Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian...

88
. . . . . . . . . . Recap . . . . . . . Bayesian Statistics . . . . . . . Bayes Estimator . . . . . . Conjugate Family . Summary . . Biostatistics 602 - Statistical Inference Lecture 15 Bayes Estimator Hyun Min Kang March 12th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 1 / 26

Transcript of Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian...

Page 1: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 15

Bayes Estimator

Hyun Min Kang

March 12th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 1 / 26

Page 2: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimatorfor any distribution?

If not, in which cases?• When Cramer-Rao bound is attainable, can Cramer-Rao bound be

used for find best unbiased estimator for any τ(θ)? If not, what is therestriction on τ(θ)?

• What is another way to find the best unbiased estimator?• Describe two strategies to obtain the best unbiased estimators for

τ(θ), using complete sufficient statistics.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 26

Page 3: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimatorfor any distribution? If not, in which cases?

• When Cramer-Rao bound is attainable, can Cramer-Rao bound beused for find best unbiased estimator for any τ(θ)? If not, what is therestriction on τ(θ)?

• What is another way to find the best unbiased estimator?• Describe two strategies to obtain the best unbiased estimators for

τ(θ), using complete sufficient statistics.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 26

Page 4: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimatorfor any distribution? If not, in which cases?

• When Cramer-Rao bound is attainable, can Cramer-Rao bound beused for find best unbiased estimator for any τ(θ)? If not, what is therestriction on τ(θ)?

• What is another way to find the best unbiased estimator?• Describe two strategies to obtain the best unbiased estimators for

τ(θ), using complete sufficient statistics.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 26

Page 5: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimatorfor any distribution? If not, in which cases?

• When Cramer-Rao bound is attainable, can Cramer-Rao bound beused for find best unbiased estimator for any τ(θ)? If not, what is therestriction on τ(θ)?

• What is another way to find the best unbiased estimator?

• Describe two strategies to obtain the best unbiased estimators forτ(θ), using complete sufficient statistics.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 26

Page 6: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimatorfor any distribution? If not, in which cases?

• When Cramer-Rao bound is attainable, can Cramer-Rao bound beused for find best unbiased estimator for any τ(θ)? If not, what is therestriction on τ(θ)?

• What is another way to find the best unbiased estimator?• Describe two strategies to obtain the best unbiased estimators for

τ(θ), using complete sufficient statistics.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 26

Page 7: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Recap - The power of complete sufficient statistics

.Theorem 7.3.23..

......

Let T be a complete sufficient statistic for parameter θ. Let ϕ(T) be anyestimator based on T. Then ϕ(T) is the unique best unbiased estimator ofits expected value.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 3 / 26

Page 8: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Raobound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than theCR-bound, it does NOT mean that it is not the best unbiasedestimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ)is no longer a

valid lower bound.• There may be unbiased estimators of τ(θ) that have variance smaller

than [τ ′(θ)]2

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 / 26

Page 9: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Raobound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than theCR-bound, it does NOT mean that it is not the best unbiasedestimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ)is no longer a

valid lower bound.• There may be unbiased estimators of τ(θ) that have variance smaller

than [τ ′(θ)]2

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 / 26

Page 10: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Raobound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than theCR-bound, it does NOT mean that it is not the best unbiasedestimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ)is no longer a

valid lower bound.• There may be unbiased estimators of τ(θ) that have variance smaller

than [τ ′(θ)]2

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 / 26

Page 11: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Raobound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than theCR-bound, it does NOT mean that it is not the best unbiasedestimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ)is no longer a

valid lower bound.

• There may be unbiased estimators of τ(θ) that have variance smallerthan [τ ′(θ)]2

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 / 26

Page 12: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Raobound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than theCR-bound, it does NOT mean that it is not the best unbiasedestimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ)is no longer a

valid lower bound.• There may be unbiased estimators of τ(θ) that have variance smaller

than [τ ′(θ)]2

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 / 26

Page 13: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMVUE - Method 2

.

