METODO 8015D

download METODO 8015D

If you can't read please download the document

Transcript of METODO 8015D

METODO 8015DCOMPUESTOS ORGANICOS NO HALOGENADOS USANDO CROMATOGRADIA DE GASES Y UN DETECTOR DE IONIZACION DE LLAMA (GC/FID)1.0 AMBITO Y APLICACION1.1 Este mtodo se puede aplicar para determinar las concentraciones de varios compuestos orgnicos voltiles no halogenados y compuestos orgnicos semivoltiles por cromatografa de gases. Los siguientes compuestos de la tabla se han determinado cuantitativamente por este mtodo, usando tcnicas apropiadas de preparacin.Tecnica apropiadaCompuesto No CAS.aPurga-Espacio-InyeccionDestilacionDestilaciony-TrampabCabezaleAcuosaAzeotro..cAl vacio.dDirectaAcetona67-64-1Acetonitrilo75-05-8Acrolein107-02-8Acrilonitrilo107-13-1Alcohol alilico107-18-6t-Alcohol Amilico (TAA)75-85-4t-Eter etil amilico (TAEE)919-94-8t-Eter metil amilico (TAME)994-05-8Benceno71-43-2t-Alcohol butilico (TBA)75-65-0Crotonaldehyde123-73-9Eter dietilico60-29-7Eter diisopropilico (DIPE)108-20-3Etanol64-17-5Acetato de tilo141-78-6Etil Benceno100-41-4Oxido de etileno75-21-8Etil tert-butil eter (ETBE)637-92-3Alcohol isopropilico (2-Propanol)67-63-0Metanol67-56-1Etil metil ketona (MEK,78-93-32-Butanona)Metil tert-butil eter (MTBE)1634-04-4N-Nitroso-di-n-butilamina924-16-3Paraldehido123-63-72-Pentanona107-87-92-Picolina109-06-81-Propanol (alcohol n-propilico)71-23-8Propilonitrilo107-12-0Pyridina110-86-1Tolueno108-88-3 pp / htxXxxppneXxneppneXxxppneXxxhtneXxnehtxnenexx/ htxnenexx/ htxnenexxxnenexhtxXxxppneXxnexneXnenex/ htxnenexIxXxxIxXxnexxnenexIneXxnex/ htxnenexppxXxneIxXxneppxXxxx/ htxXnexppneXxneppneXxneppxXxneppneXxneppxXxnehtneXxneIneXxnexxnenexo-Toluidina95-53-4IneXxneo-Xileno95-47-6xxnenexm-Xileno108-38-3xxnenexp-Xileno106-42-3xxnenexNumero de Registro Chemical Abstracts ServicePurga y Trampa (Metodos 5030 o 5035) Destilacin azeotropica (Mtodo 5031) Destilacin al vaco (Mtodo 5032) Headspace (Metood 5021) x Respuesta adecuada utilizando esta tcnicaht Metodo del analito slo cuando se purga a 80 (alta temperature de purga) I Tecnica inapropiada para este analitone No evaluadoMala eficiencia de purga, dando lugar a altos lmites de cuantificacin. El uso de un mtodo alternativo de preparacin de muestra es muy recomendable. Pueden ser susceptibles de purga a elevada temperatura 1.2 Este mtodo es aplicable al anlisis de otros analitos, incluyendo trietilamina e hidrocarburos de petrleo. Los hidrocarburos de petrleo incluyen compuestos de rangos orgnicos rangos de gasolina (GRO) y compuestos de rangos orgnicos diesel (DRO). Las tcnicas de preparacin de muestra se muestran en la siguiente tabla. Tecnica apropiadaCompuestoaHead-No CAS.inyeccionPurga y-TrampaspaceAcuosaExtraccionPor solventeDirectaTrietilamina121-44-8IneXIRango organico de gasolina (GRO)--xxXIRango organico de diesel (DRO)--IxIxaNumero de Reg. Chemical Abstracts Service xRespuesta adecuada usando esta tecnica.ITecnica inapropiada para este analitoneNo evaluado1.2.1 Este mtodo ha sido aplicado al anlisis de trietilamina en muestras de agua mediante inyeccin acuosa directa en una diferente columna de GC que se utiliza para los otros analitos. Descripciones de la columna de GC, programa de temperatura, y datos de rendimiento de trietilamina se proporcionan en este mtodo (ver Seccioness. 6.2.5 y 11.2.6, y en la Tabla 8)1.2.2 RGO corresponde al rango de alcanos de C6 a C10 y que cubre un intervalo de punto de ebullicin de aproximadamente 60C 170C (Referencia 6). DRO corresponde al rango de alcanos de C10 a C28, y que cubre un intervalo de punto de ebullicin de aproximadamente 170C -8015D 2Revision 4June 2003A 430C (Referencia 6). Los anlisis cuantitativos de estos tipos de combustible se basan en los procedimientos descritos en la seccin. 1111. La identificacin de tipos especficos de combustible puede ser complicado por procesos ambientales tales como la evaporacin, la biodegradacin, o cuando ms de un tipo de combustible est presente. Mtodos de otras fuentes pueden ser ms apropiados para GRO y DRO, ya que estos hidrocarburos no estn regulados por la RCRA. Consulte a las autoridades estatales y locales para los requisitos especficos1.2.3 Este mtodo puede ser aplicable a las clases de analitos, diversos combustibles, hidrocarburos de petroleo y otros enumerados en las secciones. 1.1 y 1.2. Sin embargo, con el fin de ser utilizado para analitos adicionales, los tipos de combustible, o hidrocarburos de petrleo, el analista debe demostrar que las condiciones cromatogrficas de gas, incluyendo la columna de GC, son adecuados para analitos de inters. El analista tambin debe demostrar la eficiencia inicial que se describe en la seccin. 9,6 y Mtodo 8000. La expansin de este mtodo a otros tipos de combustibles o hidrocarburos del petrleo requerirn que el rango del punto de ebullicin o rango de nmeros de carbono sea definida cuidadosamente y el enfoque de cuantificacin sea modificado para corresponder a sus rangos. Se recomienda a los analistas consultar fuentes autorizadas, tales como el Instituto Americano del Petrleo (API), para las definiciones apropiadas de otros tipos de combustibles o de fracciones de petrleoNOTA: La mencin de los anlisis de otros tipos de combustibles derivados del petrleo y fracciones no se implica como requisito reglamentario para este tipo de anlisis, de usar este o cualquier otro mtodo.1.3 El mtodo tambin se puede utilizar como una herramienta de deteccin (para compuestos orgnicos voltiles y semivoltiles) para obtener datos semicuantitativos para evitar la sobrecarga del sistema de GC / MS durante el anlisis cuantitativo. Esto se puede conseguir utilizando un mtodo de purga y trampa (por ejemplo, Mtodo 5030), un mtodo automatizado de Head Space(por ejemplo, Mtodo 5021), inyeccin acuosa directa, o por inyeccin directa si se ha utilizado un mtodo de extraccin de disolvente para la preparacin de la muestra . Calibracin de un punto es aceptable en esta situacin. Los datos de rendimiento no se proporcionan para la deteccion1.4 Antes de emplear este mtodo, se aconseja a los analistas consultar el mtodo base para cada tipo de procedimiento que se puede emplear en el anlisis global (por ejemplo, Metodos 3500, 3600, 5000 y 8000) donde encuentra informacin adicional sobre los procedimientos de control de calidad, desarrollo de criterios de control de calidad aceptables, clculos y orientacin general. Los analistas tambin deben consultar la declaracin de descargo de responsabilidad en la parte frontal del manual y la informacin en el captulo segundo de orientacin sobre la flexibilidad prevista en la eleccin de los mtodos, aparatos, materiales, reactivos, esta en las responsabilidades del analista demostrar que las tcnicas empleadas son apropiadas para los analitos de inters, en la matriz de inters, y en los niveles de confianza.Adems, se recomienda a los analistas y usuarios de datos que, el uso de mtodos SW-846 no es obligatorio en respuesta a los requisitos de pruebas federales salvo que el requerimiento sea pedido expresamente.. La informacin contenida en este mtodo se proporciona por la EPA como gua para ser utilizada por el analista y la comunidad regulada en la toma de decisiones necesarias para generar resultados que cumplan los objetivos de calidad de datos para la aplicacin prevista.1.5 Este mtodo est restringido para el uso, o bajo el control de, analistas experimentados en el uso de un cromatgrafo de gas y un experto en la interpretacin de los cromatogramas de gases. Adems, si se utiliza este mtodo para el anlisis de hidrocarburos de petrleo, se limita la interpretacin de los datos de hidrocarburos a a los analistas con mas experiencia. Cada analista debe demostrar su capacidad para generar resultados aceptables con este mtodo.8015D - 3Revision 4Juni 2003RESUMEN DEL METODOEste mtodo proporciona las condiciones de cromatografa de gases para la deteccin de ciertos compuestos orgnicos voltiles no halogenados y compuestos organicos semivoltiles.En funcin a los analitos de inters, las muestras se pueden analizar en el GC por una variedad de tcnicas, que incluten: Purga-y-trampa (Metodo 5030 o 5035) Equilibrio headspace (Metodo 5021) Inyeccion directa de muestras acuosas Inyeccion de concentrado de destilacin azeotropica (Metod o5031) Destilacin al vacio (Metodo 5032) Despues de extraccion por solventes (Metodos 3510, 3520, 3535, 3540, 3541, 3545, 3546, 3550, 3560, o otra tecnica apropiada) Las aguas subterrneas o las muestras de agua superficial generalmente deben ser analizados en conjunto con los Mtodos de 5021, 5030, 5031, 5032, 3510, 3520, u otros mtodos apropiados para obtener los lmites de cuantificacin necesarias. Mtodo 3535 (extraccin en fase slida) tambin pueden ser aplicables a algunos de los analitos de inters, pero no ha sido validada por la EPA en conjunto con este mtodo determinativo. Las muestras a analizar para organicos de rango del diesel se pueden preparar por un mtodo de extraccin con disolvente apropiado Orgnicos del rango de la gasolina puede ser introducido en el GC / FID por purga y trampa (Mtodos 5030 y 5035), automatizado Headspace (Mtodo 5021), destilacin al vaco (Mtodo 5032), u otratcnica apropiadaTrietilamina se puede analizada mediante la inyeccin directa de muestras acuosas. Este compuesto no ha reportado suceptibilidad a tcnicas de purga y trampa. Para separar los compuestos organicos en el cromatografo de gases se utiliza una columna apropiada y un programa de temperatura. La deteccin se consigue mediante un detector de ionizacin de llama (FID). El mtodo permite el uso de columnas empaquetadas o columnas capilares para el anlisis y la confirmacin de analitos individuales no halogenados individuales. Las columnas de GC y condiciones enumeradas han demostrado proporcionar la separacin de estos analitos en interes. Se pueden emplear otras columnas y condiciones, siempre que el analista demuestra un rendimiento adecuado para la aplicacin prevista2.9 Los anlisis cuantitativos de GRO y DRO se basan en las definiciones previstas en la seccin. 