Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de...

30
Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos

Transcript of Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de...

Page 1: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Clase # 12 Dinámica Molecular (II)

Prof. Ramón Garduño Juárez

Modelado Molecular

Diseño de Fármacos

Page 2: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

DM: Descripción• Método basado en la segunda ley del movimiento de

Newton. Con una descripción conocida de la fuerza sobre cada partícula, las ecuaciones clásicas del movimiento pueden ser integradas para dar la posición, la velocidad y la aceleración de todas las partículas en el sistema. Debido a que las partículas interaccionan entre si, el estado final del sistema no es soluble analíticamente y debe ser integrado numéricamente.

• Su ejecución es dependiente de la implementación eficiente de un campo de fuerza (para describir las interacciones atómicas), un integrador numérico (para resolver las ecuaciones de movimiento a cada paso de tiempo) y atajos computacionales (tales como el uso de celdas periódicas para evitar efectos de superficie e imitar el bulto).

i

xi

m

F

dt

xdi

2

2

Page 3: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Tratamiento clásico de las interacciones

• Longitud de onda deBroglie de una masa atómica m con energía cinética kBT:

• La aproximación clásica se mantiene para << a (distancia inter-partícula promedio). A 300K, esta se mantiene para átomos ligeros como el Li. Solamente cuando uno está interesado en el movimiento de átomos muy ligeros, a bajas temperaturas, uno necesita considerar los efectos cuánticos.

TmkB

2

Page 4: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Efecto del paso de tiempo en las propiedades

Page 5: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Preparando y corriendo una Simulación

• Después de la configuración inicial, asignar las velocidades iniciales. La distribución de Maxwell-Boltzmann a la temp de interés (probabilidad).

• A menudo el momento inicial se sitúa en cero (ensamble NVEP). La suma de los componentes del momento atómico a lo largo de x, y y z son calculados. Dividiendo entre la masa total, se le resta de las velocidades atómicas de cada átomo para dar un momento total de cero.

Tk

vm

Tk

mvp

B

ixi

B

iix

22/1

2

1exp

2)(

Page 6: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Equilibrio y Producción

• Equilibrio: Llevar al sistema al equilibrio desde la configuración inicial. Generalmente KE, PE, las velocidades, T y presión son estables.

• Cuidado especial para inhomogéneos: Primero minimizar la energía del disolvente + C iones; equilibró del disolvente + C iones; equilibro del sistema entero.

• Producción: Regularmente almacenar las propiedades (posiciones, energías y velocidad). ¿Se comporta bien el sistema?

Page 7: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Calculo de propiedades termodinámicas simples

• Energía:

• Presión que se obtiene del teorema Virial.• El virial total para un sistema real es igual a la suma de

la parte de gas ideal y la contribución debida a las interacciones entre las partículas.

M

iiEM

EU1

1

ixi pxW

N

ijB

ij

ijij

N

i

TNkdr

rdvrPVW11

3)(

3

N

ijijij

N

iB frTNk

VP

113

11

Page 8: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Calculo de propiedades

• Temperatura (de la equipartición de la energía; cada grado de libertad contribuye con kBT/2):

N

ic

B

i

i NNTk

m

pK

1

2

322

Page 9: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Calculo de propiedades• Función de Distribución

Radial

• Función de Distribución por Pares g(r) da la probabilidad de encontrar un átomo a una distancia r de otro átomo comparado con la distribución de un gas ideal.

• Los vecinos alrededor de cada átomo se clasifican en compartimentos, y se promedian sobre cada compartimiento sobre toda la simulación o configuración actual.

33 )(3

4)(

3

4rrrV

rrrrrrr 2322 43

444

Page 10: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Propiedades tiempo-dependientes

• La Función de Correlación para cuantificar la relación entre las mismas (auto-correlación) o diferentes propiedades (correlación-cruzada).

• Las trayectorias están conectadas en el tiempo. Así que correlacionan alguna propiedad en un instante dado con alguna/otra propiedad en cualquier otro instante.

22

1

2

1

2

1

11

1

ii

ii

M

ii

M

ii

M

iii

xyyx

yx

yM

xM

yxMc

M

iiiiixy yxyx

MC

1

1

)0()()( ytxtCxy

0lim t xyCxy )0(

tlim yxtCxy )(

Page 11: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Tiempo de Relajación• En general la función de auto-correlación tiene

un valor inicial de 1 y un valor a tiempo largo de 0. El tiempo que se toma en perder la correlación: Tiempo de Relajación.

• Si la duración de la simulación es más largo que el tiempo de relajación, muchos conjuntos de correlación pueden ser extraídos.

• P: pasos requeridos para la relajación, Q: pasos totales, Q-P conjuntos de correlación.

