UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas...

154
UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica de los átomos

Transcript of UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas...

Page 1: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

1

Universidad de ConcepciónFacultad de Ciencias Químicas

Química General para Ingeniería

Unidad 7 Tema: Estructura electrónica de los

átomos

Page 2: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

2

7-1 Modelo atómico

7-2 Propiedades periódicas de los elementos

7-3 Modelos de Enlace químico

Page 3: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

3

Introducción

• Los primeros estudios tendientes a entender estructura de átomos y moléculas se inician en el siglo XIX y tuvieron éxito limitado.

• Pasó tiempo antes de de descubrir que las leyes de la física clásica no son aplicables a objetos tan pequeños como átomos y moléculas.

• Con Max Planck, alrededor de 1900, se inicia la física cuántica, la que permitió comprender los fenómenos a nivel atómico y molecular.

Page 5: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

5

7-1 Modelo atómico.

•Propiedades de la ondas

• Naturaleza dual de la luz

• Naturaleza dual del electrón

• Aplicación de modelo de Bohr al átomo de

Hidrógeno.

• Mecánica cuántica

• Orbitales atómicos

• Configuración electrónica.

Page 6: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

6

Propiedades de la ondas

Para entender la teoría cuántica de Planck es necesario tener conocimiento básico sobre la naturaleza de las ondas debido a que los fenómenos que permiten el estudio de la estructura atómica involucra radiación electromagnética.

Existen muchas clases de ondas, entre ellas están las las ondas de sonido y de luz visible que son percibidas por dos de nuestros sentidos.

Page 7: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

7

ONDAONDA: es una perturbación vibracional cíclica por medio de la cual se transmite energía. Su representación gráfica es:

-1,5

-1

-0,5

0

0,5

1

1,5

0 200 400 600 800

cima

valle

A

nodo

Page 8: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

8

Las características de una onda son:• longitud de onda, distancia entre

cualquier punto sobre una onda y el punto correspondiente de la onda siguiente. Unidad = m

• frecuencia, : número de ciclos que una onda experimenta en 1 segundo. Unidad s-1 = Hz (hertz)

• amplitud, A: es la altura de la cima o la profundidad del valle.

Page 9: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

9

menor

mayor

Tres ondas con distintos valores de y de igual amplitud.

Page 10: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

10

Amplitud mayor

Amplitud menor

Dos ondas con igual y distintas amplitudes

Page 11: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

11

-1,5

-1

-0,5

0

0,5

1

1,5

0 200 400 600 800

Se denomina ciclo a una onda completa:

1 onda = 1 ciclo

Page 12: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

12

La luz visible es un tipo de radiación electro-magnética (EM), también llamada energía electromagnética o energía radiante.

Otros tipos de radiaciones electromagnética (más conocidas) son la ondas de radio, las microondas, los rayos X, las ondas de TV …

Page 13: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

13

Toda radiación electromagnética consiste de energía que se propaga por medio de campos eléctricos y campos magnéticos y que alternan aumentos y disminuciones en su intensidad, mientras se mueven en el espacio.

-1,5

-1

-0,5

0

0,5

1

1,5

0 200 400 600 800

Page 14: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

14

La velocidad de propagación de una onda se representa por “u”.

Si se trata de una onda de luz, su velocidad se representa por “c” y es la velocidad de la luz en el vacío. c = 3,00 x 108 m/s

Unidades: u , c en m/s en m en s-1 = Hz (Hertz)

u c

Page 15: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

15 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

Rayos gama

Rayos X

Ult

ra-

vio

leta

Vis

ible Infrarrojo Microondas Ondas de radio

101210141018 10161020

101210101 108

108 104

10-2

1061010

106102 104

Frecuencia (1/s)

Longitud de onda (nm)

Región visible400 500 600 700 750

Page 16: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

16

Problema 1.

Un odontólogo utiliza rayos X (=1,00 Å) para tomar una serie de radiografías dentales mientras su paciente escucha una estación de radio ( = 325 cm) y ve a través de la ventana el cielo azul (= 473 nm). ¿Cuál es la frecuencia de la radiación electromagnética de cada fuente?

Page 17: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

17

λ

cν con c = 3,00x108 m/s

Equivalencias: 1 Å = 10-10 m; 1 nm = 10-9 m

11810

8

s103,00m101,00

m/s103,00ν : XRayos

178

s109,23m 3,25

m/s103,00ν :radio de Onda

1149-

8

s106,34m 10473

m/s103,00ν :azul luz

Page 18: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

18

Tres fenómenos relacionados con la materia y la luz eran especialmente confusos a principios del siglo XX:

1) la radiación del cuerpo negro

2) el efecto fotoeléctrico

3) el espectro atómico

Naturaleza corpuscular de la luz

Page 19: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

19

E = n h E = n h Relación de PlanckRelación de Planck

ObservaciónUn trozo de metal a temperatura alta, se vuelve rojo (1000K), luego anaranjado brillante (1500K) y finalmente blanco brillante (2000K)

ExplicaciónLa cantidad deenergía emitida depende de la longitud de onda

1)1) Radiación de un cuerpo negroRadiación de un cuerpo negro

Física ClásicaLa energía de una onda luminosa esproporcional alcuadrado de sufrecuencia (falla)

Page 20: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

20

Planck propuso que el objeto caliente brillante podía emitir (o absorber) sólo ciertas cantidades de energía:

E = n h

energía de la radiación

h = constante de Planck = 6,626 x 10-34 J s= frecuencia de la radiación

n = número entero positivo: 1, 2, 3, …. llamado

número cuántico

Page 21: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

21

Interpretaciones posteriores:

Los átomos del material emiten sólo ciertas cantidades de energía, lo que implica que la energía de los átomos está cuantizada.

Puesto que “n” es un entero, un átomo puede cambiar su energía en múltiplos enteros de h y el menor cambio de energía se da cuando n = 1.

El menor cambio de energía es: E = hy se denomina “un cuanto de energía”

“cuanto” = cantidad fija

Page 22: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

22

2) Efecto fotoeléctrico.

A pesar de aceptar que la energía está cuantizada, se seguía considerando que la energía emitida viajaba como onda.

Sin embargo, el modelo ondulatorio de la radiación no pudo explicar el fenómeno conocido como “efecto fotoeléctrico”.

Page 23: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

23

Tubo evacuado

Electrodo positivo

Amperímetro

Batería

Placa de metal sensible a la luz

-+

e-

EFECTO

FOTOELÉCTRICO

EFECTO

FOTOELÉCTRICO

Radiaciónincidente

Page 24: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

24

El fenómeno “fotoeléctrico” se produce cuando luz monocromática de frecuencia suficientemente alta incide en una placa metálica, arrancando electrones de los átomos de metal, los que son atraídos hacia el electrodo positivo generando corriente eléctrica.