......Use complete sufficient statistic to find the best unbiased estimator forτ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of thefollowing two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).• Guess an unbiased estimator h(X) of τ(θ). Construct

ϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 26

Page 14: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMVUE - Method 2

.

......Use complete sufficient statistic to find the best unbiased estimator forτ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of thefollowing two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).• Guess an unbiased estimator h(X) of τ(θ). Construct

ϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 26

Page 15: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMVUE - Method 2

.

......Use complete sufficient statistic to find the best unbiased estimator forτ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of thefollowing two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).• Guess an unbiased estimator h(X) of τ(θ). Construct

ϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 26

Page 16: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMVUE - Method 2

.

......Use complete sufficient statistic to find the best unbiased estimator forτ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of thefollowing two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).

• Guess an unbiased estimator h(X) of τ(θ). Constructϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 26

Page 17: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Finding UMVUE - Method 2

.

......Use complete sufficient statistic to find the best unbiased estimator forτ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of thefollowing two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).• Guess an unbiased estimator h(X) of τ(θ). Construct

ϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 26

Page 18: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Frequentists vs. Bayesians

A biased view in favor of Bayesians at http://xkcd.com/1132/

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 6 / 26

Page 19: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Statistic

.Frequentist’s Framework..

...... P = X ∼ fX(x|θ), θ ∈ Ω

.Bayesian Statistic..

......

• Parameter θ is considered as a random quantity• Distribution of θ can be described by probability distribution, referred

to as prior distribution• A sample is taken from a population indexed by θ, and the prior

distribution is updated using information from the sample to getposterior distribution of θ given the sample.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 7 / 26

Page 20: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Statistic

.Frequentist’s Framework..

...... P = X ∼ fX(x|θ), θ ∈ Ω

.Bayesian Statistic..

......

• Parameter θ is considered as a random quantity

• Distribution of θ can be described by probability distribution, referredto as prior distribution

• A sample is taken from a population indexed by θ, and the priordistribution is updated using information from the sample to getposterior distribution of θ given the sample.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 7 / 26

Page 21: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Statistic

.Frequentist’s Framework..

...... P = X ∼ fX(x|θ), θ ∈ Ω

.Bayesian Statistic..

......

• Parameter θ is considered as a random quantity• Distribution of θ can be described by probability distribution, referred

to as prior distribution

• A sample is taken from a population indexed by θ, and the priordistribution is updated using information from the sample to getposterior distribution of θ given the sample.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 7 / 26

Page 22: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Statistic

.Frequentist’s Framework..

...... P = X ∼ fX(x|θ), θ ∈ Ω

.Bayesian Statistic..

......

• Parameter θ is considered as a random quantity• Distribution of θ can be described by probability distribution, referred

to as prior distribution• A sample is taken from a population indexed by θ, and the prior

distribution is updated using information from the sample to getposterior distribution of θ given the sample.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 7 / 26

Page 23: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Framework• Prior distribution of θ : θ ∼ π(θ).

• Sample distribution of X given θ.X|θ ∼ f(x|θ)

• Joint distribution X and θf(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.m(x) =

∫θ∈Ω

f(x, θ)dθ =

∫θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)π(θ|x) =

f(x, θ)m(x) =

f(x|θ)π(θ)m(x) (Bayes’ Rule)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 8 / 26

Page 24: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Framework• Prior distribution of θ : θ ∼ π(θ).• Sample distribution of X given θ.

X|θ ∼ f(x|θ)

• Joint distribution X and θf(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.m(x) =

∫θ∈Ω

f(x, θ)dθ =

∫θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)π(θ|x) =

f(x, θ)m(x) =

f(x|θ)π(θ)m(x) (Bayes’ Rule)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 8 / 26

Page 25: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Framework• Prior distribution of θ : θ ∼ π(θ).• Sample distribution of X given θ.

