METABOLIZACION DE COMPUESTOS NITROGENADOS

18

description

EN ESTA REVISTA SE ENCUENTRA LA INFORMACION ADECUADA PARA CONOCER LA METABOLIZACION

Transcript of METABOLIZACION DE COMPUESTOS NITROGENADOS

Page 2: METABOLIZACION DE COMPUESTOS NITROGENADOS

Metabolización

La metabolización es el proceso por el cual el organismo consigue que las drogas dejen

de ser sustancias activas para convertirse en no activas.

Este proceso lo realizan en los seres humanos enzimas localizadas en el hígado. En el caso

de las drogas psicoactivas a menudo lo que se trata simplemente es de eliminar su

capacidad de pasar a través de las membranas de lípidos, de forma que ya no puedan

pasar la barrera hematoencefálica, con lo que no alcanzan el sistema nervioso central.

Por tanto, la importancia del hígado y por qué este órgano se ve afectado a menudo en

los casos de consumo masivo o continuado de drogas.

Metabolismo

Esquema del adenosín trifosfato, una coenzima intermediaria principal en el metabolismo

energético.

El metabolismo es el conjunto de reacciones bioquímicas y procesos físico-químicos que

ocurren en una célula y en el organismo.1 Éstos complejos procesos interrelacionados son

la base de la vida a escala molecular, y permiten las diversas actividades de las células:

crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.

El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las

reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de

degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de

la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio,

utilizan esta energía liberada para recomponer enlaces químicos y construir componentes

de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el

anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que

cada uno depende del otro.

La economía que la actividad celular impone sobre sus recursos obliga a organizar

estrictamente las reacciones químicas del metabolismo en vías o rutas metabólicas,

Page 3: METABOLIZACION DE COMPUESTOS NITROGENADOS

donde un compuesto químico (sustrato) es transformado en otro (producto), y este a su

vez funciona como sustrato para generar otro producto, siguiendo una secuencia de

reacciones bajo la intervención de diferentes enzimas (generalmente una para cada

sustrato-reacción). Las enzimas son cruciales en el metabolismo porque agilizan las

reacciones físico-químicas, pues hacen que posibles reacciones termodinámicas

deseadas pero "desfavorables", mediante un acoplamiento, resulten en reacciones

favorables. Las enzimas también se comportan como factores reguladores de las vías

metabólicas, modificando su funcionalidad –y por ende, la actividad completa de la vía

metabólica– en respuesta al ambiente y necesidades de la célula, o según señales de

otras células.

El metabolismo de un organismo determina qué sustancias encontrará nutritivas y cuáles

encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como

nutriente, pero este gas es venenoso para los animales.2 La velocidad del metabolismo, el

rango metabólico, también influye en cuánto alimento va a requerir un organismo.

Una característica del metabolismo es la similitud de las rutas metabólicas básicas incluso

entre especies muy diferentes. Por ejemplo: la secuencia de pasos químicos en una vía

metabólica como el ciclo de Krebs es universal entre células vivientes tan diversas como la

bacteria unicelular Escherichia coli y organismos pluricelulares como el elefante.3 Esta

estructura metabólica compartida es probablemente el resultado de la alta eficiencia de

estas rutas, y de su temprana aparición en la historia evolutiva.4 5

Investigación y manipulación

Red metabólica del ciclo de Krebs de la planta Arabidopsis thaliana. Las enzimas y los metabolitos

se muestran en rojo y las interacciones mediante líneas.

Clásicamente, el metabolismo se estudia por una aproximación reduccionista que se

concentra en una ruta metabólica específica. La utilización de los diversos elementos en

el organismo es valiosos en todas las categorías histológicas, de tejidos a células, que

definen las rutas de precursores hacia su producto final.6 Las enzimas que catabolizan

Page 4: METABOLIZACION DE COMPUESTOS NITROGENADOS

estas reacciones químicas pueden ser purificadas y así estudiar su cinética enzimática y

las respuestas que presentan frente a diversos inhibidores. Otro tipo de estudio que se

puede llevar a cabo en paralelo es la identificación de los metabolitos presentes en una

célula o tejido; al estudio de todo el conjunto de estas moléculas se le denomina

metabolómica. Estos estudios ofrecen una visión de las estructuras y funciones de rutas

metabólicas simples, pero son inadecuados cuando se quieren aplicar a sistemas más

complejos como el metabolismo global de la célula.7

En la imagen de la derecha se puede apreciar la complejidad de una red metabólica

celular que muestra interacciones entre tan sólo 43 proteínas y 40 metabolitos: esta

secuencia de genomas provee listas que contienen hasta 45.000 genes.8 Sin embargo, es

posible usar esta información para reconstruir redes completas de comportamientos

bioquímicos y producir más modelos matemáticos holísticos que puedan explicar y

predecir su comportamiento.9 Estos modelos son mucho más efectivos cuando se usan

para integrar la información obtenida de las rutas y de los metabolitos mediante métodos

clásicos con los datos de expresión génica obtenidos mediante estudios de proteómica y

de chips de ADN.10

Una de las aplicaciones tecnológicas de esta información es la ingeniería metabólica.

Con esta tecnología, organismos como las levaduras, las plantas o las bacterias son

modificados genéticamente para hacerlos más útiles en algún campo de la

biotecnología, como puede ser la producción de drogas, antibióticos o químicos

industriales.11 12 13 Estas modificaciones genéticas tienen como objetivo reducir la cantidad

de energía usada para producir el producto, incrementar los beneficios y reducir la

producción de desechos.14

Biomoléculas principales

Estructura de un lípido, el triglicérido.

