Alimento Parte 2

51
ALIMENTOS y NUTRIENTES Parte de clase de I. Ceconi Parte II

Transcript of Alimento Parte 2

ALIMENTOS y NUTRIENTES

Parte de clase de I. Ceconi

Parte II

Clasificación de los alimentos.

18% Fibra Bruta

35%

Materia Seca

Concentrados energéticos (<18% PB)

y

proteicos (>18% PB)

Suculentos

Voluminosos

pasturas

verdeos

henos

silajes

Pared 1ria. (celulosa)

Pared 2ria. (hemicelulosa)

LigninaFDA

FDN

o

PC

Madurez aumenta el contenido de PC (menos digestible que el CC) y el grado de lignificación y disminuye el contenido celular (altamente digestible-98%) forrajes maduros menos digestibles que los jóvenes

Carbohidratos No Estructurales (CNE). Azúcares libres: glucosa, fructosa y sucrosa. CNE de reserva: fructanos (C3) y almidón (C4 y leguminosas).

1-a) PASTURAS y VERDEOS.

Su calidad depende de:

•Composición (especies)

•Estación del año, ciclo de crecimiento y/o estado fenológico

•Edad del rebrote

•Suelo

•Manejo (fertilización, control de malezas, carga animal)

•Hora del día

•Condiciones climáticas.

MS

FDN

Lig.CNE

Trébolblanco

Trébolblancoladino

Trébol rojo Alfalfa Gramínea

La estructura de la planta está asociada a la relación Contenido Celular/Pared Celular que el animal consume. Trébol blanco > relación CC/PC que trébol rojo o alfalfa.

En general, en estados fenológicos comparables, la calidad de las leguminosas es superior respecto de las gramíneas. Esto es atribuible a un menor contenido de PC y una mayor concentración de PB (aprox. 5 unidades porcentuales) en leguminosas respecto de gramíneas.

%PB %FDN

Alfalfa(vegetativo)

23 35

Festuca(macollaje)

20 52

Adaptado de Elizalde et al., 1999.

Las leguminosas permiten un mayor CMS principalmente porque

poseen un menor %FDN lo cual determina una mayor velocidad de

digestión y un vaciado más rápido del rumen.

30

50

70

90

20 30 40 50 60 70 80% FDN

Co

nsu

mo

rel

ativ

o

(%)

Además la PC de las leguminosas es más fácil de romper por

masticación, lo cual favorece el ataque por parte de los

microorganismos (digestión) y favorece el pasaje (tamaño). Esa mayor

facilidad se debe a su estructura reticular o lobulada, la cual ofrece más

puntos de ruptura que una estructura paralela como en el caso de las

gramíneas (Leaver, 1985; Wilson, 1991).

* Forrajes de clima templado en estado vegetativo * Digestibilidad de la materia orgánica mayor al 70 %

Raigrás Trébol blanco Alfalfa

MO % 87 - 93 87 - 92 88 - 91

PB % 11.6 - 21.5 24.1 - 29 16 - 27

FDN % 44.0 - 50.5 25.2 - 33 35 - 45

DIVMO % 74.2 - 81.0 71.2 - 79.0 68 - 76

Proteína

Proteínapasante

Degradación

NH3 Síntesis proteína microbiana

Proteínamicrobiana

Proteína a intestino delgado

Urea Orina

En forrajes frescos aproximadamente el 90% de la proteína total del alimento se degrada en rumen.

90%

10%

¿estas pérdidas de N afectan la producción?

Ganancia de peso, contenido ruminal y composición de la ganancia en novillos Holando que consumieron cantidades iguales de silaje de pasto ovillo o de silaje de alfalfa

P. ovillo Alfalfa

Ganancia de peso, g/d 690 820

Digesta, % ganancia 13,8 -1,5

Ganancia peso vacio, g/d 595 832

Digesta, % BW 23,2 17,9

Proteína, % ganancia 17,0 19,1

Fat, % ganancia 11,1 17,6

Tyrrel et al., 1991; Glenn, 1994

Ganancia de peso corporal

Con pasto ovillo, casi un 14% de la ganancia es tracto digestivo.

14

16

18

20

22

24

26

40 45 50 55 60 65 70 75

Alfalfa temprano

Alfalfa tardia

Pasto ovillo temprano

Pasto ovillo tardio

Llenado (% PV) = 0.272 NDF + 4.95 R2 = 0.72 n = 32

Llenado (% PV)

NDF, % MS

A mayor FDN mayor llenado y mayor tamaño del rumen.