X|θ ∼ f(x|θ)

• Joint distribution X and θf(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.m(x) =

∫θ∈Ω

f(x, θ)dθ =

∫θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)π(θ|x) =

f(x, θ)m(x) =

f(x|θ)π(θ)m(x) (Bayes’ Rule)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 8 / 26

Page 26: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Framework• Prior distribution of θ : θ ∼ π(θ).• Sample distribution of X given θ.

X|θ ∼ f(x|θ)

• Joint distribution X and θf(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.m(x) =

∫θ∈Ω

f(x, θ)dθ =

∫θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)π(θ|x) =

f(x, θ)m(x) =

f(x|θ)π(θ)m(x) (Bayes’ Rule)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 8 / 26

Page 27: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayesian Framework• Prior distribution of θ : θ ∼ π(θ).• Sample distribution of X given θ.

X|θ ∼ f(x|θ)

• Joint distribution X and θf(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.m(x) =

∫θ∈Ω

f(x, θ)dθ =

∫θ∈Ω

f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)π(θ|x) =

f(x, θ)m(x) =

f(x|θ)π(θ)m(x) (Bayes’ Rule)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 8 / 26

Page 28: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)True (θ = 1) 0.95False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ 0, 1), and Alarmis an observed outcome (X = 0, 1).

• Under Frequentist’s Framework,• If there was no burglary, there is 1% of chance of alarm ringing.• If there was a burglary, there is 95% of chance of alarm ringing.• One can come up with an estimator on θ, such as MLE• However, given that alarm already rang, one cannot calculate the

probability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 26

Page 29: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)True (θ = 1) 0.95False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ 0, 1), and Alarmis an observed outcome (X = 0, 1).

• Under Frequentist’s Framework,• If there was no burglary, there is 1% of chance of alarm ringing.

• If there was a burglary, there is 95% of chance of alarm ringing.• One can come up with an estimator on θ, such as MLE• However, given that alarm already rang, one cannot calculate the

probability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 26

Page 30: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)True (θ = 1) 0.95False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ 0, 1), and Alarmis an observed outcome (X = 0, 1).

• Under Frequentist’s Framework,• If there was no burglary, there is 1% of chance of alarm ringing.• If there was a burglary, there is 95% of chance of alarm ringing.

• One can come up with an estimator on θ, such as MLE• However, given that alarm already rang, one cannot calculate the

probability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 26

Page 31: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)True (θ = 1) 0.95False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ 0, 1), and Alarmis an observed outcome (X = 0, 1).

• Under Frequentist’s Framework,• If there was no burglary, there is 1% of chance of alarm ringing.• If there was a burglary, there is 95% of chance of alarm ringing.• One can come up with an estimator on θ, such as MLE

• However, given that alarm already rang, one cannot calculate theprobability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 26

Page 32: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)True (θ = 1) 0.95False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ 0, 1), and Alarmis an observed outcome (X = 0, 1).

• Under Frequentist’s Framework,• If there was no burglary, there is 1% of chance of alarm ringing.• If there was a burglary, there is 95% of chance of alarm ringing.• One can come up with an estimator on θ, such as MLE• However, given that alarm already rang, one cannot calculate the

probability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 26

Page 33: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Inference Under Bayesian’s Framework.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household pernight is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1)(Bayes’ rule)

= Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(θ = 1,X = 1) + Pr(θ = 0,X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 10−7

0.95× 10−7 + 0.01× (1− 10−7)≈ 9.5× 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely tohappen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

Page 34: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Inference Under Bayesian’s Framework.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household pernight is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1)(Bayes’ rule)

= Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(θ = 1,X = 1) + Pr(θ = 0,X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 10−7

0.95× 10−7 + 0.01× (1− 10−7)≈ 9.5× 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely tohappen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

Page 35: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Inference Under Bayesian’s Framework.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household pernight is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1)(Bayes’ rule)

= Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(θ = 1,X = 1) + Pr(θ = 0,X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 10−7

0.95× 10−7 + 0.01× (1− 10−7)≈ 9.5× 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely tohappen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

Page 36: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Inference Under Bayesian’s Framework.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household pernight is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1)(Bayes’ rule)

= Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(θ = 1,X = 1) + Pr(θ = 0,X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 10−7

0.95× 10−7 + 0.01× (1− 10−7)≈ 9.5× 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely tohappen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

Page 37: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Inference Under Bayesian’s Framework.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household pernight is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1)(Bayes’ rule)

= Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(θ = 1,X = 1) + Pr(θ = 0,X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 10−7

0.95× 10−7 + 0.01× (1− 10−7)≈ 9.5× 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely tohappen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

Page 38: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

What if the prior information is misleading?.Over-fitting to Prior Information..

......

Suppose that, in fact, a thief found a security breach in my place andplanning to break-in either tonight or tomorrow night for sure (with thesame probability). Then the correct prior Pr(θ = 1) = 0.5.

Pr(θ = 1|X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 0.5

0.95× 0.5 + 0.01× (1− 0.5)≈ 0.99

However, if we relied on the inference based on the incorrect prior, we mayend up concluding that there are > 99.9% chance that this is a falsealarm, and ignore it, resulting an exchange of one night of good sleep withquite a bit of fortune.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 11 / 26

Page 39: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

What if the prior information is misleading?.Over-fitting to Prior Information..

......

Suppose that, in fact, a thief found a security breach in my place andplanning to break-in either tonight or tomorrow night for sure (with thesame probability). Then the correct prior Pr(θ = 1) = 0.5.

Pr(θ = 1|X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 0.5

0.95× 0.5 + 0.01× (1− 0.5)≈ 0.99

However, if we relied on the inference based on the incorrect prior, we mayend up concluding that there are > 99.9% chance that this is a falsealarm, and ignore it, resulting an exchange of one night of good sleep withquite a bit of fortune.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 11 / 26

Page 40: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

What if the prior information is misleading?.Over-fitting to Prior Information..

......

Suppose that, in fact, a thief found a security breach in my place andplanning to break-in either tonight or tomorrow night for sure (with thesame probability). Then the correct prior Pr(θ = 1) = 0.5.

Pr(θ = 1|X = 1)

=Pr(X = 1|θ = 1)Pr(θ = 1)

Pr(X = 1|θ = 1)Pr(θ = 1) + Pr(X = 1|θ = 0)Pr(θ = 0)

=0.95× 0.5

0.95× 0.5 + 0.01× (1− 0.5)≈ 0.99

However, if we relied on the inference based on the incorrect prior, we mayend up concluding that there are > 99.9% chance that this is a falsealarm, and ignore it, resulting an exchange of one night of good sleep withquite a bit of fortune.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 11 / 26

Page 41: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.

• Available information about θ can be utilized.• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated tointerpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 42: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.• Available information about θ can be utilized.

• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated tointerpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 43: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.• Available information about θ can be utilized.• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated tointerpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 44: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.• Available information about θ can be utilized.• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.

• Bayesian inference is often (but not always) prone to be ”subjective”• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)

Bayesian Analysis 3:451-456.• Bayesian inference could be sometimes unnecessarily complicated to

interpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 45: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.• Available information about θ can be utilized.• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated tointerpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 46: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Advantages and Drawbacks of Bayesian Inference.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.• Available information about θ can be utilized.• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated tointerpret, compared to Frequentist’s inference.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 / 26

Page 47: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayes Estimator

.Definition..

......

Bayes Estimator of θ is defined as the posterior mean of θ.

E(θ|x) =∫θ∈Ω

θπ(θ|x)dθ

.Example Problem..

......