• M conjuntos de orígenes del tiempo

N

i ii

iivv vv

vtv

Ntc

1 )0().0(

)0().(1)(

N

ijiji

M

jvv ttvtv

MNtc

11

)().(1

)(

Page 12: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

DM a temperatura constante• Temperatura constante• Energía del sistema sin restricciones• Control de la Temperatura

– escalamiento de la velocidad

– Baño de calor• Las velocidades se escalan en cada paso, de forma tal que la velocidad del cambio de

temperatura es proporcional a la diferencia en temperatura entre el baño y el sistema:

• El cambio en temperatura entre pasos de tiempo sucesivos es:

• El factor de escalamiento para las velocidades en este caso es:

TNkH BNVT 2

3

)(/

)()1(

3

2

2

1)(

3

2

2

1

2

1 1

22

tTT

tTT

Nk

vm

Nk

vmT

new

N

i

N

i B

ii

B

ii

))((1)(

tTTdt

tdTbath

))(( tTTt

T bath

1)(

12

tT

Tt bath

Page 13: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

DM a presión constanteUn sistema microscópico mantiene la presión constante al cambiar su volumen. La cantidad de fluctuaciones en el volumen está relacionada con la compresibilidad isotérmica, k:

Un cambio del volumen en una simulación isobárica se puede obtener la cambiar el volumen en todas direcciones, o solo en una dirección. La compresibilidad isotérmica está relacionada con desplazamiento cuadrado mínimo del volumen por:

Un método alternativo es el acoplar el sistema a un ‘baño de presión’, análogo al baño de temperatura. La velocidad de cambio de la presión está dada por:

El volumen de la caja de simulación se escala por un factor λ, el cual es equivalente a escalar las coordenadas atómicas por by λ1/3.

Las nuevas posiciones están dadas por:

TP

V

Vk

1

2

221

V

VV

Tkk

B

))((1)(

tPPdt

tdPbath

bathP

PPt

k 1

ii rr 3/1'

Page 14: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Los limites• El tratamiento correcto de los limites posibilita las

propiedades macroscópicas.• En un cubo de un litro, con 3.3x1025 moléculas, una en 1.5

millón experimenta los efectos de las paredes. ¿Qué tal si usamos menos átomos?

• Condiciones de Limite Periódico: Mimetiza las propiedades del bulto con un número más pequeño de

partículas. Rodea cada caja

con 8(en 2d) o 26(en 3d)

cajas idénticas.

Page 15: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Los limites• Limite No-periódico • Cuando el interés está solo en alguna parte

del sistema.• Zona de Reacción, Región del Reservorio

Page 16: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

DM: Algunos temas• Energía No-enlazante : Consume la mayor parte del

tiempo; ~ N2.

• El potencial de L-J cae rápidamente (r-6).

• Distancia de corte No-enlazante o convención de imagen mínima.

La partícula no debe de “ver” su propia imagen. O la misma partícula dos veces.

Page 17: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Lista de Vecinos No-enlazados• Los vecinos de un átomo no

cambian significativamente en 10/20 pasos de DM. Si conociéramos cuales átomos incluir.

• Se usa un arreglo que se actualiza regularmente (con la frecuencia correcta).

• La distancia usada para calcular al vecino debe ser más grande que el corte no-enlazado actual.

• Cuando la suma del desplazamiento máximo excede la diferencia entre la distancia de corte y la lista de distancia entre vecinos, se actualiza.

Page 18: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Corte basado en grupos• Las moléculas se dividen en ‘grupos’ que contienen un

número pequeño de átomos conectados. Estos grupos deben de ser electrónicamente neutros.

Page 19: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Corte basado en grupos • ¿Cómo se debe dividir una molécula en grupos?

Preferiblemente, la carga total debe ser cero (carga-carga ~ 1/r)

• ¿Cuándo un par en particular necesita ser considerado? Se usan átomos marcadores o grupos de carga.

Page 20: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Problemas con los Cortes• El corte introduce una discontinuidad en el potencial y la

fuerza cercanas al corte. No hay conservación de la energía. • Use un potencial desplazado

El término constante desaparececuando se hace la diferencial paracalcular la fuerza.Discontinuidad en la fuerza.Igualar la derivada a cero.

cvrvrv )()( crr 0)( rv crr

)()(

)()( crr

c rrdr

rdvvrvrv

c

0)( rv

crr

crr

Page 21: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Función de Desplazamiento• Una función polinomial con la cual se multiplica

la energía potencial.• Algunas se aplican en todo el intervalo:

• S= 1 a r=0, y 0 a r=rc

)()()( rSrvrv

42 )()(21)()(

cc r

r

r

rrvrv

Page 22: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Función de Desplazamiento

• Gradualmente se estrecha el potencial entre dos cortes. Valor usual hasta rl baja, luego multiplicar por la función de desplazamiento hasta ru alta. Valor=1 a rl, 0 a ru.

