Angelo

9
a d g

Transcript of Angelo

Page 1: Angelo

a d g

Page 2: Angelo

e m

RuBisCO es la forma abreviada con que normalmente se designa a la enzima cuyo nombre completo es ribulosa-1,5-bisfosfato carboxilasa oxigenasa (EC 4.1.1.39). Esta enzima tiene un doble comportamiento que justifica su nombre, catalizando dos procesos opuestos. Primero la fijación del CO2 a una forma orgánica, lo que justifica su clasificación como carboxilasa. Segundo, la fotorrespiración, en la que actúa como oxigenasa del mismo sustrato. La RuBisCO es la proteína-enzima más abundante en la biosfera.

Las histonas son de dos tipos: H1 (ó H5) y las histonas nucleosómicas. Las histonas nucleosómicas son mas pequeñas ( 102 a 135 aminoácidos) y forman los nucleosomas al enrollar ADN sobre un grupo de ellas. Las histonas nucleosómicas son la H2A, H2B, H3 y H4 y están muy conservadas a lo largo de las diferentes especies.eucariotas. En el núcleo de la célula hay un gran número de ellas (alrededor de 60 millones de cada tipo). Las histonas pueden ser modificadas tras la traducción lo que les cambia sus propiedades de unión al ADN y a proteínas nucleares. Las histonas H3 y H4 tienen largas colas N-terminales hacia el exterior del nucleosoma que son susceptibles de ser modificadas covalentemente. Las modificaciones que pueden sufrir las histonas son: acetilación, metilación, fosforilación y mono-ubicuitinación y sumoilación. Estas modificaciones pueden ser heredadas, influyen en la expresión génica, cambian la arquitectura local de la cromatina y podrían también reclutar otras proteínas que reconozcan modificaciones específicas de las histonas según la hipótesis llamada el `código de las histonas`. Existe una correlación entre la acetilación de histonas y aumento de transcripción que parece debido a que tras acetilarse la histona se une menos al ADN. Por otra parte parece haber activadores de la transcripción que se unen específicamente a acetil-lisina mediante un módulo llamado `Bromo`. La metilación de histonas puede tanto activar como reprimir la transcripción dependiendo de qué residuos de lisina en qué histonas son metilados. Estos residuos de metil-lisina parece que reclutan proteínas que contienen un dominio de unión a ellas llamado `Cromo`. La acetilación de las histonas regula la expresión de genes relacionados con la inflamación y también parece tener un papel en diversas funciones tales como reparación de ADN y proliferación celular, por lo que se plantea usar inhibidores de la histona deacetilasa como nuevos agentes antiinflamatorios. La deacetilasa de histonas actúa como represor de la transcripción a través de interacciones con otras proteínas lo que lleva a remodelación de la cromatina. Hoy día parece claro que determinados patrones de

Page 3: Angelo

modificación de histones conducen a determinadas patologías entre las que podrían encontrarse, además de patologías tumorales, patologías inflamatorias de localización broncopulmonar como el asma. La huntingtina es una proteína mutada que contiene una zona de poliglutamina aumentada y es responsable de la enfermedad de Huntington. Esta proteína mutada altera la actividad de la acetiltransferasa de histona lo que podría ser el mecanismo por el que altera la transcripción génica, fenómeno clave en la patogenia de la enfermedad.

En los seres humanos hay cinco tipos principales: la histona H1 y las histonas H2A, H2B, H3 y H4. Estas últimas se denominan también histonas nucleosomales y forman un octámero con dos histonas de cada; alrededor de este núcleo se enrolla dos veces un hilo de ADN. Este complejo ADN-histona recibe el nombre de nucleosoma y constituye el componente primario del cromosoma.2

El ADN gira unos 147 pares de bases alrededor del núcleo de la histona y a continuación se desplaza unos 20-70 bp en un giro hacia la izquierda hasta alcanzar el siguiente nucleosoma. La pieza intermedia, también denominada ADN de conexión está “desnuda”, es decir, no está equipada con histonas. La histonas H1 se coloca como pieza de cierre en cada nucleosoma y al mismo tiempo toma contacto con las agrupaciones vecinas. De esto modo, las proteínas H1 van “grapando” los nucleosomas para formar un hilo denso: la fibra de cromatina.