La frecuencia más baja que es capaz de sacar electrones del metal se conoce como “frecuencia umbral”, o

El balance de energía en este fenómeno se puede expresar:

E = h = ho + energía del electrón que sale

Page 25: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

25

h = ho + energía del electrón que sale

es la energía con que el electrón está unido al átomo.

generalmente comoenergía cinética

Entonces:

h = ho + ½ melectrón v2

electrón

Page 26: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

26

Einstein llevó más lejos la idea de la energía cuantizada introducida por Planck y propuso que la radiación en sí misma tiene naturaleza de partícula en forma de “cuantos de energía electromagnética”; posteriormente estas “partículas” se llamaron “fotones”.

Cada átomo cambia su energía toda vez que absorbe o que emite un fotón (una partícula de luz) cuya energía define su frecuencia:

Efotón = h = Eátomo

Page 27: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

27

Problema 2.

La longitud de onda de la radiación de un horno de microonda que se utiliza para calentar alimentos es 12,0 cm. ¿Cuál es la energía de un fotón de esta radiación?

Solución.

Efotón = h; para la radiación: c = por lo tanto:

J101,66m1012,0

m/s103,00Js106,626E 24

2

834

fotón

λ

chEfotón

Page 28: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

28

Problema 3.

Calcule la energía de un fotón de luz ultravio-leta de = 10-8m, de luz visible de = 5x10-7m y de luz infrarroja de = 10-4 m.

Ordene las radiaciones crecientes: en energía; en longitud de ondaenfrecuencia

Resp:

EUV = 2x10-17 J; EV = 4x10-19 J; EIR = 2x10-21 J

Page 29: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

29

La teoría cuántica de Planck y la del fotón de Einstein le adjudicaron ciertas propiedades a la energía que, hasta entonces habían sido reservadas para la materia: • cantidades fijas• partículas discretas

A partir de ese momento , estas propiedades han probado ser esenciales para explicar las interacciones de la materia y la energía a nivel atómico.

Page 30: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

30

Surge la pregunta:

¿Cómo se compatibiliza el modelo corpuscular de la energía con hechos como la difracción y la refracción, fenómenos que son explicados sólo en términos ondulatorios?

En realidad no existe tal incompatibilidad puesto que el modelo del fotón no reemplaza al modelo ondulatorio, más bien se agrega a él.

Es necesario aceptar ambos modelos para entender la realidad.

Page 31: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

31

3) Espectros atómicos.

La tercera observación clave de la materia y la energía, que a fines del siglo XIX no podía explicarse, implicaba la emisión de luz por parte de un elemento, cuando es vaporizado y excitado térmica o eléctricamente.

(Este fenómeno lo observamos en los letreros luminosos de neón).

Page 32: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

32

Si se hace pasar luz solar por una ranura muy angosta y luego se la difracta en un prisma, se origina un espectro continuo (un arco iris).

Si la luz proviene de átomos excitados, su difracción da origen a un espectro de líneas, esto es una serie de finas líneas individuales, separadas por espacios negros (sin color). Si la radiación difractada corresponde al visible las líneas son coloreadas.

Page 33: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

33 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

450400 500 550 600 650 750 nm

Tubo de

descarga

de

hidrógeno

Ranura

Prisma

H

410,1 434,1

653,6 486,1

Espectro atómico de emisión de hidrógeno.Espectro atómico de emisión de hidrógeno.Espectro atómico de emisión de hidrógeno.Espectro atómico de emisión de hidrógeno.

nm

Page 34: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

34 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

450400 500 550 600 650 750 nm

450400 500 550 600 650 750 nm

450400 500 550 600 650 750 nm

Espectro visible (nm)

Hg

Sr

Otros espectros atómicosOtros espectros atómicos

Page 35: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

35

El espectro de un elemento es diferente del espectro de otro elemento.

Los modelos atómicos de la época:

Modelo de Thomson: las partículas que constituyen el átomo están distribuidas libremente en un espacio limitado.

(modelo conocido como “budín de pasas”)

Page 36: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

36

Modelo de Rutherford: el átomo tiene una estructura interna en la cual existe un núcleo ubicado en el centro y los electrones en movimiento en torno al núcleo. Gran parte del átomo esta vacío. Alta densidad de materia está concentrada en el núcleo. Este modelo es “tipo planetario”.

Los electrones deberían caer hacia el núcleo y emitir radiación EM.

Page 37: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

37 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

láminade oro

(1) Muestra radiactiva emite un rayo de partículas alfa

(2) Rayo de partículas alfa choca la lámina de oro

Bloquede plomo

(3) Chispas de luz cuando partículas alfa chocan contra la superficie recubierta de ZnS, muestran que la mayoría de las partículas se trans-miten sin deflección.

(4) Deflección pequeña, se ve ocasionalmente

(5) Deflección severa, muy poca

Experimento de RutherfordExperimento de Rutherford

Page 38: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

38 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

Modelos de Thompson y RutherfordModelos de Thompson y RutherfordModelos de Thompson y RutherfordModelos de Thompson y Rutherford

Sección transversal de una lámina de oro compuesta de átomos tipo “pastel de pasas”.

A. Resultado esperado para modelo de Thomson

Partícu-las

Cero deflección

Partícu-las

Pequeña deflección

Deflecciónsevera

B. Explicación del resultado para modelo de Rutherford

Sección transversal de una lámina de oro compuesta de átomos con un núcleo diminuto, macizo y positivo.

Page 39: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

39

Según el modelo de Rutherford, la caída de los electrones hacia el núcleo debía ser en espiral con perdida de energía continua y por tanto el espectro debería ser continuo.

El modelo atómico de Rutherford parecía totalmente incompatible con el espectro de líneas.

Surge un nuevo modelo para los átomos.

Page 40: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

40

Modelo de Bohr para el átomo de H.

Niels Bohr (1885-1962), físico danés, trabajaba en laboratorio de Rutherford, sugirió ~ 1913 un modelo para el átomo de H que predecía la existencia de espectros de líneas.

Page 41: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

41

El modelo de Bohr usó las ideas de Planck y de Einstein sobre la cuantización de la energía y propuso tres postulados:

1) El átomo de H tiene sólo ciertos niveles de energía permitidos.

2) El átomo NO emite energía mientras está en uno de estos estados estacionarios.

3) El átomo cambia de un estado estacionario a otro cuando el e- pasa de una órbita a otra. Este cambio ocurre por absorción o por emisión de un fotón cuya energía es igual a la diferencia de las energías de los dos estados.

Page 42: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

42

Los niveles de energía permitidos se denominan “estados estacionarios”. Cada uno de estos estados está asociado con una órbita circular fija del electrón alrededor del núcleo.

El postulado 2) viola las leyes de física clásica al establecer que la energía del átomo no cambia a pesar del movimiento del e- en la órbita.

o

Page 43: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

43

De acuerdo al postulado 3) cuando el átomo pasa de un estado estacionario a otro estado estacionario, la energía del fotón es:

Efotón = Eestado A – Eestado B = h

donde la energía del estado A es mayor que la del estado B.

Este cambio de estado se debe a que el elec-trón cambió de una órbita a otra.