• Discontinuidad de nuevo en energía/fuerza a dos valores de corte.

0.1S lij rr )/()( luiju rrrrS uijl rrr

0.0S iju rr

Page 23: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Función de Desplazamiento• Más aceptable: cambios mas suaves de 1 a 0 y

satisface la siguiente condición.

;0.1lrrS ;0

lrrdr

dS0

2

2

lrrdr

Sd

;0.1rurS ;0

urrdr

dS02

2

rurdr

Sd

5

5

4

4

3

3

2

210)(

lu

l

lu

l

lu

l

lu

l

lu

l

rr

rrc

rr

rrc

rr

rrc

rr

rrc

rr

rrccrS

c0=1; c1=c2=0; c3=-10, c4=15; c5=-6

Page 24: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Incorporando los efectos del disolvente: Potencial de Fuerza Media (PFM)

• Cuando el foco está en el soluto, uno puede usar un disolvente implícito.

• El PFM es una aproximación que describe como la energía libre cambia sobre una o algunas coordenadas de reacción en particular.

• El disolvente afecta al soluto por colisiones al azar, arrastre friccional, y efectos electrostáticos.

• Dinámica Estocástica : Fi (fuerza interpartícula, modelada cuando se usa PFM); Ffriccional (fuerza friccional); y R(t) (fluctuaciones azarosas).

• : Frecuencia de colisión y puede pensarse que es la velocidad del tiempo de relajación.

vF friccional m/ 1

Page 25: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Efectos del Disolvente

• R(t) está descorrelacionada de posición/velocidades o de las fuerzas, y obedece la distribución Gaussiana.

• Fi es una función de x, y se supone que es constante durante el paso de tiempo.

• Tres escenarios : a)

Sin efectos de disolvente, la Ec. De Langevin se reduce a la Ec. de Newton.

b) : Régimen difusivo, movimientos rápidamente amortiguados.

c) Intermedio: Necesita un integrador.

)()(

)}({)(

2

2

tRmdt

tdxtxF

dt

txdm ii

iii

ii

1t

1t

Ec. De Langevin

Page 26: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Efectos del Disolvente

• Integrador Simple :

• Expresión alternativa:

)}({)(2/1 121 iiiiii RFmvttvxx

)}({ 11 iiiii RFmvtvv

211

22 /)2(/ txxxdtxd iii txxdtdx ii 2/)(/ 11

t

RF

m

t

t

txxxx iiiiii

2

11

)()(

2

11

2

11)(

2

11

Page 27: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Dinámica Restringida (DR)

• Los modos de alta frecuencia consumen la mayor parte del tiempo de computadora.

• Los modos de baja frecuencia corresponden a los cambios conformacionales.

• Restricción: el sistema está forzado a satisfacer ciertas condiciones: e.g. unión fija, estructuras locales rígidas.

• Restricción: al sistema se le alienta para satisfacer ciertas condiciones, pero se puede desviar de éstas.

• En la DR, las ecuaciones del movimiento se resuelven mientras se satisfacen simultáneamente las restricciones impuestas.

• En la DR, las restricciones se implementan como términos extra en las fuerzas: Fuerzas ‘Normales’ más fuerzas de ‘restricción’.

Page 28: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Un ejemplo: unión fija

• La restricción requiere de una unión entre los átomos i y j permanezca fija.

• La fuerza se puede escribir como:• Naturalmente: • Diferenciando:

• Incorporación al algoritmo de Verlet

k

xF k

kckx

)(2/ jiik rrr )( jici rrF )(2/ jijk rrr )( jicj rrF

k

iji

ki

iiii tr

m

ttF

m

tttrtrttr )()()()(2)(

22

0)( 22 ijjiij drr

Page 29: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Unión Fija• Escribiendo: • Verlet:• Para cada átomo:

• El tercero de la restricción:

• Finalmente:

• SHAKE

212

2

21

2

21 )()()()( dtrtrttrttr

212

212

221

42121221

212

212 )()/1/1()()/1/1(2)( dtrmmttrmmtttr

)()()(2)(2

tFm

tttrtrttr i

iiii

k

iji

kii tr

m

tttrttr )()()(

2

))()(()()( 211

212

11 trtrm

tttrttr

))()(()()( 212

212

22 trtrm

tttrttr

Page 30: Clase # 12 Dinámica Molecular (II) Prof. Ramón Garduño Juárez Modelado Molecular Diseño de Fármacos.

Cambios conformacionales

en DM