JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 ›...

176
JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18 SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 1 BLOQUE TEMÁTICO I: ANÁLISIS TEMA 0: Repaso de logaritmos, trigonometría y geometría plana. TEMA 1: Funciones reales de variable real: Límites y Continuidad. TEMA 2: Derivadas y técnicas de derivación. TEMA 3: Aplicaciones de las derivadas TEMA 4: Integral indefinida. TEMA 5: Integral definida.

Transcript of JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 ›...

Page 1: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 1

BLOQUE TEMÁTICO I:

ANÁLISIS

TEMA 0: Repaso de logaritmos, trigonometría y

geometría plana.

TEMA 1: Funciones reales de variable real: Límites

y Continuidad.

TEMA 2: Derivadas y técnicas de derivación.

TEMA 3: Aplicaciones de las derivadas

TEMA 4: Integral indefinida.

TEMA 5: Integral definida.

Page 2: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 2

O. REPASO LOGARITMOS, TRIGONOMETRÍA Y

GEOMETRÍA PLANA

1ª.- Definición de logaritmo.

2ª.- Propiedades de los logaritmos.

3ª.- Ecuaciones logarítmicas.

4ª.- Gráfica de la función logaritmo.

5ª.- Medidas de ángulos.

6ª.- Razones trigonométricas de un ángulo agudo.

7ª.- Inversas de las razones trigonométricas.

8ª.- Propiedades de las razones trigonométricas.

9ª.- Ecuación fundamental de la trigonometría.

10ª.- Razones trigonométricas de ángulos notables.

11ª.- Razones trigonométricas de un ángulo cualquiera.

12ª.- Reducción al primer cuadrante.

13ª.- Ecuaciones trigonométricas.

14ª.- Fórmulas de la trigonometría.

15ª- Gráficas de las funciones trigonométricas.

16ª.- Ecuaciones de una recta en el plano.

17ª.- La función cuadrática y su gráfica: La parábola

Page 3: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 3

Page 4: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 4

1ª.- Definición de logaritmo.

Se llama logaritmo en base a (a > 0 y a ≠ 1) de un número positivo x, a otro

número y, que es el exponente al que hay que elevar a para obtener el número x.

loga x = y ay = x

(a > 0; a ≠ 1; x > 0)

A los logaritmos en base 10 (a = 10) se les denomina logaritmos decimales. Su escritura

se abrevia omitiendo la base:

log10 x = log x

A los logaritmos en base e (a = e) se les denomina logaritmos neperianos y se

designan como ln, Ln ó simplemente L:

Loge x = ln x = Ln x = L x

Ejemplo resuelto 0 – 1º

a) log2 4 = 2 porque 22 = 4 b) log2 8 = 3 porque 23 = 8

c) log2 1/2 = -1 porque 2-1 = ½ d) log2 2 = 1 porque 21 = 2

e) log2 1 = 0 porque 20 = 1 f) log 1 = 0 porque 100 = 1

g) Ln e = 1 porque e1 = e h) log 100 = 2 porque 102 = 100

i) log 0,01 = -2 porque 10-2 = 1/102 = 1/100 = 0,01

j) ln e = 1/2 porque e1/2 = e

Ejercicio 0 – 1º

Sin utilizar la calculadora, halla el valor de los siguientes logaritmos, justificándolo:

a) log2 16 = b) log4 16 = c) log2 ¼ =

d) log 10 = e) log3 1 = f) ln 1 =

g) ln (1/e) = h) log 0,1 = i) Ln e3 =

j) ln 3 e =

Page 5: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 5

2ª.- Propiedades de los logaritmos

Las propiedades de los logaritmos son las siguientes:

1ª.- En cualquier base a, el logaritmo de la unidad siempre vale 0:

loga 1 = 0

2ª.- En cualquier base a, el logaritmo de la base siempre vale 1:

loga a = 1

3ª- En cualquier base, el logaritmo del producto de dos números coincide con la

suma de los logaritmos de dichos números:

loga (A.B) = loga A + loga B

4ª.- En cualquier base, el logaritmo del cociente (división) de dos números

coincide con la resta de los logaritmos de dichos números:

loga (A/B) = loga A - loga B

5ª.- En cualquier base, el logaritmo de una potencia coincide con el producto del

exponente por el logaritmo de la base:

loga An = n.loga A

Page 6: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 6

3ª.- Ecuaciones logarítmicas

Son aquellas ecuaciones en las que la incógnita está en una expresión afectada

por un logaritmo:

2 2a) 5log (x+3)=log 32 ) logx+log50 3 ) 2lnx-ln(10-3x)=0b c

Para resolver una ecuación logarítmica se modifican sus miembros con la ayuda

de las propiedades de los logaritmos hasta conseguir que en cada miembro haya solo un

logaritmo y luego se aplica:

log loga aM N M N

Y se resuelve la ecuación M N .

Es necesario comprobar que las soluciones obtenidas son válidas, ya que no

están definidos los logaritmos de cero ni de números negativos.

Ejemplo resuelto 0 – 2º

Resuelve las siguientes ecuaciones logarítmicas:

A) 2 25log (x+3)=log 32

5 5 5 5

2 2 2 25log (x+3)=log 32 log (x+3) =log 32 ( 3) 32 ( 3) 2

( 3) 2 1

x x

x x

Puedes comprobar que x = -1 sí es solución de la ecuación inicial.

B) logx+log50 3

logx+log50 3 log(50 ) 3 log(50 ) log1000 50 1000 20x x x x

Puedes comprobar que x = 20 sí es solución de la ecuación inicial.

C) 2lnx-ln(10-3x)=0

2 22

22

1 2

2lnx-ln(10-3x)=0 lnx -ln(10-3x)=0 ln =0 ln =ln1(10-3x) (10-3x)

=1 3 10 0 2; 5(10-3x)

x x

xx x x x

La solución x = - 5 no es válida porque en la ecuación original aparecería log(-5) que no es válido.

Page 7: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 7

D) |lnx|=1

Esta ecuación con valor absoluto se convierte en dos ecuaciones:

1

ln 1

|lnx|=1 1ln 1

x x e

x x e xe

Las dos soluciones son válidas.

Ejercicio 0 – 2º

Resuelve las siguientes ecuaciones logarítmicas:

2) 5log 3log 2log6 ) log(3 5 30) - log(3 8) 1

log 1) log 2 ) |ln( ) | 2

2 2

A x x B x x x

xC D x

SOLUC: A) x = 6 B) 10 y -5/3 C) x = 20 D) x1 = e2 x2 = e

-2 = 1/e

2

Page 8: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 8

4ª.- Gráfica de la función logaritmo

Page 9: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 9

5ª.- Medidas de ángulos

El sistema de medidas angulares más utilizado es el sexagesimal, cuya unidad es

el grado sexagesimal (º). En la calculadora se identifica como “DEG”.

El grado sexagesimal es la noventava parte del ángulo recto, es decir, del ángulo

comprendido entre dos segmentos perpendiculares. Por esta razón al ángulo recto se le da

el valor de 90 grados sexagesimales (90º).

Cada grado sexagesimal se divide en 60 partes iguales llamadas minutos

sexagesimales y cada minuto se divide en 60 partes iguales llamadas segundos

sexagesimales.

El valor de un ángulo en el sistema sexagesimal se puede dar de dos formas:

En forma decimal: 34,5º

En forma compleja: 34º 30’ 0’’

La calculadora te permite pasar de una a otra forma indistintamente.

Sin embargo, en el SI (Sistema Internacional de Unidades), los ángulos se

miden en radianes (rad). En la calculadora se identifica como “RAD”.

Un radián es un ángulo que abarca un arco de circunferencia cuya longitud es

igual a la del radio:

La equivalencia entre grados sexagesimales y radianes es la siguiente:

360º = 2π radianes

Page 10: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 10

Existe un tercer sistema para medir ángulos: el sistema centesimal. En este

sistema el ángulo recto mide 100 grados centesimales, es decir, un grado centesimal el la

centésima parte del ángulo recto. En la calculadora se suele identificar como “GRAD”

Ejercicio 0 – 3º

Completa la siguiente tabla correspondiente a la equivalencia entre grados

sexagesimales y radianes:

ÁNGULOS

GRADOS 0º 90º 180º 270º 45º 30º 60º

RADIANES

GRADOS 150º 120º 135º 2250º 210º 330º 300º

RADIANES

Page 11: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 11

6ª.- Razones trigonométricas de un ángulo agudo

Considera el triángulo rectángulo de la figura, el cual consta de tres lados: dos

catetos (a y b) y la hipotenusa (c); y de tres ángulos: dos agudos (α y β) y uno recto (90º)

β = 90º-α

a c

90º α

b

Se define el seno del ángulo α como el cociente entre las longitudes del cateto

opuesto a dicho ángulo y la hipotenusa:

cateto opuesto

senα=hipotenusa

ac

Se define el coseno del ángulo α como el cociente entre las longitudes del cateto

contiguo a dicho ángulo y la hipotenusa:

cateto contiguo

cosα=hipotenusa

bc

Se define la tangente del ángulo α como el cociente entre su seno y su coseno, es

decir, entre las longitudes del cateto opuesto y el cateto contiguo a dicho ángulo:

cateto opuestotgα=

cos cateto contiguo

asen ac

b bc

Page 12: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 12

7ª.- Inversas de las razones trigonométricas

Se define la cosecante del ángulo α como la inversa del senα, es decir, el cociente

entre las longitudes de la hipotenusa y el cateto opuesto a dicho ángulo:

1 hipotenusacosec =

cateto opuesto

csen a

Se define la secante del ángulo α como la inversa del cosα, es decir, el cociente

entre las longitudes de la hipotenusa y el cateto contiguo a dicho ángulo:

1 hipotenusasecα=

cos cateto contiguo

cb

Se define la cotangente del ángulo α como la inversa de la tgα, es decir, el

cociente entre el cosα y el senα, o sea, el cociente entre las longitudes del cateto contiguo

y el cateto opuesto a dicho ángulo:

1 cos cateto contiguocotgα=

cateto opuesto

bbc

atg sen ac

Page 13: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 13

8ª.- Propiedades de las razones trigonométricas

De la definición de las razones trigonométricas para un ángulo agudo se pueden

deducir múltiples propiedades. Destacamos las siguientes:

1ª.- La definición de seno, coseno y tangente no depende del tamaño del triángulo

elegido, sólo depende de los ángulos

C´´

β=90º-α C´

β=90º-α

C

α

B´´ B´ B A

En efecto los triángulos ABC, AB´C´ y AB´´C´´ son semejantes, es decir, aunque sus lados

no tienen las mismas longitudes, sus ángulos sí son iguales y por tanto la relación entre

sus lados siempre es la misma.

2ª.- Los valores de las tres razones trigonmétricas de un ángulo agudo siempre

serán un nº mayor o igual a 0.

3ª.- El seno y el coseno de un ángulo agudo nunca será superior a 1, puesto que

los catetos son menores o iguales que la hipotenusa. La tangente sí.

4ª.- El seno de un ángulo α siempre coincidirá con el coseno de su

complementario β = 90º-α, ya que el cateto opuesto a α es el cateto contiguo a β = 90º-α.

β = 90º-α

a c

90º α

b

cateto opuesto cateto contiguo

senα= cos(90º )hipotenusa hipotenusa

a ac c

5ª.- El coseno de un ángulo α siempre coincidirá con el seno de su

complementario β = 90º-α, ya que el cateto contiguo a α es el cateto opuesto a β = 90º-α.

