podría ser de otro modo— en un

número finito de casos. Suyo es el mérito de haber afirmado que basta un solo caso

negativo para refutar una inducción, en tanto cada confirmación positiva sólo sirve para

fortalecer la creencia. Por eso señala en Novum Organum (lib. l, af. 46=1905,266) que

la instancia negativa es la más poderosa (major est vis instantiae negativae). No es

pequeño mérito el haber comprendido en esa época los principios expuestos luego en

este siglo por G. H. von Wright y Karl Popper, de que las leyes de la naturaleza o las

teorías no son verificables sino refutables.

Bacon comprendió que su método de la inducción basada en la experimentación

proporcionaría a las ciencias una nueva herramienta o instrumento (novum organum) en

reemplazo de la antigua herramienta de la lógica deductiva aristotélica. Previo que la

ciencia se desarrollaría mediante la elaboración de grandes tablas de datos, obtenidos

mediante la experimentación y la observación, desdeñando las hipótesis. Comprendía,

desde luego, que la mera acumulación de información no conduciría siempre a

principios científicos inductivos útiles; se declaró partidario de la selectividad, pero no

respondió al problema de cómo elaborar una norma de selección. Científicos como

Boyle, Hooke y Newton expresaron en distintos grados su adhesión a la filosofía

baconiana. En los Principia (2da. ed. 1713; 3ra. ed. 1726) Newton exploró el método de

inducción desde las propiedades o cualidades de los cuerpos sobre los cuales se puede

experimentar a las "cualidades de todos los cuerpos universalmente" (regla 3, lib. 3). Y

declaró enfáticamente, en una frase que Bacon sin duda habría aprobado,

141

que "en la filosofía experimental, las proposiciones tomadas de los fenómenos mediante

la inducción deben considerarse totalmente verdaderas o casi verdaderas no obstante las

hipótesis en contrario, hasta tanto nuevos fenómenos vuelvan más exactas tales

proposiciones o bien demuestren que son susceptibles de sufrir excepciones" (3ra. ed.,

regla 4). "Es necesario seguir esta regla —afirmó—, a fin de que los argumentos

basados en la inducción no sean anulados por hipótesis."

La influencia positiva de Bacon sobre el pensamiento científico del siglo XVII

se advierte en la aparición del concepto de "experimento crucial", empleado con gran

efectividad por Isaac Newton en 1672, al presentar sus experimentos y teorías sobre el

análisis y la composición de la luz del sol y la naturaleza del color. La expresión

proviene de la Micrographia de Hooke (1665,56) y es una adaptación de "instancias

cruciales", la frase empleada por Bacon en Novum Organum (lib. 2, af. 36= 1905, 343).

Bacon fue probablemente quien originó la postura dé Newton contraria á las hipótesis,

expresada en la escolia general con que concluye la segunda edición de Principia y

sintetizada en la divisa hypotheses non fingo.

Muchos científicos han utilizado la inducción baconiana, pero no se puede decir

lo mismo de su clasificación de los procedimientos y sus reglas detalladas. Lo que dicen

los clásicos defensores del papel de Bacon como reformador y codificador del método

científico (Fowler 1881, cap. 4) se aplica más a la filosofía que a la ciencia. Novum

Organum no parece una obra sobre la ciencia moderna, y su estudio del calor (principal

ejemplo de aplicación del método en el libro 2) se parece más a uno de esos análisis

aristotélicos y escolásticos que Bacon fustigaba que a un ejemplo de la nueva ciencia.

Como señala Charles Sanders Peirce, ningún método "mecánico" como las tablas de

exclusión de Bacon puede generar nuevos conocimientos científicos significativos.

"Aunque la concepción (del método) de Lord Bacon es superior a las más antiguas —

dice Peirce (1934, 224)—, el lector que no se deja abrumar por su grandilocuencia

queda asombrado ante su visión inadecuada del procedimiento científico."

Una de las fallas más conspicuas en la concepción baconiana de la ciencia es su

desconocimiento del importante papel de la matemática en la teoría científica. Si por un

lado existen buenos argumentos a favor de la acumulación de hechos contra la

elaboración de hipótesis, el método de Bacon resta importancia a innovaciones

conceptuales que cumplieron un papel mayor en el progreso de la ciencia que los hechos

y las generalizaciones restringidas. Uno de los objetivos .expresos de la Royal Society

fue la acumulación de datos facticos sobre los minerales, las informaciones de los

artesanos y otros. Pero las verdaderas vías de desarrollo de la ciencia siempre han sido

(siguen siendo) conceptuales y teóricas, más que meramente fácticas. ¡Qué decir de un

presunto vocero del método científico que rechaza el descubrimiento galileano de los

satélites de Júpiter!