La mayor parte de las estructuras que componen a los animales, plantas y microbios

pertenecen a alguno de estos tres tipos de moléculas básicas: aminoácidos, glúcidos y

lípidos (también denominados grasas). Como estas moléculas son vitales para la vida, el

metabolismo se centra en sintetizar estas moléculas, en la construcción de células y

tejidos, o en degradarlas y utilizarlas como recurso energético en la digestión. Muchas

biomoléculas pueden interaccionar entre sí para crear polímeros como el ADN (ácido

desoxirribonucleico) y las proteínas. Estas macromoléculas son esenciales en los

organismos vivos. En la siguiente tabla se muestran los biopolímeros más comunes:

Page 5: METABOLIZACION DE COMPUESTOS NITROGENADOS

Tipo de molécula Nombre de forma de monómero Nombre de formas de polímero

Proteínas Aminoácidos Polipéptidos

Carbohidratos Monosacáridos Polisacáridos

Grasas Ácidos grasos y/o Gliceroles Lípidos

Ácidos nucleicos Nucleótidos Polinucleótidos

Aminoácidos y proteínas

Las proteínas están compuestas por los aminoácidos, dispuestos en una cadena lineal y

unidos por enlaces peptídicos. Las enzimas son proteínas que catalizan las reacciones

químicas en el metabolismo. Otras proteínas tienen funciones estructurales o mecánicas,

como las proteínas del citoesqueleto que forman un sistema de andamiaje para

mantener la forma de la célula.15 16 Las proteínas también son partícipes de la

comunicación celular, la respuesta inmune, la adhesión celular y el ciclo celular.17

Lípidos

Los lípidos son las biomoléculas que más diversidad presentan. Su función estructural

básica es formar parte de las membranas biológicas como la membrana celular, o bien

como recurso energético.17 Los lípidos son definidos normalmente como moléculas

hidrófobicas o anfipáticas, que se disuelven en solventes orgánicos como la bencina o el

cloroformo.18 Las grasas son un grupo de compuestos que incluyen ácidos grasos y

glicerol; una molécula de glicerol junto a tres ácidos grasos éster dan lugar a una

molécula de triglicérido.19 Se pueden dar variaciones de esta estructura básica, que

incluyen cadenas laterales como la esfingosina de los esfingolípidos y los grupos

hidrofílicos tales como los grupos fosfato en los fosfolípidos. Esteroides como el colesterol

son otra clase mayor de lípidos sintetizados en las células.20

Carbohidratos

La glucosa puede existir en forma de cadena y de anillo.

Los carbohidratos son aldehídos o cetonas con grupos

hidroxilo que pueden existir como cadenas o anillos. Los

carbohidratos son las moléculas biológicas más

abundantes, y presentan varios papeles en la célula;

algunos actúan como moléculas de almacenamiento de

energía (almidón y glucógeno) o como componentes

Page 6: METABOLIZACION DE COMPUESTOS NITROGENADOS

estructurales (celulosa en las plantas, quitina en los animales).17 Los carbohidratos básicos

son llamados monosacáridos e incluyen galactosa, fructosa, y el más importante la

glucosa. Los monosacáridos pueden sintetizarse y formar polisacáridos.21

Nucleótidos

Los polímeros de ADN (ácido desoxirribonucléico) y ARN (ácido ribonucléico) son cadenas

de nucleótidos. Estas moléculas son críticas para el almacenamiento y uso de la

información genética por el proceso de transcripción y biosíntesis de proteínas.17 Esta

información se encuentra protegida por un mecanismo de reparación del ADN y

duplicada por un mecanismo de replicación del ADN. Algunos virus tienen un genoma de

ARN, por ejemplo el HIV, y utilizan retrotranscripción para crear ADN a partir de su genoma

viral de ARN;22 estos virus son denominados retrovirus. El ARN de ribozimas como los

ribosomas es similar a las enzimas y puede catabolizar reacciones químicas. Los

nucleósidos individuales son sintentizados mediante la unión de bases nitrogenadas con

ribosa. Estas bases son anillos heterocíclicos que contienen nitrógeno y, según presenten

un anillo o dos, pueden ser clasificadas como pirimidinas o purinas, respectivamente. Los

nucleótidos también actúan como coenzimas en reacciones metabólicas de

transferencia en grupo.23

Coenzimas

Estructura de una coenzima, el coenzima A transportando un

grupo acetilo (a la izquierda de la figura, unido al S).

El metabolismo conlleva un gran número de reacciones

químicas, pero la gran mayoría presenta alguno de los mecanismos de catálisis básicos de

reacción de transferencia en grupo.24 Esta química común permite a las células utilizar una

pequeña colección de intermediarios metabólicos para trasladar grupos químicos

funcionales entre diferentes reacciones.23 Estos intermediarios de transferencia de grupos

son denominados coenzimas. Cada clase de reacción de grupo es llevada a cabo por

una coenzima en particular, que es el sustrato para un grupo de enzimas que lo

producen, y un grupo de enzimas que lo consumen. Estas coenzimas son, por ende,

continuamente creadas, consumidas y luego recicladas.25

La coenzima más importante es el adenosín trifosfato (ATP). Este nucleótido es usado para

transferir energía química entre distintas reacciones químicas. Sólo hay una pequeña

parte de ATP en las células, pero como es continuamente regenerado, el cuerpo humano

puede llegar a utilizar su propio peso en ATP por día.25 El ATP actúa como una conexión

entre el catabolismo y el anabolismo, con reacciones catabólicas que generan ATP y

reacciones anabólicas que lo consumen. También es útil para transportar grupos fosfato

en reacciones de fosforilación.