Page 14: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 14

cateto contiguo cateto opuesto

cosα= (90º )hipotenusa hipotenusa

b bsen

c c

6ª.- La tangente de un ángulo α siempre coincidirá con la cotangente de su

complementario β = 90º-α, ya que el cateto contiguo a α es el cateto opuesto a β = 90º-α y

viceversa.

cos(90º )tgα= cot (90º )

cos (90º )

sen ag

b sen

9ª.- Ecuación fundamental de la trigonometría

Si elevamos al cuadrado el seno y el coseno de un ángulo y sumamos los

resultados siempre obtenemos el mismo valor, la unidad. Veámoslo:

22 2

2 2 2 2 222 2

2 2 2 2 22 2

2

( )cos 1

(cos ) cos

PITÁGORAS

asen sen a b a b Cc sen

b c c c Cc

A este resultado se le conoce como ecuación fundamental de la trigonometría:

2 2cos 1sen

Esta ecuación puede transformarse en otras dos ecuaciones equivalentes. Para ello,

primero dividamos ambos miembros de la ecuación por 2sen :

2 2 2 22 2

2 2 2 2 2

cos 1 cos 11 cos

sen senctg c

sen sen sen sen sen

2 21 cosctg c

Si ahora dividimos la ecuación fundamental de la trigonometría por 2cos :

2 2 2 22 2

2 2 2 2 2

cos 1 cos 11 sec

cos cos cos cos cos

sen sentg c

2 21 sectg c

Page 15: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 15

Ejemplo resuelto 0 – 3º

Sabiendo que α es un ángulo agudo, calcula el resto de sus razones

trigonométricas y sus inversas, a partir del dato que te dan:

A) sen α = 2/3

Aplicamos la ecuación fundamental de la trigonometría y obtenemos el valor del cos α:

2 2 2 2 2 22 4 5 5cos 1 ( ) cos 1 cos 1 cos cos

3 9 9 3sen

Pero desechamos el valor negativo porque las razones trigonométricas de los ángulos agudos son siempre

positivas.

5

cos3

Ya podemos calcular la tangente y las inversas:

2 / 3 2 2 5

cos 55 / 3 5

sentg

1 3 1 3 3 5 1 cos 5cos c cot

2 cos 5 25ec se g

sen tg sen

B) tg α = 2

Si aplicamos la ecuación equivalente a la ecuación fundamental de la trigonometría

2 21 sectg c obtenemos el valor de la sec α y a continuación cos α:

2 2 2 2 21 sec 2 1 sec 5 sec sec 5tg c c c c

1 5

sec 5 cos55

c

De nuevo hemos desechado el signo negativo al tratarse de un ángulo agudo.

Ahora podemos calcular el sen α y podemos hacerlo con la ecuación fundamental de la

trigonometría o con la definición de tangente:

5 2 5cos . .2

cos 5 5

sentg sen tg sen sen

Calculemos las inversas que nos faltan:

Page 16: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 16

1 5 5 1 1

csc2 22 5

ctgsen tg

Ejercicio 0 – 4º

A) Sabemos que sen α = 1/2 y que α es un ángulo agudo. Calcula el resto de

razones trigonométricas y sus inversas.

B) Sabemos que β es un ángulo agudo y que tg β = 3. Calcula el resto de razones

trigonométricas y sus inversas.

C) Sabemos que 3

3cotg y que α es un ángulo agudo. Calcula las razones

trigonométricas de dicho ángulo y sus inversas.

SOLUC: A) 3 3

cos2 3

tg B) 10 3 10

cos10 10

sen

C) 1 3

cos2 2

sen

Page 17: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 17

10ª.- Razones trigonométricas de ángulos notables

Las razones trigonométricas de 0º, 30º, 45º, 60º y 90º se pueden calcular

fácilmente mediante geometría y son tan utilizadas que conviene conocerlas.

10.1 Razones trigonométricas de 45º

Consideremos un cuadrado de 1 m de lado. Si trazamos una cualquiera de sus

dos diagonales obtenemos dos triángulos rectángulos isósceles con los ángulos agudos

iguales y de 45º:

2m 1m

45º

1 m

1 2 1 2

45º ; cos45º ; 45º 12 22 2

cateto opuesto cateto contiguosen tg

hipotenusa hipotenusa

Como vemos el seno y el coseno de 45º valen lo mismo y, por tanto, la tangente vale 1.

10.2 Razones trigonométricas de 30º y 60º

Consideremos un triángulo equilátero de de 2 m de lado. Los tres ángulos son

iguales y valen 60º. Si trazamos la altura de uno cualquiera de sus lados, obtenemos dos

triángulos rectángulos escalenos de los que conocemos sus ángulos agudos que son de

30º y 60º:

60º

2m 60º 2m 2m 30º 30º 2m

60º 60º 60º 3 m 60º

2m 1m 1m

1 3 1 3

30º ; cos30º ; 30º2 2 33

cateto opuesto cateto contiguosen tg

hipotenusa hipotenusa

Como puede comprobarse 60º = 90º - 30º es el ángulo complementario de 30º y, por tanto

cumple las propiedades 4ª, 5ª y 6ª vistas en la pregunta 7ª.

3 1

60º cos30º; cos60º 30º; 60º 3 cot 30º2 2

sen sen tg g

Page 18: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 18

10.3 Razones trigonométricas de 0º y 90º

En este caso lo haremos por aproximación. Consideremos un triángulo rectángulo

y hagamos que el ángulo α vaya disminuyendo hasta hacerse 0º:

c

a α

b

Si disminuimos el ángulo α, el cateto a va disminuyendo y, cuando mas nos aproximemos

a 0º mas se aproximará el valor del cateto a a 0. Cuando α sea 0,º, el cateto a valdrá 0 y

por tanto el sen0º = 0

Del mismo modo, si disminuimos el ángulo α, manteniendo la longitud del cateto b, la

hipotenusa c va disminuyendo y, cuando mas nos aproximemos a 0º mas se aproximará el

valor de la hipotenusa al cateto b. Cuando α sea 0º c y b serán iguales y por tanto el cos0º

= 1

0 0

0º 0; cos0º 1; 0º 01

b ccateto opuesto cateto contiguosen tg

hipotenusa c hipotenusa

Teniendo en cuenta que 90º es el ángulo complementario a 0º, obtenemos:

90º 1

90º cos0º 1; cos90º 0º 0; 90ºcos90º 0

sensen sen tg

En la siguiente tabla se recogen todos los resultados obtenidos:

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES

senα cosα tgα

0º = 0 rad 0 1 0

30º =

6 rad 1

2 3

2

3

3

45º =

4 rad 2

2

2

2 1

60º =

3 rad 3

2

1

2 3

90º =

2 rad 1 0 ∞

Page 19: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 19

11ª.- Razones trigonométricas de un ángulo cualquiera

Hasta ahora hemos hablado solo de ángulos agudos (de 0º a 90º). Pero también

hay ángulos mayores de 90º y ángulos negativos.

Para representar cualquier ángulo (ángulos comprendidos entre 0º y 360º, ángulos

mayores de 360º y ángulos negativos) se utiliza la denominada circunferencia

goniométrica, es decir, una circunferencia de radio la unidad y centrada en el origen de

coordenadas cartesiano.

Los ángulos se representan siempre partiendo del semieje positivo de las x y se

consideran positivos si se miden en sentido contrario a las agujas del reloj y negativos

cuando se miden en el sentido de las agujas del reloj.

1 m ángulo positivo

α

O

ángulo negativo

Utilizando esta representación, a cualquier punto de la circunferencia goniométrica

se le puede asociar con un ángulo positivo entre 0º y 360º, llamado ángulo reducido o a un

ángulo negativo.

Cada punto de la circunferencia goniométrica también representa a cualquier

ángulo que sea igual al ángulo reducido más un múltiplo entero de 360º (ó 2π radianes)

1 m α, α + 360º, α + 2.360º, … (α + n.360º ó α + n.2π rad)

α

O

Según el valor del ángulo reducido α el plano se divide en cuatro zonas o

cuadrantes:

Page 20: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 20

90º π/2 rad

2º cuad. 1er

cuad

180º = π rad O 0º = 0 rad

3er

cuad. 4º cuad

270º 3π/2 rad

Primer cuadrante Segundo cuadrante Tercer cuadrante Cuarto cuadrante

0º < α < 90º

0 < α < π/2 rad

90º < α < 180º

π/2 < α < π rad

180º < α < 270º

π < α < 3π/2 rad

270º < α < 360º

3π/2 < α < 2π rad

Si representamos un ángulo del primer cuadrante en la circunferencia

goniométrica y aplicamos la definición de seno y coseno, podemos observar que la

ordenada del punto A coincide con el valor del seno del ángulo α y la abscisa coincide con

el valor del coseno.

La tangente del ángulo α, aplicando el Teorema de Tales a triángulos semejantes,

correspondería con la longitud del segmento verde.

A tgα A = (x, y)

cosxy sen

1 α y = senα

O x = cosα

Esta nueva definición de las razones trigonométricas a través de las coordenadas

de los puntos de la circunferencia goniométrica se puede extender a cualquier ángulo sea

o no agudo.

De esta nueva definición mediante coordenadas se pueden deducir múltiples

consecuencias:

1ª.- Por ejemplo, podemos deducir fácilmente las razones trigonométricas de los

ángulos que separan a los diferentes cuadrantes:

Page 21: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 21

B = (0,1)

cos90º 0

90º 1

90º

xy sen

tg

cos180º 1

180º 0

180º 0

xy sen

tg C = (-1,0)

A = (1,0)

cos360º 1

360º 0

360º 0

xy sen

tg

D = (0,-1)

cos270º 0

270º 1

270º

xy sen

tg

2ª.- También podemos deducir cuales serán los signos de las razones

trigonométricas en los diferentes cuadrantes:

cos 0

0

0

xy sen

tgB = (x,y) A = (x,y)

cos 0

0

0

xy sen

tg

cos 0

0

0

xy sen

tgC = (x,y) D = (x,y)

cos 0

0

0

xy sen

tg

cuadrante ángulo α abscisa ordenada senα Cosα Tgα

1º 0º < α < 90º + + + + +

2º 90º < α < 180º - + + - -

3º 180º < α < 270º - - - - +

4º 270º < α < 360º + - - + -

90º

180º

270º

Page 22: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 22

3ª.- Los valores del seno y del coseno de cualquier ángulo siempre estarán

comprendidos entre los valores -1 y 1, es decir, no pueden valer ni más de 1, ni menos de -

1. La tangente puede tomar cualquier valor real.

4ª.- También podemos descubrir que un ángulo α y cualquier otro ángulo que

difiera de él en un nº entero de vueltas (α + n.360º ó α + n.2π rad) tienen las mismas

razones trigonométricas:

A tgα A = (x, y)

( 0,1, 2, ...)

cos cos( .360º )

( .360º )

( .360º ) n

x ny sen sen n

tg tg n

1 α y = senα

O x = cosα

5ª.- También podemos observar que hay dos ángulos reducidos de diferentes

cuadrantes que comparten algunas razones trigonométricas:

cos(180º ) cos

(180º ) ( , )

(180º )

xsen y sen B x y

tg tg

cos 0

( , ) 0

0

xA x y y sen

tg

xsen y sen C x y

tg tg

cos(180º ) cos

(180º ) ( , )

(180º )

cos(360º ) cos

( , ) (360º )

(360º )

xD x y sen y sen

tg tg

Esta propiedad es importante tenerla en cuenta cuando se resuelven ecuaciones

trigonométricas.

Page 23: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 23

Ejercicio 0 – 5º

A) Sabemos que sen α = -1/2 y que α es un ángulo del cuarto cuadrante. Calcula

el resto de razones trigonométricas y sus inversas.

B) Sabemos que β > 90º y que tg β = 3. Calcula el resto de razones

trigonométricas y sus inversas.

C) Sabemos que 3

3cotg y que su seno el positivo. Calcula las razones

trigonométricas de dicho ángulo y sus inversas.

IMPORTANTE: Ten en cuenta en qué cuadrante están los ángulos para poner los

signos adecuados a las razones trigonométricas.

SOLUC: A) 3 3

cos2 3

tg B) 10 3 10

cos10 10

sen

C) 1 3

cos2 2

sen

Page 24: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 24

12ª.- Reducción al primer cuadrante

La consecuencia última de la pregunta anterior permite calcular las razones

trigonométricas de cualquier ángulo no agudo a partir de las razones trigonométricas de

uno del primer cuadrante, es decir, de uno que sea agudo.

12.1 Ángulos suplementarios

Dos α y β ángulos son suplementarios si suman 180º, es decir, β = 180º - α.