Page 44: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

44

Una línea espectral resulta cuando un fotón de una energía específica (una frecuencia específica) se emite a medida que el electrón pasa de un estado de alta energía a otro de energía menor.

Por lo tanto el modelo de Bohr implica que el espectro atómico del H no es continuo porque la energía del átomo tiene solamente ciertos niveles, o estados, discretos.

Page 45: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

45

En el modelo de Bohr, el “número cuántico, n” (n = 1, 2, 3, …) está asociado con el radio de la órbita permitida para el electrón, la cual a su vez está directamente relacionada con la energía del electrón.

En consecuencia, mientras más bajo sea el valor de “n”, menor será el radio de la órbita y más bajo el nivel de energía.

Page 46: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

46

Cuando el e- está en la órbita más cercana al núcleo, n = 1, el átomo de H está en su menor nivel del energía. Este estado se llama estado fundamental o nivel fundamental o nivel basal.

Si el electrón se encuentra en un nivel superior, n = 2, 3, …, se dice que el átomo de H está en un estado excitado o en nivel excitado.

Page 47: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

47

Modelo de Bohr y espectro de hidrógeno

Serie en el visible, n>2 a n=2

Serie en elUltravioleta,n>1 a n=1

Serie en el infrarojo,n>3 a n=3

5

1 2

3

4

7

6

+

Serie en elultravioleta

Serie en el visible

Serie en el infrarojo

0 200 400 600 800 12001000 1400 1600 1800 2000

Page 48: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

48

La energía del átomo está “cuantizada” y está dada por la expresión:

donde

n es el número cuántico, n = 1, 2, 3, 4, …

En = energía de la órbita n (nivel n).

RH es una constante, se llama constante de Rydberg y su valor es 2,18x10-18 J.

Cada nivel de energía tiene asociado un “n”.

2Hn n

1RE

Page 49: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

49

Un esquema de los niveles de energía es:

n En J

1 -2,18E-18

2 -5,45E-19

3 -2,4222E-19

4 -1,3625E-19

5 -8,72E-20

6 -6,0556E-20

7 -4,449E-20

8 -3,4063E-20

9 -2,6914E-20

n = 1

n = 2

n = 3

E = 0 J

E = -2,18x10-18 J

E = -0,545x10-18 J

E = -0,242x10-18 J

E

Page 50: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

50

Sean

dos niveles de energía de un átomo de H. Cuando el e- del átomo de H pasa de la órbita de ni a la de nf , la energía del átomo de H cambia del valor

por lo que la variación de energía

del átomo es:

E = Efinal – Einicial =

2f

Hn2i

Hnn

1RE y

n

1RE

fi

fi nn E a E

2i

2f

Hnnn

1-

n

1RE- E

if

hυn

1-

n

1RΔE

2f

2i

H

Page 51: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

51

La expresión

muestra que si:

ni < nf entonces E > 0 y el átomo absorbe energía de frecuencia

ni > nf => E < 0 y el átomo emite energía de frecuencia

hυn

1-

n

1RΔE

2f

2i

H

Page 52: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

52

Problema 4.

a) Calcule la energía necesaria para excitar un átomo de H desde el nivel fundamental hasta el nivel n = 8.

b) ¿El átomo de H absorbe o emite energía en este proceso?

c) ¿Qué frecuencia tiene la radiación que permite dicha transición?

d) ¿Cuánta energía se requiere para quitar el electrón de un átomo de H? Esta energía se conoce como energía de ionización.

Page 53: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

53

La energía del átomo de H:

Solución.

a) Estado inicial, n = 1, E1 = -2,18x10-18 J

Estado final, n = 8, E8 = -2,18x10-18 J / 82

E8 = -3,41x10-20 J

E = E8 – E1 = 2,15x10-18 J La energía necesaria es 2,15x10-18 J

n

1)(J102,18E

218

n

Page 54: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

54

b) En el proceso de pasar al átomo de H desde n = 1 a n = 8, el átomo de H aumenta su energía, por lo tanto el átomo de H absorbe energía. Cada átomo de H absorbe 2,15x10-18 J.

Page 55: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

55

c) ¿Qué frecuencia tiene la radiación que permite dicha transición?

E = 2,15x10-18 J = h

Esta radiación pertenece a la zona ultravioleta.

1

s103,24sJ106,626

J102,15ν 15

34

18

Page 56: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

56

d) ¿Cuánta energía se requiere para quitar el electrón de un átomo de H?

Se supone que el átomo de H está en el estado fundamental, esto es en el nivel de menor energía: => En=1 = -2,18x10-18J.

Para quitar el e- del átomo de H el e- debería alejarse suficientemente del núcleo como para que ya no pertenezca a él : =>

con . Luego la energía requerida para arrancar el e- es E = 2,18x10-18J.

n0nE

Page 57: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

57

El valor de energía calculado en d) se conoce como energía de ionización del átomo de H.

La energía requerida para ionizar 1 mol de H es:

= 2,18x10-18J/ átomo x 6x1023 átomo/mol

= 1,31x106 J/mol = 1310 kJ/mol

Page 58: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

58

Limitaciones modelo de Bohr.

• A pesar del gran éxito de este modelo para explicar las líneas de los espectros del átomo de H, él falla al predecir el espectro de cualquier otro átomo, aun el del He que es el elemento más simple que sigue del H.

• El modelo de Bohr es satisfactorio para explicar comportamiento de especies que sólo tienen 1 electrón, como por ejemplo: He+; Li2+, Be3+, etc.

Page 59: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

59

• No es adecuado para átomos con más de un electrón; en éstos aparecen fuerzas de repulsión.

• La razón más fundamental del fracaso del modelo de Bohr es que los e- no viajan en órbitas fijas. El movimiento de los e- está mucho menos definido (ver más adelante).

• Modelo de Bohr es incorrecto como imagen del átomo.

• De él se mantienen las ideas: estado fundamental; estados excitados; energía en niveles discretos.

Page 60: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

60

Dualidad onda-partícula. (Naturaleza ondulatoria de los e- y naturaleza corpuscular de los fotones).

Una de las ideas más brillantes de Einstein fue la de sugerir que la materia y la energía son for-mas alternas de una misma en-tidad. Esta idea está expresada en su famosa ecuación E = mc2, que permite hacer equivalente una cantidad de energía a una cantidad de materia y viceversa.

Albert EinsteinPremio Nobel 1921

Page 61: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

61

La teoría de la relatividad no depende de la teoría cuántica, pero juntas ellas han borrado las divisiones entre materia (“tangible” y masiva) y energía (difusa y sin masa) que se aceptan en sistemas macroscópicos.

En 1920, Luis de Broglie dio la razón de por qué en el modelo atómico de Bohr para el átomo de H existen sólo algunos niveles fijos de energía permitidos.

Page 62: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

62

El razonamiento de De Broglie fue más o menos así:Si las ondas de energía tie-nen propiedad de partícu-las, las partículas debentener propiedades de ondas.