Existe en la historia de la ciencia una disciplina que se ha desarrollado en forma

verdaderamente baconiana: la meteorología. Durante mucho tiempo, en gran número de

estaciones distribuidas por todo el mundo, los meteorólogos han reunido datos sobre la

temperatura, la humedad, las precipitaciones y los vientos en una forma sistemática que

hubiera fascinado a Francis Bacon. Pero es un hecho que esta rama de la ciencia, a

diferencia de la física, la química, la biología y la geología, ha sido incapaz de crear

(por métodos inductivos o los que fuesen) una estructura teórica útil. Se puede hablar

del tiempo, pero no se lo puede pronosticar con precisión ni modificar.

Tal vez Bacon revolucionó la filosofía de la ciencia, pero de ninguna manera

provocó una revolución baconiana en la ciencia. Lo mismo sucede con su clasifica-

142

ción de las ciencias, que en realidad es una clasificación del conocimiento (véanse

Fowler 1881, cap. 3; Quinton 1980, cap. 6). En su prospecto e introducción de la gran

Encyclopédie, escrita a mediados del siglo XVIII, Diderot y d'Alembert modificaron el

sistema de Bacon y lo presentaron con gran alarde en forma tabular y gráfica. Pero por

grande que fuese su aporte en esta área de la filosofía, no constituyó una revolución en

la ciencia.

¿Qué se puede concluir sobre Bacon y la Revolución Científica? El autor de esta

obra piensa, con Quinton (1980,83), que Bacon ocupa un lugar de importancia doble:

"como profeta y crítico". Contribuyó a separar "la ciencia de la religión y de la

metafísica religiosa", y a "elevar la posición dé la investigación natural, antes

considerada brujería prohibida o bien despreciable trabajo manual" (Quinton 1980, 83-

84). Más importante que eso fue la previsión baconiana de que la ciencia aumentaría el

poder del hombre y le permitiría un mayor control sobre su medio. La "meta real y

legítima de las ciencias —escribió en Novum Organum (lib. 1, af. 81=1905,280)— no

es otra que ésta: dotar a la vida humana de nuevos descubrimientos y poderes", y

también: "Los caminos al poder humano y al conocimiento humano corren juntos y son

casi uno" (lib. 2, af. 4=1905,303); ''por consiguiente, la verdad y la utilidad son una y la

misma cosa" (lib. 1, af. 124=1905,298). El "imperio del hombre sobre las cosas depende

por completo de las artes y las ciencias (lib. 1, af. 129=1905, 300), pues no podemos

dominar la naturaleza sin obedecerla". No es casual que se haya calificado a Bacon de

"filósofo de la ciencia industrial" (Farrington 1949). Pero se debe recordar que el

mejoramiento de las condiciones de vida no era la principal preocupación de Bacon.

"Las obras —dice (lib. 1, af. 124=1905,298)— poseen mayor valor como garantías de

la verdad que como contribución á las comodidades de la vida."

Bacon fue también un gran profeta de la organización de los científicos en

asociaciones y academias caracterizadas por el trabajo de investigación en equipo. En el

fragmento utópico llamado Nueva Atlantis (1627) describió una institución central de

investigación científica con laboratorios, jardín botánico, zoológico, cocinas y hornos e

incluso talleres de mantenimiento reunidos. En esa obra sostuvo que la división del

trabajo científico vuelve más eficiente la producción del conocimiento. Muchos

estudiosos de la historia económica le atribuyen la primera exposición general de la

división del trabajo. No cabe duda de que Bacon ejerció una fuerte influencia sobre los

fundadores principales de la Royal Society, institución que en su concepción original

mostraba su impronta. Esa influencia está reflejada en History of the Royal Society de

Sprat (1667), obra qué, además de elogiarlo, lleva su retrato en la figura alegórica de la

portada.

Podemos coincidir con Farrington en que la Royal Society "se puede considerar

con justicia el mayor monumento a Francis Bacon" (1949,18).