Llenado del tracto digestivo y contenido de fibra detergente neutro de silajes de alfalfa y pasto ovillo (Thomson et al., 1991).

CARBOHIDRATOS SOLUBLES

La importancia de los CNES radica en que junto con los CE representan la mayor parte de la E consumida por un animal en pastoreo.

Ambos son degradados en el rumen por los m.o. produciendo AGV, CH4 y CO2.

Los AGV son absorbidos y constituyen la mayor fuente de energía para el rumiante. Entre los principales AGV formados se encuentran los ácidos acético, propiónico y butírico. El ácido acético es utilizado fundamentalmente como fuente de energía y para la síntesis de grasa, mientras que el propiónico es utilizado para sintetizar glucosa en hígado y ésta a su vez es destinada a energía y a la síntesis de grasa corporal.

acético: fuente de E y síntesis de grasa

AGV propiónico: síntesis de glucosa en hígado

fuente de E

síntesis de grasa

butírico

NNA alimento

NNA endógeno

NA alimento

NA endógeno

Alimento: Nitrógeno No Amoniacal (NNA) y amoniacal (NA)

Retículo Rumen

NH3N microbiano

Fuente de nitrógeno para el animalDuodeno

Adaptado de Beever, D. (1993)

FRACCIÓN NITROGENADA

Relación entre el consumo de MS y el %MS del forraje.

•El %MS afecta el consumo de MS en un rango de 10 a 30% de MS (Vérité y Journet, 1970; van Vuuren et al., 1992; Cabrera Estrada et al., 2004).

•Sólo el agua interna es capaz de limitar el consumo y afectar el comportamiento ingestivo de los animales (Cabrera Estrada et al., 2003 y 2004).

cont. agua interna ( %MS)

Tasa consumo (palatabilidad, aceptabilidad, restricción física?*)

Tiempo consumo

Consumo de MS (Kenney et al., 1984; Cabrera

Estrada et al., 2004)

* Minson, 1990. Los forrajes acuosas serían tragados antes de ser correctamente masticados por lo cual requerirían más tiempo de rumia para alcanzar un tamaño determinado para abandonar el rumen. Esto implicaría un mayor tiempo de retención y un menor consumo.

•Vérité y Journet (1970) observaron un incremento en el CMS de 208 gr/an/d por cada unidad porcentual de aumento en el %MS del forraje fresco.

CMS = 0,208 x + 9,66

R2 = 0,91

10

11

12

13

14

15

12 14 16 18 20 22%MS

kg

MS

/an

/d

Acumulación de CNES en planta depende del balance entre

Fotosíntesis Crecimiento y Respiración

En general se observa que:

•Ante cambios en la disponibilidad de N el crecimiento es más afectado que la fotosíntesis (Brown y Blaser, 1965; Busso et al., 1990)

•Relación inversa entre TC y acumulación de CNES (Brown y Blaser, 1965 y 1970; Colby et al., 1965)

•Vainas y tallos de gramíneas > contenido de CNES respecto de las láminas (Wilman y Altimimi, 1984)

Factores que afectan la fotosíntesis y el crecimiento (Tº, agua, N) afectan el nivel de CNES en la planta de manera directa, aunque

también indirectamente a través de cambios en el estado fenológico de las plantas (relación tallo/hoja; Wulfes et al., 1999)

Carbohidratos No Estructurales Solubles

•En la célula, el agua se encuentra contenida principalmente en la vacuola y en el citoplasma.

•Durante el crecimiento (incremento de biomasa) la cantidad de protoplasma y la cantidad de PC (Garza et al., 1965).

•Cuando la proporción de tejido estructural, la proporción de CC y por lo tanto el contenido de agua.

•Así, la biomasa acumulada (Wilman, 1970; Wilman, 1975), la relación tallo/hoja (Boudon y Peyraud, 2001) y la edad del rebrote (Delagarde et al.,

2000) presentan una relación + con el %MS del forraje.

Materia Seca

Forraje fresco de otoño respecto del de primavera:

Menor %CNES y %MS y mayor %PB.(Reeves et al., 1996; Delagarde et al., 2000; Boudon y Peyraud, 2001).

Menor biomasa acumulada y menor %vainas

Variaciones estacionales. Cambios entre ciclos.

Macollaje(otoño, invierno,primavera temp.)