Específicamente, si los elec-

trones tienen movimiento en órbitas restrin-gidas de radio fijo alrededor del núcleo, ellos deben tener asociadas sólo algunas frecuencias (energías).

Louis de Broglie

Page 63: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

63 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

Movimiento de ondas en sistemas restringidos.

Ejemplo:Para una cuerda fija en sus dos extremos, las longitudes de onda permitidas están dadas por la expresión:

= 2L/n

donde: L es la longitud de la cuerda n = 1, 2, 3, 4, ….. (N° cuántico)

Page 64: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

64

L

n = 1

n = 2

n = 3

L = 1 (/ 2)

L =2 (/ 2)

L =3 (/ 2)

1 Media longitud onda

2 Medias longitudes de onda

3 Medias longitudes de onda

Page 65: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

65

De la misma forma, si un electrón ocupa una órbita circular, sólo ciertos valores de longitudes de onda serán permitidos.

n = 3 n = 5 n = 3,3PROHIBIDO

Page 66: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

66

Combinando las ecuaciones:

Para una radiación de longitud de onda l (o de frecuencia n) se obtiene:

Para una partícula cualquiera de masa “m”, que se mueve a velocidad “u”, se le puede asociar una onda cuyo l está dada por:

ch

h E y cmE 2

cm

h

um

h

Page 67: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

67

A una onda electromagnética de velocidad c y l (o n) se le asocia una masa “m”.

A un cuerpo de masa “m” que tiene velocidad “u” se le asocia una onda de longitud “l”.

Resumiendo:

Un cuerpo puede ser interpretado como onda y una onda puede ser interpretada como partícula.

Page 68: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

68

La ecuación:

se conoce como ecuación de De Broglie.

Ella relaciona “ondas” con “partículas” y en el caso de fotones (radiación EM) debe tenerse en cuenta que u = c.

um

h

Page 69: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

69

Problema 5.

Calcule la longitud de onda de un electrón con velocidad 1000 m/s.

eeum

m 0,676

s

m1000kg109,8

s

mkg106,626

λ31

234

h = 6,626x10-34 J s

Page 70: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

70

Relación masa y l para distintos sistemas.

sistema masa (g) velocidad (m/s) l (m)e- (lento) 9x10-28 1 0,00074

e- (rápido) 9x10-28 5,0x106 1,5x10-10

Núcleo He 6,6x10-24 1,5x107 6,7x10-15

cualquiera

pelota de tenis

camión

1

100

3x107

1

30 (108 km/h)

55,56 (200 km/h)

27,78

6,6x10-31

2,2x10-34

1,2x10-34

8x10-43

tierra 6x1027 3x104 3,7x10-63

Page 71: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

71

Problema 6.

Haga los cálculos necesarios para demostrar que la

onda asociada a un electrón que se mueve a la

velocidad de la luz pertenece a la región del de

rayos X del espectro electromagnético.

Page 72: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

72

Problema 7.

Calcule la longitud de onda asociada a un

auto de masa 1200 kg que se desplaza a 100

km/h.

R: 5,5 x 10-37 cm

Page 73: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

73

Los sistemas microscópicos obedecen el Principio de Incertidumbre de Heisenberg.

Este Principio establece que no es posible conocer simultáneamente y con precisión la posición y la velocidad de una partícula.

El Principio de Incertidumbre se expresa por la relación:

donde x y u son las incertidumbres en posición y velocidad, respectivamente, m es la masa de la partícula y h, la constante de Planck.

hΔu mΔx

Page 74: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

74

Problema 6.

Si la velocidad de un electrón cerca del núcleo es 6x106 m/s ± 1% , ¿cuál es su incertidumbre en su posición?

Solución:

melectrón = 9x10-28 g; u = es el 1% de 6x106 m/s

u = 6x104 m/s

m109,7Δx

π4s

m106kg109

Js106,626Δx

10

431

34

Page 75: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

75

Modelo mecánico cuántico del átomo.

En 1926 Erwin Schrödinger obtuvo la ecuación que lleva su nombre y que es la base para el modelo mecánico cuántico del átomo.

El modelo describe un átomo que tiene ciertas cantidades permitidas de energía debido a los movimientos permitidos de un electrón cuya localización es imposible de conocer.

Page 76: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

76

La ecuación que resolvió Schrödinger es:

ℋ = E

En esta ecuación:E es la energía del átomo; se denomina función de onda y es una

descripción del electrón (partícula-onda), como función de la posición y del tiempo

ℋ representa un set complejo de operaciones matemáticas que aplicadas a un

particular permiten encontrar un estado de energía E.

Page 77: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

77

Cada solución de la ecuación está asociada con una función de onda particular también llamada orbital atómico.

Orbital atómico de la mecánica cuántica no tiene ninguna relación con la órbita del modelo de Bohr.

Orbital es una función matemática sin significado físico, pero su cuadrado, 2, tiene significado.

No se puede decir o saber dónde está el electrón en cada instante, pero sí se puede decir o conocer dónde probablemente se encuentra éste alrededor del núcleo.

Page 78: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

78

ORBITAL:

Corresponde a una región alrededor del núcleo que encierra aproximadamente el 90% de la probabilidad de encontrar el electrón.

Page 79: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

79

Números cuánticos y orbitales.

La solución de la ecuación de Schrödinger muestra que hay cuantización de la energía.

El orbital atómico se describe con los siguientes números cuánticos:

1)“n” = número cuántico principal, sólo valores enteros positivos, n = 1, 2, 3, …Este número determina en gran medida la energía.

2) “l” = número cuántico de momento angular, tiene relación con la forma del orbital. Puede tener valores enteros positivos incluido el cero: “l” = 0, 1, 2, …, n-1

Page 80: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

80

3) “m” = número cuántico magnético; define la orientación en el espacio alrededor del núcleo. Los valores pueden ser:m = 0, ±1, ±2, …, ± l

Hay otro número cuántico que no describe al orbital sino que da información sobre una propiedad del electrón denominada “spin”. Este número cuántico se designa por “s” o por “ms” y para el electrón sólo puede tener dos valores: ms = -1/2 ó +1/2

Page 81: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

81

Cada orbital tiene un set de números cuánticos: n, l, m

Los números cuánticos describen un orbital dando información sobre su energía (tamaño), forma y orientación en el espacio.

Page 82: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

82

Los átomos se describen a través de sus orbitales (orbitales atómicos).

Cada orbital tiene un set de números cuánticos:

n, l, m, que resultan de resolver la ecuación de Schrödinger.

Los números cuánticos describen un orbital dando información sobre su energía (tamaño), forma y orientación en el espacio.

Page 83: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

83

Representación de orbitales atómicos por números cuánticos.