En la figura pueden observarse un ángulo agudo α (1er cuadrante) y su suplementario β =

180º - α (2º cuadrante) y la relación que existe entre las razones

trigonométricas de ambos ángulos:

12.2 Ángulos que difieren en 180º

En la figura pueden observarse un ángulo agudo α (1er cuadrante) y un ángulo β que difiere

de él en 180º (β = 180º + α) y que es del 3er cuadrante. La relación que existe entre las

razones trigonométricas de ambos ángulos es:

sen (π+α)

sen (π- α)

cos α

cos (π-α)

sen α

tg (π- α)

tg α

cos α

sen α cos (π+α)

tg (π+α)

tg α

sen (180º - α) = sen α

cos (180º - α) = - cos α

tg (180º - α) = - tg α

sen (180º + α) = - sen α

cos (180º + α) = - cos α

tg (180º + α) = tg α

Page 25: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 25

12.3 Ángulos que suman 360º

En la figura pueden observarse un ángulo agudo α (1er cuadrante) y un ángulo β que suma

con él 360º (β = 360º - α) y que es del 4º cuadrante.

La relación que existe entre las razones trigonométricas de ambos ángulos es:

12.4 Ángulos negativos (ángulos opuestos)

En la figura pueden observarse un ángulo agudo α (1er cuadrante) y su ángulo opuesto - α

que es del 4º cuadrante.

La relación que existe entre las razones trigonométricas de ambos ángulos es:

12.5 Ángulos mayores de 360º

Como ya se dijo las razones trigonométricas de un ángulo mayor de 360º son las mismas

que las de su ángulo reducido correspondiente.

cos α

cos (2π-α

sen (2π-α)

sen α tg α

tg (2π-α)

α

sen α

sen (-α)

cos α

cos (-α)

tg α

tg (-α)

sen (360º - α) = - sen α cos (360º - α) = cosα

tg (360º - α) = - tg α

sen (- α) = - sen α cos (- α) = cos α

tg (- α) = - tg α

Page 26: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 26

13ª.- Ecuaciones trigonométricas

Son ecuaciones en las que la incógnita se ve afectada por las razones

trigonométricas.

Ejemplo resuelto 0 – 5º

Resuelve las siguientes ecuaciones trigonométricas dando todas las soluciones

positivas que sean posibles. Exprésalas en grados sexagesimales y en radianes:

A) 1

2senx

1

( 0,1, 2, ...)

1

30º .360º .21 1 6

( )2 2 5

150º .360º .26

n

x n ó n radsenx x arcsen

x n ó n rad

B) 1tgx

1

( 0,1, 2, ...)

1

45º .360º .24

1 (1)5

225º .360º .24

n

x n ó n radtgx x arctg

x n ó n rad

C) cos 1x

( 0,1, 2, ...)1cos 1 arccos( 1) 180º .360º .2 nx x x n n rad

D) 3

2senx

1

( 0,1, 2, ...)

1

60º .360º .23 3 3

s arc ( )2 2 2

120º .360º .23

n

x n n radenx x sen

x n n rad

Page 27: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 27

E) 2 5cos

4sen x x

2 2 2 25 5cos 1 cos cos 4 4cos 4cos 5 4cos 4cos 1 0

4 4sen x x x x x x x x

Como vemos hemos obtenido una ecuación de 2º grado en cosx que podemos resolver

222 4 4 4.( 4).( 1)4 4 0 1

4cos 4cos 1 0 cos2 2.( 4) 8 2

b b acx x x

a

1

( 0,1, 2, ...)

2

260º .360º .2

1 1 3cos cos( )

2 2 5300º .360º .2

3

n

x n n radSi x x arco

x n n rad

F) x x2cos 3cos 2 0

222 3 ( 3) 4..1.24 3 1 cos 2( )

cos 3cos 2 0 coscos 12 2.1 2

b b ac x imposiblex x x

xa

El primer valor es imposible pues el cosen de un ángulo está comprendido entre -1 y 1.

( 0,1, 2, ...)cos 1 cos(1) 0º .360º .2 nSi x x arco x n n rad

G) 2cos 1 0x

2 2 2cos 1 0 cos 1 cos 1 cos 1x x x x

( 0,1, 2, ...)

cos 1 arccos(1) 0º .360º .2

cos 1 arccos( 1) 180º .360º .2n

Si x x x n n rad

Si x x x n n rad

Page 28: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 28

Ejercicio 0 – 6º

Resuelve las siguientes ecuaciones trigonométricas dando todas las soluciones

positivas que sean posibles. Exprésalas en grados sexagesimales y en radianes:

2 2 2) 2 1 ) 1 ) 0 ) 1A sen x B tgx C tg x tgx D sen x

2 2 2) 2cos cos 1 ) ) cos 1E x x F senx tgx G sen x x

2) 2cos 1H x senx

SOLUC: A)

1 2

( 0,1, 2, ...)

3 4

345º .360º .2 135º .360º .2

4 4

5 7225º .360º .2 315º .360º .2

4 4

n

x n n rad x n n rad

x n n rad x n n rad

B)

1

( 0,1, 2, ...)

2

3135º .360º .2

4

7315º .360º .2

4

n

x n n rad

x n n rad

C)

1 2

( 0,1, 2, ...)

3 4

0º .360º .2 180º .360º .2

545º .360º .2 225º .360º .2

4 4

n

x n n rad x n n rad

x n n rad x n n rad D)

1

( 0,1, 2, ...)

2

90º .360º .22

3270º .360º .2

2

n

x n n rad

x n n rad

E)

1

( 0,1, 2, ...)2

3

60º .360º .23

5300º .360º .2

3

180º .360º .2

n

x n n rad

x n n rad

x n n rad

F)

1( 0,1, 2, ...)

2

0º .360º .2

180º .360º .2n

x n n rad

x n n rad

G)

1

( 0,1, 2, ...)

2

90º .360º .22

3270º .360º .2

2

n

x n n rad

x n n rad

H)

n

x n n rad

x n n rad

x n n rad

1

( 0,1, 2, ...)2

3

5210º .360º .2

6

7330º .360º .2

6

90º .360º .22

Page 29: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 29

14ª.- Fórmulas de la trigonometría

14.1 Razones trigonométricas de la suma de dos ángulos

( ) cos cossen sen sen

cos( ) cos cos sen sen

( )

1

tg tgtg

tg tg

14.2 Razones trigonométricas de la resta de dos ángulos

( ) cos cossen sen sen

cos( ) cos cos sen sen

( )

1

tg tgtg

tg tg

14.3 Razones trigonométricas del ángulo doble

(2 ) 2 cossen sen

2 2 2 2cos(2 ) cos 1 2 2cos 1sen sen

2

2(2 )

1

tgtg

tg

Page 30: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 30

14.4 Transformación en productos de la suma y resta de senos y cosenos

2 cos

2 2

A B A BsenA senB sen

2cos

2 2

A B A BsenA senB sen

cos cos 2cos cos

2 2

A B A BA B

cos cos 2

2 2

A B A BA B sen sen

15ª.- Gráficas de las funciones trigonométricas

Las gráficas de las funciones trigonométricas:

f(x) = sen x g(x) = cos x h(x) = tg x

podemos construirlas mediante una tabla de valores adecuados y teniendo en cuenta que

sus valores se repiten cada vuelta, cada 360º, es decir, cada 2π radianes. También

podemos ayudarnos de la interpretación gráfica de estos valores en la circunferencia

goniométrica:

X f(x) = sen x g(x) = cos x (x) = tg x

0º = 0 rad 0 1 0

90º = π/2 rad 1 0

180º = π rad 0 -1 0

270º = 3π/2 rad -1 0

360º = 2π rad 0 1 0

Page 31: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 31

f(x) = sen x

g(x) = cos x

Page 32: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 32

h(x) = tg x

Page 33: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 33

16ª.- Ecuaciones de una recta en el plano.

Para escribir las diferentes expresiones de la ecuación de una recta r en el plano,

necesitamos un punto cualquiera P = (x0, y0) de la recta y un vector cualquiera

u = (ux, uy) paralelo a dicha recta llamado VECTOR DIRECTOR O VECTOR DIRECCIÓN.

u = (ux, uy)

. P = (x0, y0)

r

IMPORTANTE:

1º.- Como punto P, sirve cualquier punto de la recta.

2º.- No hay un único vector director de la recta, hay infinitos, y todos ellos son proporcionales entre sí (LD). Por esta razón siempre podremos elegir, de entre todos ellos, a aquel vector que tenga las coordenadas más sencillas.

3º.- A veces, sólo nos dan dos puntos A = (x0, y0) y B = (x1, y1) de la recta. En

este caso nosotros siempre podemos hallar como vector director de la recta al vector

AB =

(x1 - x0, y1 - y0) ó cualquiera proporcional a él, y como punto P a uno de los dos puntos: A ó B.

B .

A .

AB =B - A

r

Una recta en el plano puede describirse mediante diferentes ecuaciones. Nosotros vamos a recordar tres de ellas:

Ecuación explícita

Ecuación punto pendiente

Ecuación general

Page 34: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 34

Ecuación explícita

y mx n

“m” es la PENDIENTE DE LA RECTA, es la tangente del ángulo que forma la recta con el eje de abscisas y nos indica la inclinación de la recta.

Si m > 0, la recta es creciente.

Si m < 0, la recta es decreciente.

Si m = 0, la recta es horizontal (paralela al eje de abscisas).

“n” es la ORDENADA EN EL ORIGEN, es decir, la altura a la que corta la recta al eje de ordenadas.

Si n > 0, la recta corta al eje y por encima del origen de coordenadas.

Si n < 0, la recta corta al eje y por debajo del origen de coordenadas.

Si n = 0, la recta pasa por el origen de coordenadas.

n > 0

n = 0 n > 0

n < 0 n = 0

n < 0

Rectas con pendiente positiva (m > 0) Rectas con pendiente negativa (m < 0)

Ecuación en forma punto pendiente

y y m x x0 0

( )

Ecuación en forma general

Si en cualquiera de las dos ecuaciones anteriores agrupamos todos los términos en el primer miembro y ordenamos quedaría de la forma:

ax by c 0

Page 35: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 35

17ª.- La función cuadrática y su gráfica: La parábola

Se denomina FUNCIÓN CUADRÁTICA a aquella función cuya expresión analítica es un polinomio de segundo grado, es decir, a la expresión:

f(x) = ax2 + bx + c o bien y = ax2 + bx + c con a ≠ 0

La representación gráfica de la función cuadrática es una PARÁBOLA.

La parábola tiene los siguientes elementos: ramas, vértice, eje de simetría, puntos de corte con el eje de abscisas y punto de corte con el eje de ordenadas (véase figura)

El signo del coeficiente del monomio de segundo grado, es decir, el signo de a, nos

indica si la parábola tiene sus ramas hacia arriba (el vértice es un mínimo) o hacia abajo (el

vértice es un máximo)

Page 36: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 36

La forma de la parábola de funciones cuadráticas sencillas es fácil de representar. Por

ejemplo:

Cuando la forma de la parábola no sea tan inmediata, para dibujar la parábola, podemos

calcular los puntos siguientes:

Coordenadas del vértice

La abscisa del vértice de la parábola es b

xa0 2

; para calcular la ordenada

sustituimos este valor en la función, ( )2

bf

a .

Puntos de corte con los ejes

Con el eje OX: y ax bx c20 0

Con el eje OY: x y c Punto c0 0,

La parábola puede tener dos puntos de corte con el eje de abscisas, uno sólo o ninguno. Esto depende del signo del signo del discriminante (∆ = b2 – 4ac) de la ecuación de segundo grado que hay que resolver para hallar las abscisas de dichos puntos. Independientemente de si el vértice es un mínimo o un máximo, la parábola, con el eje de ordenadas, siempre tendrá un punto de corte y este será el punto de coordenadas (0, c)

Observa que una vez localizada la abscisa del vértice, podemos construir la forma de la parábola creando una tabla con valores de la abscisa a ambos lados del vértice.

Page 37: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 2

1. FUNCIONES REALES DE VARIABLE REAL: LIMITES Y CONTINUIDAD

1ª.- Funciones reales de variable real.

2ª.- Dominio de definición de una función: Cálculo.