X1, · · · ,Xni.i.d.∼ Bernoulli(p) where 0 ≤ p ≤ 1. Assume that the prior

distribution of p is Beta(α, β). Find the posterior distribution of p and theBayes estimator of p, assuming α and β are known.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 13 / 26

Page 48: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayes Estimator

.Definition..

......

Bayes Estimator of θ is defined as the posterior mean of θ.E(θ|x) =

∫θ∈Ω

θπ(θ|x)dθ

.Example Problem..

......

X1, · · · ,Xni.i.d.∼ Bernoulli(p) where 0 ≤ p ≤ 1. Assume that the prior

distribution of p is Beta(α, β). Find the posterior distribution of p and theBayes estimator of p, assuming α and β are known.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 13 / 26

Page 49: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Bayes Estimator

.Definition..

......

Bayes Estimator of θ is defined as the posterior mean of θ.E(θ|x) =

∫θ∈Ω

θπ(θ|x)dθ

.Example Problem..

......

X1, · · · ,Xni.i.d.∼ Bernoulli(p) where 0 ≤ p ≤ 1. Assume that the prior

distribution of p is Beta(α, β). Find the posterior distribution of p and theBayes estimator of p, assuming α and β are known.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 13 / 26

Page 50: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (1/4)Prior distribution of p is

π(p) = Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Sampling distribution of X given p is

fX(x|p) =n∏

i=1

pxi(1− p)1−xi

Joint distribution of X and p is

fX(x, p) = fX(x|p)π(p)

=

n∏i=1

pxi(1− p)1−xi

Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 14 / 26

Page 51: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (1/4)Prior distribution of p is

π(p) = Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Sampling distribution of X given p is

fX(x|p) =n∏

i=1

pxi(1− p)1−xi

Joint distribution of X and p is

fX(x, p) = fX(x|p)π(p)

=

n∏i=1

pxi(1− p)1−xi

Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 14 / 26

Page 52: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (1/4)Prior distribution of p is

π(p) = Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Sampling distribution of X given p is

fX(x|p) =n∏

i=1

pxi(1− p)1−xi

Joint distribution of X and p is

fX(x, p) = fX(x|p)π(p)

=

n∏i=1

pxi(1− p)1−xi

Γ(α+ β)

Γ(α)Γ(β)pα−1(1− p)β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 14 / 26

Page 53: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (2/4)The marginal distribution of X is

m(x) =

∫f(x, p)dp =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)p∑n

i=1 xi+α−1(1− p)n−∑n

i=1 xi+β−1dp

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

× Γ(∑

xi + α+ n −∑

xi + β)

Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

×∫ 1

0fBeta(

∑xi+α,n−

∑xi+β)(p)dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 15 / 26

Page 54: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (2/4)The marginal distribution of X is

m(x) =

∫f(x, p)dp =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)p∑n

i=1 xi+α−1(1− p)n−∑n

i=1 xi+β−1dp

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

× Γ(∑

xi + α+ n −∑

xi + β)

Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

×∫ 1

0fBeta(

∑xi+α,n−

∑xi+β)(p)dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 15 / 26

Page 55: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (2/4)The marginal distribution of X is

m(x) =

∫f(x, p)dp =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)p∑n

i=1 xi+α−1(1− p)n−∑n

i=1 xi+β−1dp

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

× Γ(∑

xi + α+ n −∑

xi + β)

Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

×∫ 1

0fBeta(

∑xi+α,n−

∑xi+β)(p)dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 15 / 26

Page 56: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (2/4)The marginal distribution of X is

m(x) =

∫f(x, p)dp =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)p∑n

i=1 xi+α−1(1− p)n−∑n

i=1 xi+β−1dp

=

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

× Γ(∑

xi + α+ n −∑

xi + β)

Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

×∫ 1

0fBeta(

∑xi+α,n−

∑xi+β)(p)dp

=Γ(α+ β)

Γ(α)Γ(β)

Γ(∑n

i=1 xi + α)Γ(n −∑n

i=1 xi + β)

Γ(α+ β + n)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 15 / 26

Page 57: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (3/4)