Emergenciaespigas(primavera tardía)

Espigada(verano)

%MS 15-25 30-35 40-45

%MO 85-95 85-95 85-95

%DIVMO 70-75 60-65 50-55

%PB 15-20 12-14 8-10

%PC 35-40 50-60 65-75

McalEM/kgMS

2,5-2,7 2,2-2,3 1,8-2,0

Al avanzar la madurez, la digestibilidad cae porque aumenta la proporción de tallos y porque disminuye la digestibilidad de los tallos (Terry y Tilley, 1964).

Macollaje(otoño,invierno,primaveratemprana)

Emergenciaespigas(primaveratardía)

Espigada(verano)

%PC 35-40 50-60 65-75

%Celulosa 20 (50) 30 (50) 35 (46)

%Hemicel. 18 (45) 25 (42) 28 (40)

%Lignina 2 (5) 5 (8) 9 (13)

Composición de la Pared Celular en las gramíneas

entre paréntesis % tomando a la PC como 100%

22,115,3MS (%)

6,4412,9Prot. Soluble (%)

5,132,6N-NH3 (mg/100 ml)

3,294,53Acético/Propiónico

67,176,3ACÉTICO (%)

20,417,1PROPIÓNICO (%)

Composición química de un verdeo de avena en dos momentos del año.

20,73,7CH Solubles (%)

11,723,1PB (%)

43,446,4PC (%)

71,568,3Digestibilidad (%)

SEPTIEMBREMAYO

Valores mínimos de 10% en días nublados y con alta fertilización nitrogenada, valor que se revertiría rápidamente a 15-25% ante la ocurrencia de un día de sol (ver Efecto de días nublados y soleados).

< límite 16-18%MS

Adaptado de Elizalde, J. y Santini, F. (1992)

Variaciones estacionales. Cambios dentro del ciclo.

El %MS y %CNES aumentan y el %N en la planta disminuye (Wilman, 1965; Reeves et al., 1996; Elizalde et al., 1999).

A medida que transcurren los días y la biomasa acumulada aumenta y la proporción

de lámina disminuye

Variaciones diurnas.

Entre la mañana y el atardecer ocurre:

•Una pérdida de agua tanto superficial (evaporación) como interna (balance - entre absorción y transpiración) aumento en el %MS del forraje (van Vuuren et al., 1986; Delagarde et al., 2000).

•Una ganancia de CNES (balance + entre fotosíntesis y respiración) (Ciavarella et al., 2000; Trevaskis et al., 2004).

•Una reducción en el %PB debido a un efecto de dilución (cambio pasivo) dentro de la materia seca como consecuencia del incremento en el %CNES (Lechtenberg et al., 1971; Youngberg et al., 1972; Delagarde et al., 2000, Trevaskis et al., 2004).

Por la tarde forraje con + MS y CNES y - PB

pérdidas de N por parte del animal debido a una > eficiencia de utilización del N y/o un menor consumo de N (Miller et al., 2001; Rearte, 2005).

•Los beneficios del pastoreo de tarde sobre la producción tendrían relación con el nivel de PB del forraje cosechado por la tarde.

Rearte et al. (2003): CMS y producción leche no fueron afectados por el nivel de CNES del forraje (cosechado por la tarde o mañana) debido a una insuficiente [NH3] en rumen generada por un bajo %PB en el forraje cosechado por la tarde (10-12%). Un mayor consumo de CNES fue compensado por una menor digestión de la fibra (< actividad celulolítica), manteniendo constante la cantidad de MO fermentada.

Efecto de las variaciones climáticas de corto plazo. Días nublados y soleados.

El sombreo disminuye el crecimiento y la concentración de CNES y aumenta la concentración de PB y agua en el forraje (Sicher et al., 1984;

Ciavarella et al., 2000).

• %CNES efecto (-) de la baja intensidad de luz sobre la fotosíntesis (Auda et al., 1966).

• %PB si bien la absorción de N y requerimientos (< crecimiento), el efecto sobre los segundos es mayor (Ciavarella et al.,

2000).

• %MS en las pérdidas de agua por evapotranspiración debido a una menor demanda del ambiente en días nublados.

Durante el otoño, el %MS es bajo y aun con días soleados y sin fertilización, el %MS no sería suficiente para

garantizar consumos sin restricciones.

1-b) HENOS.

Su calidad depende de los mismos factores que afectan la calidad de las pasturas, entre ellos:

•Especie a henificar

•Estado fenológico al momento del corte

•Condiciones climáticas

Por volumen y calidad, el momento óptimo para el corte es inicio de espigazón en gramíneas y 10-20% de floración en leguminosas.

