Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco...

24
Optimizacion_en_el _consumo_2010 29 de enero de 2010 1 Instituto Tecnológico Autónomo de México Departamento Académico de Economía Economía III Optimización en el consumo . ME. Claudia Aburto Rancaño. Lic. Daniel Gutiérrez R. 1 Los autores agradecen los comentarios del Prof Esteban Colla. Los errores permanecen como responsabilidad de los autores.

Transcript of Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco...

Page 1: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

1

Instituto Tecnológico Autónomo de México

Departamento Académico de Economía

Economía III

Optimización en el consumo.

ME. Claudia Aburto Rancaño.

Lic. Daniel Gutiérrez R. 1

Los autores agradecen los comentarios del Prof Esteban Colla. Los errores permanecen como responsabilidad de los

autores.

Page 2: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

2

CAPÍTULO III. OPTIMIZACIÓN EN EL CONSUMO

i) Análisis gráfico de la Condición de Primer Orden (CPO) ......................................... 3

ii) Análisis gráfico de la Condición de Segundo Orden (CSO) ...................................... 4

iii) Análisis gráfico de soluciones de esquina .................................................................. 6

iv) Análisis matemático de la optimización en el consumo ............................................. 7

a) Método de los multiplicadores de Lagrange ........................................................ 7

v) Análisis de casos especiales ..................................................................................... 10

a) Sustitutos perfectos ............................................................................................. 10

b) Complementos perfectos .................................................................................... 13

c) Preferencias cóncavas ......................................................................................... 15

vi) Apéndice al Capítulo III ........................................................................................... 20

vii) Ejemplos y ejercicios adicionales ............................................................................. 21

Page 3: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

3

CAPÍTULO III. OPTIMIZACIÓN EN EL CONSUMO

Hasta ahora, hemos mostrado que el consumidor puede escoger cualquier canasta

alcanzable dentro de un conjunto de posibilidades de consumo delimitado por su ingreso.

Ahora bien, si las preferencias son monótonas y estrictamente convexas y, asimismo,

asumimos que el consumidor es racional y conocemos sus preferencias y restricción

presupuestal, entonces será posible hallar una única canasta óptima sobre su espacio de

elección.

i) Análisis gráfico de la Condición de Primer Orden (CPO)

Dado que ( , )U x y representa las preferencias, entonces es posible representar

matemáticamente el problema de encontrar la canasta preferida dentro de las canastas

comprables de acuerdo con la relación de preferencias que presente el consumidor; es decir,

estamos pasando del mundo de las preferencias al mundo matemático de la utilidad. De esta

manera, para funciones de dos variables x e y, la expresión matemática del problema de

maximización de la utilidad del consumidor es:

sujeto a IyPxP yx

En realidad, el problema del consumidor es alcanzar el mayor nivel de utilidad dados su

ingreso y los precios de mercado de los bienes que va a consumir. Ahora bien, si las

preferencias son monótonas, entonces el consumidor gastará todo su ingreso, por lo que

podemos resolver el problema anterior con igualdad en la restricción presupuestal. Por otra

parte, si las preferencias del consumidor son estrictamente convexas entonces estaremos

seguros de que habrá una única canasta óptima.

Para el caso de dos bienes, una decisión de consumo será óptima en la medida en que el

individuo agote todo su ingreso y al hacerlo, elija una combinación de los bienes x e y tal

que la TMS sea igual al valor absoluto de la pendiente de la restricción presupuestal

determinada por la razón de precios relativos /x yP P . Este proceso se ilustra en la Gráfica

3.1, en la cual se representan tres curvas de indiferencia ( 1U , 2U y 3U , donde

321 UUU ).

Sabemos que, el consumidor debe agotar todo su ingreso, por lo que su consumo no podría

ser una canasta como A. Los puntos como B, C o E, están sobre su restricción presupuestal

y por lo tanto en ellos el consumidor se gasta todo su ingreso. Sin embargo, los puntos B y

E, no son puntos óptimos, ya que el consumidor podría alcanzar curvas de indiferencia más

altas en otras canastas. Si estuviera en el punto B podría disminuir el consumo de y e

incrementar el consumo de x para moverse a C y alcanzar 2U . Por otra parte, si estuviera en

un punto como E podría disminuir el consumo del bien x e incrementar el consumo del bien

y para moverse a C. Es importante notar que, en el punto B la x yTMS P P y que en el

punto E la x yTMS P P .