The posterior distribution of θ|x :

π(θ|x) =f(x, p)m(x)

=

[Γ(α+ β)

Γ(α)Γ(β)p∑

xi+α−1(1− p)n−∑

xi+β−1

][Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

]=

Γ(α+ β + n)Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 16 / 26

Page 58: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (3/4)

The posterior distribution of θ|x :

π(θ|x) =f(x, p)m(x)

=

[Γ(α+ β)

Γ(α)Γ(β)p∑

xi+α−1(1− p)n−∑

xi+β−1

][Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

]

=Γ(α+ β + n)

Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 16 / 26

Page 59: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (3/4)

The posterior distribution of θ|x :

π(θ|x) =f(x, p)m(x)

=

[Γ(α+ β)

Γ(α)Γ(β)p∑

xi+α−1(1− p)n−∑

xi+β−1

][Γ(α+ β)

Γ(α)Γ(β)

Γ(∑

xi + α)Γ(n −∑

xi + β)

Γ(α+ β + n)

]=

Γ(α+ β + n)Γ(∑

xi + α)Γ(n −∑

xi + β)p∑

xi+α−1(1− p)n−∑

xi+β−1

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 16 / 26

Page 60: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (4/4)

The Bayes estimator of p is

p =

∑ni=1 xi + α∑n

i=1 xi + α+ n −∑n

i=1 xi + β=

∑ni=1 xi + α

α+ β + n

=

∑ni=1 xin

nα+ β + n +

α

α+ β

α+ β

α+ β + n= [Guess about p from data] · weight1

+ [Guess about p from prior] · weight2

As n increase, weight1 = nα+β+n = 1

α+βn +1

becomes bigger and bigger andapproaches to 1. In other words, influence of data is increasing, and theinfluence of prior knowledge is decreasing.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 17 / 26

Page 61: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (4/4)

The Bayes estimator of p is

p =

∑ni=1 xi + α∑n

i=1 xi + α+ n −∑n

i=1 xi + β=

∑ni=1 xi + α

α+ β + n

=

∑ni=1 xin

nα+ β + n +

α

α+ β

α+ β

α+ β + n

= [Guess about p from data] · weight1+ [Guess about p from prior] · weight2

As n increase, weight1 = nα+β+n = 1

α+βn +1

becomes bigger and bigger andapproaches to 1. In other words, influence of data is increasing, and theinfluence of prior knowledge is decreasing.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 17 / 26

Page 62: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (4/4)

The Bayes estimator of p is

p =

∑ni=1 xi + α∑n

i=1 xi + α+ n −∑n

i=1 xi + β=

∑ni=1 xi + α

α+ β + n

=

∑ni=1 xin

nα+ β + n +

α

α+ β

α+ β

α+ β + n= [Guess about p from data] · weight1

+ [Guess about p from prior] · weight2

As n increase, weight1 = nα+β+n = 1

α+βn +1

becomes bigger and bigger andapproaches to 1. In other words, influence of data is increasing, and theinfluence of prior knowledge is decreasing.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 17 / 26

Page 63: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Solution (4/4)

The Bayes estimator of p is

p =

∑ni=1 xi + α∑n

i=1 xi + α+ n −∑n

i=1 xi + β=

∑ni=1 xi + α

α+ β + n

=

∑ni=1 xin

nα+ β + n +

α

α+ β

α+ β

α+ β + n= [Guess about p from data] · weight1

+ [Guess about p from prior] · weight2

As n increase, weight1 = nα+β+n = 1

α+βn +1

becomes bigger and bigger andapproaches to 1. In other words, influence of data is increasing, and theinfluence of prior knowledge is decreasing.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 17 / 26

Page 64: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Is the Bayes estimator unbiased?

E[ ∑n

i=1+α

α+ β + n

]=

np + α

α+ β + n = p

Unless αα+β = p.