Una vitamina es un compuesto orgánico necesitado en pequeñas cantidades que no

puede ser sintetizado en las células. En la nutrición humana, la mayoría de las vitaminas

trabajan como coenzimas modificadas; por ejemplo, todas las vitaminas hidrosolubles son

fosforiladas o acopladas a nucleótidos cuando son utilizadas por las células.26

La nicotinamida adenina dinucleótido (NAD), un derivado de la vitamina B, es una

importante coenzima que actúa como aceptor de protones. Cientos de deshidrogenasas

Page 7: METABOLIZACION DE COMPUESTOS NITROGENADOS

eliminan electrones de sus sustratos y reducen el NAD+ en NADH. Esta forma reducida de

coenzima es luego un sustrato para cualquier componente en la célula que necesite

reducir su sustrato.27 El NAD existe en dos formas relacionadas en la célula, NADH y NADPH.

El NAD+/NADH es más importante en reacciones catabólicas, mientras que el

NADP+/NADPH es principalmente utilizado

en reacciones anabólicas.

Estructura de la hemoglobina. Las subunidades

proteicas se encuentran señaladas en rojo y

azul, y los grupos hemo de hierro en verde.

Minerales y cofactores

Los elementos inorgánicos juegan un rol

crítico en el metabolismo; algunos son

abundantes (sodio y potasio, por

ejemplo), mientras que otros actúan a

concentraciones mínimas. Alrededor del

99% de la masa de un mamífero se

encuentra compuesta por los elementos

carbono, nitrógeno, calcio, sodio, cloro,

potasio, hidrógeno, oxígeno y azufre.28 Los

compuestos orgánicos (proteínas, lípidos y

carbohidratos) contienen, en su mayoría,

carbono y nitrógeno, mientras que la

mayoría del oxígeno y del hidrógeno están presentes en el agua.28

Los elementos inorgánicos actúan como electrolitos iónicos. Los iones de mayor

importancia son sodio, potasio, calcio, magnesio, cloruro y fosfato, y el ion orgánico

bicarbonato. El gradiente iónico a lo largo de las membranas de la célula mantiene la

presión osmótica y el pH.29 Los iones son también críticos para nervios y músculos ya que el

potencial de acción en estos tejidos es producido por el intercambio de electrolitos entre

el fluido extracelular y el citosol.30 Los electrolitos entran y salen de la célula a través de

proteínas en la membrana plasmática, denominadas canales iónicos. Por ejemplo, la

contracción muscular depende del movimiento del calcio, sodio y potasio a través de los

canales iónicos en la membrana y los túbulos T.31

Los metales de transición se encuentran presentes en el organismo principalmente como

zinc y hierro, que son los más abundantes.32 33 Estos metales son usados en algunas

proteínas como cofactores y son esenciales para la actividad de enzimas como la

catalasa y proteínas transportadoras del oxígeno como la hemoglobina.34 Estos cofactores

están estrechamente ligados a una proteína; a pesar de que los cofactores de enzimas

pueden ser modificados durante la catálisis, siempre tienden a volver al estado original

antes de que la catálisis tuviera lugar. Los micronutrientes son captados por los organismos

por medio de trasportadores específicos y proteínas de almacenamiento específicas tales

como la ferritina o la metalotioneína, mientras no son utilizadas.35 36

Page 8: METABOLIZACION DE COMPUESTOS NITROGENADOS

Catabolismo

El catabolismo es el conjunto de procesos metabólicos que liberan energía. Estos incluyen

degradación y oxidación de moléculas de alimento, así como reacciones que retienen la

energía del Sol. El propósito de estas reacciones catabólicas es proveer energía, poder

reductor y componentes necesitados por reacciones anabólicas. La naturaleza de estas

reacciones catabólicas difiere de organismo en organismo. Sin embargo, estas diferentes

formas de catabolismo dependen de reacciones de reducción-oxidación que involucran

transferencia de electrones de moléculas donantes (como las moléculas orgánicas, agua,

amoníaco, sulfuro de hidrógeno e iones ferrosos), a aceptores de dichos electrones como

el oxígeno, el nitrato o el sulfato.37

En los animales, estas reacciones conllevan la degradación de moléculas orgánicas

complejas a otras más simples, como dióxido de carbono y agua. En organismos

fotosintéticos como plantas y cianobacterias, estas transferencias de electrones no liberan

energía, pero son usadas como un medio para almacenar energía solar.38

El conjunto de reacciones catabólicas más común en animales puede ser separado en

tres etapas distintas. En la primera, moléculas orgánicas grandes como las proteínas,

polisacáridos o lípidos son digeridos en componentes más pequeños fuera de las células.

Luego, estas moléculas pequeñas son llevadas a las células y convertidas en moléculas

aún más pequeñas, generalmente acetilos que se unen covalentemente a la coenzima

A, para formar la acetil-coenzima A, que libera energía. Finalmente, el grupo acetil en la

molécula de acetil CoA es oxidado a agua y dióxido de carbono, liberando energía que

se retiene al reducir la coenzima nicotinamida adenina dinucleótido (NAD+) en NADH.

Digestión

Las macromoléculas como el almidón, la celulosa o las proteínas no pueden ser tomadas

por las células automáticamente, por lo que necesitan que se degraden en unidades más

simples antes de usarlas en el metabolismo celular. Muchas enzimas digieren estos

polímeros. Estas enzimas incluyen peptidasa que digiere proteínas en aminoácidos, glicosil

hidrolasas que digieren polisacáridos en disacáridos y monosacáridos, y lipasas que

digieren los triglicéridos en ácidos grasos y

glicerol.

Los microbios simplemente secretan enzimas

digestivas en sus alrededores39 40 mientras que los

animales secretan estas enzimas desde células

especializadas al aparato digestivo.41 Los

aminoácidos, monosacáridos, y triglicéridos

liberados por estas enzimas extracelulares son

absorbidos por las células mediante proteínas

específicas de transporte.42 43

Page 9: METABOLIZACION DE COMPUESTOS NITROGENADOS

Un diagrama simplificado del catabolismo de proteínas, carbohidratos y lípidos.