Page 4: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

4

Finalmente, se puede apreciar en la Gráfica 3.1 que la canasta que maximiza la utilidad del

consumidor está dada por el punto C donde en donde consume *x e *y . En el punto C la

curva de indiferencia 2U es tangente a la restricción presupuestal. Esta tangencia quiere

decir que en el punto C la x yTMS P P , lo que se conoce como la condición de

equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración subjetiva de

un bien en términos de otro bien es igual a la valoración de mercado.

Gráfica 3.1

ii) Análisis gráfico de la Condición de Segundo Orden (CSO)

La condición de equimarginalidad o de primer orden por sí sola no garantiza la existencia

de un óptimo; es decir, equimarginalidad es una condición necesaria pero no suficiente para

un óptimo. Requerimos también una condición de segundo orden (CSO), la cual establece

que la TMS sea decreciente; es decir, que las curvas de indiferencia sean estrictamente

convexas. Por ejemplo, en la Gráfica 3.2 se dibujan dos curvas de indiferencia ( 1U y 2U ,

donde 21 UU ) que no cumplen el supuesto de TMS decreciente en todo su rango. En

particular, se puede apreciar que en los puntos A y B las curvas de indiferencia son

tangentes a la restricción presupuestal. Es decir, se cumple la condición de

equimarginalidad; sin embargo, en el punto A, la utilidad no es la más alta que se puede

alcanzar dada la restricción presupuestal. Mientras que el punto B el individuo alcanzará el

mayor nivel de utilidad (U2) mediante una combinación *x , *y .

x

y

xPI

yPI

0

A

C D

B

*x

*y

2U 3U

1U E

Equimarginalidad

x

y

PTMS

P

Page 5: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

5

*x

*y

x

y

xPI

yPI

0

A

B

1U 2U

Gráfica 3.2

A continuación, se resumen las condiciones de primer y segundo orden en el Cuadro 3.1.

Cuadro 3.1

Condición de Primer Orden (CPO)

Matemáticamente, la condición de equimarginalidad o de primer orden puede ser

expresada como:

Uy

x

x

y

P

P donde x

y

P

P es la pendiente de la restricción presupuestal y

U

y

x la

pendiente de la curva de indiferencia. De esta forma, el negativo de la pendiente de la

curva de indiferencia; es decir, U U

y y

x x es la TMS.

Uy

x

x

y

P

P x

y

PTMS

P

Pero x

y

UMgTMS

UMg

yx P

UMgy

P

UMgx

Lo cual implica que en un punto óptimo la utilidad marginal por peso gastado en el bien

x deberá ser igual a la utilidad marginal por peso gastado en el bien y.

Condición de Segundo Orden (CSO)

TMS decreciente Curva de indiferencia estrictamente convexa

Tangencia entre la curva de indiferencia y

la restricción presupuestal

Page 6: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

6

iii) Análisis gráfico de soluciones de esquina

Hasta ahora, hemos considerado decisiones óptimas de consumo que involucran canastas

interiores; es decir, combinaciones positivas de ambos bienes que maximizan el nivel de

utilidad del individuo; no obstante, en ocasiones las preferencias del consumidor pueden

conducirlo a especializarse en el consumo de algún bien en particular, de forma tal que para

maximizar su utilidad, elija no consumir alguno de los bienes.

Por ejemplo, no todos los individuos poseen una computadora o un automóvil; o bien, no

todos dedican su ingreso al consumo de tabaco o joyería. En este sentido, si el consumidor

no puede hallar una canasta interior que cumpla con la condición de equimarginalidad,

entonces podría encontrar una canasta en alguno de los puntos de intersección que posee la

restricción presupuestal con los ejes horizontal y vertical, destinando la totalidad de su

ingreso al consumo en alguno de los bienes.

Para demostrar lo anterior, en la Gráfica 3.3 se dibujan tres curvas de indiferencia ( 1U , 2U

y 3U donde 321 UUU ) que no cumplen la condición de equimarginalidad;

particularmente en los puntos A, B y C se puede apreciar que la pendiente de las curvas de

indiferencia es mayor que la de la restricción presupuestal, determinada por la razón de

precios, es decir que en cualquiera de estos puntos se cumple que yx PPTMS ; que

expresado de la forma yx PUMgyPUMgx , implica que la utilidad marginal por peso

gastado en el bien x es mayor que la utilidad marginal por peso gastado en el bien y. En este

sentido, el consumidor podrá aumentar su utilidad disminuyendo el consumo de y e

incrementando el consumo de x hasta que su presupuesto lo permita, lo cual sucede en un

punto como C, donde dedica la totalidad de su ingreso al consumo del bien x.