La revolución científica de Descartes

Bacon no fue el único pensador de la época que comprendió que la verdadera

ciencia ayudaría al progreso de la medicina y las artes técnicas. Descartes sostuvo más o

menos lo mismo en su célebre Discurso del método (1637), en cuya conclusión se

refiere al objetivo de "empeñar toda nuestra capacidad en procura del bien general para

todos los hombres" (1965, 50). La ciencia justa, desarrollada según los principios

cartesianos, será un tipo de "conocimiento que será de gran utilidad en esta vi-

143

da". La aplicación correcta de la ciencia "nos convertirá en amos y dueños... de la

naturaleza". Entre las metas especificas menciona la invención de artefactos ''que nos

permitan gozar de los frutos de la agricultura y de toda la riqueza de la tierra sin

trabajar". Destaca en particular la utilidad de la ciencia para la medicina y visualiza la

eliminación, con el tiempo, de las "enfermedades, tanto del cuerpo como de la mente" y

la erradicación de "las debilidades de la vejez" (Descartes 1956,39-40). Parecería que

una de las consecuencias naturales del desarrollo de la ciencia basada en la

experimentación o la experiencia era la concepción de que los avances en el

conocimiento redundarían en nuevos inventos prácticos y mejoras en la salud.

A diferencia de Bacon, Descartes no concibió la creación de sociedades o

instituciones para proveer de equipos de laboratorio a grupos de científicos dedicados a

tareas investigativas comunes. Pero era consciente de que un sólo hombre difícilmente

podría realizar todos los experimentos; hacia el final del Discurso analiza las maneras

de ayudar a un investigador, facilitándole, por ejemplo, los "fondos para los

experimentos necesarios" y protegiéndolo para que "su serenidad no se vea alterada por

interrupciones inoportunas" (Descartes 1956, 47). Incluso abordó el problema del apoyo

público y privado a la ciencia. En carta a Mersenne, fechada el 10 de mayo de 1632,

señala su deseo de contar con un mecenas adinerado para financiar un catálogo dé

fenómenos celestes"(Descartes 1970,24; 1971, I: 249).

Bacon concebía su papel como el de pregonero de la nueva ciencia, con la

función de convocar a los hombres a estudiarla (Ego enim buccinator tantum: Bacon

1857, I: 579; De Augmentis 4.1). "Sólo he asumido la tarea de doblar las campanas para

convocar y reunirá otros ingenios", escribió al doctor Playfer. Descartes, en cambio, era

un auténtico revolucionario, creador de una nueva ciencia, y era consciente de ello. En

marzo de 1619, cuando tenía 23 años, anunció en una carta a Beckman (véase 1977,10:

156) una inminente "ciencia completamente nueva" que, aseguró con orgullo, podría

resolver problemas generales de matemática. En noviembre del mismo año dijo haber

descubierto "los fundamentos de una ciencia asombrosa" (1977,10:179).

Una década después, asistió a una conferencia convocada para refutar la filosofía

tradicional que se enseñaba en las escuelas. Hubo "aplausos generalizados", según la

biografía escrita por Baillet (trad. Smith 1952, págs, 40 y sigs.). Sólo Descartes "se

abstuvo deliberadamente de dar muestras de aprobación", hecho que fue advertido por

el cardenal de Bérulle, fundador de la Congregación del Oratorio en París, el nuncio

apostólico, el padre Mersenne y otros, quienes lo instaron a expresar su opinión. En el

diálogo subsiguiente reveló su propia "regla universal", a la que también llamó su

"método natural", derivado "del tesoro de las ciencias matemáticas". El cardenal de

Bérulle, profundamente impresionado, lo invitó a visitarlo para exponer su método con

mayor detalle. Descartes le reveló la naturaleza de su método "y las ventajas prácticas

que podrían obtenerse si su manera de filosofar se aplicara a la medicina y la mecánica"

a fin de "contribuir a la restauración y conservación de la salud y a disminuir y aliviar

en parte los trabajos de la humanidad". El cardenal lo exhortó a "ocuparse de las obras

de la naturaleza" y dedicar todos sus esfuerzos a formular la ciencia y la filosofía.