3ª.- Límite de una función en un punto: Definición y cálculo.

4ª.- Límites laterales.

5ª.- Propiedades algebraicas de los límites.

6ª.- Límite de una función en el infinito: Definición y cálculo.

7ª.- Indeterminaciones.

8ª.- Regla de L’Hôpital.

9ª.- Asíntotas.

10ª.- Continuidad de una función.

11ª.-Teorema de Bolzano (o Teorema de los ceros de una función).

12ª.- Teorema de Weierstrass.

Page 38: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 2

1ª.- Funciones reales

Una función es una relación de dependencia

entre dos conjuntos en la que a cada elemento x del

conjunto inicial le corresponde un único elemento y

del conjunto final. Se simboliza mediante la notación:

:

( )

f A Bx y f x

Si A y B son conjuntos de números reales, se habla de función real de variable

real.

La expresión gráfica de una función permite interpretar

algunas de sus características, como monotonías, extremos

relativos, continuidad, etc. Sin embargo, esta forma de

expresión presenta generalmente mucha dificultad para

encontrar la ley matemática que la define.

No todas las gráficas corresponden a una función; para que así sea, a cada valor de

x debe corresponderle un único valor de y. Así estas gráficas no corresponden a una

función:

Las funciones las podemos clasificar en:

Algebraicas:

Constantes: f x ( ) 2

Polinómicas: f x x x 2( ) 3 5 7

Racionales: x

f xx

( )2

Irracionales: f x x 2( ) 4

Transcendentes:

Exponenciales: xf x 2( ) 3

Logarítmicas: f x x ( ) log( 7)

Trigonométricas: f x senx g x x h x tg x( ) ( ) cos ( ) (3 6)

Empíricas (definidas a trozos o ramas)

Page 39: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 3

2 2 05 2

( ) ( ) 11 2 0

x si xx si x

f x g xsi x si x

x

IMPORTANTE: Las funciones valor absoluto pueden ser expresadas analíticamente

mediante funciones a trozos (o por ramas).

Ejemplo resuelto 1 – 1º

Expresa las siguientes funciones mediante una función a trozos (o por ramas)

A) ( )f x x x

0

x x

x

x x

2( )x x x

2.x x x

x si xf x x x

x si x

2

2

0( )

0

B) ( ) 2 5f x x x

-5 2

2x 2x

2x

2x

5 x

5 x

5 x

5 x

2 5x x

( 2) ( 5 ) 7x x

2 3x

7

7 5

( ) 2 5 2 3 5 2

7 2

xf x x x x x

x

Page 40: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 4

2) ( ) 9C f x x

-3 3

2 9x

2 9x

2 9x

2 9x

2

2 2

2

9 3

( ) 9 9 3 3

9 3

x xf x x x x

x x

Ejercicio 1 – 1º

Expresa a las siguientes funciones mediante una función por partes:

a f x x b g x x x c h x x x

d f x x e g x x x f g x x x2 2 2

) ( ) ) ( ) 2 1 ) ( ) 5

) ( ) 1 ) ( ) 5 2 ) ( )

2ª.- Dominio de definición de una función. Cálculo.

Se llama dominio de definición de una función al conjunto de números reales que

puede tomar la variable independiente, x, para los cuales está definida la función.

( ) | ( )Dom f x x R f x R

Se llama recorrido o imagen de una función al

conjunto de números reales que toma la variable

dependiente. Mientras que el dominio lo buscamos en el

conjunto inicial, el recorrido lo buscaremos en el conjunto

final.

Ejemplo resuelto 1 – 2º

Analiza y describe, en las siguientes funciones reales dadas mediante sus gráficas, el dominio y el recorrido.

Page 41: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 5

a) b)

( ) , 3 3,

Im ( ) 7,5

Dom f x

f x

Dom g x R

Im g x

( ) 4

( ) 5,

Ejercicio 1 – 2º

Asocia cada gráfica con su dominio

Como acabamos de ver, si conocemos la gráfica de una función f(x), podemos

descubrir fácilmente su dominio y su recorrido.

Veamos ahora como hallar el dominio de una función si conocemos su expresión

analítica:

a) Polinómicas

Son aquellas cuya expresión analítica es un polinomio. Su dominio coincide con el

conjunto de los números reales, ( )Dom f x R .

b) Racionales

Son aquellas cuya expresión analítica es una fracción algebraica, es decir, el

cociente entre dos polinomios: ( )

( )( )

P xf x

Q x

El dominio es el conjunto de los números reales, excluidos los números para los que

se anule el denominador (ceros o raíces):

Page 42: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 6

Dom f x R x R Q x ( ) | ( ) 0

valores que anulan el denominadorDom f ( x ) R

Ejemplo resuelto 1 – 3º

Dada la función x

f xx

( )2

, su dominio es Dom f x R( ) 2 , ya que el número 2 es el

cero del denominador.

Ejercicio 1 – 3º

Calcula el dominio de las siguientes funciones:

2

2 3

2

3 1 4 3 4 2) ( ) ) ( ) ) ( )

2 4 2 4

) ( ) 3 7 ) ( ) 5 2

x x x xa f x b f x c f x

x x x x x x

d f x x e f x x x

c) Irracionales

Son aquellas cuya expresión matemática presenta un radical: ( ) ( )nf x g x

Si n es impar, el dominio de f(x) coincide con el dominio de g(x):

( ) ( )Dom f x Dom g x

Si n es par, el dominio de f(x) es el conjunto de los números reales tales que

( ) 0g x :

0( ) | ( )Dom f x x R g x

Page 43: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 7

Ejemplo resuelto 1 – 4º

Dadas las siguientes funciones reales, hallar su dominio

A) Dada la función f x x 53( ) 2 , su dominio coincide con el de la función x 5 2que

son todos los números reales ( ( )Dom f x R )

B) Dada la función

f x

x

7

1( )

3, su dominio coincide con el de la función

x1

3que, al

ser una función racional, son todos los números reales salvo los que anulan a su

denominador (es

Dom f x R( ) 3 .

C) f x x 2( ) 4

El dominio de f(x) serán el conjunto de números reales que hacen al radicando mayor o

igual que cero y, por tanto, coinciden con las soluciones de la inecuación x 2 4 0

Resolvemos la inecuación de segundo grado anterior y descubrimos que sus soluciones

son: , 2 2, ( 2,2)R

Por tanto:

Dom f x R( ) , 2 2, ( 2,2) .

D)

xg x

x5

( )7

El dominio de g(x) serán el conjunto de números reales que hacen al radicando mayor o

igual que cero y, por tanto, coinciden con las soluciones de la inecuación

xx

50

7

Resolvemos la inecuación racional anterior y descubrimos que sus soluciones son:

,5 7, (5,7]R Por tanto

( ) ,5 7, (5,7]Dom g x R

Ejercicio 1 – 4º

Halla el dominio de las siguientes funciones:

2

2

2) ( ) 13 ) ( ) 2 18 ) ( )

2 16 24

3 6 1) ( ) 4 3 ) ( ) ) ( )

1 3

xa f x x b f x x c f x

x x

x xd g x x x e h x f g x

x x

Page 44: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 8

d) Exponenciales

Son aquellas en las que la incógnita se encuentra en el exponente: ( )( ) g xf x a ,

con a > 0 y a ≠ 1.

El dominio de estas funciones coincide con el dominio de g(x):

( ) ( )Dom f x Dom g x

Ejemplo resuelto 1 – 5º

A) Dada la función xf x 2( ) 3 , su dominio es ( )Dom f x R .

B) Dada la función xf x 3

5( ) 7 , su dominio es Dom f x R( ) 5 .

e) Logarítmicas

Son aquellas en las que la incógnita se encuentra dentro de una expresión

logarítmica: ( ) log ( )af x g x , con a > 0 y a ≠ 1.

El dominio de estas funciones, es el subconjunto de los números reales tales que

hacen g(x) positivo (g(x) > 0):

0( ) | ( )Dom f x x R g x

Recuerda que no se pueden calcular logaritmos de números negativos ni tampoco

está definido el logaritmo de 0.

Ejemplo resuelto 1 – 6º

Dada la función ( ) log( 7)f x x , su dominio coincide con las soluciones de la

inecuación 7 0x cuyas soluciones son: 7x Por tanto:

Dom f x ( ) 7,

Ejercicio 1 – 5º

Calcula el dominio de las siguientes funciones:

x

xa f x x b f x x x c f x

xx x

d f x e f x f f xx xx x

g f x

2

2 22

7

2) ( ) 2 ) ( ) 2 ) ( )

11 2 6 5

) ( ) ) ( ) ) ( ) log25 1 62

) ( ) 7

Page 45: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 9

f) Definidas a trozos

En este tipo de funciones la expresión analítica depende de los tramos del dominio

en los que se encuentre la variable independiente.

Ejemplo resuelto 1 – 7º

Halla el dominio de definición de las siguientes funciones:

xx

x si x x si xA f x B g xx

si x si xx

2

7

2 8

5 2 1 0) ( ) ) ( )7

2 5 02 6

A) El dominio de definición de la función x2- 5 es todo R y por tanto también lo será el intervalo (-∞,2] que es donde está definida la rama x2- 5

El dominio de definición de la función

xx

7

2 6 es R 3 y cómo esta rama está definida

para x > 2 habrá que eliminar el nº x = 3

Por tanto

Dom f x R( ) 3

B) El dominio de definición de la función x1 es el intervalo (-∞,1] y por tanto también lo

será el intervalo (-∞,0] que es donde está definida la rama x1

El dominio de definición de la función

7

2 85x

x es R 4 y como esta rama está definida

para x > 0 habrá que eliminar el nº x = 4.

Por tanto

Dom g x R( ) 4

Page 46: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 10

3ª.- Límite de una función en un punto: Definición y

cálculo

Límite de una función f(x) en un punto de abscisa x = a es el valor hacia el que

tiende o se aproxima la función f(x) cuando a la variable independiente x le vamos dando

valores cada vez más próximos a a.

Escribiremos:

lim ( )x a

f x L

lim ( )x a

f x

lim ( )x a

f x

lim ( )x a

f x No existe

Este límite puede existir o no existir y, si existe, puede valer un número real L, puede valer

+ ó - tal y como se puede observar en las gráficas de las funciones siguientes:

f(x) f(x) f(x)

5

0 a 0 a 0 a

lim ( ) 5

x af x

lim ( )

x af x

lim ( )

x af x

1

lim ( ) 2x

f x

2

lim ( ) 2lim ( )

lim ( ) 3x a

x ax a

f xf x No existe

f x -3

Los límites laterales no coinciden

Page 47: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 11

2

0 a a

lim ( )lim ( )

lim ( )x a

x ax a

f xf x No existe

f x

lim ( )lim ( )

lim ( ) 2x a

x ax a

f xf x No existe

f x

Los límites laterales no coinciden Los límites laterales no coinciden

Como hemos tenido la oportunidad de comprobar en los ejemplos anteriores, el

límite de una función f(x) en un punto de abscisa x = a es “relativamente” fácil de calcular si

conocemos la gráfica de la función. Pero, ¿qué ocurre si lo que conocemos es la expresión

analítica de la función f(x)? En estos casos para calcular el límite de una función f(x) en un

punto de abscisa x = a, sustituimos a en la función f(x). Según que el resultado tenga

sentido o no, existen dos posibilidades:

1ª.- Si x = a SI pertenece al dominio de f(x) y f(x) NO es una función por partes

entonces obtenemos f(a) que es un número real, que será el valor del límite.

Ejemplo resuelto 1 – 8º

Calcula el límite de las siguientes funciones en los valores que se indican:

2) ( ) 2A f x x cuando x

2 2

2 2. : lim ( ) lim 2 4

x xSol f x x

) ( ) 13

xB f x cuando x

x

1 1

1 1. : lim ( ) lim

3 1 3 2x x

xSol f x

x

) ( ) 0xC f x e cuando x

0

0 0. : lim ( ) lim 1x

x xSol f x e e

) ( ) ( )D f x Ln x cuando x e

. : lim ( ) lim ( ) ( ) 1x e x e

Sol f x Ln x Ln e

1) ( ) ( ) 1xE f x e Ln x cuando x

1 1 1 2

1 1. : lim ( ) lim ( ) (1) .0 0x

x xSol f x e Ln x e Ln e

Page 48: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 12

2ª.- Si x = a SI/NO pertenece al dominio de f(x) y f(x) SI es una función por

partes entonces procederemos del siguiente modo.