No obstante que en el punto C la TMS continúa siendo mayor que la razón de precios, dado

que ya no es posible continuar sustituyendo unidades adicionales de y a cambio de x; es la

canasta C la decisión de consumo óptima que le brinda al individuo el máximo nivel de

satisfacción posible (U3).

Gráfica 3.3

x

y

yPI

0

C

1U 2U

3U

xP

Ix*

A

B

Page 7: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

7

iv) Análisis matemático de la optimización en el consumo

a) Método de los multiplicadores de Lagrange2

Una alternativa para resolver problemas de maximización con restricciones que se cumplen

con igualdad es utilizar el método de multiplicadores de Lagrange, desarrollado por el

matemático francés Joseph Louis Lagrange (1736-1813), que introduce una variable

adicional (Lambda) al problema de optimización en el consumo y lo transforma en un

problema de maximización simple. Este método no solamente ayuda a resolver el

problema, sino que también posee una interpretación económica importante.

Nos interesa encontrar los valores de x e y que maximizan una función de utilidad

, sujeto a una restricción x yP x P y I .

En otras palabras, suponiendo preferencias monótonas, nuestro problema puede expresarse

de la forma:

( , )max ( , )

x yU x y

s.a. x yP x P y I

Entonces, podemos escribir una función auxiliar conforme al método de multiplicadores de

Lagrange, también conocida como Lagrangiano:

( , , )L x y ( , ) ( )x yU x y P x P y I

Donde λ (Lambda) es una variable adicional que toma valores estrictamente positivos

( 0 ), también conocida como el multiplicador de Lagrange.

Se puede apreciar que, independientemente del valor de , que en la medida que valores de

x e y satisfagan la restricción 0x yP x P y I , entonces ( , , )L x y ( , )U x y y por tanto, el

problema es equivalente a uno sin restricciones. Ahora bien, ¿cuál es el papel de λ ?

Intuitivamente, podemos contemplar a λ como un factor de ajuste que nos garantiza que, al

maximizar ( , , )L x y estemos seleccionando los valores de x e y de forma tal que cumplan

con la restricción 0x yP x P y I .

Por ejemplo, si el individuo quisiera gastar más de lo que ingresa pretendiendo estar fuera

de la restricción presupuestal (i.e. x yP x P y I ( ) 0x yP x P y I ), como 0 y

2 Para la elaboración de este apartado se utilizó la nota elaborada por el Profesor Alejandro Hernández para el

curso de Economía V: Nota #1 Optimización con restricciones: El Método de Lagrange.

Page 8: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

8

( , , )L x y ( , ) ( )x yU x y P x P y I , entonces el Lagrangiano estaría penalizando la

función de utilidad ( , )U x y al restarle ( )x yP x P y I , llevando al consumidor de un

punto fuera de la restricción a un punto sobre la propia restricción presupuestal (ver punto

C de la Gráfica 3.4). En este sentido, a medida que ( )x yP x P y I sea mayor, más

importante será dicho castigo; no obstante que para casos en que el valor de λ sea pequeño,

el castigo sobre ( , )U x y podría ser insuficiente para contrarrestar el incremento en la

utilidad resultante de un mayor consumo por haberse salido de la restricción presupuestal;

por lo que el valor de deberá ser suficientemente grande para que la penalización exceda

el aumento en la utilidad derivado de un mayor nivel de consumo.

Por otra parte, si el individuo gastara menos de lo que ingresa pretendiendo estar en un

punto dentro de la restricción presupuestal (es decir x yP x P y I

( ) 0x yP x P y I ), como 0 y ( , , )L x y ( , ) ( )x yU x y P x P y I , en lugar de

penalizar, el Lagrangiano estaría otorgando un subsidio a la función de utilidad ( , )U x y al

sumarle ( )x yP x P y I , llevando al consumidor de un punto interior a un punto sobre la

propia restricción presupuestal (ver punto A de la Gráfica 3.4). De igual forma, el valor de

deberá ser de forma tal que el máximo no sea alcanzado en un punto interior de la

restricción, sino sobre la misma. Como se mostrará más adelante, el método de Lagrange

produce en forma automática el valor exacto de .

Gráfica 3.4

Para encontrar un punto crítico de la función ( , , )L x y , necesitamos las condiciones de

primer orden del lagrangiano:

[1]

L

x

( , )0x

U x yP

x

[2]

x

y

0

A

B

C

1U 2U

3U

*x

*y

Page 9: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

9

( , )

0x

U x yP

x

( , )

x

U x y

x

P

( , )x

U x yUMg

x x

x

UMg

P

( , )

y

U x yUMg

y

y

y

UMg

P

( , )0y

U x yP

y

[3]

L0x yP x P y I

Se puede apreciar que incluyendo la última ecuación (que en realidad es la restricción

presupuestal), hay un sistema de tres ecuaciones con tres incógnitas (x, y, ). Como

tenemos de las dos primeras condiciones anteriores que yx

x y

UMgUMg

P P (condición de

equimarginalidad)

Por lo tanto, la solución matemática al sistema requiere que se cumpla la condición de

equimarginalidad. Exactamente lo mismo que habíamos encontrado gráficamente.