N°cuántico n l mValores permitidos

1,2,3, …

0, 1, … , n-1 - l, ... ,0, ... +l

Ejemplos

de valores

1 0 0

2 0 0

1 -1, 0, 1

3 0 0

1 -1, 0, 1

2 -2, -1, 0, 1, 2

Page 84: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

84

Los estados de energía y los orbitales del átomo se describen con términos específicos y se asocian con uno o más números cuánticos:

• Los niveles de energía de los átomos, o capas, se obtienen por el valor de n: mientras más pequeño es n, menor es el nivel de energía y mayor es el nivel de energía y mayor es la probabilidad de encontrar el electrón cerca del núcleo.

Page 85: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

85

• Los niveles de los átomos contienen subniveles o subcapas, que indican la forma de los orbitales. Cada subnivel tiene asignada una letra:

l = 0 es un subnivel s (sharp)

l = 1 es un subnivel p (principal)

l = 2 es un subnivel d (diffuse)

l = 3 es un subnivel f (fundamental)

Los subniveles se nombran con el valor de n seguido de la letra del subnivel.

Ejemplos: n = 1; l = 0 => 1s

n = 3; l = 2 => 3p

Page 86: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

86

El número de valores que tiene “m” indica el nú-

mero de orbitales del subnivel. Algunos ejemplos:

n l orbital m N° de orbitales1 0 1s 0 1

2 0 2s 0 1

3 0 3s 0 1

1 3p -1, 0, 1 3

2 3d -2, -1, 0, 1, 2 5

4 0 4s 0 1

1 4p -1, 0, 1 3

2 4d -2, -1, 0, 1, 2 5

3 4f -3, -2, -1, 0, 1, 2, 3 7

Page 87: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

87

• Hay 1 orbital tipo s• Hay 3 orbitales tipo p• Hay 5 orbitales tipo d• Hay 7 orbitales tipo f

¿Cómo son los orbitales atómicos?

No es posible conocer con precisión dónde está cada electrón que pertenece a un átomo, pero se puede describir dónde está probablemente, dónde está la mayor parte del tiempo.

Page 88: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

88

Aunque la función de onda que es solución de la ecuación de Schrödinger no tiene significado, 2 expresa la probabilidad que el electrón esté en un punto determinado dentro del átomo.

Para un nivel de energía dado se puede repre-sentar esta probabilidad en un “diagrama de densidad de probabilidad electrónica” o diagrama de densidad electrónica.

Page 89: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

89

Este diagrama resulta al representar el valor más alto de probablidad por un punto de mayor intensidad y el de menor probabilidad por un punto menos intenso. Es decir, algo como esto:

Menor mayor probabilidad probabilidad

Page 90: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

90

El átomo de H en su estado fundamental se pre-senta en el nivel más bajo de energía, esto significa que n = 1 y, en consecuencia, l = 0 y m = 0.

A partir del valor se calcula 2 para distintas posiciones del e- c/r del núcleo. El resultado es:

r

Distancia r del núcleo

Probabilidad de que el electrónesté en un

punto,

Orbital 1s

Page 91: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

91

La representación anterior muestra que el orbital 1s tiene forma esférica, esto es que la probabilidad tiene distribución radial inde-pendiente de la dirección.

Todos los “orbitales s” tienen la misma forma, y ellos sólo difieren en tamaño y en que para algunas distancias radiales, r, la probabilidad de encontrar el electron es cero.

Distancia r desde el núcleo

2s 3s

Page 92: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

92 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

Z

YX

pz

PXPY

Orbitales “p”Orbitales “p”

Z

XY

pz Hay otros 2 comoÉste: uno orientadoSobre eje “x” y el otro sobre el eje “y”

Representación de un orbital tipo “p”, (reunelas tres orientaciones).

Page 93: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

93 UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

X

Z

Y

dYZ

Z

X

Y

dZ2Z

X

Y

dX2 - Y

2

Orbitales “d”Orbitales “d”

Algunas de las5 formas y orien-taciones de un orbital tipo “d”.

Hay otras doscomo ésta, en losplanos xz e xy.

Page 94: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

94

La existencia de electrones en un átomo implica la existencia de orbitales.

Si no hay electrones no hay orbitales.

En otras palabras, los electrones “generan los orbitales”.

La distribución de los electrones de un átomo en orbitales se denomina “configuración electrónica”.

Page 95: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

95

Configuración electrónica y periodicidad química.

Se trata de mostrar y comprender cómo la organización de la tabla periódica, condensa-da después de incontables estudios y trabajos de laboratorio, fue explicada perfectamente por el modelo mecánico-cuántico para los átomos, explicación que es una de las más satisfactorias en los logros intelectuales de la ciencia.

Page 96: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

96

El modelo mecánico-cuántico de los átomos permite responder una de la preguntas centrales de la química:

¿por qué los elementos se comportan como lo hacen?

O formulada de otra forma para justificar más el interés en estudiar este tema :

¿cómo se relaciona la distribución de los electrones en los orbitales de los átomos con sus propiedades físicas y químicas?

Page 97: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

97

En 1870, D. Mendeleev (químico ruso) ordenó 65 elementos conocidos en esa época en la “tabla periódica” y resumió su comportamiento en la “ley periódica” (ordenados por masa atómica exhiben una repetición periódica de propiedades similares). Incluso llegó a prede-cir propiedades de elementos aun no descubier-tos.En forma independiente, en la misma época, el físico J. Meyer llegó al mismo ordenamiento basándose en las propiedades físicas de los elementos.

Page 98: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

98

La tabla periódica actual se parece en la mayoría de los detalles a la definida por Mendeleev e incluye los 47 elementos desconocidos en 1870. El único cambio sustantivo es que ahora los elementos se ordenan según su número atómico (número de protones).

Page 99: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

99

Características de los átomos con muchos electrones.

La ecuación de Schrödinger no da soluciones exactas para átomos multielectrónicos, pero sí da soluciones aproximadas.

Estas soluciones muestran que los orbitales atómicos de átomos de varios electrones son semejantes al hidrógeno.

Page 100: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

100

La existencia de más de un electrón en un átomo requiere considerar tres características (que no son relevantes en el caso del H):

1) la necesidad de un cuarto número cuántico

2) un límite en el número de electrones

permitidos en un orbital dado

3) un conjunto más complejo de orbitales en

los niveles de energía

Page 101: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

101

1) Número cuántico de spin del electrón. Este número cuántico se designa por ms (o por s). Los valores posibles son:

-1/2 y +1/2.

Por ejemplo, en el caso del H el único electrón tiene números cuánticos: n = 1, l = 0, m = 0 y ms puede ser -1/2 ó +1/2.

Page 102: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

102

2) Límite en el número de electrones permitidos en un orbital dado.

Con base a observaciones de los estados excitados, W. Pauli formuló el “principio de exclusión” (de Pauli) según el cual dos electrones en un mismo átomo no pueden tener los mismos cuatro números cuánticos.

Cada electrón debe tener una “identidad” única expresada por su conjunto único de números cuánticos.

Page 103: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

103

La principal consecuencia del principio de exclusión de Pauli es que un orbital atómico puede tener un máximo de dos electrones que deben tener spines opuestos.