Bias =np + α

α+ β + n − p =α− (α+ β)pα+ β + n

As n increases, the bias approaches to zero.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 18 / 26

Page 65: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Is the Bayes estimator unbiased?

E[ ∑n

i=1+α

α+ β + n

]=

np + α

α+ β + n = p

Unless αα+β = p.

Bias =np + α

α+ β + n − p =α− (α+ β)pα+ β + n

As n increases, the bias approaches to zero.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 18 / 26

Page 66: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Sufficient statistic and posterior distribution

.Posterior conditioning on sufficient statistics..

......

If T(X) is a sufficient statistic, then the posterior distribution of θ given Xis the same to the posterior distribution given T(X).

In other words,π(θ|x) = π(θ|T(x))

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 19 / 26

Page 67: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Sufficient statistic and posterior distribution

.Posterior conditioning on sufficient statistics..

......

If T(X) is a sufficient statistic, then the posterior distribution of θ given Xis the same to the posterior distribution given T(X). In other words,

π(θ|x) = π(θ|T(x))

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 19 / 26

Page 68: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Conjugate family

.Definition 7.2.15..

......

Let F denote the class of pdfs or pmfs for f(x|θ). A class Π of priordistributions is a conjugate family of F , if the posterior distribution is theclass Π for all f ∈ F , and all priors in Π, and all x ∈ X .

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 20 / 26

Page 69: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Beta-Binomial conjugate

Let• X1, · · · ,Xn|p ∼ Binomial(m, p)

• π(p) ∼ Beta(α, β)where m, α, β is known. The posterior distribution is

π(p|x) ∼ Beta( n∑

i=1

xi + α,mn −n∑

i=1

xi + β

)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 21 / 26

Page 70: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Beta-Binomial conjugate

Let• X1, · · · ,Xn|p ∼ Binomial(m, p)• π(p) ∼ Beta(α, β)

where m, α, β is known.

The posterior distribution is

π(p|x) ∼ Beta( n∑

i=1

xi + α,mn −n∑

i=1

xi + β

)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 21 / 26

Page 71: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Beta-Binomial conjugate

Let• X1, · · · ,Xn|p ∼ Binomial(m, p)• π(p) ∼ Beta(α, β)

where m, α, β is known. The posterior distribution is

π(p|x) ∼ Beta( n∑

i=1

xi + α,mn −n∑

i=1

xi + β

)

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 21 / 26

Page 72: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Gamma-Poisson conjugate

• X1, · · · ,Xn|λ ∼ Poisson(λ)

• π(λ) ∼ Gamma(α, β)• Prior:

π(λ) =1

Γ(α)βαλα−1e−λ/β

• Sampling distribution

X|λ i.i.d.∼ e−λλx

x!

fX(x|λ) =n∏

i=1

e−λλxi

xi!

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 22 / 26

Page 73: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Gamma-Poisson conjugate

• X1, · · · ,Xn|λ ∼ Poisson(λ)• π(λ) ∼ Gamma(α, β)

• Prior:π(λ) =

1

Γ(α)βαλα−1e−λ/β

• Sampling distribution

X|λ i.i.d.∼ e−λλx

x!

fX(x|λ) =n∏

i=1

e−λλxi

xi!

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 22 / 26

Page 74: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Gamma-Poisson conjugate

• X1, · · · ,Xn|λ ∼ Poisson(λ)• π(λ) ∼ Gamma(α, β)• Prior:

π(λ) =1

Γ(α)βαλα−1e−λ/β

• Sampling distribution

X|λ i.i.d.∼ e−λλx

x!

fX(x|λ) =n∏

i=1

e−λλxi

xi!

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 22 / 26

Page 75: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Gamma-Poisson conjugate

• X1, · · · ,Xn|λ ∼ Poisson(λ)• π(λ) ∼ Gamma(α, β)• Prior:

π(λ) =1

Γ(α)βαλα−1e−λ/β

• Sampling distribution

X|λ i.i.d.∼ e−λλx

x!

fX(x|λ) =n∏

i=1

e−λλxi

xi!