El resultado anterior, implica que en un punto máximo la utilidad marginal por peso

gastado tanto para el bien x como para el bien y deberá ser la misma; es decir, que un peso

adicional gastado en cualesquiera de los bienes le deberá generar la misma utilidad al

consumidor sin importar en qué bien esté gastando. Asimismo, el valor extra de esa utilidad

estará determinado por el multiplicador de Lagrange. En este sentido, es posible contemplar

a como la utilidad marginal por peso gastado; o bien, la utilidad marginal del ingreso.

Ejemplo:

Encontrar la canasta óptima de consumo de Marina entre x e y, si su función de utilidad está

dada por ( , )U x y xy . Además su ingreso es de $100 pesos, 2xP y 5yP .

Escribiendo el problema de maximización: ( , )max ( , )

x yU x y x y s.a. 2 5 100x y

Construyendo el Lagrangiano:

( , , )L x y (2 5 100)x y x y

Escribiendo las condiciones de primer orden, resolviendo para y encontrando la

condición de equimarginalidad al igualar ambas expresiones, tenemos que:

U(x,y)

y

y

P

Page 10: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

10

[1]

L

x2 0y

2

y

[2]

L

y5 0x

5

x

[3]

L2 5 100 0x y

Sustituyendo [4] en [3] tenemos 2

2 5 1005

xx 4 100x 25x

Utilizando este resultado en [4] tenemos que (2)(25)

5y 10y

Por lo tanto, la canasta que maximizará la utilidad del consumidor es (25,10).

v) Análisis de casos especiales

a) Sustitutos perfectos

Como ya se ha dicho, el objetivo del consumidor es maximizar su utilidad sujeto a su

restricción presupuestal. En el caso de sustitutos perfectos esto no va a cambiar, pero

tendremos que resolver el problema de forma diferente.

Si el agente económico tiene este tipo de preferencias, sus curvas de indiferencia son líneas

rectas, al igual que la restricción presupuestal. En este caso, para determinar la canasta

óptima de consumo tenemos que ver que pasa en tres escenarios diferentes:

Caso 1: x

y

PTMS

P

Cuando la pendiente de la restricción presupuestal (dada por x yP P ) es mayor que la TMS

(dada por ), la utilidad marginal por peso gastado en x es menor a la utilidad marginal

por peso gastado en y; por lo que el individuo continuará consumiendo el bien y hasta

agotar la totalidad de su ingreso en dicho bien. Entre las seis curvas de indiferencia

( 1 6,...,U U , donde 1 6,...,U U ) que se dibujan en la Gráfica 3.5, se puede apreciar que en

5U el individuo alcanza el nivel máximo de utilidad en un punto como A, en donde 0x e

0y .

[4] 2

5

xy

Page 11: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

11

Gráfica 3.5

Caso 2: x

y

PTMS

P

De manera análoga, si la pendiente de la restricción presupuestal es menor que la TMS, la

utilidad marginal por peso gastado en x será mayor que la utilidad marginal por peso

gastado en y. En consecuencia, el individuo dedicará la totalidad de su ingreso al consumo

del bien x. Lo anterior, resultará en una solución de esquina en la intersección de la

restricción presupuestal con eje horizontal, como se puede apreciar en la Gráfica 3.6,

alcanzando el nivel máximo de utilidad posible en un punto como A, en donde 0x e

0y .

Gráfica 3.6

Caso 3: x

y

PTMS

P

Por último, cuando la TMS sea igual a la pendiente de la restricción presupuestal, todos los

puntos sobre la restricción presupuestal serán soluciones factibles. En la Gráfica 3.7 se

puede apreciar que entre las seis curvas de indiferencia que se dibujan ( 1 6,...,U U , donde

1 6,...,U U ), solamente 5U cumple con esta condición (i.e. x yP P ), al estar

sobrepuesta a la restricción presupuestal.

x

y

xPI

yPI

0

1U 2U 3U 4U 5U 6U

A

x

y

PTMS

P

Utilidad

creciente

x

y

xPI

yPI

0

6U 5U

4U 3U

2U 1U

A

x

y

pTMS

p

Utilidad

creciente

x

y

PTMS

P x x

y y

UMg P

UMg P

yx

x y

UMgUMg

P P

x

y

PTMS

P x x

y y

UMg P

UMg P

yx

x y

UMgUMg

P P

Page 12: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

12

Gráfica 3.7

Ejemplo:

La dieta de Sandra es a base almendras (A) y/o de cacahuates (C). A ella le da la misma

utilidad consumir una almendra que tres cacahuates. Las almendras cuestan el doble que

un cacahuate. Además, cuenta con un ingreso de $1,000.