Este programa de investigación dio sus frutos en 1637, con la publicación de sus

tres libros científicos (Geometría, Dióptrica, Meteorología} y el Discurso del método

que lleva por subtítulo "para guiar rectamente la razón y buscar la verdad en las

ciencias". El método había sido expuesto en un trabajo anterior, Reglas para la direc-

144

ción del entendimiento, terminado en 1628 (cuando conoció al cardenal de Bérulle); fue

editado medio siglo después de la muerte de su autor (1701). El método de Descartes se

refería a la manera de pensar con claridad y con algún fin; no era en modo alguno un

manual de instrucciones prácticas para realizar experimentos y sacar conclusiones de

ellos. Sin embargo, al igual que el de Bacon, debía servir para efectuar descubrimientos,

mediante la descomposición de un problema general complejo en sus elementos más

simples o partes componentes. El modelo, decía, era su nueva geometría, donde se

aplicaba el método al análisis de curvas complejas mediante su descomposición en

elementos simples. La concepción era grandiosa: su intención era aplicarlo no sólo a la

ciencia y la filosofía sino a "cualquier investigación racional" (Williams 1967; 345). En

rigor, Descartes creía en la unidad de todo el conocimiento científico y filosófico: de ahí

su metáfora del árbol cuyas raíces son la metafísica, el tronco es la física y las ramas son

las disciplinas específicas como la medicina, la mecánica y la moral. El conjunto de las

ciencias "se identifica con la sabiduría humana, que es una sola aunque se aplique a

diversos temas" (regla 1; 1977,10: 360).

Aunque la ciencia cartesiana se basaba en gran medida en la experimentación y

la observación, sus conceptos científicos y metodológicos, en su expresión más

elaborada, son racionalistas y no empiristas. Creía que la base de sustentación última de

la ciencia debía ser la filosofía. De acuerdo con su concepción, los elementos de

experiencia común son "naturalezas compuestas" que deben ser reducidas a "naturalezas

simples" (naturae simplices) que él llamó "principios" (principia), en el sentido de

"entidades primarias" tales como "extensión, forma, movimiento" (regla 12:1971,10).

Descartes da un ejemplo referido al imán (1911,1:47):

(Si) se pregunta "¿cuál es la naturaleza del imán?", la gente... pronostica de inmediato

que la investigación será difícil y trabajosa y, descartando de su mente todos los datos

conocidos, se aferra a lo más difícil con la vaga esperanza de que, al recorrer el campo

estéril donde yacen las variadas causas, hallará algo nuevo. Pero quien reflexione que

no hay nada para conocer en el imán que no consista de ciertas naturalezas simples y

evidentes en sí mismas, sabrá indudablemente cómo proseguir. Primero reunirá todas

las observaciones que le pueda brindar la experiencia acerca de esta piedra y de éstas

tratará de deducir el carácter de esa mezcla de naturalezas simples necesaria para

producir todos esos efectos que él ha observado en relación con el imán. Hecho esto,

podrá afirmar con audacia que ha descubierto la verdadera naturaleza del imán en la

medida en que la inteligencia humana y las observaciones experimentales dadas puedan

proporcionarle ese conocimiento.

La filosofía de Descartes, llevada al extremo, reduciría todas las acciones o los

fenómenos de la naturaleza a principios de materia y movimiento.

Su gran reforma de la ciencia consistió en establecer esta filosofía mecánica que

trataba de explicar las propiedades y las acciones de los cuerpos en términos de las

partes que los componen. Se oponía a las causas finales y las explicaciones teleológicas

y fustigó el aristotelismo o escolasticismo en boga, que explicaba los fenómenos

mediante frases tales como "forma, sustancial" y "propiedad oculta". Pero a diferencia de otros que se oponían a esa manera de pensar, Descartes elaboró una verdadera

alternativa que consistía en la reducción a un pequeño conjunto de propiedades

universales, primarias y cuantitativas: "el tamaño, la forma, la disposición y el

movimiento de las partículas materiales" (1971,8-1:314; 11:26). No existe un solo

fenómeno en todo el universo (in natura universa), dijo, que no pueda explicarse

median- 145

te "causas puramente físicas, vale decir, totalmente independientes de la mente y el

pensamiento".