1.2.2 y los procedimientos descritos en la seccin. 11.118015D 4Revision 42.10 Dado el gran nmero de componentes a separar, se necesitan columnas capilares de slice fundida para el anlisis de hidrocarburos de petrleo, incluyendo GRO y DRO, y estas se recomiendan para todos los otros analitos. Tambien se necesita Una columna capilar necesaria para el anlisis de trietilamina.DEFINICIONESConsulte el captulo SW-846 de trminos y acrnimos de las definiciones se van a aplicar.INTERFERENCIAS Los solventes, reactivos, materiales de vidrio, y otros equipos de procesamiento de la muestra puede producir artefactos y / o interferencias con el anlisis de la muestra. Todos estos materiales se deben a estar libre de interferencias bajo condiciones del mtodo de anlisis de blancos. Es necesario la Seleccin especfica de los reactivos y la purificacin de los disolventes por destilacin en sistemas totalmente de vidrio. Consulte cada mtodo de orientacin especfica sobre los procedimientos de control de calidad y el Captulo 4 como gua para la limpieza de materiales de vidrio.4.2 Cuando se analiza compuestos orgnicos voltiles, las muestras pueden ser contaminadas por la difusin deorgnicos voltiles (especialmente los clorofluorocarbonos y el cloruro de metileno) a travs del recipiente de la muestra, durante el transporte y en el almacenamiento. Una marcha en blanco preparada a partir de agua libre de reactivos organicos se lleva a cabo a travez del muestreo y su posterior almacenamiento y manipulacin servir como un control de dicha contaminacin.4.3 La contaminacin por arrastre puede ocurrir cuando las muestras de alta concentracin y baja concentracin se analizan en secuencia. Para reducir el potencial de arrastre, la jeringa de muestra o el dispositivo de purga debe ser lavada entre las muestras con un disolvente apropiado. Siempre que se encuentre una muestra concentrada muy particular, debe ser tratado conla inyeccin de un disolvente blanco para controlar la contaminacin cruzada Limpiar los recipientes de purga con una solucin de detergente, enjuagar con agua destilada y luego secarlos en un horno 105C entre los anlisis. Limpiar Jeringas o inyectores automticos de enjuague de todas las superficies que contacten muestras deben utilizar disolventes apropiados.. Todo los vasos de vidrio deben ser limpiados cuidadosamente. Limpiar todo el material de vidrio inmediatamente despus de su uso de un enjuague con el disolvente utilizado por ltima vez. Esto debe ser seguido por detergente de lavado con agua caliente, y enjuagar con agua del grifo y agua libre de reactivos organicos. Vacar los recipientes de vidrio y secarlos en un horno a 130C durante varias horas o enjuagar con metanol y drenarlo. Almacenar los materiales de vidrio seco en un ambiente limpio. El detector de ionizacin de llama (FID) es un detector no selectivo. Hay un potencial para muchos compuestos desconocidos presentes en las muestras que interferieren con este anlisis. Tambin existe la posibilidad de analitos a ser resuelto de forma facil, especialmente en muestras que contienen muchos analitos. El usuario debe considerar esta informacin y podra alterar la lista de analito en consecuencia 8015D 5Revision 4June 20035.0 SEGURIDADNo hay problemas significativos de seguridad para este mtodo. Sin embargo, Metodo SW-846 no pretende considerar todos los problemas de seguridad asociados con su uso. El laboratorio es responsable de mantener un ambiente de trabajo seguro y un archivo de actualizacin permanente de las regulaciones de OSHA sobre el manejo seguro de las sustancias qumicas especificadas en este mtodo. Un archivo de referencia de las hojas de datos de seguridad (MSDS) debe estar disponible para todo el personal involucrado en estos anlisis.6.0 EQUIPOS Y SUMINISTROSLa mencin de nombres comerciales o de productos comerciales en este manual tiene carcteilustrativos y no constituye un endoso o recomendacin de la EPA para uso exclusivo. Los productos y la configuracin del instrumento citado en el mtodo SW-846 representan los productos y los ajustes utilizados durante el desarrollo del mtodo o evaluados posteriormente por la Agencia. Cristalera, reactivos, suministros, equipo y otros valores diferentes a los mencionados en este manual pueden ser empleados siempre que el funcionamiento del mtodo apropiado para el uso previsto ha sido demostrada y documentada Cromatgrafo de gases Es un Sistema analtico completo adecuado para inyeccin de solventes, inyeccin acuosa directa, espacio cabeza, introduccin demuestras de destilacin al vaco, purga -trampa de introduccin de muestras, y equipado con todos los accesorios necesarios, incluyendo detectores, fuentes de columna, grabadora, gases y jeringas. Se recomienda un sistema de datos para la medicin de alturas de pico y reas de los picos. Columnas de Cromatografia De Gases RecomendadosLa eleccin de una columna GC depende de los analitos de inters, las concentraciones esperadas, y el uso previsto de los resultados. Las columnas de relleno que se indican posteriormente se usan generalmente para anlisis de cribado. Mientras que para los anlisis de hidrocarburos de petrleo, anlisis de trietilamina y para todos los dems anlisis se recomienda columnas capilares. Otras columnas y columnas de diferentes dimetros se pueden emplear otras si el analista demuestra un rendimiento aceptable para la aplicacin deseada.Columna 1 - 8-ft x 0.1-in. ID(Diametro Interior) de acero inoxidable o columna de vidrio, empaquetada con 1% SP-1000 sobre paquete de carbon-B 60/80 mesh o equivalenet. Columna 2 - 6-ft x 0.1-in. ID de acero inoxidable o columna de vidrio, empaquetada con n-octano sobre Porasil-C 100/120 mesh (Durapak) o equivalenet Columna 3 - 30-m x 0.53-mm ID Columna capilar de silice fundida unida con DB-Wax (o equivalente), 1-m grosos de capa. Columna 4 - 30-m x 0.53-mm ID Columna capilar de silice fundida undio quimicamente con 5% metil silicona (DB-5, SPB-5, RTx, o equivalente), 1.5-m grosor de capaColumna 5 - 30-m x 0.53-mm ID Columna capilar de silice fundida unida con HP Basic Wax (o equivalente), 1-m grosor de capa. Esta columna se usa para trietilamina. 8015D 6Revision 4June 2003Las Columnasde agujero grueso deben ser instalados en los inyectores de 1/4-pulgada, con lineadoes desactivadas diseados especficamente para su uso con estas columnasDetector de Ionizacion a la Llama (FID) Introduccion de la muestra y preparacin del equipoConsulte los mtodos de la serie 5000 de preparacin de muestras del aparato adecuado para purga y trampa, espacio de cabeza, destilacin azeotrpica, y los anlisis de destilacin al vacoLas muestras tambin se pueden introducir en el GC a travs de la inyeccin de extractos de disolventes o inyeccin directa de muestras acuosas. Jeringas 5-mL Luer-Lok vaso hipodermico y 5-mL Luer-Lok vidrio hipodrmica y 5-ml jeringa hermtica de gas con la vlvula de cierre, para los analitos voltiles.Microjeringass - 10- y 25-L con 0.006-in. ID needle (Hamilton 702N o equivalente) y 100-L. 6.6 Matraces aforados, clase A -tamaos apropiados con tapn esmerilado.6.7 Balanza analtica - 160-g de capacidad, capaz de medir hasta 0,0001 gREACTIVOS AND ESTANDARES Para todas las pruebas se deben usar Productos qumicos de grado reactivo. A menos que se indique lo contrario, se pretende que todos los reactivos se ajustarn a las especificaciones del Comit de Reactivos Analticos de la American Chemical Society, donde estn disponibles tales especificaciones. Se pueden usar otros grados, siempre que sea compruebe previamente que el reactivo es de una pureza suficientemente alta para permitir su uso sin disminuir la exactitud de la determinacin. Agua reactiva libre de organicos. Todas las referencias