Con la información anterior, es posible construir la función de utilidad de Sandra:

( , )U A C A C

(1,0) (0,3)U U

(1,0)U

(0,3) 3U

Además 3

31

A

C

UMgTMS

UMg

Por otra parte, 2A CP P 2A

C

P

P

Como A CTMS P P , la utilidad marginal por peso gastado en almendras será mayor que la

utilidad marginal por peso gastado en cacahuates, por lo que Sandra dedicará todo su

ingreso al consumo de almendras y, como se puede observar en la Gráfica 3.8, la solución

óptima se dará en un punto como A.

x

y

xPI

yPI

0 3U

2U 1U

4U 6U 5U

x

y

PTMS

P

Utilidad

creciente

x

y

PTMS

P x x

y y

UMg P

UMg P

yx

x y

UMgUMg

P P

3 3

1 3 y 1 ( , ) 3U A C A C

Page 13: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

13

Gráfica 3.8

b) Complementos perfectos

Retomando lo visto en el primer capítulo, la función de utilidad para complementos

perfectos se representa de la forma ( , ) min ,U x y x y , donde y son constantes

positivas que definen las preferencias relativas y, por su parte, el operador min implica que

el nivel de utilidad estará determinado por el menor de los dos términos x y y .

Como se puede observar en la Gráfica 3.9, el individuo maximiza su nivel de utilidad en un

punto como B; donde el vértice de la curva de indiferencia se coloca sobre la restricción

presupuestal y, a su vez el rayo que une los vértices de las curvas de indiferencia, cruza en

este mismo punto; sin embargo, lo anterior no implica que exista en realidad una tangencia

entre la curva de indiferencia y la restricción presupuestal, ya que en el vértice la TMS no

está definida.

Gráfica 3.9

x *x

y

xPI

yPI

0

*y

A

B

C

1U

2U

3U

( )y x

x

y y

PIy x

P P

En B x

y y

PIy x x

P P

A

C

A

IP

C

IP

0

A

1U 2U

3U

Page 14: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

14

Ejemplo:

Genaro cuenta con un ingreso de $80 pesos para comida y su dieta es a base de tacos (T) y

refrescos (R) y no come tacos si no toma refresco, ni viceversa. Por cada cinco tacos toma

un refresco. El precio de cada taco es de 4TP pesos y el precio de cada refresco es de

5RP , por lo que su restricción presupuestal es 4 5 80T R .

Para Genaro los tacos y los refrescos son complementos perfectos, por lo que su función de

utilidad es de la forma ( , ) min ,U T R T R . A su vez, siempre escogerá combinaciones

de tacos y refrescos para las cuales se cumpla que T R ; o bien, ( / )T R . Vamos

a encontrar la función de utilidad y la canasta óptimas de elección de Genero si 5T y

1R .

( , ) min , min 5 ,U T R T R 5 / 1/ 5 1 y 5

( , ) min ,5U T R T R 5T R / 5R T

Sustituyendo / 5R T en la restricción presupuestal tenemos que 4 5( / 5) 80T T

Resolviendo para T tenemos que * 16T ; sustituyendo este resultado en / 5R T tenemos

que * 16/ 5 3.2R . Por tanto, la canasta óptima que maximiza la utilidad de Genaro es * *( , ) (16,3.2)A T R

Gráficamente se tiene lo siguiente:

Gráfica 3.10

Tacos * 16T

Refrescos

20T

I

P

16R

I

P

0

A

5R T

1U 4

165

R T Restricción presupuestal

4/5m

* 3.2R

Page 15: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

15

c) Preferencias cóncavas

Las curvas de indiferencia cóncavas son aquellas en las que la TMS es creciente a lo largo

de una curva de indiferencia. En estos casos vamos a ver que la solución óptima puede ser

una solución de esquina.