Energía de compuestos orgánicos

El catabolismo de carbohidratos es la degradación de los hidratos de carbono en

unidades menores. Los carbohidratos son usualmente tomados por la célula una vez que

fueron digeridos en monosacáridos.44 Una vez dentro de la célula, la ruta de degradación

es la glucólisis, donde los azúcares como la glucosa y la fructosa son transformados en

piruvato y algunas moléculas de ATP son generadas.45 El piruvato o ácido pirúvico es un

intermediario en varias rutas metabólicas, pero la mayoría es convertido en acetil CoA y

cedido al ciclo de Krebs. Aunque más ATP es generado en el ciclo, el producto más

importante es el NADH, sintetizado a partir del NAD+ por la oxidación del acetil-CoA. La

oxidación libera dióxido de carbono como producto de desecho. Una ruta alternativa

para la degradación de la glucosa es la ruta pentosa-fosfato, que reduce la coenzima

NADPH y produce azúcares de 5 carbonos como la ribosa, el azúcar que forma parte de

los ácidos nucleicos.

Las grasas son catalizadas por la hidrólisis a ácidos grasos y glicerol. El glicerol entra en la

glucólisis y los ácidos grasos son degradados por beta oxidación para liberar acetil CoA,

que es luego cedido al nombrado ciclo de Krebs. Debido a sus proporciones altas del

grupo metileno, los ácidos grasos liberan más energía en su oxidación que los

carbohidratos, ya que los carbohidratos como la glucosa tienen más oxígeno en sus

estructuras.

Los aminoácidos son usados principalmente para sintentizar proteínas y otras

biomoléculas; sólo los excedentes son oxidados a urea y dióxido de carbono como fuente

de energía.46 Esta ruta oxidativa empieza con la eliminación del grupo amino por una

aminotransferasa. El grupo amino es cedido al ciclo de la urea, dejando un esqueleto

carbónico en forma de cetoácido.47 Los aminoácidos glucogénicos pueden ser

transformados en glucosa mediante gluconeogénesis.48

En la fosforilación oxidativa, los electrones liberados de moléculas de alimento en rutas

como el ciclo de Krebs son transferidas con oxígeno, y la energía es liberada para

sintetizar adenosín trifosfato. Esto se da en las células eucariotas por una serie de proteínas

en las membranas de la mitocondria llamadas cadena de transporte de electrones. En las

células procariotas, estas proteínas se encuentran en la membrana interna.49 Estas

proteínas utilizan la energía liberada de la oxidación del electrón que lleva la coenzima

NADH para bombear protones a lo largo de la membrana.50

Los protones bombeados fuera de la mitocondria crean una diferencia de concentración

a lo largo de la membrana, lo que genera un gradiente electroquímico.51 Esta fuerza hace

que vuelvan a la mitocondria a través de una subunidad de la ATP-sintasa. El flujo de

protones hace que la subunidad menor gire, lo que produce que el sitio activo fosforile al

adenosín difosfato (ADP) y lo convierta en ATP.25

Page 10: METABOLIZACION DE COMPUESTOS NITROGENADOS

Energía de compuestos inorgánicos

Las procariotas poseen un tipo de metabolismo donde la energía se obtiene a partir de un

compuesto inorgánico. Estos organismos utilizan hidrógeno,52 compuestos del azufre

reducidos (como el sulfuro, sulfuro de hidrógeno y tiosulfato),2 óxidos ferrosos53 o

amoníaco54 como fuentes de poder reductor y obtienen energía de la oxidación de estos

compuestos utilizando como aceptores de electrones oxígeno o nitrito.55 Estos procesos

microbióticos son importantes en ciclos biogeoquímicos como la nitrificación y la

desnitrificación, esenciales para la fertilidad del suelo56 57

Energía de la luz

La energía solar es captada por plantas, cianobacterias, bacterias púrpuras, bacterias

verdes del azufre y algunos protistas. Este proceso está ligado a la conversión del dióxido

de carbono en compuestos orgánicos, como parte de la fotosíntesis.58 59

La captura de energía solar es un proceso similar en principio a la fosforilación oxidativa,

ya que almacena energía en gradientes de concentración de protones, que da lugar a la

síntesis de ATP.25 Los electrones necesarios para llevar a cabo este transporte de protones

provienen de una serie de proteínas denominadas centro de reacción fotosintética. Estas

estructuras son clasificadas en dos dependiendo de su pigmento, siendo las bacterias

quienes tienen un solo grupo, mientras que en las plantas y cianobacterias pueden ser

dos.60

En las plantas, el fotosistema II usa energía solar para obtener los electrones del agua,

liberando oxígeno como producto de desecho. Los electrones luego fluyen hacia el

complejo del citocromo b6f, que usa su energía para bombear protones a lo largo de la

membrana tilacoidea del cloroplasto.38 Estos protones se mueven a través de la ATP-

sintasa, mediante el mismo mecanismo explicado anteriormente. Los electrones luego

fluyen por el fotosistema I y pueden ser utilizados para reducir la coenzima NADP+, que

será utilizado en el ciclo de Calvin, o recicladas para la futura generación de ATP.61

Anabolismo

El anabolismo es el conjunto de procesos metabólicos constructivos en donde la energía

liberada por el catabolismo es utilizada para sintetizar moléculas complejas. En general,

las moléculas complejas que dan lugar a estructuras celulares son construidas a partir de

precursores simples. El anabolismo involucra tres facetas. Primero, la producción de

precursores como aminoácidos, monosacáridos, isoprenoides y nucleótidos; segundo, su

activación en reactivos usando energía del ATP; y tercero, el conjunto de estos

precursores en moléculas más complejas como proteínas, polisacáridos, lípidos y ácidos

nucleicos.