al agua en este mtodo se refieren al agua reactiva libre de orgnicos como se define en el Captulo agua reactiva libvre de compuestos organicos. Almacenar alejado de otros solventes el Mehanol, CH3OH Pesticidas calidad o equivalentes. Combustibles ejemplo gasolina o diesel - Compra a partir de una fuente comercial. Bajo punto de ebullicin en el combustible hara que se evapore rpidamente. Si se disponible, obtener el combustible desde el tanque grande. Alcanos estndar - Un estndar que contiene una serie homloga de n-alcanos para el establecimiento de tiempos de retencin (por ejemplo, C10-C28 para diesel). normas de archivo - soluciones stock se pueden preparar a partir de materiales estndar puros o comprar de soluciones certificadas. Cuando el metanol es un analito objetivo o cuando se utiliza destilacin azeotrpica8015D 7Revision 4June 2003para la preparacin de muestras, los estndares no deben ser preparados en metanol. Las normas deben ser reemplazados despus de 6 meses, o antes, si la comparacin con los estndares de verificacin indica un problema.7.7 Normas secundarias de dilucin - Usar soluciones estndar de reserva, preparar diluciones secundarias estndares , segn sea necesaria, que contengan los compuestos de inters, ya sea por separado o mezclados entre s. Los estndares de dilucion secundario debe ser preparada en concentraciones tales que los estndares de calibracin acuosa preparada en la Sec. 7,8 cuyo intervalo cubra el rango de trabajo del sistema de anlisis. Las normas secundarias de dilucin se debe guardar con mucho cuidado para voltiles y debe revisarse con frecuencia para detectar signos de deterioro y evaporacin, especialmente justo antes de la preparacin de estndares de calibracin de los mismos.7.8 Estndares de Calibracin Se debe preparar los estndares decalibracin a un mnimo de cinco concentraciones diferentes agua reactivo libre de orgnicos (para purga y trampa, inyeccin directa acuosa, destilacin azeotrpica, destilacin o vaco) o en cloruro de metileno (para la inyeccin de disolvente) de la dilucin secundario de los estandares madre. Por espacio cabeza, los patrones se preparan como se indica en el Mtodo 5021. Uno de los estandares debe estar a o por debajo de la concentracin equivalente a la del lmite de cuantificacin apropiada para el proyecto. Las concentraciones restantes deben corresponder a la gama esperada de concentraciones halladas en las muestras reales o debe definir el rango de trabajo de la GC. Cada estndar debe contener cada analito a determinar por este mtodo (por ejemplo, se pueden incluir algunos o todos de los compuestos enumerados en la seccin. 1.1). Con el fin de preparar las soluciones estndar acuosas precisas, Se deben observarlas siguientes precauciones :No inyectar ms de 20 L de estndares metanlicos en 100 ml de agua.. Usar una microjeringa Hamilton 702N de 25- L o equivalente (variaciones en la geometra de la aguja afectar negativamente a la capacidad de entregar volmenes reproducibles de normas metanlicos en agua).Inyectar rpidamente el primer estndar en el matraz volumtrico de llenado. Retire la aguja tan rpido como sea posible despus de la inyeccin. Mezclar los estndares diluidos invirtiendo el frasco 3 veces. Llenar la jeringa de muestra de la solucin estndar que figura en el rea expandida del matraz (no utilizar cualquier solucin contenida en el cuello del matraz). La presin negativa generada por pipetas hace inapropiado para el uso rutinario en la transferencia de soluciones. Por Tanto se deben evitar el uso de pipetas para diluir o transferir estndares acuosos. Cuando la transferencia de muestra es absolutamente necesario, (tales como en el rendimiento de la preparacin de muestras de espaciocabeza para las muestras de agua) slo de alta calidad, se deben utilizar pipetas automticas y continuar , con extremo cuidado. 7.8.7 estndares acuosos utilizados para los anlisis de purga y trampa (Mtodo 5030) no son estables y deben desecharse despus de 1 hora, a menos que celebr en viales sellados concero de aire Si es almacenado, pueden ser detenidos hasta 24 horas. Estndares acuosos utilizados para la destilacin azeotrpica (Mtodo 5031) se pueden almacenar durante un mximo de un mes en politetrafluoroetileno (PTFE) sellados con tapn de rosca botellas con cmara de aire mnima, a 4 C, protegido de la luz. 8015D 8Revision 4June 20037.8.8 Estandares para la inyeccin acuosa de trietilamina directa se preparan disolviendo un peso apropiado de trietilamina en agua reactiva libre de orgnicos y diluyendo a volumen en un matraz 7.9 Estandares internos (si la calibracin estndar interno se usa) - Para usar este mtodo, el analista debe seleccionar uno o varios estndares internos que son similares al comportamiento analtico de los compuestos de inters. El analista debe demostrar que la medicin del estndar interno no se ve afectado por interferencias de la matriz . Debido a estas limitaciones, no se sugieren que los estandares internos sean aplicable a todas las muestras. Los siguientes estndares internos se recomiendan en la preparacin de las muestras mediante destilacin azeotrpica (Mtodo 5031): 2-cloroacrilonitrilo, hexafluoro-2-propanol, y hexafluoro-2-metil-2-propanol. 7.10 Estandares de Sustitucion - Siempre que sea posible, el analista debe supervisar tanto el rendimiento del sistema de anlisis y la eficacia del mtodo en el tratamiento de cada matriz de la muestra por adicin de cada muestra, estndar, y blanco con uno o dos compuestos de sustitucin que no estn afectadas por interferencias del metodoTOMA DE MUESTRAS, PRESERVACIN Y ALMACENAMIENTOVer la parte introductoria de este captulo, analitos orgnicos, sec. 4,1 y Mtodo 5035A. Si se usa la tcnica del espacio cabeza , tambin consulte Mtodo 5021. CONTROL DE CALIDAD Consulte el Captulo Uno para orientacin sobre llos protoclos de aseguracion de calidad (QA) y control de calidad (QC). Cada laboratorio debe mantener un programa de control de calidad formal. El laboratorio tambin debe mantener registros para documentar la calidad de los datos generados. Todas las hojas de datos y los datos de control de calidad se debe mantener como referencia o inspeccin. Cuando existen incoherencias entre las pautas de control de calidad, metodos especficos control de calidad tienen prioridad sobre criterios tecnicos especficos y los criterios que figuran en el captulo uno.Antes de procesar cualquier muestra, el analista debe demostrar que todas las partes del equipo en contacto con la muestra y los reactivos estn libre de interferencias. Esto se logra mediante el anlisis de un mtodo blanco. A Cada tiempo se extraen muestras, se limpian, y se analizan, y cuando hay un cambio en los reactivos, un blanco de mtodo deben ser preparados y analizados para los compuestos de inters y asi salvaguardar la muestra contra la contaminacin en el laboratorio. Cualquier mtodo blanco, muestras de matrices, o muestras repetidas deben ser sometidos a los mismos procedimientos analticos (Art. 11,0) como los utilizados en las muestras reales. Consulte la seccin del Mtodo 8000 para el control de calidad especfico (CC). Los procedimientos de control de calidad para asegurar el funcionamiento correcto de la preparacin de la muestra diversos y / o tcnicas de introduccin de muestras se puede encontrar en los Metodoss 3500 y 5000. Cada laboratorio debe mantener un programa de control de calidad formal. El laboratorio tambin debe mantener registros para documentar la calidad de los datos generados. 8015D 9Revision 4June 2003 Los Procedimientos de control de calidad necesarios para evaluar el funcionamiento del sistema GC se encuentran en el Mtodo 8000, Sec. 9,0, e incluyen la evaluacin de tiempos de retencin, verificacin de la calibracin y el anlisis cromatogrfico de las muestras. Demostracion Inicial de la Proeficiencia - Cada laboratorio debe demostrar competencia inicial con cada preparacin de muestra y combinacin del mtodo determinativo que utiliza, mediante la generacin de datos de exactitud y precisin adecuadas para analitos en una matriz limpia. El laboratorio tambin debe repetir las operaciones siguientes, siempre que el nuevo personal sea capacitado o se producen cambios en la instrumentacin. Consulte los Mtodos de 5000 y 8000 para obtener informacin sobre cmo llevar a cabo esta demostracin 9.7 Muestreo de control de calidad para la preparacin y anlisis - El laboratorio debe tener tambin procedimientos para documentar el efecto de la matriz en el funcionamiento del mtodo (lmite de precisin, exactitud, y la deteccin). Como mnimo, esto incluye el anlisis de muestras de control de calidad que incluye un mtodo blanco, un pico de matriz, un duplicado, y una muestra de control de laboratorio (LCS) en cada lote analtico y adicin de sustitutos para cada muestra de campo y muestra de QC..9.7.1 Documentar el efecto de la matriz debe incluir el anlisis de al menos una matriz de pico y una matriz limpia duplicado o una matriz pico/ matriz pico duplicado. La decisin sobre si preparar y analizar muestras duplicadas o una matriz pico / matriz duplicado debe estar basado en un conocimiento de las muestras en el lote. Si se sospecha que las muestras contienen los analitos de inters, a continuacin, los laboratorios pueden utilizar una matriz pico y un anlisis duplicado de una muestra de campo. Si no se sospecha que las muestras contienen analitos, los laboratorios deben utilizar una matriz pixo y la matriz pico duplicado. 