En la Gráfica 3.11 se dibujan tres curvas de indiferencia cóncavas ( 1U , 2U y 3U donde

321 UUU ). En particular, se puede observar que en un punto como B se cumple la

condición de primer orden (i.e. que x yTMS P P ); sin embargo, no se cumple la condición

de segundo orden, ya que en dicho punto la curva de indiferencia no es estrictamente

convexa, por lo que en realidad nos encontramos en un punto mínimo. Asimismo, el

consumidor podría alcanzar con el mismo nivel de ingreso una curva de indiferencia más

alta ( 2U ) que le permitiría alcanzar un mayor nivel de utilidad en un punto como A donde

x y x x y yTMS P P UMg P UMg P . Lo anterior, implica que la utilidad marginal por

peso gastado en el bien y es mayor que la utilidad marginal por peso gastado en el bien x, lo

que llevará al consumidor a agotar la totalidad de su ingreso en el consumo del bien y.

Gráfica 3.11

Por su parte, en la Gráfica 3.12 se ilustra una segunda posibilidad. Al igual que el caso

anteriormente descrito, se puede observar que en B se cumple la condición de primer orden;

mas no la condición de segundo orden. Por lo que el máximo ocurre en la intersección que

posee la restricción presupuestal con el eje horizontal en un punto como A donde

x y x x y yTMS P P UMg P UMg P . Lo anterior, implica que la utilidad marginal por

peso gastado en el bien x es mayor que la utilidad marginal por peso gastado en el bien y, lo

que llevará al consumidor a agotar la totalidad de su ingreso en el consumo del bien x.

x

y

A

B

x yTMS P P

x yTMS P P

1U 2U

3U x

y y

PIy x

P P

Page 16: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

16

Gráfica 3.12

Finalmente, en la Gráfica 3.13 se ilustra una tercera posibilidad, en la que el consumidor

será indiferente entre los puntos A y B, ya que le reportan un mismo nivel de utilidad al

colocarse sobre la misma curva de indiferencia ( 2U ). Asimismo, se puede apreciar que en

un punto como C se cumple la condición de primer orden; mas no la de segundo orden, por

lo que no constituye un punto máximo.

Gráfica 3.13

Ejemplo:

2 2

( , )max ( , )

x yu x y x y s.a. x yP x P y I

( , )2x

u x yUmg x

x

( , )2y

u x yUmg y

y

2

2

x xTMS

y y

x

y

A

B

x yTMS P P

x yTMS P P

3U

2U

1U

x

y y

PIy x

P P

B

x

y

A

x yTMS P P

x yTMS P P

1U 2U

3U

x

y y

PIy x

P P

C

Page 17: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

17

Pero como , entonces podemos sustituir en la derivada

anterior y tenemos que:

Es decir, la TMS es creciente.

En estos casos hay especialización en el consumo y tendremos tres posibilidades:

Caso 1:

Si 4xP , 2yP e 100I 100 4 2x y . Dado 2 2( , )U x y x y y partiendo de la

condición de primer orden: x yTMS P P 2x y 2x y .

Sustituyendo este resultado en la restricción presupuestal, podemos encontrar la

combinación de los bienes x e y que cumplen con la condición de primer orden; esto es,

20x e 10y , lo cual se ilustra en el punto B de Gráfica 3.14. No obstante lo anterior, el

punto B(20,10) no cumple con la condición de segundo orden, por lo que no constituye un

punto óptimo. En la gráfica se ve claramente que se puede alcanzar un mayor nivel de

utilidad si el consumidor especializa su consumo en el bien y.

Lo anterior se puede comprobar examinando como es el nivel de utilidad del individuo en

la ordenada y en la abscisa de la siguiente forma:

Si 0x & 0y 2( , )U x y y y la restricción es 100=2y y=50 & x=0

2(0,50) 50 2,500U

Si 0x & 0y 2( , )U x y x y la restricción es 100 4x x=25 & y=0

2(25,0) 25 625U

Por lo tanto, la canasta óptima de consumo es A(0,50) y el consumidor agotará la totalidad

de su ingreso en el bien y.

Page 18: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

18

Gráfica 3.14

Caso 2:

Si 1xP , 2yP e 100I 100 2x y entonces dado 2 2( , )U x y x y , la condición

de primer orden es x yTMS P P 1 2x y 2x y . Nuevamente, al sustituir este

resultado en la restricción presupuestal, podemos encontrar la combinación de los bienes x

e y que cumplen con dicha condición: 20x e 40y , lo cual se ilustra en el punto B de

Gráfica 3.15. Sin embargo, B no cumple con la condición de segundo orden, por lo que no

es un punto óptimo.

Si evaluamos a la función de utilidad en la ordenada y en la abscisa veremos que en este

caso el óptimo implica especialización en el bien x.