Sea f x si x c

f xf x si x c

1

2

( )( )

( ), consideraremos dos casos:

Cálculo de lim f(x) en el punto de ruptura

Para calcular x c

f x

lim ( ) calcularemos x c x c

f x f c y f x f c

1 2lim ( ) ( ) lim ( ) ( ) . Si

coinciden, éste es el valor del límite. Si no coinciden, éste límite no existe.

Cálculo de lim f(x) en otro punto cualquiera del dominio

Para hallar x a

f x

lim ( ) , a ≠ c, procederemos así:

Si a < c entonces x a

f x f a

1lim ( ) ( )

Si a > c entonces

x a

f x f a2lim ( ) ( )

Ejemplo resuelto 1 – 9º

Hallar los límites de la función f(x) en los puntos 3, 1 y 7:

2 5 3( )

7 3x si x

f xx si x

A) x = 3 es la abscisa del punto de ruptura de la función f(x), por tanto estudiamos los límites laterales

3 3

33 33 3

lim ( ) lim (2 5) 2.3 5 1lim ( ) 1 lim ( ) 4 lim ( )

lim ( ) lim ( 7) 3 7 4x x

xx xx x

f x xf x f x f x No existe

f x x

B) x = 1 pertenece a la primera rama. Por tanto:

1 1

lim ( ) lim(2 5) 2.1 5 3x x

f x x

C) x = 7 pertenece a la segunda rama. Por tanto:

7 7

lim ( ) lim( 7) 1 7 0x x

f x x

Ejemplo resuelto 1 – 10º

Hallar el límite de la función g(x) en x = 0

5 0( ) 1

0

x si xg x

si xx

x = 0 es la abscisa del punto de ruptura de la función f(x), por tanto estudiamos los límites laterales

Page 49: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 13

0 0

00 0

0 0

lim ( ) lim ( 5) 0 5 5

lim ( ) 5 lim ( ) lim ( )1 1lim ( ) lim

0

x x

xx x

x x

g x x

g x g x g x No existeg x

x

Ejemplo resuelto 1 – 11º

Halla el 1lim ( )

xh x , siendo:

1( ) 11

xsi xh x x

x si x

x = -1 es la abscisa del punto de ruptura de la función f(x). Por tanto estudiamos los límites laterales. Pero en este caso las

ramas a la izquierda y a la derecha son la misma. Por tanto

1 1

11 1

1 1

1lim ( ) lim

1 0 lim ( ) lim ( ) lim ( )1

lim ( ) lim1 0

x x

xx x

x x

xh x

x h x h x h x No existex

h xx

Ejemplo resuelto 1 – 12º

Halla el valor de m para que exista 2lim ( )

xf x , siendo:

12( )2

xsi xf x x

mx si x

x = -2 es la abscisa del punto de ruptura de la función f(x). Por tanto, para que exista el límite de la función f(x) cuando x tiende a

–2, los límites laterales tienen que coincidir. De esta condición sale el valor de m.

2 2

2 2

2 2

1 2 1 1 1lim ( ) lim 1 1

2 2 2 lim ( ) lim ( ) 22 4lim ( ) lim .( 2) 2

x x

x x

x x

xf x

x f x f x m mf x mx m m

Ejercicios 1 – 6º y 7º

6.- Halla el límite cuando x 2 en cada una de estas funciones:

2 3

2

2

3 1 2 2 2) ( ) ) ( )

9 2 5 2

12 3 4 1 23) ( ) ) ( )

1 1 221

x si x x x si xa f x b f x

x si x si x

xsi x x x si xxc f x d f x

x si xsi xx

7.- Halla el valor de k para que exista 1

lim ( )x

f x

, siendo:

Page 50: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 14

2 2 1( )

1x si x

f xx k si x

Si x = a NO pertenece al dominio de f(x) pueden ocurrir dos posibilidades:

1ª.- Obtener una expresión que contenga a un nº real k, distinto de cero,

dividido entre 0

; 00

kk . En este caso estudiamos los límites laterales para

ver si existe o no el límite y, en caso de que exista valdrá +∞ ó -∞.

Ejemplo resuelto 1 – 13º

Calcula el límite de las siguientes funciones en los valores que se indican:

2

1) ( ) 0A f x cuando x

x

20 0

1 1. : lim ( ) lim

0x xSol f x

x Estudiamos los límites laterales

20 0

20

20 0

1 1lim ( ) lim 10 lim

1 1lim ( ) lim

0

x x

x

x x

f xx

xf xx

1) ( ) 1

1B f x cuando x

x

1 1

1 1 1. : lim ( ) lim

1 1 01x xSol f x

x Estudiamos los límites laterales

1 1

1

1 1

1 1lim ( ) lim 11 0 lim

1 1 1lim ( ) lim1 0

x x

x

x x

f xx No existe

xf xx

1

2) ( ) 2xC f x e cuando x

Page 51: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 15

1 11

2 02 2

2 2. : lim ( ) lim x

x xSol f x e e e Estudiamos los límites laterales

1 1

2 01

2 2 21 1

22 0

2 2

1 1lim ( ) lim 0

lim

lim ( ) lim

x

x x x

xx

x x

f x e e ee e No existe

f x e e e

) ( )

2D f x tgx cuando x

2 2 2

12. : lim ( ) lim limcos 0

cos2

x x x

sensenxSol f x tgx

x Estudiamos los límites laterales

2 2 2

2

2 2 2

1lim ( ) lim lim

cos 0lim

1lim ( ) lim lim

cos 0

x x x

x

x x x

senxf x tgx

xtgx No existe

senxf x tgx

x

) ( ) ( ) 0E f x Ln x cuando x

Sol: Este es un caso diferente porque:

1º.- Aunque x = 0 no es del dominio de f(x), si sustituimos x por 0 no sale una expresión: ; 00

kk

2º.- No existe un límite lateral 0lim ( )

xLn x

ya que el dominio de f(x) es el intervalo (o,∞).

Pero podemos resolverlo dándole a x valores cada vez más próximos a cero por su derecha y vemos que Ln(x) tiende a -∞ (como

fácilmente podríamos recordar del curso pasado por la forma que tiene la gráfica de la función ( ) ( )f x Ln x .

Por tanto sí existe 0

lim ( )x

Ln x y vale -∞:

0lim ( )x

Ln x

Ejercicio 1 – 8º

Calcula el límite de las siguientes funciones: (Relación de límites)

2ª.- Obtener una expresión indeterminada, en cuyo caso el límite se calcula

transformando la expresión de la función dada en otra equivalente en la que sí

tengan sentido las operaciones y así poder llegar al valor del límite, en caso de

que exista.

Esto lo estudiaremos más adelante en una pregunta específica.

Page 52: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 16

4ª.- Límites laterales

Son los valores hacia los que tiende una función cuando la variable independiente,

x, se acerca por la izquierda (x a-) y por la derecha (x a+) a ese punto. Escribiremos:

x a x af x o f x

lim ( ) lim ( )

a - es un número próximo a a, pero menor que a. Igualmente, a + está próximo a a,

pero mayor que a.

Para que exista el límite de una función en un punto, deben existir los límites

laterales en ese punto y ser iguales:

lim ( ) lim ( ) lim ( )x a x a x a

f x f x f x

Ejercicio 1 – 9º

Dadas las siguientes gráficas de funciones, calcula, si existen, los siguientes límites:

A)

3 4 4

4

) lim ( ) ) lim ( ) ) lim ( )

) lim ( ) ) lim ( ) ) lim ( )x x x

x x x

a f x b f x c f x

d f x e f x f f x

Page 53: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 17

B)

2 1 2

1

) lim ( ) ) lim ( ) ) lim ( )

) lim ( ) ) lim ( ) ) lim ( )x x x

x xx

a f x b f x c f x

d f x e f x f f x

5ª.- Propiedades algebraicas de los límites

1. El límite de una función en un punto, si existe, es único.

Si x a

f x

lim ( ) y x a

g x

lim ( ) existen, entonces se cumple:

2. x a x a x a

f x g x f x g x

lim ( ) ( ) lim ( ) lim ( )

3. x a x a

k f x k f x

lim ( ) lim ( )

4. x a x a x a

f x g x f x g x

lim ( ) ( ) lim ( ) lim ( )

5. x a

x a x ax a

f xf xsi g x

g x g x

lim ( )( )lim , lim ( ) 0

( ) lim ( )

6. x a

g xg x

x a x a x af x f x si f x

lim ( )( )lim ( ) lim ( ) , lim ( ) 0

Page 54: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 18

6ª.- Límite de una función en el infinito: Definición y

cálculo.

Límite de una función f(x) cundo x tiende a +∞ ó a -∞ es el valor hacia el que tiende

o se aproxima una función cuando a la variable independiente x le vamos dando,

respectivamente, valores positivos cada vez más grandes o valores negativos cada

vez más pequeños.

Escribiremos:

xf x Llim ( )

xf xlim ( )

xf xlim ( )

Este límite puede valer un número real L, puede valer + ó - tal y como se puede

observar en las gráficas de las funciones siguientes:

f(x) f(x) f(x)

2

0 0 0

x

x

f x

f x

lim ( )

lim ( ) 0

x

x

f x

f x

lim ( )

lim ( ) 2

x

x

f x

f x

lim ( )

lim ( )

5 2

0 0 3

x

x

f x

f x

lim ( ) 5

lim ( )

x

x

f x

f x

lim ( ) 2

lim ( ) 2

x

x

f x

f x

lim ( )

lim ( )

Page 55: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 19

Igual que ocurría con el límite de una función en un punto, el límite de una función

f(x) cuando x ó cuando x

es “relativamente” fácil de calcular si conocemos la

gráfica de la función. Pero, ¿qué ocurre si lo que conocemos es la expresión analítica de la

función f(x)? En este caso procederemos del siguiente modo:

1º.- Para calcular el límite de una función polinómica cuando x + , nos

fijaremos en su término de mayor grado, pues para valores grandes de x, el valor de las

potencias de grado inferior es insignificante comparado con el suyo (se dice que el

monomio de mayor grado es un infinito de grado superior al resto de monomios).

Para cualquier función polinómica 1 0

( ) , 0 0nn n

f x a x a x a a n , se

cumple que:

0lim ( )

0n

x n

si af x

si a

2º.- En el caso de funciones exponenciales:

1 lim x

xsi a a

0 1 lim 0x

xsi a a

3º.- En el caso de funciones logarítmicas:

1 lim log

axsi a x

0 1 lim logax

si a x

IMPORTANTE: El cálculo de límites en menos infinito se reduce al caso anterior, ya

que:

lim ( ) lim ( )x x

f x f x

Ejemplo resuelto 1 – 14º

Calcular los siguientes límites:

2) lim ( 3 5 1)

xa x x

2 2 2 2. : min 3 ; lim( 3 5 1 lim( 3 ) 3.

x xSol ya que do a el monomio x Se puede escribir x x x

2) lim ( 2 8)x

b x x

2 2 2 2 2 2. : min ; lim ( 2 8) lim (( ) 2( ) 8) lim ( 2 8) lim ( )

x x x xSol ya que do a el monomio x x x x x x x x

Page 56: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 20

) lim 2x

xc

: lim 2 2x

xSol

1) lim

2

x

xd

1 1: lim 0

2 2

x

xSol

) lim x

xe e

1 1 1: lim lim lim 0x x

xx x xSol e e

e e

1) lim

2

x

xf

1 1 1: lim lim lim lim 2 2

2 2 1

2

x x

xxx x x x

Sol

Ejercicio 1 – 10º

Calcular los siguientes límites:

3 2 5 4 7) lim (2 7 4) ) lim ( 3 7 ) ) lim ( 2 3 5)

x x xa x x b x x c x x

3) lim (5 1) ) lim 5 ) lim ) lim ) limx x x

x x x x xd x e f e g e h Lnx

2 3) lim ) lim 5 ) lim 2 ) lim ) lim 2x x x x

x x x x xi e j k e l e m Lnx

Operaciones con el infinito serían (L representa a un nº real positivo distinto de cero):

L L ( )

L ( )L L ( )L ( ) ( )

L

L

L

L

0

L

L 0L 0

L L; 1 L L 0 ; 1

Observa que en el producto y en el cociente con el infinito se aplica la regla de los

signos de la forma habitual.