9.7.2 Una muestra de control de laboratorio (LCS) debe ser incluido en cada lote analtico. El LCS consiste en una parte alcuota de un limpia (control) matriz similar a la matriz de la muestra y del mismo peso o volumen. El LCS se enriquece con los mismos analitos en las mismas concentraciones que la matriz pico. Cuando los resultados del anlisis de matriz pico indican un problema potencial debido a la matriz de la muestra en s, los resultados de la LCS se utilizan para verificar que el laboratorio puede realizar el anlisis en una matriz limpia. 9.7.3 Vase mtodo 8000, Sec. 9,0, para los detalles de la realizacin de los procedimientos de control de calidad de la muestra para la preparacin y el anlisis. 9.8 Recuperacion de sustituidos - El laboratorio debe evaluar los datos sustitutos de recuperacin de las muestras individuales frente a los lmites de control sustitutos desarrollados por el laboratorio. Vase el mtodo 8000, Sec. 9,0, para obtener informacin sobre la evaluacin de los datos sustitutos y el desarrollo y actualizacion los lmites de sustitutos.9.9 Se recomienda que el laboratorio adopte prcticas adicionales para asegurar la de calidad y el uso de este mtodo. Las prcticas especficas que son ms productivas depender de las necesidades del laboratorio y de la naturaleza de las muestras. Siempre que sea posible, el laboratorio debe analizar los materiales estndar de referencia y participar en los estudios pertinentes de evaluacin del rendimiento del mtodo.CALIBRACION Y ESTANDARIZACION Ver Seccion. 11.0 para informacion de calibracion y estandarizacion 8015D 10Revision 4Junio 2003PROCEDURE 11.1 Introduction/preparation methods Various techniques are available for sample introduction. All internal standards, surrogates, and matrix spikes (when applicable) must be added to samples before introduction into the GC/FID system. Consult the applicable sample introduction method regarding when to add standards.Other sample introduction techniques may be appropriate for specific applications and the techniques described here also may be appropriate for other matrices and analytes. Whatever technique is employed, including those specifically listed below, the analyst must demonstrate adequate performance for the analytes of interest. At a minimum, such a demonstration will encompass the initial demonstration of proficiency described in Sec. 9.6, using a clean reference matrix. Method 8000 describes procedures that may be used to develop performance criteria for such demonstrations as well as for matrix spike and laboratory control sample results.11.1.1 Direct aqueous injection - This technique involves direct syringe injection of an aliquot of an aqueous sample into the GC injection port. This technique is applicable to the following groups of analytes in this method.11.1.1.1 Volatile organics (includes GRO)This technique may involve injection of an aqueous sample containing a very high concentration of analytes. Direct injection of aqueous samples has very limited application in the analysis of volatile organics. It is only appropriate for the determination of volatiles at the toxicity characteristic (TC) regulatory limits or at concentrations in excess of 10,000 g/L. It may also be used in conjunction with the test for ignitability in aqueous samples (along with Methods 1010 and 1020) to determine if alcohol is present at > 24%.11.1.1.2 Triethylamine in aqueous samplesTriethylamine may be determined by injecting a portion of an aqueous sample directly into the GC injection port. This technique has been demonstrated to be appropriate for samples containing low g/L (ppb) concentrations of triethylamine.11.1.2 Purge-and-trap of volatile organics (includes GRO)This includes purge-and-trap for aqueous samples (Method 5030) and purge-and-trap for solid samples (Method 5035). Method 5035 also provides techniques for extraction of solid and oily waste samples by methanol (and other water-miscible solvents) with subsequent purge-and-trap from an aqueous matrix using Method 5030. Normally, purge-and-trap for aqueous samples is performed at ambient temperatures, while soil/solid samples utilize a 40EC purge to improve extraction efficiency. Heated purge may also be used to improve the purging of compounds with high solubilities in water, particularly alcohols associated with fuel oxygenates such as TBA and TAA. Occasionally, there may be a need to perform a heated purge for aqueous samples to lower detection limits; however, a 25-mL sample will often provide the sensitivity needed in most situations.8015D 11Revision 4June 200311.1.3 Azeotropic distillationThis technique exploits the ability of selected water-soluble organic compounds to form binary azeotropes with water during distillation. The organic compounds are removed from the bulk water sample and concentrated in a distillate, as described in Method 5031. An aliquot of the distillate is then injected into the GC/FID.11.1.4 Vacuum distillation of volatile organicsThis technique employs a vacuum distillation apparatus to introduce volatile organics from aqueous, solid, or tissue samples into the GC/FID system, as described in Method 5032.11.1.5 Automated static headspaceThis technique employs a device that collects the volatile organics from the headspace over a sample contained in a sealed vial and introduces them into the GC/FID system, as described in Method 5021.11.1.6 Solvent injectionThis technique involves the syringe injection of solvent extracts of aqueous samples prepared by Methods 3510, 3520, 3535, or other appropriate technique, or extracts of soil/solids prepared by Methods 3540, 3541, 3545, 3546, 3550, 3560, or other appropriate technique. It is applicable to many semivolatile organics, including DRO.WARNING: Ultrasonic extraction (Method 3550) may not be as rigorous a method as the other extraction methods for soil/solids. This means that it is critical that the method be followed explicitly to achieve an extraction efficiency which approaches that of Soxhlet extraction. Consult Method 3550 for information on the critical aspects of this extraction procedure.11.2 Suggested chromatographic conditionsEstablish the GC operating conditions appropriate for the GC column being utilized and the target analytes specified in the project plan. Optimize the instrumental conditions for resolution of the target analytes and sensitivity. Suggested operating conditions are given below for the columns recommended in Sec. 6.2. The columns listed in this section were the columns used to develop the method performance data and it is not EPA's intent to exclude the use of other columns that may be developed. Laboratories may use these columns or other columns provided that they document method performance data (e.g., chromatographic resolution and sensitivity) that meet the data quality needs of the intended application.8015D - 12Revision 4June 200311.2.1 Column 1Carrier gas (helium) flow rate: Temperature program:Initial temperature: Program:Final temperature:11.2.2 Column 2Carrier gas (helium) flow rate: Temperature program:Initial temperature: Program:Final temperature:11.2.3 Column 3Carrier gas (helium) flow rate: Temperature program:Initial temperature: Program:Final temperature:11.2.4 Column 4 (DRO)Carrier gas (helium) flow rate: Makeup gas (helium) flow rate: Injector temperature:Detector temperature: Temperature program: Initial temperature:Program:Final temperature: 40 mL/min45 EC, hold for 3 minutes45 EC to 220 EC, at 8 EC/min 220 EC, hold for 15 minutes.40 mL/min50 EC, hold for 3 minutes50 EC to 170 EC, at 6 EC/min 170 EC, hold for 4 minutes.15 mL/min45 EC, hold for 4 minutes45 EC to 220 EC, at 12 EC/min 220 EC, hold for 3 minutes.5-7 mL/min30 mL/min200 EC340 EC45 EC, hold for 3 minutes45 EC to 275 EC, at 12 EC/min 275 EC, hold for 12 minutes.8015D - 13Revision 4June 200311.2.5 Column 4 (GRO)Carrier gas (helium) flow rate: Makeup gas (helium) flow rate: Injector temperature:Detector temperature: Temperature program: Initial temperature:1st Ramp: 2nd Ramp:Final temperature:11.2.6 Column 5 (triethylamine only)Carrier gas (helium) flow rate: Makeup gas (helium) flow rate: Injector temperature:Detector temperature: Temperature program: Initial temperature:Program:Final temperature: 5-7 mL/min30 