Los organismos difieren en cuántas moléculas pueden sintetizar por sí mismos en sus

células. Los organismos autótrofos, como las plantas, pueden construir moléculas

orgánicas complejas y proteínas por sí mismos a partir moléculas simples como dióxido de

carbono y agua. Los organismos heterótrofos, en cambio, requieren de una fuente de

sustancias más complejas, como monosacáridos y aminoácidos, para producir estas

moléculas complejas. Los organismos pueden ser clasificados por su fuente de energía:

Page 11: METABOLIZACION DE COMPUESTOS NITROGENADOS

Fotoautótrofos y fotoheterótrofos, que obtienen la energía del Sol.

Quimioheterótrofos y quimioautótrofos, que obtienen la energía mediante reacciones

oxidativas.

Fijación del carbono

Células de plantas (rodeadas por

paredes violetas) y dentro,

cloroplastos, donde se da la

fotosíntesis.

La fotosíntesis es la síntesis de

glucosa a partir de energía solar,

dióxido de carbono (CO2) y agua

(H2O), con oxígeno como

producto de desecho. Este

proceso utiliza el ATP y el NADPH

producido por los centros de

reacción fotosintéticos para

convertir el CO2 en 3-

fosfoglicerato, que puede ser convertido en glucosa. Esta reacción de fijación del CO2 es

llevada a cabo por la enzima RuBisCO como parte del ciclo de Calvin.62 Se dan tres tipos

de fotosíntesis en las plantas; fijación del carbono C3, fijación del carbono C4 y fotosíntesis

CAM. Estos difieren en la vía que el CO2 sigue en el ciclo de Calvin, con plantas C3 que

fijan el CO2 directamente, mientras que las fotosíntesis C4 y CAM incorporan el CO2 en

otros compuestos primero como adaptaciones para soportar la luz solar intensa y las

condiciones secas.63

En procariotas fotosintéticas, los mecanismos de la fijación son más diversos. El CO2 puede

ser fijado por el ciclo de Calvin, y asimismo por el Ciclo de Krebs inverso,64 o la

carboxilación del acetil-CoA.65 66 Los quimioautótrofos también pueden fijar el CO2

mediante el ciclo de Calvin, pero utilizan la energía de compuestos inorgánicos para

llevar a cabo la reacción.67

Carbohidratos

En el anabolismo de carbohidratos, se pueden sintetizar ácidos orgánicos simples desde

monosacáridos como la glucosa y luego sintetizar polisacáridos como el almidón. La

generación de glucosa desde compuestos como el piruvato, el ácido láctico, el glicerol y

los aminoácidos es denominada gluconeogénesis. La gluconeogénesis transforma

piruvato en glucosa-6-fosfato a través de una serie de intermediarios, muchos de los

cuales son compartidos con la glucólisis.45 Sin embargo, esta ruta no es simplemente la

inversa a la glucólisis, ya que varias etapas son catalizadas por enzimas no glucolíticas.

Esto es importante a la hora de evitar que ambas rutas estén activas a la vez dando lugar

a un ciclo fútil.68 69

A pesar de que la grasa es una forma común de almacenamiento de energía, en los

vertebrados como los humanos, los ácidos grasos no pueden ser transformados en

glucosa por gluconeogénesis, ya que estos organismos no pueden convertir acetil-CoA en

piruvato.70 Como resultado, tras un tiempo de inanición, los vertebrados necesitan

Page 12: METABOLIZACION DE COMPUESTOS NITROGENADOS

producir cuerpos cetónicos desde los ácidos grasos para reemplazar la glucosa en tejidos

como el cerebro, que no puede metabolizar ácidos grasos.71 En otros organismos como

las plantas y las bacterias, este problema metabólico es solucionado utilizando el ciclo del

glioxilato, que sobrepasa la descarboxilación en el ciclo de Krebs y permite la

transformación de acetil-CoA en ácido oxalacético, el cual puede ser utilizado en la

síntesis de glucosa.72 70

Los polisacáridos y los glicanos son sintetizados por medio de una adición secuencial de

monosacáridos llevada a cabo por glicosil-transferasas de un donador reactivo azúcar-

fosfato a un aceptor como el grupo hidroxilo en el polisacárido que se sintetiza. Como

cualquiera de los grupos hidroxilos del anillo de la sustancia puede ser aceptor, los

polisacáridos producidos pueden tener estructuras ramificadas o lineales.73 Estos

polisacáridos producidos pueden tener funciones metabólicas o estructurales por sí

mismos o también pueden ser transferidos a lípidos y proteínas por medio de enzimas.74 75

Versión simplificada de la síntesis de esteroides con los intermediarios de IPP (Isopentenil pirofosfato),

DMAPP (Dimetilalil pirofosfato), GPP (Geranil pirofosfato) y escualeno. Algunos son omitidos para

mayor claridad.