Tipos de ARN interferente

Los ARN interferentes son moléculas pequeñas (de 20 a 25 nucléotidos) que se generan por fragmentación de precursores más largos. Se pueden clasificar en tres grandes grupos de moleculas:2

Mecanismo de RNAi / ribointerferencia mediado porsiRNA.

El acrónimo siRNA proviene del inglés small interfering RNA: en español, ARN interferente pequeño. Son moléculas de ARN bicatenario perfectamente complementarias de aproximadamente 20 o 21 nucleótidos (nt) con 2 nucleótidos desemparejados en cada extremo 3'. Cada hebra de ARN tiene un grupo fosfato 5' y un grupo hidroxilo (-OH) 3'. Esta estructura proviene del procesamiento llevado a cabo por Dicer, una enzima que corta moléculas largas de ARN bicatenario (dsRNA, double stranded RNA) en varios siRNA.3 Una de las hebras del siRNA (la hebra 'antisentido') se ensambla en un complejo proteico denominado RISC (RNA-induced silencing complex), que utiliza la hebra de siRNA como guía para identificar el ARN mensajero complementario. El complejo RISC cataliza el corte del ARNm complementario en dos mitades, que son degradadas por la maquinaria celular, bloqueando así la expresión del gen. Los siRNA pueden ser también introducidos de forma exógena en las células utilizando métodos de transfección basándose en la secuencia complementaria de un gen en particular, con la finalidad de reducir significativamente su expresión.

Artículo principal: MicroARN.

Los microARN (en inglés, micro-RNA o miRNA) son pequeños ARN interferentes que se generan a partir de precursores específicos codificados en el genoma, que al transcribirse se pliegan en

Page 4: Angelo

horquillas (hairpins) intramoleculares que contienen segmentos de complementariedad imperfecta. El procesamiento de los precursores ocurre generalmente en dos etapas, catalizado por dos enzimas, Drosha en el núcleo y Dicer en el citoplasma. Una de las hebras del miRNA (la hebra 'antisentido'), como ocurre con los siRNA, se incorpora a un complejo similar al RISC. Dependiendo del grado de complementariedad del miRNA con el ARNm, los miRNA pueden bien inhibir la traducción del ARNm o bien inducir su degradación. Sin embargo, a diferencia con la vía de los siRNA, la degradación de ARNm mediada por miRNA se inicia con la eliminación enzimática de la cola de poli(A) del ARNm.

Artículo principal: ARNs asociados a Piwi.

(Piwi-interacting RNAs, ARN asociados a Piwi4 ): se generan a partir de precursores largos monocatenarios, en un proceso que es independiente de Drosha y Dicer. Estos ARN pequeños se asocian con una subfamilia de las proteínas 'Argonauta' denominada proteínas Piwi. Se han identificado decenas de miles de piRNA, pero su función es desconocida (2008). Sin embargo, se sabe que conjuntamente con las proteínas Piwi, son necesarios para el desarrollo de las células de la línea germinal.

Los plásmidos son moléculas de ADN extracromosómico circular o lineal que se replican y transcriben independientes del ADNcromosómico. Están presentes normalmente en bacterias, y en algunas ocasiones en organismos eucariotas como las levaduras. Su tamaño varía desde 1 a 250 kb. El número de plásmidos puede variar, dependiendo de su tipo, desde una sola copia hasta algunos cientos por célula. El término plásmido fue presentado por primera vez por el biólogo molecular norteamericano Joshua Lederberg en 1952.1

Las moléculas de ADN plasmídico, adoptan una conformación tipo doble hélice al igual que el ADN de los cromosomas, aunque, por definición, se encuentran fuera de los mismos. Se han encontrado plásmidos en casi todas las bacterias. A diferencia del ADN cromosomal, los plásmidos no tienen proteínas asociadas.