•Pérdidas de componentes del contenido celular, principalmente CNES, por respiración celular cuando el forraje aún permanece vivo.

•Fermentaciones por hongos y bacterias que no sólo consumen componentes digestibles de la planta sino que también elevan la temperatura del forraje al liberar calor. Si esta temperatura es excesiva puede afectar negativamente la digestibilidad del recurso.

Cuando se henifica es inevitable una disminución del valor nutritivo con respecto al forraje verde original, aunque las condiciones atmosféricas sean las apropiadas (tiempo seco, cálido y con algo de viento). Ello se debe a:

•Caída de hojas marchitas durante las operaciones mecánicas, principalmente el hilerado y volteado. Si hay pérdida de hojas, lo cual resulta en una disminución de la relación hoja/tallo del material, se afecta la cantidad de proteína y la digestibilidad del heno.

•En caso de lluvia y rocío hay lixiviación de materiales hidrosolubles, lo cual afecta negativamente la digestibilidad. Asimismo alarga el tiempo de secado, lo cual agrava las pérdidas por lixiviación.

En condiciones normales, los henos presentan entre un 5 y un 10% menos de digestibilidad y proteína que el forraje original y son menos consumidos que el mismo forraje fresco.

Alfalfa10%

floración

Avenagrano

lechoso

Pastura Moha Sorgo

%MS 85-90 85-90 85-90 85-90 85

%Dig. 68 58 54 54 59

%PB 18 12 10 9 9

%PC 52 60 64 69 71

EnergíaMcalEM/kgMS

2.45 2.10 1.95 1.95 2.12

Calidad media de algunos henos (valores orientativos)

•%MS > 80%

•Leguminosas > %PB y menor %PC que gramíneas. *

•Avena > %PB que moha y sorgo porque está granada.

•Leguminosas > digestibilidad. *

* se observan las diferencias que se observan en forraje fresco

1-c) HENOLAJES.

•Es un método de conservación de forrajes que combina parcialmente la henificación y el ensilado.

•63-65% a 40-45% de humedad (henolajes de alta y baja humedad, respectivamente).

•9-15% más digestible que el mismo material enrollado, debido a menores pérdidas de hojas y a que no se pierden materiales por lixiviación durante el almacenamiento.

•Su calidad depende de:

especie y contenido de MS del forraje cosechado. < a 25% de MS los rollos tienden a deformarse. > a 40% de MS puede haber restricciones a la fermentación.

características de los plásticos: espesor, estiramiento, color, etc.

•pH entre 4,8 y 5,8. Pérdidas de MS entre 3 y 10%.

%MS %Dig. %PB %PC pH

Avena 42 65 13 57 4.8

Gramíneas 43 65 13 54 5.0

Valores orientativos de calidad de henolajes.

1-d) SILAJES.

•La calidad del silaje depende de la calidad del material original y de la calidad del proceso fermentativo.

•Las diferencias en digestibilidad, PB o PC no son muy grandes entre el material original y el ensilado, aunque los constituyentes nitrogenados del silaje están principalmente bajo la forma de NNP, el % de CNES es bajo, contiene ácido láctico y AGV.

•Transformaciones del forraje durante el ensilado:

proteínas aa NH3

la proteólisis es mayor cuanto más lento desciende el pH

azúcares solubles ácido láctico, AGV y alcoholes

Enzimas vegetales Enzimas microb.

Actividad m.o.

El pH y los productos formados durante el ensilado permiten determinar la calidad del recurso, que depende de:

* contenido de agua, glúcidos y poder buffer de la planta (maíz mejor que alfalfa principalmente por su bajo poder tampón, es decir, que se requiere poco ácido para bajar el pH).

* tamaño de picado, rapidez de llenado del silo, intensidad del apisonado, estanqueidad del silo.

* ensilado directo con o sin aditivos (ácido fórmico, melaza); ensilado prehenificado que eleva el %MS.

Características de un ensilado de buena calidad:

N-NH3 5% del N totalN soluble 50% del N totalÁcido acético 25g/kg MSÁcido propiónico y butírico: ausencia casi total

Estas características en general se reúnen cuando la cantidad de ácido láctico ha sido suficiente para llevar el pH a menos de 4, salvo que el contenido de MS sea superior a 35%.

Maíz Pastura Sorgo Alfalfa

%MS

%Digest.

%PB

%PC

%Almidón

32

62

7.4

50

12.4

23

56

17.7

43

0.4

35

48

4.1

60

9.5

24

64

18.1

52

3

Características de diversos ensilados

En general, cualquier forma de conservación de forraje (henos, henolajes, silajes) disminuye el consumo respecto del forraje fresco.