El átomo de He tiene dos electrones y en su estado fundamental los electrones tienen los siguientes números cuánticos:• si primer electrón tiene

n = 1, l = 0, m = 0, ms = -1/2• el segundo electrón tiene:

n = 1, l = 0, m = 0, ms = +1/2

o viceversa

Page 104: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

104

3) Conjunto complejo de orbitales.

La energía de un orbital en un átomo de varios electrones depende primariamente del valor de n (tamaño) y secundariamente del valor de l (forma).

La energía del orbital en átomos multielec-trónicos se ve afectada por:

a) la carga nuclear (Z)

b) las repulsiones entre electrones

c) el efecto pantalla de electrones más internos

Page 105: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

105

Para átomos multielectrónicos se requiere considerar:

1) necesidad de un cuarto número cuántico (número cuántico de spin del electrón, s ó ms , con valores -1/2 ó +1/2)

2) un límite en el número de electrones permi- tidos en un orbital dado (Principio de exclusión de Pauli, no puede haber electrones con los mismos 4 n°s cuánticos, deben diferir en a lo menos un n° cuántico)

3) un conjunto más complejo de orbitales en los niveles de energía

Page 106: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

106

3) Conjunto complejo de orbitales.

En un átomo con más de un electrón, los efectos electrostáticos juegan un papel importante en la determinación de los estados de energía en un átomo.

Dos efectos, particularmente importantes, y que pueden describirse por la ley de Coulomb, son:

Page 107: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

107

• Cuando cargas opuestas están separadas, la energía del sistema es mayor que cuando ellas se acercan, porque las cargas se atraen entre sí menos fuertemente. (Recuerde que mientras más alta es la energía de un sistema menos estable es el sistema).

• Cuando una carga positiva grande atrae una carga 1- , la energía del sistema es menor (sistema más estable), que cuando una carga positiva pequeña lo hace, por-que las cargas se atraen una a otra con más fuerza.

Estos dos efectos generan un conjunto de estados de energía más complejo que el existente en el átomo de H.

Page 108: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

108

Por otro lado, los estados de energía de átomos con varios electrones provienen de dos tipos de interacciones:

atracciones núcleo - electrón

repulsiones electrón – electrón

Una consecuencia de esto es la separación de los niveles de energía en subniveles con diferentes energías: la energía de un orbital en un átomo de varios electrones depende primariamente del valor de n (tamaño) y secundariamente del valor de l (forma). Evidencia de esta separación en espectros, al comprar espectros de H y de He.

Page 109: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

109

La comparación de algunos sistemas atómicos permite ver cómo la energía del orbital, en átomos multielectrónicos, se ve afectada por:

a) la carga nuclear (Z)

b) las repulsiones entre electrones

c) el efecto pantalla de electrones

internos

Page 110: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

110

a) Efecto de la carga nuclear.Considérese dos especies con el mismo número de electrones y con distinta carga nuclear, como el átomo de H y el ion He+. Ambos tienen un electrón y en sus estados fundamentales están en orbitales:H 1s y He+ 1s, pero el electrón del He+ está atraído por dos protones en cambio el del H está atraído sólo por un protón. Así el electrón del He+ está más fuertemente retenido que el del H y las energías son:

E de 1s en He+ = -5250 kJ/mol y E de 1s en H = -1311 kJ/mol

Page 111: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

111

Lo anterior significa que el orbital 1s del He+ tiene menor energía que el orbital 1s de H y por lo tanto el más difícil quitar el e- del He+ que quitar el e- del H.

0

En

ergí

a

-5250 kJ/mol (1s de He+)

-1311 kJ/mol (1s de H)

Page 112: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

112

b) Efecto de las repulsiones entre electrones.

Se puede mostrar en forma simple usando como ejemplo el átomo de He:

El He tiene dos e- y ambos en el orbital 1s.

El primer e- en orbital 1s tiene energía –5250 kJ/mol, el segundo e-, en el mismo orbital, tiene energía –2372 kJ/mol. Este aumento de energía se explica porque el primer electrón repele al segundo (del mismo orbital) por lo cual su energía resulta mayor que la del primero.

Page 113: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

113

La presencia de un e- más en un orbital, incrementa la energía de éste debido a fuerzas repulsivas.

Las repulsiones tienen el efecto de disminuir las atracciones nucleares de modo que cada e- experimenta una carga nuclear más débil de la que tendría si el otro e- no estuviera presente. Es como si cada e- “escudara” o “protegiera” al otro de la carga nuclear total, reduciendo ésta a una “carga nuclear efectiva”.

Page 114: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

114

c) Efecto de los electrones interiores en la energía nivel más externo, (efecto pantalla):Para explicar este efecto se puede compara dos especies con la misma carga nuclear, una con e- internos y el otro sin ellos. Sean estas especies, átomos de Li y iones Li+. Li (Z=3) en su estado fundamental: los dos pri-meros electrones están en orbital 1s y el tercer e-, en el orbital 2s. => 2 e- internos y uno externo.Li+, tiene dos e – y en su primer estado excitado: 1 e- en 1s (e- interno) y 1 e- en 2s (e- externo).

Page 115: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

115

La energías de los orbitales 2s en Li y en Li+(excitado) son:

E de 2s en Li = - 520 kJ/mol

E de 2s en Li+ = -2954 kJ/mol

Como los electrones “internos” pasan la mayor parte del tiempo “entre el e- externo y el núcleo”, ellos previenen que el e- 2s sienta toda la atracción nuclear, lo que hace al electrón exterior más fácil de remover.

Los electrones internos protegen a los electrones externos más efectivamente que los electrones del mismo subnivel. Efecto pantalla.

Page 116: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

116

Energías de los orbitales.

Teniendo en cuenta los efectos recién analizados, las energías crecientes de los orbitales atómicos en átomos multielectrónicos son:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s …

El siguiente esquema muestra las energías de los orbitales y cómo quedan determinadas por los valores de n y de l:

Page 117: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

117

1s

2s

4s3p3s

2p

3d4p

5s4d5p

En

ergí

a

Page 118: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

118

A medida que n aumenta las diferencias de energía entre los niveles y subniveles se hace cada vez menor.

Para recordar el orden creciente de energía de los orbitales se puede recurir al esquema que sigue:

Page 119: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

119

1 s1 s

2 s 2 p2 s 2 p

3 s 3 p 3 d3 s 3 p 3 d

4 s 4 p 4 d 4 f4 s 4 p 4 d 4 f

5 s 5 p 5 d 5 f5 s 5 p 5 d 5 f

6 s 6 p 6 d6 s 6 p 6 d

7 s 7 p7 s 7 p

empezar

Page 120: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

120

El número máximo de electrones en los distintos tipos de orbitales son:

2 en tipo s

6 en tipo p

10 en tipo d

14 en tipo f

y resultan de:

Page 121: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

121

Tipo orbital (según valor de l)

Orienta-

ciones

(n° de valores de m)

N° de e- permitidos en

cada orientación

Máximo total de e- en cada tipo de orbital

s

p

d

f

1

3

5

7

2

2

2

2

2

6

10

14

Page 122: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

122

Configuración electrónica de los elementos.