En general, no contienen información esencial, sino que confieren ventajas al hospedador en condiciones de crecimiento determinadas. El ejemplo más común es el de los plásmidos que contienen genes de resistencia a un determinado antibiótico, de manera que el plásmido únicamente supondrá una ventaja en presencia de ese antibiótico.

Hay algunos plásmidos integrativos, es decir, que tienen la capacidad de insertarse en el cromosoma bacteriano. Estos rompen momentáneamente el cromosoma y se sitúan en su interior, con lo cual, automáticamente la maquinaria celular también reproduce el plásmido. Cuando ese plásmido se ha insertado se les da el nombre de episoma.

Los plásmidos se utilizan en ingeniería genética por su capacidad de reproducirse de manera independiente del ADN cromosomal así como también porque es relativamente fácil manipularlos e insertar nuevas secuencias genéticas.

Page 5: Angelo

Los plásmidos usados en Ingeniería Genética suelen contener uno o dos genes que les confieren resistencia a antibióticos y permiten seleccionar clones recombinantes. Hay otros métodos de selección además de la resistencia a antibióticos, como los basados en fluorescencia o en proteínas que destruyen las células sin uso de antibióticos. Estos nuevos métodos de selección de plásmidos son de uso frecuente en agrobiotecnología, debido a la fuerte crítica de grupos ecologistas contra la posibilidad de presencia de antibióticos en los organismos modificados genéticamente.

Resistencia a los antibióticos

Los plásmidos a menudo contienen genes o paquetes de genes que le confieren una ventaja selectiva lo cual les da la habilidad de hacer a la bacteria, resistente a los antibióticos.

Cada plásmido contiene al menos una secuencia de ADN que sirve como un origen de replicación u ORI (un punto inicial para la replicación del ADN), lo cual habilita al ADN para ser duplicado independientemente del ADN cromosomal. Los plásmidos de la mayoría de las bacterias son circulares, pero también se conocen algunos lineales, los cuales reensamblan superficialmente los cromosomas de la mayoría de eucariotes.

[editar]Epísomas

Un epísoma es un plásmido que puede integrarse por sí mismo al ADN cromosomal del organismo huésped. Por esta razón, puede mantenerse en contacto por un largo tiempo, ser duplicado en cada división celular del huésped y volverse parte básica de su mapa genético. Este término no se usa más en plásmidos, debido a que ahora está claro que una región homologa con elcromosoma elabora un plásmido dentro de un epísoma.

Los plásmidos usados en ingeniería genética son llamados “vectores”. Estos son usados para transferir genes desde un organismo a otro y típicamente contienen un marcador genético confiriendo un fenotipo el cual puede ser seleccionado a favor o en contra. La mayoría también contienen un polivinculador o sitio de clonado múltiple (MCS), el cual es una pequeña región que contiene los sitios de restricción más comúnmente usados, permitiendo una fácil inserción de fragmentos de ADN en ese lugar.

[editar]Tipos

Una forma de agrupar plásmidos es por su habilidad de transferirse a otra bacteria. Los plásmidos conjugativos contienen “tra-genes”, los cuales ejecutan complejos procesos de conjugación, como la transferencia sexual de plásmidos a otra bacteria. Los plásmidos no-conjugativos, son incapaces de iniciar una conjugación, de allí que ellos pueden transferirse únicamente con la asistencia de los plásmidos conjugativos y lo hacen “por accidente”. Una clase intermedia de plásmidos son los “movilizables” los cuales llevan solo un subtipo de genes requeridos para la transferencia. Ellos pueden “parasitar” un plásmido conjugativo, transfiriéndose a una alta frecuencia solo en su presencia.