Los ácidos grasos se sintentizan al polimerizar y reducir unidades de acetil-CoA. Las

cadenas en los ácidos grasos son extendidas por un ciclo de reacciones que agregan el

grupo acetil, lo reducen a alcohol, deshidratan a un grupo alquenos y luego lo reducen

nuevamente a un grupo alcano. Las enzimas de la síntesis de ácidos grasos se dividen en

dos grupos: en los animales y hongos, las reacciones de la síntesis son llevadas a cabo por

una sola proteína multifuncional tipo I,76 mientras que en plástidos de plantas y en

bacterias son las enzimas tipo II por separado las que llevan a cabo cada etapa en la

ruta.77 78

Los terpenos e isoprenoides son clases de lípidos que incluyen carotenoides y forman la

familia más amplia de productos naturales de la planta.79 Estos compuestos son

sintentizados por la unión y

modificación de unidades de isopreno

donadas por los precursores reactivos

pirofosfosfato isopentenil y pirofosfato

dimetilalil.80 Estos precursores pueden

sintetizarse de diversos modos. En

animales y archaeas, estos compuestos

se sintentizan a partir de acetil-CoA,81

mientras que en plantas y bacterias se

hace a partir de piruvato y

gliceraldehído 3-fosfato como

sustratos.82 80 Una reacción que usa

estos donadores isoprénicos activados

es la biosíntesis de esteroides. En este

caso, las unidades de isoprenoides son

unidas covalentemente para formar

escualeno, que se pliega formando

una serie de anillos dando lugar a una

molécula denominada lanosterol.83 El

lanosterol puede luego ser

Page 13: METABOLIZACION DE COMPUESTOS NITROGENADOS

transformado en esteroides como el colesterol.

La habilidad de los organismos para sintetizar los 20 aminoácidos conocidos varía. Las

bacterias y las plantas pueden sintetizar los 20, pero los mamíferos pueden sintetizar solo

los diez aminoácidos no esenciales.17 Por ende, los aminoácidos esenciales deben ser

obtenidos del alimento. Todos los aminoácidos son sintetizados por intermediarios en la

glucólisis y el ciclo de Krebs. El nitrógeno es obtenido por el ácido glutámico y la

glutamina. La síntesis de aminoácidos depende en la formación apropiada del ácido alfa-

keto, que luego es transaminado para formar un aminoácido.84

Los aminoácidos son sintetizados en proteínas al ser unidos en una cadena por enlaces

peptídicos. Cada proteína diferente tiene una secuencia única e irrepetible de

aminoácidos: esto es la estructura primaria. Los aminoácidos pueden formar una gran

variedad de proteínas dependiendo de la secuencia de estos en la proteína. Las

proteínas son constituidas por aminoácidos que han sido activados por la adición de un

ARNt a través de un enlace éster.85 El aminoacil-ARNt es entonces un sustrato para el

ribosoma, que va añadiendo los residuos de aminoácidos a la cadena proteica, sobre la

base de la secuencia de información que va "leyendo" el ribosoma en una molécula de

ARN mensajero.86

Síntesis de nucleótidos

Los nucleótidos son sintetizados a partir de aminoácidos, dióxido de carbono y ácido

fórmico en rutas que requieren una cantidad mayor de energía metabólica.87 88 En

consecuencia, la mayoría de los organismos tienen un sistema eficiente para resguardar

los nucleótidos preformados.87 89 Las purinas son sintetizadas como nucleósidos (bases

unidas a ribosa). Tanto la adenina como la guanina son sintetizadas a partir de un

precursor nucleósido, la inosina monofosfato, que es sintetizada usando átomos de los

aminoácidos glicina, glutamina y ácido aspártico; también ocurre lo mismo con el HCOO−

que es transferido desde la coenzima tetrahidrofolato. Las pirimidinas, en cambio, son

sintetizadas desde el ácido orótico, que a su vez es sintetizado a partir de la glutamina y el

aspartato.90

Xenobióticos y metabolismo reductor

Todos los organismos se encuentran constantemente expuestos a compuestos y

elementos químicos que no pueden utilizar como alimento y serían dañinos si se

acumularan en sus células, ya que no tendrían una función metabólica. Estos compuestos

potencialmente dañinos son llamados xenobióticos.91 Los xenobióticos como las drogas

sintéticas, los venenos naturales y los antibióticos son detoxificados por un conjunto de

enzimas xenobióticas-metabolizadoras. En los humanos, esto incluye a las citocromo

oxidasas P450,92 las UDP-glucuroniltransferasas93 y las glutation-S-transferasas.94

Page 14: METABOLIZACION DE COMPUESTOS NITROGENADOS

Este sistema de enzimas actúa en tres etapas. En primer lugar, oxida los xenobióticos (fase

I) y luego conjuga grupos solubles al agua en la molécula (fase II). El xenobiótico

modificado puede ser extraído de la célula por exocitosis y, en organismos pluricelulares,

puede ser más metabolizado antes de ser excretado (fase III). En ecología, estas

reacciones son particularmente importantes por la biodegradación microbiana de

agentes contaminantes y la biorremediación de tierras contaminadas.95 Muchas de estas

reacciones microbióticas son compartidas con organismos pluricelulares, pero debido a la

mayor biodiversidad de microbios, éstos son capaces de tratar con un rango más amplio

de xenobióticos en contraste a los que pueden llevar a cabo los organismos pluricelulares;

los microbios pueden incluso degradar agentes contaminantes como compuestos

organoclorados.96

Un problema relacionado con los organismos aeróbicos es el estrés oxidativo.97 Sin

embargo, una bacteria estresada podría ser más efectiva para la degradación de estos

contaminantes.98

Page 15: METABOLIZACION DE COMPUESTOS NITROGENADOS

Los procesos como la fosforilación oxidativa y la formación de enlaces disulfuro durante el

plegamiento de proteínas producen especies reactivas del oxígeno como el peróxido de

hidrógeno.99 Estos oxidantes dañinos son neutralizados por metabolitos antioxidantes

como el glutation y por enzimas como las catalasas y las peroxidasas.100 101

Un ejemplo de metabolismo xenobiótico es la depuración de los fármacos por parte del

hígado, como puede verse en el diagrama adjunto.