Si 0x , 0y 2( , )U x y x y la restricción es 100 x x=100 & y=0

2(100,0) 100 10,000U

Si 0x , 0y 2( , )U x y y y la restricción es 100 2y y=50 & x=0

2(0,50) 50 2,500U

Gráfica 3.15

x

y

A(0,50)

B(20,10)

2 2( , )U x y x y

100 4 2x y

x

y

B(20,40)

A(100,0)

2 2( , )U x y x y

100 4 2x y

Page 19: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

19

Caso 3:

Si 2xP , 2yP e 100I 100 2 2x y . Dado 2 2( , )U x y x y , entonces la

condición de primer orden es x yTMS P P 1x y x y . Por tanto, la

combinación de los bienes x e y que cumple con esta condición es * 25x e * 25y ,

situación que se ilustra en la Gráfica 3.16 en un punto como C. Sin embargo, dicho punto

no constituye un óptimo, ya que no cumple con la condición de segundo orden.

Si evaluamos a la función de utilidad en la ordenada y en la abscisa veremos que en este

caso tenemos dos óptimos:

Si 0x , 0y 2( , )U x y y y la restricción es 100 2y y=50 & x=0

2(0,50) 50 2,500U

Si 0x , 0y 2( , )U x y x y la restricción es 100 2x x=50 & y=0

2(50,0) 50 2,500U

En conclusión, hay dos soluciones factibles y tanto A(0,50) como B(50,0) son puntos

óptimos, por lo que el consumidor sería indiferente entre ambas canastas. En la Gráfica

3.16, puede observarse que ambas canastas se ubican sobre la misma curva de indiferencia.

Gráfica 3.16

B(50,0)

x

y

A(0,50)

100 2 2x y

2 2( , )U x y x y

C(25,25)

Page 20: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

20

vi) Apéndice al Capítulo III

A continuación se resume la forma de hallar máximos y/o mínimos de una función de una

variable ( )f x .

Una condición necesaria3 para alcanzar un máximo en un punto interior ( x̂ ) del dominio de

una función ( )y f x , es que su primera derivada sea igual a cero (i.e. '( ) 0dy dx f x y

además que )(' xf esté definida en x). Se dice que un punto interior ( x̂ ) del dominio de

( )f x donde 0)(' xf , es un punto crítico de ( )f x . Por otra parte, para asegurar que se

trata de un punto máximo, el signo de la segunda derivada debe ser negativo4 (i.e.

2 2 ( ) 0d y dx f x ), de lo contrario habremos encontrado un punto mínimo.

Por ejemplo, en la Gráfica 3.17 puede apreciarse que tanto A como B representan puntos

críticos de ( )y f x ; no obstante que A es un punto máximo y B es un punto mínimo.

Gráfica 3.17

3 Decimos que una condición es necesaria cuando debe cumplirse; no obstante que no garantiza por sí misma

el resultado; por otra parte, decimos que una condición es suficiente cuando su cumplimiento sí garantiza el

resultado –aunque también puede obtenerse sin ella. Finalmente, decimos que una condición es necesaria y

suficiente cuando el resultado se cumple si y solo si se verifica la condición. 4 En concreto, si 0)(xf y si 0)(xf , entonces se trata de un punto máximo.

( )0

x x

df x

dx

1

2

2

ˆ

( )0

x x

d f x

dx

( )0

x x

df x

dx

2

2

2

ˆ

( )0

x x

d f x

dx

Punto A

(Máximo)

Punto B

(Mínimo)

x

y

A

B

0 ) ( ' x f

0 ) ( ' ' x f

0 ) ( ' x f

0 ) ( ' ' x f

Máximo

Mínimo

1x̂ 2x̂

( )y f x

Page 21: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

21

vii) Ejemplos y ejercicios adicionales

1. La función de utilidad de Margarita está dada por ( , ) min 3 ,U x y x y y cuenta

con un ingreso de $30 pesos. Los precios de los bienes x e y son $1xP y $3yP

pesos, respectivamente. Además, cuenta con doce horas para consumir ambos

bienes y consumir cada uno de los bienes le toma una hora. Encuentre la

combinación óptima de los bienes x e y.

La restricción presupuestal está dada por 30 3x y 1

103

y x

Ahora vamos a determinar las intersecciones de la restricción presupuestal con los

ejes vertical y horizontal.

Partiendo de esta ecuación sabemos que si 0y 30x . Por otra parte, si 0x

10y .

Por otra parte, la restricción presupuestal temporal está dada por 12 x y

12y x .

De la misma forma evaluamos la ecuación de la restricción presupuestal en 0x y

0y para determinar sus intersecciones con los ejes vertical y horizontal.