Page 57: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 21

7ª.- Indeterminaciones

Al operar con límites tanto finitos como infinitos nos podemos encontrar con

expresiones en las que el resultado tenga sentido o no, es decir, nos podemos encontrar

casos en los cuales no es posible hallar directamente el límite. Se dice entonces que el

límite está indeterminado.

Límite indeterminado no significa que no exista, sino que no se puede calcular

directamente. En estos casos, el límite se calcula transformando la expresión de la función

dada en otra equivalente en la que si tengan sentido las expresiones.

Las expresiones que indican indeterminación son:

0 00; ; ; 0 ; 1 ; 0 ;

0

IMPORTANTE: Las tres últimas indeterminaciones NO se exigen para el examen de

selectividad en Andalucía

Resolución de indeterminaciones:

Indeterminaciones del tipo 0

0

Esta indeterminación aparece, entre otras situaciones, al calcular los límites de

funciones racionales (cocientes de funciones polinómicas) o de funciones irracionales

en un punto de abscisa x = a.

Las indeterminaciones de funciones racionales (cocientes de funciones polinómicas)

se resuelven factorizando numerador y denominador mediante la regla de Ruffini y

simplificando.

Las indeterminaciones de cocientes de funciones irracionales se resuelven

multiplicando numerador y denominador por la expresión conjugada de la función que lleve

raíz.

Ejemplo resuelto 1 – 15º

Calcular los siguientes límites:

2

22

2 8) lim

2x

xa

x x

2 2

2 2 2 2 20 2( 2 2) 8 8( ) lim lim

0 ( 2 1) 3 32 1 1x x

x x xIND

x x x

1

1) lim

2 2x

xb

x

1 1

0 1 1 1( ) lim lim

0 2 22 1x x

xIND

x

Page 58: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 22

x

xc

x

0) lim

4 2

20 0 0 0 0 02

0 ( 4 2) ( 4 2) ( 4 2) ( 4 2)lim ( ) lim lim lim lim lim ( 4 2) 4

0 ( 4) 44 2 ( 4 2)( 4 2) 4 2x x x x x x

x x x x x x x x xIND x

x xx x x x

Ejercicio 1 – 11º

Calcular los siguientes límites:

2 3 2

21 2 0

1 3 6 3 6) lim ) lim ) lim

1 9 18 9 18x x x

x x x xA B C

x x x x

x x x

x x xD E F

x x x xx x

2 2

3 20 1 1

3 1 2 1 7 6) lim ) lim ) lim

( 1) 1( 1)

Ejercicio 1 – 12º

x x x

x x x xA B C

xx x x x x

3 3 2

2 2 21 1 2

( 1) 4 5 2 3 4) lim ) lim ) lim

21 2 5 6

x x x

x x x xD E F

x xx 22 0 0

1 3 9 3 1 1) lim ) lim ) lim

2 3

Indeterminaciones del tipo

Las indeterminaciones de funciones racionales (cocientes de funciones

polinómicas) se resuelven dividiendo numerador y denominador por la máxima potencia del

denominador, o bien, aplicando la regla de los grados:

Page 59: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 23

, ( ) ( ) ( )

( ) ( ) (( )lim ,

min ( ) ( ))( )

0 , ( ) ( )

x

asi grado de P x grado de Q x el signo es el de

b

si grado de P x grado de Q x siendo a y b losP x acoeficientes de los tér os principales de P x y Q xQ x b

si grado de P x grado de Q x

Las reglas utilizadas para el cociente de polinomios son también válidas para los

cocientes de funciones irracionales.

Ejemplo resuelto 1 – 16º

Calcular los siguientes límites:

4 2

4

3 2 5) lim

4 7x

x xa

x

4

4

3 3 3lim lim

4 44x x

xIND

x

2 3) lim

5x

xb

x

2lim lim 2 2

x x

xIND

x

xc

x

5) lim

6 1

5 5 5 5lim lim lim 0

6( ) 1 6 1 6x x xx x x

24 3) lim

1x

x xd

x

24 2lim lim lim 2 2

x x x

x xIND

x x

otra forma de resolverlo sería:

2

2 2

4 3 3 34 4

2lim lim lim 2

1 1 1 11 1

x x x

x xx x xINDxx x x

Ejercicio 1 – 13º

Calcular los siguientes límites:

3 2

2

2 5 3 5 1) lim ) lim ) lim

2 3 27 1x x x

x x x xa b c

x xx

Page 60: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 24

Indeterminaciones del tipo 0

Estas indeterminaciones se resuelven transformándolas en las del tipo , o en las

del tipo 0 0 .

Ejemplo resuelto 1 – 17º

Calcular el siguiente límite:

4

3lim (2 3)

2xx

x

24

6 9 6 6 6. lim lim lim 0

2x x x

x xo IND IND

x xx

otra forma de resolverlo sería:

2 2 2

4 4

44 4

6 9 6 9 6 96 9 0

0. lim lim lim 012 22 2

1 1x x x

xx xx x xIND INDx x

xx x

Indeterminaciones del tipo

Aparecen al calcular límites de funciones racionales o irracionales.

Las indeterminaciones con funciones racionales se resuelven efectuando las

operaciones.

Las indeterminaciones con funciones irracionales se resuelven multiplicando el

numerador y el denominador por la expresión conjugada de la función que lleva raíz.

Ejemplo resuelto 1 – 18º

Calcular los siguientes límites:

2 1) lim

1x

x xa x

x

2 21 2 1 2( ) lim lim lim lim ( 2) 2

1 1x x x x

x x x x x xIND IND

x x x

2) lim ( )x

b x x x

( )IND

2 2 2 2 2 2 2

2 2 2 2 2

( )( ) ( ) 1lim lim lim lim lim lim lim

2 2( ) ( )x x x x x x x

x x x x x x x x x x x x x x x xIND

x x xx x x x x x x x x x x x x x

Page 61: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 25

Ejercicio 1 – 14º

x x x

x x x x xA x x B C

x x x

3 3 32

2

3 5 4) lim 5 ( 2) ) lim ) lim

2 2 22 1

x x x

x xD E x x x F x x x

x

22 2 23 5 2

) lim ) lim 1 ) lim 22

x x x

x x x x xG x x H I

x x x

3 3 32

2

3 5 4) lim 5 ( 2) ) lim ) lim

2 2 22 1

x x x

J x x x K x x x L x x x2 2 2 2) lim 2 ) lim 1 ) lim 2

x x

x x

e si x e si xM NLn x si x Ln x si x

0 0) lim ) lim1 ( ) 0 1 ( ) 0

x x

x xsi x si xO Px xsi x si x

2 21 10 0) lim ) lim

3 0 3 0

Ejercicio 1 – 15º

Sabiendo que:

x x

x x

p x q x

r x s x2 2

2 2

lim ( ) lim ( )

lim ( ) 3 lim ( ) 0

Calcula razonadamente, en los casos en que sea posible, el valor de los siguientes límites:

p x

x x x x

s xA B s x C s x q x D p x q x

p x

( )

2 2 2 2

( )) lim ) lim ( ) ) lim ( ). ( ) ) lim ( ) 2 ( )

( )

Page 62: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 26

Indeterminaciones del tipo 1

Recordemos que esta indeterminación no se exige en las PAU de Andalucía.

Este tipo de indeterminaciones se resuelve aplicando la siguiente propiedad:

lim ( ) ( ) 1( )lim ( ) 1

lim ( ) 1 ( )lim ( )

x ag x f xg xx a

x a

x a

f xSi f x IND e

g x

válida para cualquier número real a, o .

Ejemplo resuelto 1 – 19º

Calcular el siguiente límite:

x

x

xx

22

2

3lim

1

2

2 2

3 8lim 2 1 lim1 011 1

x x

x xxx xIND e e e

Ejercicio opcional

Calcular los siguientes límites:

xx x

x

x x x

xa b c

x x x

2

535 2 2

) lim ) lim 1 ) lim 11 3 5

x x

x x xd e f

x x x

3 2 5 31 1 1

) lim 1 ) lim 5 ) lim 15 5

xx x

x x

x x x xg h

x x

1 12 27 67 4 4 10

) lim ) lim3 4

Page 63: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 27

8ª.- Regla de L’Hôpital

Las indeterminaciones 0

0

y 0. las hemos resuelto para funciones

racionales e irracionales pero, ¿qué ocurre con el resto de las funciones?. Por

ejemplo, con los siguientes límites:

2

2lim ( )

x

x

x eIND

x

0

0lim ( )

0x

senxIND

x

0 0lim .( )( ) lim ( )

1x x

LnxxLnx o IND IND

x

En estos casos se aplica la denominada regla de L’Hôpital que dice:

Los límites del tipo ,

( )lim

( )x a

f xg x

si dan lugar a una indeterminación del tipo

0

pueden obtenerse derivando el numerador y el denominador y

calculando, si existe, el límite del cociente de sus derivadas.

'

', ,

( ) 0 ( )lim ( ) lim

( ) 0 ( )x a x a

f x f xó IND

g x g x

A veces, después de este primer paso, se llega a otra indeterminación, por lo que

se puede repetir el proceso hasta romper la indeterminación.

Ejemplo resuelto 1 - 20º

Calcular los siguientes límites:

A)

2

2lim

x

x

x e

x

''

2' '2

''

'

22 2lim lim lim

2

22( ) lim lim

2 22

xx xL H

x x x

x xL H

x x

x ex e eIND

xx x

e eIND

x

B) 0

limx

senx

x

''

'0 0 0

0 coslim lim lim(cos ) cos0 1

0 1

L H

x x x

senx xIND x

x

Page 64: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 28

C)

0limx

xLnx

''

'0 0 0 0 0

2

1

lim 0.( ) lim ( ) lim lim lim( ) 01 11

L H

x x x x x

LnxLnx xxLnx IND IND x

x xx

Ejemplo resuelto 1 – 21º Selectividad 2012

Sabiendo que

20

. ( )lim

x

x

a sen x xe

x es finito, siendo a un nº real, calcula el valor de a

y el de dicho límite.

En primer lugar calculamos el valor del límite:

'0 '

2 2 '0 0 2

0 0

0

. ( ). ( ) . (0) 0. .0 0.1 0lim lim

0 00

.cos( ) .cos(0) 0. 1 0 1lim

2 2.0 0 0

xx L H

x x

x x

x

a sen x xea sen x xe a sen e aIND

x x

a x e xe a e e a ax

El límite obtenido

1

0

a depende del parámetro “a”. Discutámoslo:

- Si a ≠ 1 el límite coincide con un nº real, distinto de 0, dividido entre 0 ; 00

kk y este límite valdría +∞ ó -∞, y el

límite no sería finito como dice el enunciado. Por tanto el parámetro “a” no puede ser distinto de 1.

- Si a = 1, quedaría la indeterminación 0

0 y tendríamos que romperla mediante la regla de L’Hôpital para calcular el

límite.

Calculemos el valor del límite para a = 1

'' 1 `

2 `0 0 0

0

0 0

.cos( ) cos( ). ( ) 1 0lim lim ( ) lim

2 0 0 2

( ) ( ) (2 ) (0) (2 0) 0 1.2lim lim 1

2 2 2 2

x x x xx L H a L H

x x x

x x x x

x x

a x e xe x e xea sen x xe aIND

xx xsen x e e xe sen x e x sen e

Como podemos observar el límite es finito y vale – 1.