Homeostasis: regulación y control

Debido a que el ambiente de los organismos cambia constantemente, las reacciones

metabólicas son reguladas para mantener un conjunto de condiciones en la célula, una

condición denominada homeostasis.102 103 Esta regulación permite a los organismos

responder a estímulos e interaccionar con el ambiente.104 Para entender cómo son

controladas las vías metabólicas, existen dos conceptos vinculados. En primer lugar, la

regulación de una enzima en una ruta es cómo incrementa o disminuye su actividad en

respuesta a señales o estímulos. En segundo lugar, el control llevado a cabo por esta

enzima viene dado por los efectos que, dichos cambios de su actividad, tienen sobre la

velocidad de la ruta (el flujo de la ruta).105 Por ejemplo, una enzima muestra cambios en su

actividad; pero si estos cambios tienen un efecto mínimo en el flujo de la ruta metabólica,

entonces esta enzima no se relaciona con el control de la

ruta.106

Esquema de un receptor celular.

E: espacio extracelular.

P: membrana plasmática.

I: espacio intracelular.

Existen múltiples niveles para regular el metabolismo. En la

regulación intrínseca, la ruta metabólica se autorregula

para responder a cambios en los niveles de sustratos o

productos; por ejemplo, una disminución en la cantidad de productos puede incrementar

el flujo en la ruta para compensarlo.105 Este tipo de regulación suele implicar una

regulación alostérica de las actividades de las distintas enzimas en la ruta.107 El control

extrínseco implica a una célula en un organismo pluricelurar, cambiando su metabolismo

en respuesta a señales de otras células. Estas señales son enviadas generalmente en

forma de mensajeros como las hormonas, y los factores de crecimiento, que son

detectados por receptores celulares específicos en la superficie de la célula.108 Estas

señales son transmitidas hacia el interior de la célula mediante mensajeros secundarios

que generalmente involucran la fosforilación de proteínas.109

Un ejemplo de control extrínseco es la regulación del metabolismo de la glucosa

mediante la hormona denominada insulina.110 La insulina es producida como

consecuencia de un aumento de la concentración de azúcar en la sangre. La unión de

esta hormona a los receptores de insulina activa una cascada de proteín-quinasas que

estimulan la absorción de glucosa por parte de la célula para transformarla en moléculas

de almacenamiento como los ácidos grasos y el glucógeno.111 El metabolismo del

glucógeno es controlado por la actividad de la glucógeno fosforilasa, enzima que

degrada el glucógeno, y la glucógeno sintasa, enzima que lo sintetiza. Estas enzimas son

reguladas de un modo recíproco, siendo la fosforilación la que inhibe a la glucógeno

sintentasa, pero activando a su vez a la glucógeno fosforilasa. La insulina induce la síntesis

Page 16: METABOLIZACION DE COMPUESTOS NITROGENADOS

de glucógeno al activar fosfatasas y producir una disminución en la fosforilación de estas

enzimas.112

Termodinámica de los organismos vivos

Los organismos vivos deben respetar las leyes de la termodinámica. La segunda ley de la

termodinámica establece que en cualquier sistema cerrado, la cantidad de entropía

tendrá una tendencia a incrementar. A pesar de que la complejidad de los organismos

vivos contradice esta ley, la vida es posible ya que todos los organismos vivos son sistemas

abiertos que intercambian materia y energía con sus alrededores. Por ende, los sistemas

vivos no se encuentran en equilibrio, sino que son sistemas de disipación que mantienen su

estado de complejidad ya que provocan incrementos mayores en la entropía de sus

alrededores.113 El metabolismo de una célula logra esto mediante la relación entre los

procesos espontáneos del catabolismo con los procesos no-espontáneos del anabolismo.

En términos termodinámicos, el metabolismo mantiene el orden al crear un desorden.114

Metabolizar

Metabolizar es transformar las fuentes de energía en energía.

La información aquí contenida no debe utilizarse durante ninguna emergencia médica, ni

para el diagnóstico o tratamiento de alguna condición médica. Debe consultarse a un

médico con licencia para el diagnóstico y tratamiento de todas y cada una de las

condiciones médicas. En caso de una emergencia médica, llame al 911. Los enlaces a

otros sitios se proporcionan sólo con fines de información, no significa que se les apruebe.

© 1997-2011 A.D.A.M., Inc. La reproducción o distribución parcial o total de la información

aquí contenida está terminantemente prohibida.

Page 17: METABOLIZACION DE COMPUESTOS NITROGENADOS

COMPUESTOS NITROGENADOS

Entre los compuestos nitrogenados que se encuentran en los vegetales, los más importantes por las actividades

farmacológicas que presentan, son los alcaloides. Nos ocuparemos de ellos más adelante, siguiendo el orden

establecido al inicio de estos artículos. En esta ocasión nos vamos a dedicar al estudio de los prótidos,

especialmente de aminoácidos y péptidos y productos derivados directamente de ellos.

Los aminoácidos se pueden encontrar en las plantas en forma libre, la mayor parte de los cuales corresponden a

ácidos -aminados, cumpliendo una gran variedad de funciones fisiológicas como por ejemplo, ser reserva

nitrogenada o defensa frente a depredadores. Sin embargo, es frecuente encontrarlos formando parte de

estructuras más complejas, bien conservando su estructura aminoacídica, como es el caso de proteínas

estructurales y enzimas o bien modificados estructuralmente como precursores biogenéticos de una gran

variedad de metabolitos secundarios, como pueden ser aminas, heterósidos cianogenéticos, glucosinolatos,

alcaloides y una vez desaminados, compuestos fenilpropánicos.

