Tanque de abastecimiento_bomba_red_distrib_hu_2015_1

32
Tanque de regulación 137 m Caudal de ingreso: constante en el tiempo Tanque de regulación Q t Q t Caudal de salida: variable en el tiempo

Transcript of Tanque de abastecimiento_bomba_red_distrib_hu_2015_1

Tanque de regulación

137 m

Caudal de

ingreso:

constante

en el

tiempo

Tanque de

regulación

Q

t

Q

t

Caudal de

salida:

variable

en el

tiempo

Tanque de regulación 2. Clasificación de los tanques

Tanque de regulación

Diseño de bomba hidráulica para elevar agua desde el tanque de

la planta de tratamiento al tanque elevado

Cuando no hay posibilidad de usar un tanque superficial o enterrado, se usa un

tanque elevado. Para hacer llegar el agua hasta el tanque elevado se usan

bombas hidráulicas.

La potencia de una bomba (en caballos de vapor, CV) se calcula con la

siguiente ecuación: Potencia en CV = �∗ ∗� ��∗7 , in Kg-f/m3

Potencia en Watts = �∗ ∗� �� , in N/m3

Donde es la eficiencia de la bomba: 70 a 80% (0.4 a 0.9)

Ejemplo para proyecto

Si el caudal de agua en una tubería de hierro forjado de 200 mm de diámetro

es de Q=0.05 m3/s, calcule la potencia de la bomba . Utilice el método de

Darcy-Weissbach para calcular perdidas por friccion. Use f=0.017, Kentrada

=0.5, Kvalvula globo =5.7, Kcodo=0.64, Ksalida=1.

Aplicando Bernoulli:

� + � 2 + + � = 2� + �22 + + ℎ + Ʃℎ�

− + � =�22 + �∗�2�∗ + h + hv−glo o + h o o +ℎ � � = + . ∗ . �� + . + . + ∗ . + ∗ ��

Pero � = � = .��2/ = . �/ . Reemplazando valores:

� = . �

La potencia requerida con =100% (verificar si esto es

apropiado): P = � ∗ ∗ � = ∗ . ∗ . ∗ . = . � = . ��.

Tanque de regulación

Tanque de regulación (NCH 691)

Ejemplo de calculo de volumen del tanque de abastecimiento

para un Qmax-dia= 0.133 m3/s

Tanque de regulación

Tanque de regulación

Ejemplo de calculo de volumen del Tanque de abastecimiento

• En la anterior clase se había calculado un volumen de regulación de:

– VR=503.69 m3 = 504 m3

• Según la norma debemos diseñar el tanque para el máximo de:

– VR + V_incendio

– VR + Volumen de reserva

• Volumen de incendio

– Para una población futura (36274 hab), la norma chilena NCH 691 determina: V_incendio=346 m3.

• Volumen de reserva

– 2 horas de caudal máximo día = 2*3600 sec*0.133 m3/sec =957.6 m3

• Verificando:

– VR + V_incendio = 850 m3

– VR + Volumen de reserva = 1416 m3

• Adoptamos: el mayor de los volúmenes (NCH 691)

Red de distribución (tipos)

• Serie de tuberías y conexiones que se instalan o localizan dentro de la calles

• El diseño depende de:

– Organización de las calles

– Topografía

• Organización irregular de calles

– Poblaciones rurales (calle/avenida central, calles o callejones secundarios, extremos de las tuberías son puntos de no flujo de agua).

– Red abierta

• Distribución ordenando de calles – Permite construir circuitos cerrados de tuberías

principales

– Tuberías de relleno (secundarias) llevan el agua a las casas

– La alimentación de agua puede realizarse desde cualquier punto y varias direcciones

– No hay extremos muertos (mejor desde el punto de vista hidráulico)

– Red cerrada

Red abierta

Red cerrada

Red de distribución (tipos de flujo)

• Flujo Mono-direccional

– El tanque de abastecimiento o la estación de bombeo se encuentran localizado en uno de los extremos de la red

– Única alimentación de la red

• Flujo bi-direccional

– Suministro a la red se hace desde un tanque (o estación de bombeo) situado a un extremo de la red

– La demanda de agua es cubierta por los dos tanques

– Existe una tubería de distribución - aducción desde un tanque al otro.