mL/min200 EC340 EC45 EC, hold for 1 minute45 EC to 100 EC at 5 EC/min 100 EC to 275 EC, at 8 EC/min 275 EC, hold for 5 minutes.5 mL/min30 mL/min200 EC250 EC110 EC110 EC to 175 EC, at 10 EC/min 175 EC, hold for 3 minutes.Initial calibration Set up the sample introduction system as outlined in the method of choice (see Sec. 11.1). A separate calibration is necessary for each sample introduction mode because of the differences in conditions and equipment. Establish chromatographic operating parameters that provide instrument performance appropriate for the intended application. Prepare calibration standards using the procedures described above (see Sec. 7.8). The external standard technique is described below. Analysts wishing to use the internal standard technique should refer to Sec. 7.9 and to Method 8000. External standard calibration procedure for single-component analytes 11.3.2.1 For each analyte and surrogate of interest, prepare calibration standards at a minimum of five different concentrations. For headspace analysis, the standards must be prepared in methanol or organic-free reagent water and then spiked into the organic-free water in the headspace vial. The spiking solutions must be at concentrations which will dilute to the desired standard concentrations when added into the organic-free water in the headspace vials. Otherwise, standards should be made by adding volumes of one or more stock standards to a volumetric flask and diluting to volume with an appropriate solvent. One of the standards should be at a concentration at or below the quantitation limit necessary for the project (based on the concentration in the final volume described in the preparation method, with no dilutions). The concentrations of the other standards should correspond to the expected range of concentrations found in real samples or should define the working range of the detector.8015D - 14Revision 4June 200311.3.2.2 Introduce each calibration standard using the technique that will be used to introduce the actual samples into the gas chromatograph. Tabulate peak height or area responses against the mass injected. Calculate the calibration factor (CF) for each single-component analyte as described in Method 8000.11.3.3 External standard calibration procedure for DRO and GROThe calibration of DRO and GRO is markedly different from that for single-component analytes. In particular, the response used for calibration must represent the entire area of the chromatogram within the retention time range for the fuel type (DRO or GRO), including the unresolved complex mixture that lies below the individual peaks. See Sec. 11.11 for information on calculating this area.11.3.3.1 For each fuel type, prepare calibration standards at a minimum of five different concentrations by adding volumes of one or more stock standards to a volumetric flask and diluting to volume with an appropriate solvent (for headspace analysis, follow the instructions in Sec. 11.3.2.1, above). One of the standards should be at a concentration at or below the quantitation limit necessary for the project (based on the concentration in the final volume described in the preparation method, with no dilutions). The concentrations of the other standards should correspond to the expected range of concentrations found in real samples or should define the working range of the detector.NOTE: Whenever possible, the calibration should be performed using the specific fuel that is contaminating the site (e.g., a sample of the fuel remaining in the tank suspected of leaking). Where such samples are not available or not known, use recently purchased commercially-available fuel. A qualitative screening injection and GC run may be performed to identify unknown fuels.11.3.3.2 Introduce each calibration standard using the technique that will be used to introduce the actual samples into the gas chromatograph. Determine the area of the response as described in Sec. 11.10. Calculate the calibration factor (CF) for each fuel type as shown below:Calibration Factor ' Total Area within Retention Time Range Mass injected (nanograms)11.3.4 Calibration linearityThe linearity of the calibration must be assessed. This applies to both the single-component analytes and the fuel types.If the percent relative standard deviation (%RSD) of the calibration factors is less than 20% over the working range, then linearity through the origin can be assumed, and the average calibration factor can be used in place of a calibration curve. If the % RSD is more than 20% over the working range, linearity through the origin cannot be assumed. See Method 8000 for other calibration options that may be employed, which may include: a linear calibration not through the origin or a non-linear calibration model (e.g., a polynomial equation).8015D - 15Revision 4June 200311.4 Retention time windowsSingle-component target analytes (see Sec. 1.1) are identified on the basis of retention time windows. GRO and DRO are distinguished on the basis of the ranges of retention times for characteristic components in each type of fuel.11.4.1 Before establishing retention time windows, make sure that the chromatographic system is functioning reliably and that the operating parameters have been optimized for the target analytes and surrogates in the sample matrix to be analyzed. Establish the retention time windows for single component target analytes using the procedure described in Sec. 11.0 of Method 8000.The retention time range for GRO is defined during initial calibration. Two specific gasoline components are used to establish the range, 2-methylpentane and 1,2,4-trimethylbenzene. Use the procedure described in Sec. 11.0 of Method 8000 to establish the retention time windows for these two components. The retention time range is then calculated based on the lower limit of the RT window for the first eluting component and the upper limit of the RT window for the last eluting component. The retention time range for DRO is defined during initial calibration. The range is established from the retention times of the C10 and C 28 alkanes. Use the procedure described in Sec. 11.0 of Method 8000 to establish the retention time windows for these two components. The retention time range is then calculated based on the lower limit of the RT window for the first eluting component and the upper limit of the RT window for the last eluting component.11.4.4 If this method is expanded to address other fuel types or petroleum fractions, then the analyst must establish appropriate retention time ranges for the boiling point range or carbon number range used to define each additional fuel type or petroleum fraction. Use the procedure described in Sec. 11.0 of Method 8000 to establish the retention time windows.Calibration verification The initial calibration and retention times must be verified at the beginning of each 12-hour work shift, at a minimum. When individual target analytes are being analyzed, verification is accomplished by the analysis of one or more calibration standards (normally mid-concentration, but a concentration at or near the action level may be more appropriate) that contain all of the target analytes and surrogates. When petroleum hydrocarbons are being analyzed, verification is accomplished by the measurement of the fuel standard and the hydrocarbon retention time standard. Additional analyses of the verification standard(s) throughout a 12-hour shift are strongly recommended, especially for samples that contain visible concentrations of oily material. See Sec. 11.0 of Method 8000 for more detailed information on calibration verification. Calculate the % difference as detailed in Sec. 11.0 of Method 8000. If the response for any analyte is within 20% of the response obtained during the initial calibration, then the initial calibration is considered still valid, and the analyst may continue to use the mean CF or RF values from the initial calibration to quantitate sample results. If the response for any analyte varies from the predicted response by more than 20%, corrective action must be taken to restore the system or a new calibration curve must be prepared for that compound.8015D - 16Revision 4June 2003All target analytes, surrogates, and/or n-alkanes in the calibration verification analyses must fall within previously established retention time windows. If the retention time of any analyte does not fall within the established window, then corrective action must be taken to restore the system or a new calibration curve must be prepared for that compound. Solvent blanks and any method blanks should be run with calibration verification analyses to confirm that laboratory contamination does not cause false positive results.11.6 Gas chromatographic analysis11.6.1 Samples are analyzed in a set referred to as an