Forma deconservación

CMS, % delCMS del

forraje fresco

Gramíneas

HenoSilaje:

>40%MS<30%MS

78

8668

AlfalfaHeno

Henolaje(>30%MS)

80

76

Maíz Silaje 90

Forrajes conservados 10-32% menos de CMS que forraje fresco.

El motivo de la depresión del CMS con silajes de alta Hº podría ser la cantidad de NH3, AGV y aminas que se forma durante la fermentación. El CMS de silajes de maíz mejora entre un 9 y 10% cuando se neutraliza parcialmente la acidez (bicarbonato de Na al 4% base seca). Máximo CMS con pH 5,6. Entre 4,5 y 7 poca variación; fuera del rango reducción del 5-15%.

• Es un alimento fibroso, intermedio en energía (similar a raciones 40 - 50% grano de maíz: 50 - 60% heno de alfalfa), lo cual lo torna versátil para usarlo en distintos programas de alimentación

Características nutricionales del silo de maíz

• Es deficiente en proteína y su contenido está afectado por las condiciones climáticas y el manejo (fertilización)• Minerales: es deficiente en: Ca P (dependiendo la categoría) S (especial atención en dietas silo-urea)• Vitaminas: es deficiente en pro vitamina A (caroteno) pero no en vitaminas D y E

28,3112FDA

50,2328FDN

17,4188Almidón

6,8349PB

61,1445DIVMS

31,7440MS

Valor promedioMuestras%

Schroeder, 2000

< 25 % Relación LINEAL NEGATIVA

* Más nutrientes por ha que cosechando el grano sólo.

* Versátil para ajustarlo en distintas raciones (crecimiento, engorde, etc.)

* Es apto para generar sistemas intensivos combinados con pastoreo sin utilizar elevados niveles de grano

* Características generales de un buen silaje de maíz

- Calidad del silaje y estado fisiológico de la planta

- Efecto del ambiente

- Procesado del silaje

- Utilización de híbridos seleccionados para silaje

Características productivas del silo de maíz

1-e) CONCENTRADOS ENERGÉTICOS.

•Este grupo de alimentos está integrado por granos de cereales y subproductos de la industria harinera. También incluye melazas, grasas animales y aceites vegetales. Su aporte principal a la dieta es la energía.

•La principal diferencia entre la célula vegetal de un forraje y de un grano es la relación entre el contenido celular y la pared celular y en la composición de ambos: Granos menos PC con menos lignina y más CC con mayor contenido de almidón.

•El principal componente de los granos es el almidón, que se encuentra en forma de gránulos rodeados de una matriz proteica.

•Almidón: mezcla de amilosa y amilopectina. Amilosa: molécula lineal de glucosa con enlaces - 14. Amilopectina: molécula ramificada de glucosa con enlaces - 16 en los puntos de ramificación y - 14 dentro de las ramificaciones.

•Las distintas estructuras del almidón implican diferencias en los sitios y en los productos finales de la digestión.

Granos de cereales (maíz, sorgo, avena, cebada y trigo).

Estructura de un grano de cereal consta de:

•Cascarilla: constituida por el pericarpio y la testa.

•Aleurona.

•Endosperma.

•Embrión o germen.

El endosperma es la fracción más abundante y es la que

contiene el almidón.

Los granos se diferencian por las proporciones de cada uno de éstos.

Avena Cebada Maíz Sorgo Trigo

%MS 89 89 87 89 89

%MO 96 97 98 97 98

%PB 13.3 12.4 9.5 10.9 14.5

%FDN 23 19.3 10.8 10 11.3

%Lípidos 5 2.2 4.6 2.8 2

%Almidón 54 66.1 76.1 71.3 70.3Energía(McalEM/kgMS)

2.8 3.1 3.4 3.2 3.3

Datos de calidad promedio de algunos granos (NRC, 1996)

90%

96-98%

Bajo

Variable

El almidón de los granos se caracteriza por su degradabilidad ruminal. Los granos de avena, cebada y trigo poseen almidón de alta

degradabilidad ruminal, mientras que el de maíz y sorgo es de baja degradabilidad ruminal. En los granos cosechados húmedos (silaje de

grano húmedo) el almidón aumenta su degradabilidad.