Sol: a =1 y

0

lim ( ) 1x

f x

Ejercicio 1 - 16º

A) 2003 1 - A – 1 B) 2004 5 – B – 1 C) 2005 3 – A – 1

D)2006 1 – B – 1 E) 2009 3 – A – 1 F) 2010 2 – B - 1

Page 65: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 29

9ª.- Asíntotas

Las asíntotas de una función f(x) son rectas a las que se aproxima la función

cuando x tiende hacia un valor real a, a o .

a) Asíntotas verticales

Son rectas paralelas al eje de ordenadas, de forma que la recta x = a es una

asíntota vertical de la función f(x) si cuando x se acerca al valor real a la función se

acerca a la recta, ya sea con valores mayores o menores que dicho valor. Es decir, x = a

es una asíntota vertical de la función f(x) si existe alguno de los límites siguientes:

lim ( ) ( )

x af x

lim ( ) lim ( ) lim ( ) lim ( )x a x a x a x a

f x f x f x f x

Así pues, para calcular las asíntotas verticales de una función (si es que tiene) se

localizan los valores de la variable x que hacen tender la función a o .

Las curvas nunca cortan a las asíntotas verticales.

Una función puede tener o no tener asíntotas verticales y, si tiene, puede tener una

o varias (e incluso infinitas como le ocurre a la función tangente).

Las funciones polinómicas no tienen asíntotas verticales.

En las funciones racionales cuya fracción sea irreducible, las asíntotas verticales

son los valores de x que anulan el denominador; es decir, tiene tantas asíntotas verticales

como raíces reales distintas tenga el denominador y que no lo sean del numerador.

Para estudiar la situación de la gráfica de la función respecto de la asíntota vertical ,

hay que hallar el valor de los límites laterales en el punto de abscisa x = a:

lim ( )

x af x

y lim ( )x a

f x

.

Otra forma de hacerlo es darle a x valores muy próximos a x = a y a ambos lados de

a. Supongamos, por ejemplo, que la recta de ecuación x = 7 es una asíntota vertical de

f(x); calculamos f(7,01) y f(6,99) y obtenemos, p.e., f(7,01) = - 2300 y f(6,99) = 2320, de

estos resultados deducimos que por la derecha de la asíntota la gráfica tiende a ,

puesto que el valor obtenido es negativo y por la izquierda tiende a , puesto que el

valor es positivo.

b) Asíntotas horizontales

Page 66: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 30

Son rectas paralelas al eje de abscisas, de forma que la recta y = b es una

asíntota horizontal de la función f(x) si cuando x tiende a y/o a la función se

acerca a la recta (asíntota por la derecha y/o asíntota por la izquierda). Es decir, y = b es

una asíntota horizontal de la función f(x) si existe alguno de los límites laterales

siguientes:

lim ( ) ; lim ( )

x xf x b f x b

y = b es A.H. de f(x) por la derecha y = b es A.H. de f(x) por la izquierda

Así pues, para calcular las asíntotas horizontales de una función (si es que tiene) se

hace tender x hacia y a , y si alguno de estos límites es finito diremos que f(x) tiene

asíntota horizontal, que puede ser por la derecha, por la izquierda o a ambos lados.

La gráfica de una función puede cortar a sus asíntotas horizontales.

Una función puede tener como máximo dos asíntotas horizontales, correspondientes

a los límites laterales.

Las funciones polinómicas no tienen asíntotas horizontales.

Una función racional sólo puede tener una asíntota horizontal (en caso de existir,

será la misma cuando x tienda hacia o ). Esto ocurrirá, si el grado del denominador

es mayor o igual que el grado del numerador.

Si reflexionas un poco podrás concluir que cuando el grado del denominador sea

mayor que el del numerador la asíntota será el eje de abscisas, es decir, y = 0

Para estudiar la situación de la gráfica de la función respecto de la asíntota

horizontal, calculamos la imagen de un valor positivo de x muy grande y de un valor

negativo de x muy pequeño.

Supongamos que la asíntota es y = 4; calculamos f(1000) y f(- 1000) y obtenemos,

p.e., f(1000) = 3,980 y f(- 1000) = 4,001, de estos resultados deducimos que por la derecha

la gráfica se acerca a la asíntota por abajo, puesto que el valor obtenido es menor que el

valor de la asíntota y por la izquierda la gráfica se acerca a la asíntota por arriba, puesto

que el valor obtenido es mayor que el valor de la asíntota.

c) Asíntotas oblicuas

Page 67: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 31

Son rectas de ecuación y = mx + n (siendo m un nº real ≠ 0, es decir rectas ni

horizontales ni verticales) a las que la función se acerca cuando x tiende a +∞ y/o a -∞.

La pendiente m y la ordenada en el origen n de la asíntota oblicua se calculan

mediante los siguientes límites:

( )

lim lim ( )x x

f xm n f x mx

x

IMPORTANTE:

1º.- Si m no es un nº real ≠ 0, NO hay A.O.

2º.- n puede valer 0 ó ≠ 0, según la asíntota pase o no por el origen de

coordenadas o no.

3º.- Una función puede tener o no asíntotas oblicuas y, si tiene, a lo sumo son

dos (una en +∞ y otra en -∞) .

4º.- Si una función tiene asíntotas horizontales en un lado de su gráfica (en

+∞ ó -∞), no puede tener asíntotas oblicuas en dicho lado.

Las funciones polinómicas no tienen A.O.

Las funciones racionales solo tienen A.O. cuando el polinomio del numerador tiene

un grado más que el del denominador.

En las funciones definidas a trozos, hemos de tener cuidado a la hora de buscar

las asíntotas (verticales, horizontales u oblicuas), ya que, aunque una rama pueda tener

Page 68: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 32

una asíntota, es posible que la tenga en un valor de x en el que no esté definida dicha

rama.

Ejemplo resuelto 1 - 22º

Determina las asíntotas de las funciones y, cuando tenga AH y/o AV, indica como queda la gráfica de la función respecto a la asíntota:

2) ( )

1

xA f x

x( . : . . : 1 ; . . : 1)Sol AV x AH y

A.V. La única raíz del denominador es x = 1 y, además no lo es del numerador. Por tanto, x = 1 es la única asíntota vertical

de f(x). Para saber la posición relativa de la función respecto a su asíntota estudiamos los límites laterales:

1 1 1 1

2 3 2 3lim ( ) lim ; lim ( ) lim

1 0 1 0x x x x

x xf x f x

x x A.H. Como es una función racional basta con estudiar el límite cuando x tiende a +∞:

2lim ( ) lim lim 1

1x x x

x xf x

x x

Por tanto, la recta de ecuación y = 1 es una asíntota horizontal de f(x), y lo es tanto a su derecha como a su izquierda. Para

saber la posición relativa de la función respecto a su asíntota tomamos un valor negativo de x muy pequeño y otro valor posit ivo

de x muy grande y calculamos sus imágenes.

1000 2 1002 1000 2 998(1000) 1,003 1; ( 1000) 0,997 1

1000 1 999 1000 1 1001f f

Por tanto, cuando x tiende a +∞ la gráfica de la función está por encima de su asíntota horizontal y, cuanto x tiende a –∞ la

gráfica de la función está por debajo de la asíntota.

A.O. No tiene puesto que hay A.H.

22 4) ( )

2

x xB f x

x ( . : . . : ; . . : ; . . : 2 )Sol AV NO A H NO AO y x

A.V. La única raíz del denominador es x = 2 pero, además lo es también del numerador. Por tanto, no sabremos si x = 2 es

o no es una asíntota vertical de f(x). Para averiguarlo estudiamos el límite de la función cuando x tiende a 2.

2

2 2 2 2

2 4 0 2 ( 2)lim ( ) lim ( ) lim lim2 4

2 0 2x x x x

x x x xf x IND x

x x Por tanto No tiene A.V.

A.H. Como es una función racional basta con estudiar el límite cuando x tiende a +∞:

2 22 4 2lim ( ) lim lim

2x x x

x x xf x

x x

Por tanto, NO tiene A.H.

A.O. Si tiene puesto que es una función racional, siendo el grado del numerador una unidad superior al del denominador.

Hallemos los valores de m y de n (basta con estudiarlo en +∞ puesto que es una función racional).

2 2 2

2 2

( ) 2 4 2 4 2lim lim : lim lim 2

2 2x x x x

f x x x x x xm x

x x x x x

2 2 2 22 4 2 4 2 ( 2) 2 4 2 4 0lim ( ) 2 lim 2 lim lim lim lim 0 0

2 2 22x x x x x x

x x x x x x x x x xn f x x x

x x xx

Por tanto, la recta de ecuación y = 2x es la A.O. de f(x)

Page 69: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 33

2

1) ( )

9

xC f x

x( . : . . : 3 ; . . : 0)Sol AV x AH y

A.V. Las dos únicas raíces del denominador son x = 3 y x = - 3 y, además no lo son del numerador. Por tanto, x = 3 y x = - 3

son dos asíntotas verticales de f(x). Para saber la posición relativa de la función respecto a su asíntota estudiamos los límites

laterales:

2 23 3 3 3

1 2 1 2lim ( ) lim ; lim ( ) lim

0 09 9x x x x

x xf x f x

x x

2 23 3 3 3

1 4 1 4lim ( ) lim ; lim ( ) lim

0 09 9x x x x

x xf x f x

x x A.H. Como es una función racional basta con estudiar el límite cuando x tiende a +∞:

2 2

1lim ( ) lim lim 0

9x x x

x xf x

x x

Por tanto, la recta de ecuación y = 0 (el eje de abscisas) es una asíntota horizontal de f(x), y lo es tanto a su derecha como a su

izquierda. Para saber la posición relativa de la función respecto a su asíntota tomamos un valor negativo de x muy pequeño y

otro valor positivo de x muy grande y calculamos sus imágenes.

2 2

1000 1 1000 1(1000) 0; ( 1000) 0

1000 9 ( 1000) 9f f

Por tanto, cuando x tiende a +∞ la gráfica de la función está por encima de su asíntota horizontal y, cuanto x tiende a –∞ la

gráfica de la función está por debajo de la asíntota.

A.O. No tiene puesto que hay A.H.

2

2) ( )

4

xD f x

x ( . : . . : 2 ; . . : 0 ; . . : )Sol AV x A H y AO NO

A.V. Las dos únicas raíces del denominador son x = 2 y x = -2 y, además , x = - 2 lo es también del numerador, pero x = 2

no lo es. Por tanto, x = 2 es una asíntota vertical de f(x) pero x = - 2 tenemos que estudiarlo para ver si lo es o no lo es:

22 2 2 2 2

2 0 2 1 1 1lim ( ) lim lim ( ) lim lim

0 ( 2)( 2) 2 4 44x x x x x

x xf x IND

x x xx Por tanto No hay A.V. en x = - 2

Para saber la posición relativa de la función respecto a su asíntota (x = 2) estudiamos los límites laterales:

2 22 2 2 2

2 4 2 4lim ( ) lim ; lim ( ) lim

0 04 4x x x x

x xf x f x

x x A.H. Como es una función racional basta con estudiar el límite cuando x tiende a +∞:

2 2

2lim ( ) lim lim 0

4x x x

x xf x

x x

Por tanto, la recta de ecuación y = 0 (el eje de abscisas) es una asíntota horizontal de f(x), y lo es tanto a su derecha como a su

izquierda. Para saber la posición relativa de la función respecto a su asíntota tomamos un valor negativo de x muy pequeño y

otro valor positivo de x muy grande y calculamos sus imágenes.

2 2

1000 2 1000 2(1000) 0; ( 1000) 0

1000 4 ( 1000) 4f f

Por tanto, cuando x tiende a +∞ la gráfica de la función está por encima de su asíntota horizontal y, cuanto x tiende a –∞ la

gráfica de la función está por debajo de la asíntota.

A.O. No tiene puesto que hay A.H.

Page 70: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 34

Aunque 1/x tiene una asíntota vertical, x = 0, esta no es asíntota de la función

ya que 1/x está definida para valores menores que – 1. Por el contrario la

asíntota horizontal, y = 0, si lo es de la función. Diremos que la función tiene

asíntota horizontal por la izquierda, ya que el intervalo en el que está definida 1/x, es para valores menores que – 1.

No hay A.O.

) ( ) 3xF f x ( . : . . : ; . . : 0 ; . . : )Sol AV NO A H y por la izquierda AO NO No tiene asíntotas verticales.