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 22 / 26

Page 76: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Gamma-Poisson conjugate (cont’d)

• Joint distribution of X and λ.

f(x|λ)π(λ) =

[ n∏i=1

e−λλxi

xi!

]1

Γ(α)βαλα−1e−λ/β

= e−nλ−λ/βλ∑

xi+α−1 1∏ni=1 xi!

1

Γ(α)βα

• Marginal distribution

m(x) =∫

f(x|λ)π(λ)dλ

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 23 / 26

Page 77: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Gamma-Poisson conjugate (cont’d)

• Joint distribution of X and λ.

f(x|λ)π(λ) =

[ n∏i=1

e−λλxi

xi!

]1

Γ(α)βαλα−1e−λ/β

= e−nλ−λ/βλ∑

xi+α−1 1∏ni=1 xi!

1

Γ(α)βα

• Marginal distribution

m(x) =∫

f(x|λ)π(λ)dλ

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 23 / 26

Page 78: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Gamma-Poisson conjugate (cont’d)

• Posterior distribution (proportional to the joint distribution)

π(λ|x) =f(x|λ)π(λ)

m(x)

= e−nλ−λ/βλ∑

xi+α−1 1

Γ(∑

xi + α)

(1

n+ 1β

)∑xi+α

So, the posterior distribution is Gamma(∑

xi + α,(

n + 1β

)−1)

.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 24 / 26

Page 79: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Gamma-Poisson conjugate (cont’d)

• Posterior distribution (proportional to the joint distribution)

π(λ|x) =f(x|λ)π(λ)

m(x)

= e−nλ−λ/βλ∑

xi+α−1 1

Γ(∑

xi + α)

(1

n+ 1β

)∑xi+α

So, the posterior distribution is Gamma(∑

xi + α,(

n + 1β

)−1)

.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 24 / 26

Page 80: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean• As the prior information becomes more vague, the Bayes estimator

tends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 81: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean• As the prior information becomes more vague, the Bayes estimator

tends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 82: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean• As the prior information becomes more vague, the Bayes estimator

tends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 83: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.

• The Bayes estimator for θ is a linear combination of the prior andsample means

• As the prior variance τ2 approaches to infinity, the Bayes estimatortends toward to sample mean

• As the prior information becomes more vague, the Bayes estimatortends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 84: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means

• As the prior variance τ2 approaches to infinity, the Bayes estimatortends toward to sample mean

• As the prior information becomes more vague, the Bayes estimatortends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 85: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean

• As the prior information becomes more vague, the Bayes estimatortends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 86: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Example: Normal Bayes EstimatorsLet X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ alsobecomes normal, with mean and variance given by

E[θ|x] =τ2

τ2 + σ2x + σ2

σ2 + τ2µ

Var(θ|x) =σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.• The Bayes estimator for θ is a linear combination of the prior and

sample means• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean• As the prior information becomes more vague, the Bayes estimator

tends to give more weight to the sample informationHyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Page 87: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Summary

.Today..

......

• Bayesian Statistics• Bayes Estimator• Conjugate family

.Next Lecture..

......

• Bayesian Risk Functions• Consistency

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 26 / 26

Page 88: Biostatistics 602 - Statistical Inference Lecture 15 Bayes ... · Recap. . . . . . . Bayesian Statistics. . . . . . . Bayes Estimator. . . . . . Conjugate Family. Summary.. Biostatistics

. . . . . .

. . . .Recap

. . . . . . .Bayesian Statistics

. . . . . . .Bayes Estimator

. . . . . .Conjugate Family

.Summary

Summary

.Today..

......

• Bayesian Statistics• Bayes Estimator• Conjugate family

.Next Lecture..

......

• Bayesian Risk Functions• Consistency

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 26 / 26