Encontramos que si 0y 12x y si 0x 12y .

De la función de utilidad de Margarita igualamos 3x y , sustituimos el resultado

en la restricción presupuestal y resolvemos para x:

330 3

y xx y 30 9x x 3x

Sustituyendo este resultado en 3x y tenemos que 9y .

Ahora para la restricción presupuestal temporal tenemos:

3

12y x

x y 12 4x 3x

Sustituyendo este resultado en 3x y tenemos que 9y .

Entonces la combinación óptima de los bienes x e y es ( , ) (3,9)x y , como se puede

apreciar en la Gráfica 3.18.

Page 22: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

22

Gráfica 3.18

2. Jorge tiene un ingreso de $1,000 pesos para consumir alcachofas (bien x) y pepinos

(bien y). Una alcachofa le da cuatro veces más utilidad que un pepino pero cuestan

el doble que los pepinos. Determine la función de utilidad de Jorge y la solución

óptima.

Podemos construir la función de utilidad de Jorge como ( , )U x y x y . Como

una alcachofa le da cuatro veces más utilidad que un pepino, entonces le da lo

mismo consumir una alcachofa que cuatro pepinos, lo cual implica que:

(1,0) (0,4)U U

(1,0)U

(0,4) 4U

Además 4x

y

UMgTMS

UMg

Por otra parte, los precios relativos son 2x yP P 2x

y

P

P

Como x

y

PTMS

P, la utilidad marginal por peso gastado en alcachofas será mayor

que la utilidad marginal por peso gastado en pepinos, por lo que Jorge consume

solamente alcachofas, resultando una solución de esquina en el eje horizontal como

se puede apreciar en el punto A de la Gráfica 3.19.

30

27

24

21

18

15

12

9

6

3

x

y

0 3 6 9 12 15 18 21 24 27 30

* *( , ) (3,9)x y

0U

3y x

4 4

1 4 y 1 ( , ) 4U x y x y

Page 23: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

23

Gráfica 3.19

3. Rosita siempre consume dos rollos de canela (bien x) con una taza de café (bien y).

Si el precio de un rollo de canela es de $20 pesos y el precio de la taza de café es de

$30 pesos, ¿cuál es el ingreso mínimo que Rosita requiere para alcanzar un nivel de

utilidad de 20U ?

La restricción presupuestal de Rosita está dada por 20 30I x y . De la

información anterior podemos inferir que para Rosita los rollos de canela y las tazas

de café son complementos perfectos, por lo que su función de utilidad es de la

forma ( , ) min ,U x y x y . A su vez, escogerá siempre combinaciones de x e y

para las cuales se cumpla que x y ; o bien ( / )y x . Si 2x y 1y ,

tenemos que ( , ) min ,2U x y x y 2x y 2

xy . Sustituyendo este

resultado en la restricción presupuestal tenemos 2

20 30 xy

I x y 35I x

35

Ix . Sustituyendo este resultado en

2

xy , tenemos que

70

Iy .,

( , ) min ,235 70

I IU x y ( , ) min ,

35 35

I IU x y . De esta manera

20 min ,35 35

I I y resolviendo para I tenemos que 700I , por lo que Rosita

requiere un ingreso de $700 pesos para alcanzar un nivel de utilidad de 20U .

4. ¿Para qué tipo de preferencias y en qué casos un consumidor que busque maximizar

su utilidad debe escoger una canasta de bienes tal que su restricción presupuestal

sea tangente a la curva de indiferencia más alta posible?

5. Pedro sólo consume hamburguesas (bien x) si los acompaña con refresco de dieta

(bien y). Por cada hamburguesa que consume tiene que consumir dos refrescos de

dieta. Si el ingreso de Pedro es de $200 pesos, el precio de las hamburguesas es de

$10 pesos y el precio de los refrescos de dieta es de $15 pesos, determine la canasta

óptima de consumo óptima.

x

y

x

IP

y

IP

0

A

1U 2U

3U

Page 24: Optimización en el consumo. - ITAMallman.rhon.itam.mx/~aburto/eco 3/Optimizacion_en_el_consumo_2010.pdf · equimarginalidad. Intuitivamente, cuando hay equimarginalidad la valoración

Optimizacion_en_el _consumo_2010 29 de enero de 2010

24

6. Ante preferencias regulares, si la TMS es mayor que la razón de precios, ¿qué debe

hacer el consumidor con la proporción del consumo entre el bien y y el bien x para

maximizar su utilidad? ¿qué debería hacer con dicha proporción de consumo si la

TMS es menor que la razón de precios?