Una forma fácil para determinar la configuración electrónica de cada elemento es empezar con el elemento Z = 1 que tiene 1 e- y a continuación ir incorporando de a un electrón para obtener la configuración electrónica de los elementos siguientes, Z = 2, Z = 3, etc.

Este método se llama “principio de Aufbau” (en alemán

=> aufbauen = construir): se agrega un electrón por cada elemento, al orbital de menor energía.

Page 123: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

123

La configuración electrónica consiste en escribir los orbitales en orden creciente de energía indicando y el número de electrones en cada uno de ellos. El número de electrones se escribe como superíndice de la letra corres-pondiente al tipo de orbital.

Ejemplos: 1s2; 4p3; 3d8

En la tabla que sigue se dan las configuracio-nes electrónicas de los tres primeros elementos:

Page 124: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

124

Ele-mento

Z N° de electrones

Configuración

electrónica

H 1 1 n=1, l=0; m=0; s=-1/2 => 1s1

He 2 2 n=1, l=0; m=0; s=-1/2

n=1, l=0; m=0; s=+1/2 => 1s2

Li 3 3

n=1, l=0; m=0; s=-1/2

n=1, l=0; m=0; s=+1/2

n=2, l=0; m=0; s=-1/2 => a 1s22s1

Be 4 4 etc.

Page 125: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

125

Elemento Z Configuración electrónica

H

He

Li

Be

B

C

N

O

F

Ne

1

2

3

4

5

6

7

8

9

10

1s1

1s2

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

Page 126: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

126

Dos electrones en un mismo orbital y que sólo difieren en el número cuántico de spin, se dice que son electrones apareados.

Por ejemplo, los dos electrones del He, ambos en orbital 1s, son electrones apareados.He: 1s2

En cambio, el último electrón en el Li, es un electrón en 2s y él no está apareado. Los electrones no apareados se llaman también electrones celibatarios.

Page 127: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

127

El método descrito para obtener la configu-ración electrónica del estado fundamental de una especie debe respetar una norma conocida como “regla de Hund”, según la cual “en orbitales de igual energía (los que presentan varias orientaciones como son los “p”, “d” y “f”), la configuración electrónica de menor energía tiene el máximo de electrones desapareados”. Así, en forma más detallada, las configura-ciones electrónicas son:

Page 128: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

128

Elemento Z Configuración electrónica

Be

B

C

N

O

F

Ne

Na

Mg

4

5

6

7

8

9

10

11

12

1s2 2s2

1s2 2s2 2p1 1 e- celibatario

1s2 2s2 2p1p1 2 e- “

1s2 2s2 2p1p1p1 3 e- “

1s2 2s2 2p2p1p1 2 e- “

1s2 2s2 2p2p2p1 1 e- “

1s2 2s2 2p2p2p2 = 1s2 2s2 2p6

1s2 2s2 2p6 3s1 1 e- celibatario

1s2 2s2 2p6 3s2

Page 129: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

129

Otra forma de esquematizar las configuraciones electrónicas es:

Hidrógeno (1 e-) n = 1 ; l = 0 ; m = 0 ; s = - ½

Si significa s = -1/2 entonces

significa s = +1/2.

Helio (2 e-) Primer electrón: igual al anteriorSegundo electrón: n = 1 ; l = 0 ; m = 0 ; s = + ½

1s1s11

1s1s22

Page 130: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

130

Litio (3 e-) Primer y segundo electrones: igual a los anteriores

Tercer electrón:

n = 2 ; l = 0 ; m = 0 ; s = - ½

Berilio (4 e-) Primeros tres electrones: igual a los ante-riores

Cuarto electrón: n = 2 ; l = 0 ; m = 0 ; s = + ½

1s1s22 2s2s11

1s1s22 2s2s22

Page 131: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

131

B:B: 1s 1s22 2s 2s22 2p2p11

1s1s22 2s2s22 2p2pxx11

C:C: 1s 1s22 2s 2s22 2p2p22

2p2pyy111s1s22 2s2s22 2p2pxx

11

N:N: 1s 1s22 2s 2s22 2p2p33

2p2pzz112p2pyy

111s1s22 2s2s22 2p2pxx11

Page 132: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

132

O:O: 1s 1s22 2s 2s22 2p2p44

2p2pzz112p2pyy

111s1s22 2s2s22 2p2pxx22

F:F: 1s 1s22 2s 2s22 2p2p55

2p2pzz112p2pyy

221s1s22 2s2s22 2p2pxx22

Ne:Ne: 1s 1s22 2s 2s22 2p2p66

2p2pzz222p2pyy

221s1s22 2s2s22 2p2pxx22

Page 133: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

133

La configuración electrónica del elemento Rb (Z=37) es:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1

La configuración electrónica del gas noble anteriormás próximo al elemento se denomina “Kernel”. El kernel del Rb es el Kr.

He

Ne

Ar

Kr

Page 134: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

134

La configuración electrónica de un elemento se puede escribir en forma abreviada usando el “kernel”. La configuración del kernel se representa por el símbolo del gas noble entre paréntesis [ ]. Los kernel son: [He] ó [Ne] ó [Ar] ó [Kr] ó [Xe] ó [Rn]

El kernel del Rb (Z = 37) es el [Kr] puesto que el Kr es el gas noble anterior más cercano al Rb. Así la configuración electrónica del Rb se puede escribir en forma abreviada (condensada): [Kr] 5s1

Page 135: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

135

Otros ejemplos de configuraciones electrónicas abreviadas son:

para B (Z = 5): [He]2s22p1

para Ca (Z=20): [Ar] 4s2

para Cl (Z=17): [Ne] 3s2 3p5

Page 136: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

136

Los electrones que exceden el kernel se denominan “electrones de valencia”.

En los ejemplos anteriores:

Rb (Z=37): [Xe] 5s1 tiene un e- de valencia

Ca (Z=20): [Ar] 4s2 tiene 2 e- de valencia

Cl (Z=17): [Ne] 3s2 3p5 tiene 7 e- de valencia

(Los e- de valencia son los que sobrepasan el kernel).

Page 137: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

137

Problema 8.

Para cada subnivel con los números cuánticos que se indican complete lo que se solicita en la tabla:

subnivel Notación

de subnivel

Valores posibles de ml

Número de orbitalesn l

2 1 2p -1, 0, +1 3 (tipo “p”)

3 2

2 0

5 1

4 3

Ejemplo

Page 138: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

138

Problema 9.

Escriba la configuración electrónica de 42Mo y de 82Pb.