Cuando aparecieron los Principia de Newton (1687), la filosofía mecánica

cartesiana dominaba la ciencia europea (véase el capítulo 1). Fue en el espíritu de esa

filosofía que Boyle se refirió a esos "dos grandes y muy católicos principios de los

cuerpos, materia y movimiento" (Boyle 1772,3:16). Su libro Origins of Forms and

Qualities [Orígenes de las formas y las cualidades] (1666) es una exposición de la

filosofía mecánica, la acción de "agentes corpóreos… en virtud del movimiento, el

tamaño, la forma y la disposición de sus propias partes". Calificó esos atributos de

''afectaciones mecánicas de la materia, porque los hombres les atribuyen de buen grado

las distintas operaciones de los artefactos mecánicos" (Boyle 1772,3:13). Huygens y

Leibniz adhirieron a la filosofía mecánica, y sobre esta base ambos rechazaron el

concepto newtoniano de la gravitación universal, una fuerza que se extendía a través del

espacio y no se podía reducir a materia y movimiento.

La formación intelectual de Newton también fue mecanicista. Se apartaba de los

estrechos principios cartesianos al creer (como Boyle) en la existencia de los átomos y,

por consiguiente, en el vacío; Descartes no creía en el espacio vacío e incluso iba tan

lejos como para identificar la extensión con la materia. En una época en que la filosofía

aprendida exigía que todos los fenómenos fueran reducidos a los principios de materia y

movimiento, Newton tuvo la audacia de afirmar la existencia de una fuerza de

gravitación universal que se extendía a través del espacio. Este pasó significó que

Newton (como sugiere Westfall, 1971, 377-380) efectuó una revisión fundamental de la

filosofía mecánica aprendida y a la vez (Cohen 1980, 68-69) pudo desarrollar un

"estilo" propio que le permitió elaborar las consecuencias del concepto de la gravitación

universal mientras esperaba o buscaba la manera de conciliar este principio nuevo y

filosóficamente inaceptable con los conceptos cartesianos de materia y movimiento.

Tanto en los Principia como en la Óptica hay testimonios de sobra de su aceptación

general de la filosofía mecánica y de sus intentos por reducir los fenómenos a "las

cualidades universales de todos los cuerpos, cualesquiera que fuesen" (Principia, 2da.

ed. 1713, lib. 2, regla 3).

Descartes expuso sus ideas sobre el movimiento y expresó claramente sus

principios de inercia en El Mundo (o El universo), escrito entre 1629 y 1633, pero

publicado después de su muerte. Su audaz afirmación de que el movimiento rectilíneo

uniforme (o inercial) es en cierto grado dinámicamente equivalente al estado de reposo

no es aún el principio newtoniano de inercia, pero existe similitud formal entre los dos.

Sin embargo, Descartes basó su principio en la doctrina de la conservación: el

movimiento creado por Dios en el principio no podía ser destruido; el principio

newtoniano, en cambio, derivaba de la naturaleza de la masa.

Descartes incluyó su ley del movimiento inercial en sus Principios, con un

conjunto de leyes de choque. Pero su incomprensión de la naturaleza vectorial del

movimiento lo llevó a formular leyes en gran medida incorrectas, como él mismo habría

podido descubrir mediante una serie de experimentos sencillos. En la misma obra

expuso acabadamente su sistema de vórtices, enormes remolinos de materia etérea ó

sutil que producían efectos que hoy se denominarían gravitacionales, entre ellos, el

obligar a los planetas a recorrer órbitas elípticas. También desarrolló él concepto de

espacio relativo, refutado luego por Newton.

Descartes creía que la "física verdadera" era una rama de la matemática, que sólo

"a través de la matemática se puede adquirir el conocimiento de la verdadera físi-

146

ca" (1971,11: 315-316; Rée 1974,31). En su Principios de Filosofía sostuvo que su

teoría de la ciencia se basaba en su matemática: "La física no requiere otros principios

que los empleados en Geometría o Matemática Abstracta, ni tampoco serían de desear

por cuanto explican todos los fenómenos naturales." En carta a Mersenne de diciembre

de 1637 (Descartes 1974,1:478; Rée 1974, 32) explica que la Dióptrica y la

Meteorología presentados por él en 1637 como "ensayos en este Método"—

convencerían a la mayoría de la gente de que su método era "superior al común", pero

se enorgullecía de "haberlo ya demostrado en mi Geometría".

Descartes fue uno de los matemáticos más grandes de la historia. Según John

Stuart Mili (1889,617) la matemática cartesiana fue "el paso individual más grande que

jamás se haya dado en el progreso de las ciencias exactas". Descartes habría coincidido

con esta apreciación. En carta a Mersenne (Descartes 1971,1:479; Rée 1974,28) señala

que su nueva geometría (la analítica) era "superior a la geometría vulgar (vale decir,

euclideana) tanto como la retórica de Cicerón lo es a las primeras letras de un niño". Muchos comentaristas de su obra matemática se limitan a señalar sus aportes a la

geometría analítica y a la solución algebraica de problemas "geométricos". Pero

probablemente su mayor innovación no se produjo en el nivel elemental de la técnica

sino, más bien; en la manera de pensar en términos analíticos generales (Rée 1974,30).