Cenizas o minerales sólo representa del 2 al 4% de la MS. Todos los granos son deficientes en Ca

(<0,1%) y pobres en P (0,3-0,5%)

La proteína de los granos es deficiente en algunos aa esencialesEstos valores pueden variar en función del híbrido o variedad,

suelo, fertilización, etc. aunque se acepta que la calidad de los granos es bastante estable.

55-75%

1-f) SUBPRODUCTOS DE LOS GRANOS.

•De la industria harinera (trigo y avena).

•De la industria cervecera (cebada).

•De la obtención de almidón, glucosa y alcohol (maíz y sorgo).

Subproductos del Trigo:

•la molienda del grano de trigo hasta la obtención de harina genera los siguientes subproductos:

salvado afrecho afrechillo semitín sémolas harinillas germen

>Fibra <Fibra

>Proteína <Proteína

<Energía >Energía

SalvadoTrigo

AfrechilloTrigo

HarinillaTrigo

RebacilloAvena

Heces deMalta

Gluten deMaíz

%MS

%MO

%PB

%FB

%Lípidos

EnergíaMcalEM/kgMS

87

93

17.6

12.2

4.3

2.59

87

94

16.6

10.5

4.7

2.68

94

96

13.8

1.7

2.5

3.24

89

94

12.6

18.7

3.2

2.42

23

95

30.0

15.0

8.6

2.49

89

94

25.5

9.1

3.7

2.52

Utilizadoscomo

Suplementos energéticosSuplementos

Proteicos

Valores de calidad media de algunos subproductos de los granos

Los subproductos fibrosos tienen aproximadamente el 70-75% de la energía del grano.

El %MS de las heces de malta (23%) corresponde a como se obtiene el producto en la industria. Normalmente se comercializa

desecado con 94-95% MS.

1-g) CONCENTRADOS PROTEICOS.

De origen animal proteína de alto VB

De origen vegetal proteína de bajo valor biológico, con excepción de harina de soja

Concentrados proteicos de origen animal.

Son producto de las industrias frigorífica (harina de carne, de sangre, de hígado y de huesos), del pescado (harina de pescado), avícola (harina de plumas y de subproductos de aves) y lechera (caseína)

La harina de carne es un suplemento proteico de muy buena calidad (alto VB y proteína muy digestible). Es de baja degradabilidad ruminal por lo cual, su aporte en rumiantes es de proteína pasante.

Desde 1993 está prohibido en nuestro país el uso de harinas de carne y de carne y hueso de origen rumiante en la alimentación de vacunos, debido a BSE.

%MS %MO* %PB* %Grasa* Energía* McalEM/kgMS

H. Carne 55 93 75 56.7 10.6 2.9

H. Sangre 96 94 93.6 0.6 3.8

H. Pescado 60 92 78 66.7 10.0 3.5

H. Plumas 93 96 92.9 3.1 3.4

* en base materia seca.

Calidad media de concentrados proteicos de origen animal.

Concentrados proteicos de origen vegetal.

En su mayoría son subproductos de la industria aceitera. Según el sistema de extracción de aceite de la semilla y, en función de ello, el contenido de aceite remanente en el residuo, los concentrados proteicos vegetales se clasifican en:

•Tortas + contenido de aceite y - de PB

•Expeller

•Harinas - contenido de aceite y + de PB

Tortas

•Extracción de aceite por presión discontinua (antiguo).

•La semilla alcanza una Tº de 80-100 ºC.

•12% aceite.

•Forma achatada con ambas caras rugosas.

Expeller

•Extracción de aceite por presión continua.

•La semilla alcanza una Tº de 120-140 ºC.

•8% aceite.

•Forma achatada con una cara rugosa y otra lisa.

Harina

•Extracción de aceite por medio de solventes.

•2% aceite.

En la actualidad estos subproductos se comercializan en forma de pellets, con lo cual se pierde el aspecto físico que permite su caracterización.

%MS %MO %PB %Grasa %FB EnergíaMcalEM/kgMS

Expeller girasolHarina girasol

9292

9393

36.441.3

6.52.0

22.817.4

2.542.86

Expeller linoHarina lino

9190

9293

36.242.2

8.62.0

10.810.5

3.052.73

Harina algodón 90 93 42.2 2.3 16.6 2.57

Harina soja 44 87 93 50.6 1.4 7.6 3.22Harina soja 48(descascarada)

87 93 55.2 1.2 5.2 3.31

Calidad media de concentrados proteicos de origen vegetal.

Similares en cuanto al %MS y %MO.

%PB entre 36 y 55%. Harina de soja + PB y - aceite y fibra.

Los más fibrosos menos EM.