Es posible para plásmidos de diferentes tipos el coexistir en una celular simple.

Page 6: Angelo

Siete tipos diferentes de plásmidos han sido encontrados en la E.Coli. Pero normalmente plásmidos relacionados son incompatibles, en el sentido de que solo uno de ellos sobrevive en la línea celular, debido a la regulación de las funciones vitales de los plásmidos. Por lo tanto, los plásmidos pueden ser diferenciados de acuerdo a grupos de compatibilidad.

Otra forma de clasificar plásmidos es por función. Hay 5 clases principales:

Plásmidos de fertilidad: los cuales contienen tra-genes, son capaces de conjugarse.

Plásmidos de resistencia: los cuales contienen genes que pueden constituir resistencia contra antibióticos o venenos. Históricamente conocidos como Factores R, antes de que se entendiera la naturaleza de los plásmidos.

Col-plásmidos: los cuales contienen genes que codifican (determinan la producción de) colinas y proteínas que pueden matar a otra bacteria.

Plásmidos degradativos: los cuales habilitan la digestión de sustancias inusuales como tolueno o ácido salicílico.

Plásmidos virulentos: los cuales convierten la bacteria en un patógeno.

Los plásmidos pueden pertenecer a más de uno de estos grupos funcionales.

Los plásmidos solo pueden coexistir como una o más copias en cada bacteria, debido a la división celular pueden perderse en una de las bacterias segregadas.

Algunos plásmidos incluyen un sistema de adición o “Sistema de Muerte Postsegregacional” (PSK: Postsegregational Killing System). Ellos producen en conjunto un veneno de larga vida y un antídoto de vida corta. Las células hija que retienen una copia del plásmido sobreviven, mientras que una célula hija que falla al integrar el plásmido muere o sufre una reducida tasa de crecimiento debido al veneno que obtuvo de la célula padre. Este es un ejemplo de plásmidos como el ADN replicante.

[editar]Aplicaciones

Los plásmidos sirven como una importante herramienta en laboratorios de genética e ingeniería bioquímica, donde son comúnmente usados para multiplicar (hacer muchas copias de) o como genes particulares expresos. Muchos plásmidos están disponibles comercialmente para dichos usos.

El gen a ser replicado se inserta en copias de un plásmido el cual contiene genes que hacen células resistentes a un antibiótico en particular. En el paso siguiente el plásmido es insertado en la bacteria por medio de un proceso llamado transformación. Luego, la bacteria es expuesta a un antibiótico particular. Solo la bacteria que toma copias del plásmido sobrevive al antibiótico debido a que el plásmido lo hace resistente. En particular, los genes protectores son expresados (usados para hacer proteína) y la proteína expresada evita la acción del antibiótico. De esta forma, los antibióticos actúan como un filtro que seleccionan únicamente la bacteria modificada. Ahora, estas bacterias pueden ser cultivadas en largas cantidades, cosechadas y el plásmido de interés puede ser aislado.

Page 7: Angelo

Otro uso importante de los plásmidos es fabricar grandes cantidades de proteínas.. En este se deja crecer la bacteria que contiene el plásmido que encierra al gen de interés. Solo como la bacteria produce la proteína que le confiere si resistencia a los antibióticos, este también puede ser usado para producir proteínas en grandes cantidades desde el gen insertado. Esta es una forma barata y fácil de producir genes o proteínas que este codifica de forma masiva, como por ejemplo insulina, o inclusive antibióticos.

[editar]Extracción del ADN plasmídico

En el maxiprep, se cultivan volúmenes mucho más grandes de bacterias en suspensión. Esencialmente este es un escalado de la preparación mini-prep, el cual es seguido por una purificación adicional. Esto resulta en una cantidad relativamente grande (0,5 -1 mg) de ADN plásmido muy puro.

En los últimos tiempos muchos kits comerciales han sido creados para realizar la extracción plasmídica a varias escalas, pureza y niveles de automatización.