analytical sequence. The sequence begins with calibration verification followed by sample extract analyses. Additional analyses of the verification standard(s) throughout a 12-hour shift are strongly recommended, especially for samples that contain visible concentrations of oily material. A verification standard is also necessary at the end of a set (unless internal standard calibration is used). The sequence ends when the set of samples has been injected or when retention time and/or % difference QC criteria are exceeded.If the criteria are exceeded, inspect the gas chromatographic system to determine the cause and perform whatever maintenance is necessary before recalibrating and proceeding with sample analysis. All sample analyses performed using external standard calibration must be bracketed with acceptable data quality analyses (e.g., calibration and retention time criteria). Therefore, all samples that fall between the standard that failed to meet the acceptance criteria and the preceding standard that met the acceptance criteria must be reanalyzed. Samples analyzed using internal standard calibration need not be bracketed (see Method 8000).11.6.2 Samples are analyzed with the same instrument configuration as is used during calibration. When using Method 5030 for sample introduction, analysts are cautioned that opening a sample vial or drawing an aliquot from a sealed vial (thus creating headspace) will compromise samples analyzed for volatiles. Therefore, it is recommended that analysts prepare two aliquots for purge-and-trap analysis. The second aliquot can be stored for 24 hours to ensure that an uncompromised sample is available for analysis or dilution, if the analysis of the first aliquot is unsuccessful or if results exceed the calibration range of the instrument. Distillates from Method 5031 may be split into two aliquots and held at 4 EC prior to analysis. It is recommended that the distillate be analyzed within 24 hours of distillation. Distillates must be analyzed within 7 days of distillation.11.6.3 Sample concentrations are calculated by comparing the sample response with the response from the initial calibration of the system (see Sec. 11.3). Therefore, if the sample response exceeds the limits of the initial calibration range, a dilution of the sample or sample extract must be analyzed. For volatile organic analyses of aqueous samples, the dilution must be performed on a second aliquot of the sample which has been properly sealed and stored prior to use and reanalysis. Samples and/or sample extracts should be diluted so that all peaks are on scale, as overlapping peaks are not always evident when peaks are off scale. Computer reproduction of chromatograms, manipulated to ensure all peaks are on scale over a 100-fold range, is acceptable as long as calibration limits are not exceeded. Peak height measurements are recommended over peak area integration when overlapping peaks cause errors in area integration.8015D - 17Revision 4June 2003Tentative identification of a single-component analyte occurs when a peak from a sample extract falls within the daily retention time window. Confirmation may be necessary on a second column or by GC/MS. Since the flame ionization detector is non-specific, it is highly recommended that GC/MS confirmation be performed on single-component analytes unless historical data are available to support the identification(s). See Method 8000 for additional information on confirmation. Second-column confirmation is generally not necessary for petroleum hydrocarbon analysis. However, if analytical interferences are indicated, analysis using the second GC column may be necessary. Also, the analyst must ensure that the sample hydrocarbons fall within the retention time range established during the initial calibration.NOTE: The identification of fuels, especially gasoline, is complicated by their inherent volatility. The early eluting compounds in fuels are obviously the most volatile and the most likely to have weathered unless the samples were taken immediately following a spill. The most highly volatile fraction of gasoline constitutes 50% of the total peak area of a gasoline chromatogram. This fraction is the least likely to be present in an environmental sample or may be present at only very low concentration in relation to the remainder of a gasoline chromatogram.11.6.6 The performance of the entire analytical system should be checked every 12 hours, using data gathered from analyses of blanks, standards, and samples. Significant peak tailing must be corrected. Tailing problems are generally traceable to active sites on the column, cold spots in a GC, the detector operation, or leaks in the system. See Sec. 11.8 for GC/FID system maintenance. Follow manufacturer's instructions for maintenance of the introduction device.Screening This method can be used with a single-point calibration for screening samples prior to GC/MS analyses (e.g., Methods 8260 and 8270). Such screening can reduce GC/MS down-time when highly-contaminated samples are analyzed. When this method is used for screening, it is recommended that the same sample introduction device (e.g., purge-and-trap versus direct injection) that is used for the subsequent GC/MS analyses also be used for the screening analysis. This will improve the correlation between the results and make the screening results more useful in predicting those samples that may overload the GC/MS system. However, other sample introduction techniques may be employed as well. Establish that the system response and chromatographic retention times are stable. Analyze the high-point GC/MS calibration standard. Analyze samples or sample extracts. Compare peak heights in the sample chromatograms with the high-point standard to establish that no compound with the same retention time as a target analyte exceeds the calibration range of the GC/MS system. 8015D - 18Revision 4June 2003NOTE: The FID is much less sensitive to halogenated compounds than the MS detector. As a result, a simple peak height comparison for such compounds in the GC/MS standard may underestimate the actual concentration of halogenated compounds. When using this method as a screening tool, such an underestimate could lead to GC/MS results over the calibration range or result in contamination of the GC/MS system. Therefore, the analyst should exercise caution when screening samples that also contain halogenated compounds.There are no formal QC requirements applied to screening analyses using this method. However, it is recommended that the high-point standard be run at least once every 12 hours to confirm the stability of the instrument response and chromatographic retention times. The analyst should consider the costs associated with making the wrong decision from the screening results (e.g., GC/MS instrument down-time and maintenance) and use appropriate judgment. Instrument Maintenance Injection of sample extracts from waste sites often leaves a high boiling residue in the injection port area, splitters (when used), and the injection port end of the chromatographic column. This residue affects chromatography in many ways (i.e., peak tailing, retention time shifts, analyte degradation, etc.) and, therefore, instrument maintenance is very important. Residue buildup in a splitter may limit flow through one leg and therefore change the split ratios. If this occurs during an analytical run, the quantitative data may be incorrect. Proper cleanup techniques will minimize the problem and instrument QC will indicate when instrument maintenance is necessary.11.8.2 Recommended chromatograph maintenanceCorrective measures may require any one or more of the following remedial actions. Also see Sec. 11.0 in Method 8000 for additional guidance on corrective action for capillary columns and the injection port.11.8.2.1 Splitter connections - For dual columns which are connected using a press-fit Y-shaped glass splitter or a Y-shaped fused-silica connector, clean and deactivate the splitter or replace with a cleaned and deactivated splitter. Break off the first few inches (up to one foot) of the injection port side of the column. Remove the columns and solvent backflush according to the manufacturer's instructions. If these procedures fail to eliminate the degradation problem, it may be necessary to deactivate the metal injector body and/or replace the columns.11.8.2.2 Column rinsing - The column should be rinsed with several column volumes of an appropriate solvent. Both polar and nonpolar solvents are recommended. Depending on the nature of the sample residues expected, the first rinse might be water, followed by methanol and acetone; methylene chloride is a satisfactory final rinse and in some cases may be the only solvent necessary. The column should then be filled with methylene