Por ejemplo, en la matemática tradicional, elevar una cantidad al cuadrado significaba

construir un cuadrado de lado igual a lo representado por, esa cantidad: el "cuadrado"

sería el área resultante. Lo mismo si se la elevaba al cubo. Pero una vez que se introdujo

la notación exponencial (x2

en lugar de xx o x-quadratum; x3

en lugar de xxx o x-cubus)

—y él fue el pionero en esta manera novedosa de representar las potencias—se produjo

el gran salto: la concepción cartesiana de tales potencias o exponentes como entidades

abstractas. Los matemáticos podían entonces anotar x°, donde no podía representar

valores distintos de 2 o 3, e incluso fracciones. Al liberar al álgebra de las

constricciones geométricas, Descartes produjo una transformación revolucionaria de la

matemática y creó el "álgebra general" que le permitió afirmar (1628) que había logrado

"todo lo humanamente posible" en geometría y aritmética. Newton elaboró sus primeras

ideas sobre el cálculo mientras estudiaba las obras matemáticas de Descartes y las de

cienos comentaristas de su Geometría (véase Math., ed. a cargo de Witheside, 1967,1).

El carácter revolucionario de la matemática cartesiana se advierte no sólo al comparar el

estado de esa disciplina antes y después de él sino también en el hecho de que la misma

lleva su impronta a partir del siglo XVII y hasta la actualidad. Por consiguiente, las

pruebas históricas revelan que la matemática cartesiana fue una revolución.

Aquí no se analizarán otros aspectos de la ciencia cartesiana, como sus

explicaciones de la fisiología humana y animal y la psicología fisiológica humana sobre

bases mecánicas (véase Descartes 1975). Pero es de señalar que su objetivo de reducir

todas las funciones animales (y humanas) a acciones maquinistas fue tal vez una

innovación más audaz, considerada por fisiólogos de siglos posteriores como su paso

realmente revolucionario. Descartes aceptó el postulado general de Harvey sobre la

circulación sanguínea, aunque discrepó con él en aspectos esenciales como la función

del corazón. También hizo un gran aporte a la geología al desarrollar una teoría de la

formación de la Tierra a través de etapas causadas por la acción prolongada de

principios físicos-mecánicos.

147

Al igual que Galileo y Kepler, se consideró un agente revolucionario que producía una

nueva ciencia. Pero mientras Galileo se consideraba el creador de nuevas ciencias del

movimiento local y de la fuerza de los materiales, y Kepler se proclamaba autor de una

nueva astronomía, Descartes afirmaba haber revolucionado toda la ciencia y la

matemática e incluso sus fundamentos metodológicos o filosóficos. Desde luego que

esto no basta para creer que hubo una revolución cartesiana, pero machos autores del

siglo XVII así lo ratifican. Joseph Glanvill, por ejemplo, en su comparación del

conocimiento moderno con el antiguo, no sólo expresó su entusiasmo ante los magnos

descubrimientos de Descartes en la matemática y las ciencias físicas, sino que hizo

imprimir su nombre en letras gruesas de cuerpo grande para subrayar su grandeza

(Glanvill l676,Essay s, 13 y sigs.). Ya se ha visto que los científicos adoptaron su nueva

matemática y su filosofía mecánica revolucionaria. Su nuevo principio de la inercia y su

revolucionaria concepción del estado de movimiento se convirtieron en la piedra

angular de la mecánica racional y la dinámica celeste newtonianas. Sus principios

biológicos reduccionistas dominaron la fisiología moderna durante mucho tiempo. No

cabe duda, pues, de que las innovaciones cartesianas pasan las dos primeras pruebas que

determinan la revolución en la ciencia.