Mo Z = 42

1s2 2s22p6 3s23p6 4s23d104p6 5s24d4 = [Kr] 5s24d4 ???(Después de estudiar y comprender las configuraciones elec-trónicas externas de Cr y de Cu, explique por qué la configura-ción electrónica aceptada para el Mo es [Kr]5s14d5)

Pb Z = 82

1s2 2s22p6 3s23p6 4s23d104p6 5s24d105p6 6s24f145d106p2

= [Xe] 6s24f145d106p2s25f14 …

Page 139: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

139

Categorías de electrones.

Se distinguen tres categorías de electrones:1) electrones internos, son los del kernel, están en

los niveles inferiores de energía,

2) electrones externos, son los que están en los niveles más altos de energía, los que tienen el mayor valor de n y en promedio están más alejados del núcleo,

3) electrones de valencia, son los electrones (externos) que se involucran en la formación de moléculas y de compuestos.

Page 140: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

140

Categorías de elementos.

Se distinguen tres categorías de elementos:

1) elementos representativos, los que tienen elec-trones de valencia “s” y/o “p”, incompletos.

2) elementos de transición, los que tienen elec-trones de valencia en orbitales “d” incom-pleto.

3) elementos de transición interna, los que tienen electrones de valencia en orbitales “f” incom-pleto

Page 141: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

141

En los elementos representativos, los electrones externos son también los electrones de valencia.

Entre los elementos de transición, algunos electrones interiores “d” también están implicados a menudo en enlaces y por lo que se cuentan como electrones de valencia.

Page 142: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

Z Elemento Diagrama Orbital Configuración Electrónica (de subniveles 3s y 3p) condensada

11 Na [Ne] 3s1

12 Mg [Ne] 3s2

13 Al [Ne] 3s23p1

14 Si [Ne] 3s23p2

15 P [Ne] 3s23p3

16 S [Ne] 3s23p4

17 Cl [Ne] 3s23p5

18 Ar [Ne] 3s23p6

Configuraciones Electrónicas para los Elementos del tercer período.

3s 3p 3s 3p

Page 143: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

Diagrama Orbital Configuración electrónica Z Elem (subniveles 4s, 3d y 4p) condensada

19 K [Ar] 4s1

20 Ca [Ar] 4s2

21 Sc [Ar] 4s23d1

22 Ti [Ar] 4s23d2

23 V [Ar] 4s23d3

24 Cr [Ar] 4s13d5

25 Mn [Ar] 4s23d5

26 Fe [Ar] 4s23d6

27 Co [Ar] 4s23d7

Configuraciones Electrónicas para los Elementos del cuarto período.

4s 3d 4p4s 3d 4p

Page 144: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

Diagrama Orbital Configuración Electró-

Z Elem (sólo subniveles 4s, 3d y 4p) nica condensada

28 Ni [Ar]4s23d8

29 Cu [Ar]4s13d10

30 Zn [Ar]4s23d10

31 Ga [Ar]4s23d104p1

32 Ge [Ar]4s23d104p2

33 As [Ar]4s23d104p3

34 Se [Ar]4s23d104p4

35 Br [Ar]4s23d104p5

36 Kr [Ar]4s23d104p6

Configuraciones Electrónicas para los Elementos del cuarto período (continuación)

4s 3d 4p4s 3d 4p

Page 145: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

145

Configuraciones electrónicas en períodos y en grupos.

El ordenamiento periódico de los elementos se conoce como tabla periódica y dispone los elementos en orden creciente de Z, (de izquierda a derecha y de arriba hacia abajo).

Los elementos cuya configuración electrónica de los electrones externos se inicia con ns1 y termina con np6 conforman el “período n”, para n igual o mayor que 2. El primer período, n = 1, tiene solamente dos elementos, cuyas configuraciones electrónicas son 1s1 y 1s2.

Page 146: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

146

Los “períodos” son las “filas” o “renglones”: Z crece

1er período

2o período

3er período

4o período

5o período

6o período

7o período

Z crece

Page 147: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

147

Período

se inicia en ….. termina en N° de elementos

1

2

3

4

5

6

7

1s1 1s2

2s1 ……………….. 2p6

3s1 ……………….. 3p6

4s1….. (3d) …..... 4p6

5s1 … .. (4d)…. ….5p6

6s1 …(4f)…(5d)…..6p6

7s1 ...

2

8

8

18

18

32

restantes

Page 148: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

148

Uno de los puntos centrales en la química es que “configuraciones electrónicas externas similares se correlacionan con un comportamiento químico similar”.

Los elementos de configuraciones electrónicas externas similares se ordenan conformando “grupos” o “familias”.

Page 149: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

149

En el ordenamiento periódico, los “grupos” o “familias” constituyen las columnas:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Z crece

Z crece

Page 150: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

150

1

2

3

4

5

6

7

ns1 ns2

ns2np1 . . . . ns2np6

Elem. de transición “d”

Grupo principalElementos bloque s Grupo principal

Elementos bloque p

Elementos transición interna bloque f

R e

p r

e s

e n

t a

t i

v o

s

R e

p r

e s

e n

t a t

i v o

s

G a

s e

s

N o

b l

e s

T r a n s i c i ó n

Page 151: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

151

3Li

1s22s1

10

Ne1s22s22p6

6A(16) 8 O

1s22s22p4

5A(15)7N

1s22s22p3

2A(2)4

Be1s22s2

4A(14)6C

1s22s22p2

3A(3) 5 B

1s22s22p1

7A(17) 9 F

1s22s22p5

8A(18)

2

He1s2

1A(1)

1

H1s11

2

Configuración Electrónica y Ordenamiento Periódico

Configuración Electrónica y Ordenamiento Periódico

Page 152: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

152

Problema 10.Agrupe las siguientes configuraciones electrónicas en parejas que puedan representar átomos con propiedades químicas similares:

a)1s22s22p63s23p5

b)1s22s22p63s2

c)1s22s22p3

d)1s22s22p63s23p64s23d104p6

e)1s22s2

f)1s22s22p6

g)1s22s22p63s23p3

h)1s22s22p5

Page 153: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

153

Problema 11.

Clasifique a los elementos de las configuraciones electrónicas dadas en: representativo, halógeno, gas noble, transición, alcalino, alcalino térreo, otro.

a)1s22s22p63s23p5

b)1s22s22p63s2

c)1s22s22p3

d)1s22s22p63s23p64s23d104p6

e)1s22s2

f)1s22s22p6

g)1s22s22p63s23p3

h)1s22s22p5

Page 154: UdeC/ FCQ/P.Reyes Unidad 7 (7-1) 1 Universidad de Concepción Facultad de Ciencias Químicas Química General para Ingeniería Unidad 7 Tema: Estructura electrónica.

UdeC/ FCQ/P.Reyes Unidad 7 (7-1)

154

Problema 12.

a) Escriba las configuraciones electrónicas de las siguientes especies:

Na, Na+, Mg2+, S2-, Cl-, Ar, Ne, O2-, Al3+

b) ¿Cuáles de las especies anteriores son isoelectrónicas?

c) ¿Por qué no se forman los iones K2+, Ca+, O3-?

d) ¿Cuál de los iones Sn2+ ó Sn4+ es más estable y por qué?