chloride and allowed to remain flooded overnight to allow materials within the stationary phase to migrate into the solvent. The column is then flushed with fresh methylene chloride, drained, and dried at room temperature with a stream of ultrapure nitrogen passing through the column.8015D - 19Revision 4June 200311.9 Calculations and data handlingResults must be reported in units commensurate with their intended use and all dilutions must be taken into account when computing final results.11.10 The concentration of each analyte in the sample may be determined by calculating the amount of standard purged or injected, from the peak response, using the mean CF or RF from the initial calibration, or another appropriate calibration model (see Method 8000).11.11 While both diesel fuel and gasoline contain a large number of compounds that will produce well-resolved peaks in a GC/FID chromatogram, both fuels contain many other components that are not chromatographically resolved. This unresolved complex mixture results in the "hump" in the chromatogram that is characteristic of these fuels. In addition, although the resolved peaks are important for the identification of the specific fuel type, the area of the unresolved complex mixture contributes a significant portion of the area of the total response.11.11.1 For the analysis of DRO, sum the area of all peaks eluting between C10 and C28. This area is generated by projecting a horizontal baseline between the retention times of C10 and C28.11.11.2 Because the chromatographic conditions employed for DRO analysis can result in significant column bleed and a resulting rise in the baseline, it is appropriate to perform a subtraction of the column bleed from the area of the DRO chromatogram. In order to accomplish this subtraction, a methylene chloride blank should be analyzed during each 12-hour analytical shift during which samples are analyzed for DRO. The area of this chromatogram is measured in the same fashion as is used for samples (see Sec. 12.3.1), by projecting a horizontal baseline across the retention time range for DRO. This area is then subtracted from the area measured for the sample and the difference in areas is used to calculate the DRO concentration, using the equations in Method 8000.11.11.3 For the analysis of GRO, sum the areas of all peaks eluting between 2-methylpentane and 1,2,4-trimethylbenzene. This area is used to calculate the GRO concentration, using the equations in Method 8000. Column bleed subtraction is not generally necessary for GRO analysis.11.12 Refer to Method 8000, Sec. 11.0, for the calculation formulae. The formulae cover external and internal standard calibration, aqueous and non-aqueous samples, and linear and non-linear calibrations.DATA ANALYSIS AND CALCULATIONS See Sec. 11.0 for information on data analysis and calibration. METHOD PERFORMANCE Performance data and related information are provided in SW-846 methods only as examples and guidance. The data do not represent required performance goals for users of the methods. Instead, performance goals should be developed on a project-specific basis, and the laboratory should establish in-house QC performance criteria for the application of this method.8015D - 20Revision 4June 2003Example method performance data for non-purgeable volatiles prepared using the azeotropic microdistillation technique from Method 5031 are included in Tables 1, 3 and 4 for aqueous matrices and in Tables 2 and 5 for solid matrices. Typical chromatograms are included in Figs. 4 and 5. These data are for illustrative purposes only. Example method performance information are provided in Tables 6 and 7 for diesel fuel spiked into soil as are chromatograms of GRO and DRO standards in Figures 1 to 3.. These data are for illustrative purposes only.13.4 Table 8 contains example precision and bias data for the analysis of triethylamine. Reagent water was spiked with triethylamine at 1.0 Fg/L and analyzed by direct aqueous injection in a GC/FID equipped with an HP Basic Wax column (30-m x 0.53-mm ID). These data are for illustrative purposes only.Table 9 contains example single-laboratory data on the pressurized fluid extraction of diesel range organics (DRO) from three types of soil (sand, loam, and clay). The soils were spiked at two levels of DRO, approximately 5 mg/kg each and approximately 2000 mg/kg. Seven replicates of each level and soil type were extracted using pressurized fluid extraction (Method 3545), using a mixture of methylene chloride and acetone (1:1). The data are taken from Reference 8 and are for illustrative purposes only. This extraction technique may be applicable to other analyte classes, fuel types, or petroleum fractions (see Sec. 1.2.3). This method was the determinative technique used by one of the three laboratories participating in the study of headspace analysis of oxygenated gasoline contaminated groundwater samples. Please refer to Secs. 13.0 and 17.0 of Method 5021 for discussion and the results of that study.13.7 This method was used in combination with Method 5021 to analyze a standard with several gasoline components, including MTBE and 2-methylpentane. As can be seen from the chromatogram in Figure 6, the two analytes can be resolved quite well (column: Restek 502.2 105m x 0.53 um, 3 df).POLLUTION PREVENTION Pollution prevention encompasses any technique that reduces or eliminates the quantity and/or toxicity of waste at the point of generation. Numerous opportunities for pollution prevention exist in laboratory operation. The EPA has established a preferred hierarchy of environmental management techniques that places pollution prevention as the management option of first choice. Whenever feasible, laboratory personnel should use pollution prevention techniques to address their waste generation. When wastes cannot be feasibly reduced at the source, the Agency recommends recycling as the next best option. For information about pollution prevention that may be applicable to laboratories and research institutions consult Less is Better: Laboratory Chemical Management for Waste Reduction available from the American Chemical Society's Department of Government Relations and Science Policy, 1155 16th St., N.W. Washington, D.C. 20036, (202) 872-4477. 8015D - 21Revision 4June 200315.0 WASTE MANAGEMENTThe Environmental Protection Agency requires that laboratory waste management practices be conducted consistent with all applicable rules and regulations. The Agency urges laboratories to protect the air, water, and land by minimizing and controlling all releases from hoods and bench operations, complying with the letter and spirit of any sewer discharge permits and regulations, and by complying with all solid and hazardous waste regulations, particularly the hazardous waste identification rules and land disposal restrictions. For further information on waste management, consult The Waste Management Manual for Laboratory Personnel available from the American Chemical Society at the address listed in Sec. 14.2.16.0 REFERENCEST.A. Bellar, and J.J. Lichtenberg. "Determining Volatile Organics at Microgram-per-Liter Levels by Gas Chromatography", J. Amer. Water Works Assoc., 66(12), pp. 739-744 (1974). T.A Bellar, and J.J. Lichtenberg. "Semi-Automated Headspace Analysis of Drinking Waters and Industrial Waters for Purgeable Volatile Organic Compounds", in Van Hall, ed., Measurement of Organic Pollutants in Water and Wastewater, ASTM STP 686, pp. 108-129, 1979. Development and Application of Test Procedures for Specific Organic Toxic Substances in Wastewaters: Category 11 - Purgeables and Category 12 - Acrolein, Acrylonitrile, and Dichlorodifluoromethane, Report for EPA Contract 68-03-2635. M.L. Bruce, R.P. Lee, and M.W. Stevens. "Concentration of Water Soluble Volatile Organic Compounds from Aqueous Samples by Azeotropic Microdistillation", Environ. Sci. Technol. 1992, 26, 160-163. S.F. Tsang, N. Chau, P.J. Marsden, and K.R. Carter. "Evaluation of the EnSys PETRO RISc kit for TPH", Report for Ensys, Inc., Research Triangle Park, NC, 27709, 1992. "Interlaboratory Study of Three Methods for Analyzing Petroleum Hydrocarbons in Soils," API Publication Number 4599, American Petroleum Institute, March 1994. "Carbamates Method Evaluation Report," Science Applications International Corporation, Report for EPA Contract No. 68-W6-0068, August 1998. B. E. Richter, "Single Laboratory Method Validation Report. Extraction of Diesel Range Organics (DRO), Waste Oil Organics (WOO), and Total Petroleum Hydrocarbons (TPH) using Accelerated Solvent Extraction (ASE) with Analytical Validation by GC," Document 118357, Dionex Corporation, June 21, 1999. R.J. Pirkle, and P.W. McLoughlin, The Analysis of Selected Components of Reformulated Gasoline in Environmental Samples from MTBE Handbook, ed. Kostecki, P. and Moyer, E. Amherst Scientific Publishers, 2002. USEPA OUST,Environmental Fact Sheet: Analytical Methods for Fuel Oxygenates,EPA 510-F-03-001, April, 2003, http://www.epa.gov/OUST/mtbe/omethods.pdf. 8015D - 22Revision 4June 2003White, H., Lesnik, B., and Wilson, J. T., Analytical Methods for Fuel Oxygenates, LUSTLine (Bulletin #42), October, 2002, http://www.epa.gov/oust/mtbe/LL42Analytical.pdf TABLES, DIAGRAMS, FLOWCHARTS, AND VALIDATION DATA The following pages contain the tables and figures referenced by this method. 