Los historiadores y filósofos han atestiguado la realidad de una revolución cartesiana

desde mediados del siglo XVIII, cuando se difundió el empleo del término en relación

con el desarrollo de la ciencia. Esta es la tercera prueba. La ciencia cartesiana también

pasa la cuarta y última prueba, la del testimonio de los científicos en actividad. Ya en el

siglo XVIII, d'Alembert habló de la revolución cartesiana (1751) y Turgot afirmó

directamente que Descartes "hizo una revolución" (1973,94). Condorcet opinó sobre

Descartes cuando habló del "primer principio de una revolución en los destinos de la

raza humana". Condillac coincidió en que se había producido una revolución cartesiana,

a la vez que negó expresamente quo Bacon fuera el instigador o el realizador de una

revolución. En el siglo XIX, William Whewell, quién se refirió a Descartes en relación

con una contrarrevolución, sostuvo que cuando Bacon "anunció un Nuevo Método", no

se "limitó a corregir ciertos errores vigentes" (1865,1: 339). El método de Bacon

"transformó la Insurrección en una Revolución y dio lugar a una nueva Dinastía

filosófica".

Si algunos autores atribuyeron a Bacon una revolución en la filosofía o en la

metodología de la ciencia, a la vez reconocieron que Descartes había ejercido una

influencia revolucionaría sobre las ciencias en sí. Así lo subrayan las historias de la

ciencia de Louis Figuier y Henri de Blainville. En un ensayo de 1874, "On the

Hypothesis that Animals are Automata", Thomas Henry Huxley afirmó que la obra de

Descartes fue "a la fisiología del movimiento y la sensación lo que fue la de Harvey a la

circulación de la sangre, y abrió el camino hacia la teoría mecánica de estos procesos,

que ha sido aplicada por todos sus sucesores" (Huxley 1881,200-201). En este siglo, sir

Charles Sherrington, premio Nobel de fisiología, se pronunció ¿un con mayor vigor. En

su análisis del concepto cartesiano del cuerpo animal como máquina, sostuvo

(1946,187) que las "máquinas se han desarrollado y multiplicado alrededor de nosotros

a un grado tal, que se nos puede pasar por alto la fuerza que tenía esa palabra en el siglo

XVII. Con ella Descartes dijo más que con cualquier otra que hubiera podido emplear,

como concepto revolucionario en la biología y expresión de cambios que resultaron

perdurables". L. Rott, en cambio, sostuvo que la "crítica moderna se inició con una

observación de Freudenthal de que el carácter novedoso del cartesianismo no radicó en

su psicología ni en su teoría del conocimiento ni en su ética ni en su meta- 148

física, sino en su física", y concluyó que "la 'revolución' cartesiana significó el intento

de sustituir la física basada en la metafísica por una metafísica basada en la física"

(1937,4).

Paul Schreker, uno de los principales estudiosos contemporáneos de la ciencia y

la filosofía del siglo XVII, escribió que "aunque los Principia de Newton... provocaron

un cambio drástico en la física, de todos modos (no es) una obra revolucionaria en el

mismo nivel que los Principios de Descartes" (1967,36). Schreker cita al gran

historiador Jules Michelet, quien "afirmó que la Revolución de 1789 se había iniciado

con el Discurso del método". John Herman Randall (h.) se refiere una y otra vez a la

revolución cartesiana en The Making of the Modern Mind (La formación del

pensamiento moderno) (1926,235 y sigs.). No dudaba de que era la revolución más

significativa del siglo XVII.

Descartes conforma los cuatro criterios principales de la revolución en la

ciencia. También fue revolucionario en la filosofía, pero tal vez ese aspecto no tiene

gran relación con su obra científica. (1) En cuanto a los testimonios de sus

contemporáneos sobre el carácter revolucionario de su pensamiento, cabe mencionar

que su Opera Philosophica permaneció en el Index Librorum Prohibitorum desde su

aparición hasta su última reimpresión en el siglo XX, más de un siglo después de que el

Diálogo de Galileo fuera borrado de esa lista.

La revolución cartesiana presenta varias diferencias con otras revoluciones

científicas. En primer lugar, no perduró. La filosofía natural newtoniana fue un ataque

frontal directo contra la física cartesiana (véase el capítulo 1); Newton demostró en la

conclusión del libro 2 de Principia que el sistema de vórtices viola la ley kepleriana de

las áreas. Pero la influencia de Descartes fue tan poderosa que a mediados del siglo

XVIII, el abate Nollet, el gran científico francés especialista en electricidad, aún

defendía el sistema de los vórtices, lo mismo que su contemporáneo Leonhard Euler, el

mayor matemático y físico matemático de la época. Su rechazo de la posibilidad de que

existiera el vacío pasó rápidamente a engrosar la lista de curiosidades históricas, pero su

concepto del estado de movimiento y la ley de la inercia fueron de fundamental

importancia para el desarrollo posterior de la física. En fisiología y psicología, su

influencia se extendió más allá del siglo XIX.