Enzimas

A pesar de que en los vegetales existen numerosos compuestos enzimáticos, solo algunos de ellos, enzimas

proteolíticos, son de aplicación a la terapéutica. Es el caso de los enzimas denominados bromelaína, papaína o

ficina presentes en los frutos de piña y papaya y en el látex de las cortezas de plantas pertenecientes al género

Ficus, respectivamente. Desde el punto de vista de la fitoterapia, sin embargo, solo se utilizan los dos primeros por

lo que nos referiremos exclusivamente a ellos.

II.- COMPUESTOS NITROGENADOS DERIVADOS DE AMINOÁCIDOS

En este grupo incluimos aquellos principios activos de plantas medicinales que derivan directamente de

aminoácidos, son los heterósidos cianogenéticos y los glucosinolatos.

Heterósidos cianogenéticos

Con el nombre de heterósidos cianogenéticos (o cianógenos) se conoce a un grupo de principios activos de

plantas de diferentes familias botánicas (Rosaceae, Linaceae, Fabaceae, Euphorbiaceae, etc.) que tienen la

capacidad de producir por hidrólisis gas cianhídrico.

Químicamente, por lo general, corresponden a estructuras heterosídicas: su genina, que biogenéticamente

deriva de aminoácidos como fenilalanina y tirosina, o leucina, isoleucina y valina, suele ser un aldehído o una

cetona, generalmente el benzaldehído o la acetona, unidos al ácido cianhídrico en forma de hidroxinitrilo. La

molécula de azúcar reductor se fija por la función hidroxílica para formar el heterósido. La genina de los

heterósidos productores de benzaldehído, que son los más importantes y frecuentes, es el nitrilo fenil glicólico y la

de los heterósidos que originan acetona, es el nitrilo acetónico. Los heterósidos derivados del nitrilo fenil glicólico

o nitrilo mandélico se pueden emplear por sus propiedades terapéuticas, los derivados del nitrilo acetónico son

muy tóxicos, por lo que es necesario conocerlos.

La acción de enzimas naturales citoplasmáticos, glucosidasas e hidroxinitril-liasas, que coexisten en el propio

vegetal con estos heterósidos vacuolares, origina la ruptura de su e -D-

glucosa o algún disacárido), el compuesto carbonílico aldehídico o cetónico y gas cianhídrico.

A pesar de generar ácido cianhídrico, compuesto altamente tóxico, las drogas que lo contienen no suponen

riesgo severo para el ser humano pues además de ser poco apetecibles y de ser necesaria la ingestión rápida y

en grandes cantidades de las mismas, el organismo es capaz de transformar los cianuros ingeridos en tiocianatos

que son eliminados por orina. El cuadro de intoxicación, anoxia citotóxica, provocado por la combinación del

cianuro con la citocromo-oxidasa se manifiesta con alteración del ritmo respiratorio, cefaleas, vértigos, trastornos

de conciencia, depresión respiratoria y coma profundo.

Entre las especies que contienen heterósidos cianogenéticos, únicamente vamos a citar una, el laurel cerezo;

con ella se prepara el agua destilada de laurel cerezo, utilizada como antiespasmódico y estimulante

respiratorio.

Page 18: METABOLIZACION DE COMPUESTOS NITROGENADOS

Glucosinolatos

Los glucosinolatos también llamados heterósidos sulfocianogenéticos o heterósidos azufrados son heterósidos,

mayoritariamente glucósidos, que contienen azufre y se biosintetizan a partir de aminoácidos diversos, lo que da

lugar a diferentes estructuras químicas. El enlace heterosídico se produce en este caso entre la función

reductora del azúcar y un grupo tiol.

Como en el caso de los heterósidos cianogenéticos, estos compuestos se localizan en vacuolas y pueden ser

hidrolizados en la misma planta por enzimas citoplasmáticos hidrolíticos denominados mirosinasas

(tioglucosidasas). Los productos resultantes de la hidrólisis son variables dependiendo del pH del medio, a pH

neutro, se originan isotiocianatos volátiles denominados senevoles que son los responsables del olor característico

de estas drogas. Junto con los isotiocianatos, la hidrólisis origina glucosa, iones sulfato y nitrilos en baja

proporción.

Su distribución es muy restringida encontrándose principalmente en las familias Brassicaceae, Capparidaceae y

Resedaceae, proporcionando al vegetal que les contiene olores fuertes y sabor acre, picante.

Los isotiocianatos son los responsables de la acción farmacológica aunque también son los responsables de su

toxicidad.

Las plantas medicinales con glucosinolatos se emplean en terapéutica por sus propiedades rubefacientes y

vesicantes y por actuar como antibacterianos y antifúngicos. También han mostrado un efecto expectorante y

mucolítico. Algunas de estas drogas se consumen en alimentación, presentado efecto estimulante de la

digestión y ligeras propiedades colagogas y laxantes, aunque no debe abusarse de las mismas.

Estudios epidemiológicos recientes han demostrado que la ingestión en la dieta de cantidades considerables de

vegetales con glucosinolatos (coles, coles de bruselas, brécol) proporciona una protección natural frente a

agentes cancerígenos al inhibir la activación de sustancias procarcinogenéticas y activar la acción de enzimas

destoxificantes (NAD (P) H-quinona reductasa y Glutation S-transferasa). Sin embargo, algunos autores apuntan

la posibilidad de que algunos de estos compuestos puedan ser agentes carcinogenéticos.

En cuanto a su toxicidad, estos compuestos son tóxicos para insectos y en algunos mamíferos pueden inducir

hipotiroidismo, formación de bocio, debido a la actividad antitiroidea de los isotiocianatos. Igualmente pueden

inducir abortos. Asimismo, la aplicación sobre la piel durante largo tiempo puede provocar ulceraciones de difícil

cicatrización.

Solamente algunas drogas con glucosinolatos han sido y son empleadas en terapéutica. Entre ellas hay que

destacar las mostazas, principalmente la mostaza negra.