8015D - 23Revision 4June 2003TABLE 1EXAMPLE LOWER LIMITS OF DETECTION FOR NON-PURGEABLE VOLATILE COMPOUNDS IN AQUEOUS MATRICES BY AZEOTROPIC MICRODISTILLATION (METHOD 5031)Lower Quantitation Limit (g/L)aAnalyteReagent WaterGround WaterTCLPLeachateAcetoneb481663Acetonitrile15614Acrolein13157Acrylonitrile89141-Butanol1487t-Butyl alcohol87171,4-Dioxane121516Ethanol181213Ethyl acetate9816Ethylene oxide8910Isobutyl alcohol1184Isopropyl alcohol18177Methanol212122Methyl ethyl ketone459Methyl isobutyl428ketone2-Pentanone2271-Propanol--7--Propionitrile10613Pyridine11921ab Derived from analysis of seven aliquots of water spiked at 25 g/L, using internal standard calibration. Lower quantitation limits provided in SW-846 are for illustrative purposes and may not always be achievable. Laboratories should establish their own in-house lower quantitation limits, if necessary to document method performanceProblematic due to transient laboratory contamination.8015D - 24Revision 4June 2003TABLE 2EXAMPLE LOWER LIMITS OF DETECTION FOR NON-PURGEABLE VOLATILE COMPOUNDS IN SOLID MATRICES BY AZEOTROPIC MICRODISTILLATION (METHOD 5031)Lower Quantitation Limit (mg/kg)AnalyteIncinerator AshKaolinAcrylonitrile0.420.091-Butanol0.230.09t-Butyl alcohol0.340.131,4-Dioxane0.310.16Ethanol0.470.19Ethyl acetate0.180.07Isopropyl alcohol0.400.19Methanol0.460.31Methyl ethyl ketone0.270.12Methyl isobutyl ketone0.120.052-Pentanone0.160.07Pyridine0.200.08Derived from analysis of seven aliquots of incinerator ash and kaolin spiked at 0.50 mg/kg, using internal standard calibration. Lower quantitation limits provided in SW-846 are for illustrative purposes and may not always be achievable. Laboratories should establish their own in-house lower quantitation limits, if necessary to document method performance8015D - 25Revision 4June 2003TABLE 3EXAMPLE METHOD PERFORMANCE DATA FOR NON-PURGEABLE VOLATILES IN GROUND WATER BY AZEOTROPIC MICRODISTILLATION (METHOD 5031)LowMed.HighConcentrationaConcentrationbConcentrationcAnalyteMean%RSDMean%RSDMean%RSDRecdRecdRecdAcetonee12617N/A--N/A--Acetonitrile14751058929Acrolein14613120278020Acrylonitrile17971432894211-Butanol1278868909t-Butyl alcohol1227N/A--N/A--1,4-Dioxane124169610998Ethanol15210N/A--N/A--Ethyl Acetate1427135339225Ethylene oxide11410N/A--N/A--Isobutyl alcohol122887138913Isopropyl alcohol16713N/A--N/A--Methanol16614949957Methyl ethyl ketone1056N/A--N/A--Methyl isobutyl ketone664N/A--N/A--2-Pentanone943N/A--N/A--1-PropanolN/A--917917Propionitrile1355102149014Pyridine9212N/A--N/A--a25 g/L spikes, using internal standard calibration.b100 g/L spikes, using internal standard calibration.c750 g/L spikes, using internal standard calibration.dMean of 7 replicates.eProblematic, due to transient laboratory contamination.N/A = Data not available8015D - 26Revision 4June 2003TABLE 4EXAMPLE METHOD PERFORMANCE DATA FOR NON-PURGEABLE VOLATILES IN TCLP LEACHATE BY AZEOTROPIC MICRODISTILLATION (METHOD 5031)LowMed.HighConcentrationaConcentrationbConcentrationcAnalyteMean%RSDMean%RSDMean%RSRecdRecdRecdDAcetonee9991N/A--N/A--Acetonitrile10717111109511Acrolein8810109298741Acrylonitrile1331312329103381-Butanol11978912868t-Butyl alcohol7031N/A--N/A--1,4-Dioxane10320103161027Ethanol12213N/A--N/A--Ethyl Acetate164121192910741Ethylene oxide11112N/A--N/A--Isobutyl alcohol115486138213Isopropyl alcohol1148N/A--N/A--Methanol107101026N/A--Methyl ethyl ketone8713N/A--N/A--Methyl isobutyl ketone7813N/A--N/A--2-Pentanone1018N/A--N/A--1-PropanolN/A--9810897Propionitrile10016100119017Pyridine4659N/A--N/A--a25 g/L spikes, using internal standard calibration.b100 g/L spikes, using internal standard calibration.c750 g/L spikes, using internal standard calibration.dMean of 7 replicates.eProblematic, due to transient laboratory contamination.N/A = Data not available8015D - 27Revision 4June 2003TABLE 5EXAMPLE METHOD PERFORMANCE DATA FOR NON-PURGEABLE VOLATILE COMPOUNDS IN SOLID MATRICES BY AZEOTROPIC MICRODISTILLATION (METHOD 5031)Incinerator AshKaolinLow Conc.aHigh Conc.bLow Conc.aHigh Conc.bMea%RSDMea%RSDMea%RSDMea%RSDnnnnReccReccReccReccAcrylonitrile50531031102612521-Butanol10514611210855825t-Butyl alcohol10121601397959231,4-Dioxane106194818105104825Ethanol117255220108114824Ethyl acetate621939129054125Isopropyl alcohol119216115108115824Methanol55533328117173722Methyl ethyl ketone812140129184220Methyl isobutyl681157147155523ketone2-Pentanone791354109155419Pyridine5224442050104931a0.5 mg/kg spikes, using internal standard calibration.b25 mg/kg spikes, using internal standard calibration.cMean of seven replicates.8015D - 28Revision 4June 2003TABLE 6EXAMPLE RESULTS FROM ANALYSIS OF LOW AROMATIC DIESEL BY GC/FID (5 replicates per test)Spike ConcentrationAnalysis Results12.5 ppmND75 ppm54 7 ppm105 ppm90 15 ppm150 ppm125 12 ppm1000 ppm960 105 ppmND = Not detectedSamples were prepared using 2-g aliquots of sandy loam soil spiked with known amounts of low aromatic diesel. Low aromatic diesel is sold in California. It was purchased for this study at a gas station in San Diego, California. Extractions were accomplished using methylene chloride as a solvent (Method 3550, high concentration option).TABLE 7EXAMPLE RESULTS FROM ANALYSIS OF DIESEL BY GC/FID (5 replicates per test)Spike ConcentrationAnalysis Results25 ppm51 6 ppm75 ppm76 8 ppm125 ppm99 5 ppm150 ppm160 10 ppmSamples were prepared using 10-g aliquots of sandy loam soil spiked with known amounts of regular #2 diesel purchased at a gas station in Northern Virginia. Extractions were accomplished using methylene chloride as a solvent (Method 3550).8015D - 29Revision 4June 2003TABLE 8EXAMPLE TRIETHYLAMINE PERFORMANCE DATA FOR SPIKED REAGENT WATER (Analyses by Direct Aqueous Injection)Triethylamine Concentration (g/L)SpikeRep.Rep.Rep. 3Rep. 4Rep.Rep. 6Rep. 7MeanConc.1251.001.121.171.141.201.191.181.181.169Mean Recovery117%S.D.0.0288 g/LThe estimated quantitation limit was derived from the analyses of seven aliquots of water spiked at 1.00 g/L, using external standard calibration, on a 30-m, 0.53-mm ID, HP Basic Wax GC column. A 1-L injection volume was used. Lower quantitation limits provided in SW-846 are for illustrative purposes and may not always be achievable. Laboratories should establish their own in-house lower quantitation limits, if necessary to document method performance.Data are taken from Reference 7.8015D - 30Revision 4June 2003TABLE 9SINGLE-LABORATORY DATA FOR PRESSURIZED FLUID EXTRACTION (METHOD 3545)OF DIESEL RANGE ORGANICS FROM THREE SOIL MATRICESDRO Concentration in mg/kgMatrix and SpikingRep. 1Rep. 2Rep.Rep.Rep.Rep. 6Rep.MeaMean%RSDLevel3457nRecovery (%)Low Sand3.28.25.96.37.07.76.46.412725.4Low Loam6.56.07.95.16.99.56.46.913820.7Low Clay4.35.85.78.65.47.57.66.412823.6High Sand1850197020302390221024002430218310810.8High Loam17901870186019701790199019901894944.7High Clay1910189019902860288021502040224611219.4Low level samples were spiked with approximately 5 mg/kg of DRO.High level samples were spiked with approximately 2000 mg/kg of DRO.Seven replicates of each sample were extracted and analyzed by GC/FID.Data are taken from Reference 8.8015D - 31Revision 4June 2003FIGURE 1EXAMPLE CHROMATOGRAM OF A 300 PPM GASOLINE STANDARD8015D - 32Revision 4June 2003FIGURE 2EXAMPLE CHROMATOGRAM OF A 30 PPM DIESEL STANDARD8015D - 33Revision 4June 2003FIGURE 3EXAMPLE CHROMATOGRAM OF A 30 PPM DIESEL STANDARD WITH THEBASELINE PROJECTED BETWEEN C10 AND C288015D - 34Revision 4June 2003FIGURE 4EXAMPLE CHROMATOGRAM OF SEVERAL NONPURGEABLE VOLATILE COMPOUNDS IN SPIKED REAGENT WATER USING AZEOTROPIC MICRODISTILLATION (METHOD 5031)Mix 1: Analytes distilled at 0.25 mg/L, internal standards at 2.5 mg/LGC Column:J&W DB-Wax column with 0.53-mm IDTemperature program: 30 EC for 2 min.3 EC/min. to 100 EC and held for 0 min.25 EC/min. to 200 EC and held for 4 min.8015D - 35Revision 4June 2003FIGURE 5EXAMPLE CHROMATOGRAM OF SEVERAL NONPURGEABLE VOLATILE COMPOUNDS IN SPIKED REAGENT WATER USING AZEOTROPIC MICRODISTILLATION (METHOD 5031)Mix 2: Analytes distilled at 0.25 mg/L, internal standards at 2.5 mg/LGC Column: J&W DB-Wax column with 0.53-mm IDTemperature program:30 EC for 2 min.3 EC/min. to 100 EC and held for 0 min.25 EC/min. to 200 EC and held for 4 min.8015D - 36Revision 4June 2003FIGURE 6EXAMPLE CHROMATOGRAM OF MULTI-COMPONENT MIXTURE8015D - 37Revision 4June 2003