Otra diferencia entre su revolución y otras radica en que no existe un gran

principio o teoría científica que lleve su nombre, ni se enseña ninguna ley o teoría

atribuida a él. Hasta hace unos años se enseñaba una llamada ley de la refracción de

Descartes, pero ahora se la llama ley de Snel (o, erróneamente, de Snell), su verdadero

descubridor; hay quienes alegan que Descartes lo plagió. Distinto es el caso de la

matemática, donde la revolución cartesiana fue profunda y duradera. En álgebra se

honra su memoria con la ley de los signos que lleva su nombre. Asimismo, con el

término de coordenadas cartesianas, los matemáticos honran en Descartes al autor de

una gran revolución en los comienzos de la ciencia moderna. (2)

149

NOTAS

(1) Uno de los aportes significativos de Descartes a la filosofía es su fórmula sobre la dualidad

de "mente" y "cuerpo" (el llamado "dualismo cartesiano"). Según él, el cuerpo es una máquina y

la mente (el alma) es una sustancia pensante pura.

(2) Los escritos de Bacon están al alcance del lector en las sucesivas reimpresiones de los Works

(7 vols, 1857-1859; 1887-1892; 1963), edición preparada por J. Spedding, R. L. Ellis y D. D.

Heath. Las traducciones al inglés fueron recopiladas por John M. Robertson en el tomo The

Philosophical Works (1905). The New Organon apareció en 1960 en edición preparada por

Fulton M. Anderson, quien escribió un resumen exhaustivo de la filosofía baconiana (1948).

Thomas Fowler preparó una edición en el latín original con extensas notas en inglés (1878-

1889); Marta Fattori recopiló un utilísimo vocabulario (1980). Hugh Dick (1955) preparó una

edición de obras escogidas (Selected Writings), Anthony Quinton es autor de una excelente

introducción breve al pensamiento y la influencia de Bacon, que complementa el clásico estudio

de Fowler de 1881. Paolo Rossi presenta algunas ideas novedosas y perturbadoras en Francis

Bacon; From Magic to Science (1968); Benjamin Farrington subraya el aspecto práctico en su

introducción a la obra del filósofo (1949). . Los escritos de Descartes están recopilados en la edición estándar en 12 tomos (1897

1913; 1971-1976) de Charles Adam y Paul Tannery. Existen recopilaciones de sus escritos en

traducciones al inglés de Elizabeth Haldane y G. R. T. Ross (19114912; 1931; 195.8), de John

Veitch (1912), de Norman Kemp Smith (1952) y de Elizabeth Anscombe y Peter Thomas Geach

(1954). Esas cuatro ediciones contienen el Discurso del método, que también fue traducido por

Laurence Lafleur (1956) y F. E. Sutcliffe (1968), Paul J. Olscamp es autor de una traducción

del Discurso junto con Óptica, Geometría y Meteorología, La Geometría fue traducida al inglés

por David Eugene Smith y Marcia Latham (1925; 1954); Michael Mahoney tradujo y escribió

una versión de Le monde(1979). Las dos últimas ediciones incluyen facsímiles de las primeras

ediciones francesas, lo mismo que el Tratado sobre el hombre (1972), traducido al inglés y

comentado por Thomas S. Hall. El mejor estudio sobre la física cartesiana sigue siendo el de Mouy, 1934,

complementado por una importante tesis doctoral de Geoffrey Sutton (1982). Los estudios de

Gaston Milhaud publicado bajo el título de Descartes savant (1921) siguen conservando su

importancia seis décadas después de su aparición. No existe un buen estudio actualizado de la

física cartesiana con su historia e influencia. Rée 1974 y Williams 1978 son dos profundos

estudiosos de la ciencia de Descartes, Keeling 1968 (1934) es una buena introducción a la

filosofía cartesiana en su conjunto. Smith 1952 es una obra sumamente importante. Se

recomienda también el ensayo "Newton and Descartes" de Alejandre Koyré, con trece

suplementos, en Koyré 1965.

Cultura Científica y Humanística II

UACM- Centro Histórico (2010-II)

Carlota G. Domínguez E.

Francisco M. Cañón Taladriz

150