Red de distribución (Norma NCH 691)

Red de distribución

Captación Aducción

Red de distribución (Norma NCH 691)

Red de distribución (Norma NCH 691)

Red de distribución (Norma NCH 691)

Calculo de la red de distribución

• De acuerdo a la norma chilena NCH 691, la red se debe diseñar para el máximo de los siguientes valores:

– Q_max_hora

– Q_max_dia + Q_incendio

• Ejemplo:

– Q_max_hora = 0.146 m3/sec

– Q_max_dia + Q_incendio = 0.133 + 0.048 = 0.181 m3/sec

• Entonces, el caudal de diseño de la red será: 0.181 m3/sec

Ejemplo de red de distribución

Elevación del tanque: 137 m

Ejemplo de red de distribución

9

8

7

6

5

4

2

1

3

Elevación del tanque: 137 m

Criterio para calcular demandas en nodos

• Varios criterios

• Un criterio razonable: usar polígonos de Thiesen (diagramas Voronoi) para estimar demandas en los nodos

http://cdn.intechopen.com/pdfs/40534/InTech-Demand_allocation_in_water_distribution_network_modelling_a_gis_based_approach_using_voronoi_diagrams_with_constraints.pdf

Nodo 3: 0.16 l/s

1.67 l/s 9

8

7

6

5

4

2

1

Ejemplo de red de distribución

Elevación del tanque: 137 m

Área: 3000 m2

3

3

1.67 l/s 9

8

7

6

5

4

2

1

0.16 l/s

0.151 l/s=1000/10000*1.51

0.423/s

0.075 l/s

0.227/s

0.453 l/s 1.51 l/s

Ejemplo de calculo de caudales en nodos

1200/10000*1.51=0.181 l/s

EJEMPLO (!!) de red de distribución. Cada grupo deberá definir una red de acuerdo a su criterio. NO USAR ESTA RED ya que es solo un ejemplo. Además de ello no está diseñada correctamente ni de acuerdo a la norma chilena.

9

8

7

6

5

4 3

2 1

Ejemplo de red de distribución

9

8

7

6

5

4 3

2 1

Ejemplo de red de distribución

9

8

7

6

5

4 3

2 1

Ejemplo de red de distribución

3

1.67 l/s 9

8

7

6

5

4

2

1

0.16 l/s 0.19 l/s

0.08 l/s

0.04 l/s

0.12 l/s

0.81 l/s

0.27 l/s

1.51 l/s

0.66 l/s

0.39 l/s

0.66 l/s

0.29 l/s 0.13 l/s

0.25 l/s

0.29 l/s

Ejemplo de calculo de red de distribución usando método de Hardy-Cross:

caudales iniciales en tuberias

9

8

7

6

5

4

2

0.19 l/s

0.08 l/s

0.04 l/s

0.12 l/s

0.81 l/s

0.27 l/s

1.51 l/s

0.66 l/s

0.39 l/s

0.66 l/s

0.29 l/s 0.13 l/s

0.25 l/s

0.29 l/s

Ejemplo de calculo de red de distribución usando método de Hardy-Cross:

se asume una dirección de flujo (sentido de las manecillas del reloj)

• Se asume un sentido positivo de flujo. • Calcular perdidas de carga en cada una de las tuberías. • Calcular la corrección inicial en cada circuito.

• Se corrige esa corrección en tuberías que son comunes den dos circuitos. • Calcular el nuevo caudal (Corregido) sumándole la anterior corrección. • Se repite este procedimiento hasta que la corrección sea ínfima o despreciable.

Ejemplo de calculo de red de distribución usando método de Hardy-Cross

Iteración inicial

Iteración final

Qinicial L/s) Q EPANet (L/s) Q Hardy-Cross (L/sec)

-0.66 0.79 0.808218381

0.29 0.39 0.340247208

-0.39 -0.27 -0.251781619

-0.66 -0.54 -0.521781619

-0.29 0.32 0.387971173

-0.25 0.27 0.337971173

-0.13 0.15 0.217971173

0.29 -0.54 -0.490247208