Tiene una asíntota horizontal, y = 0, por la izquierda, puesto que al calcular los límites laterales en o , obtenemos:

1 1 1lim ( ) lim ( ) lim 3 lim 0 ; lim ( ) lim 3 3

3 3x x

xx x x x x xf x f x f x

A.O. en -∞ NO tiene puesto que aquí tiene A.H. Veamos si tiene o no A.O .en +∞

'( ) 3 3 .ln3lim lim lim ( ) lim lim 3 .ln3

1

x xL Hx

x x x x x

f xm IND

x x

Por tanto no tiene A.O. en +∞ porque el límite no ha salido finito y distinto de 0.

) ( ) 5 xG f x ( . : . . : ; . . : 0 ; . . : )Sol AV NO A H y por la derecha AO NO

No tiene asíntotas verticales.

Tiene una asíntota horizontal, y = 0, por la derecha, puesto que al calcular los límites laterales en o ,

obtenemos:

( ) 1 1 1lim ( ) lim ( ) lim 5 lim 5 5 ; lim ( ) lim 5 lim 0

5 5x x x

xx x x x x x xf x f x f x

A.O. en +∞ NO tiene puesto que aquí tiene A.H. Veamos si tiene o no A.O .en -∞

( ) '( ) ( ) 5 5 5 .ln5lim lim lim lim lim ( ) lim lim 5 .ln5

1

x x xL Hx

x x x x x x x

f x f xm IND

x x x x

Por tanto no tiene A.O. en -∞ porque el límite no ha salido finito y distinto de 0.

2) ( ) ( 1)H f x Ln x ( . : . . : ; . . : ; . . : )Sol AV NO A H NO AO NO

A.V. Su dominio es todo R y NO tiene asíntotas verticales.

A.H. Estudiemos los límites en +∞ y en -∞ (para -∞ serviría el estudio hecho en +∞ ya que la función tiene simetría par)

2 2 2lim ( ) lim ( 1) ; lim ( ) lim ( ) lim ( ) 1 lim ( 1)x x x x x x

f x Ln x f x f x Ln x x

NO tiene A.H.

A.O. Estudiemos si hay en +∞:

'22 ' 2

' 2

2( 1)( ) ( 1) 21lim lim ( ) lim lim lim 0

1 1

L H

x x x x x

xLn xf x Ln x xxm IND

x x x x

Por tanto NO tiene A.O. en +∞ porque aunque el límite ha salido finito no es distinto de 0.

Como la función tiene simetría par, tampoco tendrá A.O. en -∞.

2

1 1

) ( ) 1 24 2

si xx

E f x x si xsi x

Page 71: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 35

2) ( ) 2I f x x x ( . : . . : ; . . : . . : 1 1Sol AV NO A H NO AO y x e y x

A.V. Su dominio es (-∞,0]U[2, ∞) y NO tiene asíntotas verticales.

A.H. Estudiemos los límites en +∞ y en -∞:

2 2lim ( ) lim 2 lim

x x xf x x x x

2 2 2lim ( ) lim ( ) lim ( ) 2.( ) lim 2 lim

x x x x xf x f x x x x x x

NO tiene A.H.

A.O. Estudiemos si hay en +∞:

2 2( ) 2lim lim lim 1

x x x

f x x x xm

x x x

2 2

2

2

2 2

2 2

2 2lim ( ) lim 2 ( ) lim

1. 2

2 2lim lim 1

2 2

x x x

x x

x x x x x xn f x x x x x IND

x x x

x x x x

x x x x x x

Por tanto en +∞ SI tiene una A.O. y su ecuación es y = x - 1

Análogamente si estudiamos la existencia de A.O. en -∞ obtenemos que también tiene y su ecuación es y = -x + 1 .

1

) ( ) xJ f x ex

( . : . . : 0 ; . . : 0 ; . . : )Sol AV x A H y por la izquierda AO NO

A.V. Su dominio es R – {0}. Veamos si tiene A.V. en x = 0:

0 0

0 0 0 0

1 1 1 1lim ( ) lim .1 ; lim ( ) lim .1

0 0x x

x x x xf x e e f x e e

x x La recta x = 0 (que es el eje de ordenadas) es una A.V.

A.H. Estudiemos los límites en +∞ y en -∞:

''

'

1lim ( ) lim 0. ( ) lim ( ) lim lim

1

xx xL Hx

x x x x x

ee ef x e IND IND

x x x

1 1 1lim ( ) lim ( ) lim lim 0.0 0x

xx x x xf x f x e

x x e En +∞ NO tiene A.H. pero en -∞ SI tiene y es la recta de ecuación y = 0 (el eje de abscisas)

A.O. Estudiemos si hay en +∞, ya que en -∞ NO hay al haber asíntota horizontal:

' '' '

2 ' '2

( )lim lim : lim ( ) lim lim ( ) lim lim

2 22

x xx x x xL H L H

x x x x x x x

e ef x e e e em x IND IND

x x xx xx

Por tanto en +∞ NO tiene una A.O. porque el límite no ha salido finito y distinto de 0.

Ejercicio 1 - 17º

Determina las asíntotas de las funciones:

2) ( )

2 4A f x

x

3 1; ) ( )

2

xB f x

x

3 2

2

2 2) ( )

1

x xC f x

x

Page 72: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 36

Ejercicio 1 - 18º

Determina las asíntotas de las funciones:

) ( ) 3 . xA f x x e

22 2; ) ( )

1

xB f x

x

3

2) ( )

1

xC f x

x

Ejercicio 1 - 19º

Determina las asíntotas de las funciones:

22) ( ) . xA f x x e

; ) ( )1

xeB f x

x

2) ( ) 1 xC f x x e

Ejercicio 1 - 20º

Determina las asíntotas de las funciones:

2

10) ( ) 1

3 1 0

si xA f x xx x si x

2

2; ) ( )

1

x LnxB f x

x

Ejercicio 1 - 21º

A) 2003 5 - B – 2 B) 2003 6 – A – 2 C) 2005 3 – A – 1 D) 2006 5 - A – 1

Ejercicio 1 - 22º

A) 2008 3 – A – 1 B) 2008 6 - B – 1 C) 2009 2 – A – 1

Ejercicio 1 - 23º

Las gráficas siguientes corresponden a cuatro funciones que no están definidas en x = 1. Asocia cada gráfica con alguna de estas funciones:

f x f xx x

f x f xx x

2 2

2 2

1 11) ( ) ; 2) ( )

1 ( 1)1 1

3) ( ) ; 4) ( )1 ( 1)

Page 73: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 37

10ª.- Continuidad de una función

Una función f(x) es continua en un punto de abscisa, x = a, si se verifica que:

1. Existe f(a).

2. Existe lim ( )x a

f x

y es finito.

3. Se cumple que: lim ( ) ( )x a

f x f a

Si alguna de estas condiciones no se cumple, diremos que la función es

discontinua en a.

En la práctica no es necesario comprobar las tres condiciones, ya que estas se

resumen en la tercera condición.

Las funciones elementales: constantes, polinómicas, racionales, irracionales,

exponenciales, logarítmicas y trigonométricas; son continuas en sus respectivos dominios

de definición, por tanto, para estudiar su continuidad hallaremos su dominio de definición.

Una función f(x) es continua en un intervalo abierto (a, b) si lo es en todos sus

puntos.

Una función f(x) es continua en un intervalo cerrado [a, b] si lo es en el intervalo

abierto (a, b) y además es continua por la derecha en x = a y por la izquierda en x = b.

Tipos de discontinuidades

Según la condición de continuidad que no se cumpla, las discontinuidades pueden

clasificarse de la siguiente forma:

Discontinuidad evitable

Una función presenta una discontinuidad evitable en un punto de abscisa, x = a,

cuando el límite de la función en x = a existe y es finito, pero no coincide con el valor de la

función en a, o bien la función no está definida en x = a :

lim ( ) ( )

x af x f a o

lim ( ) ( )

x af x y f a

Page 74: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 38

1lim ( ) 2 ; (1) 2x

f x f ( )no f c

Esta discontinuidad se evita redefiniendo la función en a y haciendo que en este

punto tome el valor del límite.

Ejemplo resuelto 1 - 23º

Estudia la continuidad de las siguientes funciones. Si son discontinuas en algún punto, indica de qué tipo es. En caso de que haya alguna discontinuidad evitable, define una nueva función que la evite:

2 42

) ( ) 21 2

xsi x

A f x xsi x

2 2

( . : 2 ; 2 lim ( ) ; (2) ; lim ( ) (2) )x x

Sol Continua en R x discontinuidad evitable f x f f x f

La expresión

2 4

2

xx

, es una función racional, que es continua en todo su dominio, es decir, en R – {2}, Por tanto f(x) también

es continua en R – {2}.

Veamos si f(x) es continua en x = 2: 1º. f(2) existe y vale 1.

2º. Veamos si existe 2

lim ( )x

f x . Para ello estudiamos los límites laterales:

2

2 2 2 22

2

2 2 2 2

4 0 ( 2)( 2)lim ( ) lim ( ) lim lim ( 2) 4

2 0 2 lim ( ) 44 0 ( 2)( 2)

lim ( ) lim ( ) lim lim ( 2) 42 0 2

x x x x

x

x x x x

x x xf x IND x

x x f xx x x

f x IND xx x

3º. No es continua en x = 2 porque:

2

(2) 1 lim ( ) 4x

f f x

Por tanto f(x) es continua en todo R menos en x = 2 que tiene una discontinuidad evitable. A partir de f(x), podemos definir una

nueva función g(x) que en la que se elimina dicha discontinuidad y que por tanto será continua en todo R.

2 42

( ) 24 2

xsi x

g x xsi x

2 9) ( )

3

xB f x

x

2( . : 3 ; 3 lim ( ) ; (3))

xSol Continua en R x discontinuidad evitable f x f

La expresión

2 9

3

xx

, es una función racional, que es continua en todo su dominio, es decir, en R - {.3}

Page 75: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 39

Veamos el tipo de discontinuidad que hay en x = 3: Para ello veamos si existe 3

lim ( )x

f x .

2

3 3 3 3 3 3

9 0 ( 3)( 3) ( 3)( 3) ( 3)lim ( ) lim ( ) lim lim lim lim( 3) 6

3 0 3 ( 3 ) 1x x x x x x

x x x x x xf x IND x

x x x

El límite existe y es finito. Por tanto la discontinuidad es evitable-.

Por tanto f(x) es continua en todo R menos en x = 3 que tiene una discontinuidad evitable. A partir de f(x), podemos definir una

nueva función g(x) en la que se elimina dicha discontinuidad y que por tanto será continua en todo R.

2 93

( ) 36 3

xsi x

g x xsi x

Ejercicio 1 - 24º

Haz el mismo estudio que en el ejemplo anterior en las funciones siguientes:

2 6 9 2) ( )

5 2

x x si xA f x

si x

2

1) ( )

1

xB f x

x

Discontinuidad no evitable de primera especie (o esencial)

Una función presenta una discontinuidad no evitable de primera especie con

salto finito en un punto, x = a, cuando existen los límites laterales, son finitos y

distintos:

lim ( ) lim ( )x a x a

f x f x

1

11

lim ( ) 2lim ( ) ; (1) 2

lim ( ) 1x

xx

f xno f x f

f x

Ejemplo resuelto 1 - 24º

Estudia la continuidad de la siguiente función:

si x

f x si x

si x

1 0

( ) 0 0

1 0

( . : 0 0 1ª )Sol Continua en R x Discontinuidad NO evitable de especie de salto finito

Page 76: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 40

La expresión – 1 es una función constante y por tanto continua en todo R. Por consiguiente f(x) también lo es en el intervalo

(-∞,0)

La expresión 1 es una función constante y por tanto es continua en todo R. Por consiguiente f(x) también lo es en el

intervalo (0,+∞)

Veamos si f(x) es continua en el punto de ruptura, es decir, en x = 0:

1º. f(0) existe y vale 0.

2º. Veamos si existe 0

lim ( )x

f x . Para ello estudiamos los límites laterales:

0 0

00 0

lim ( ) lim ( 1) 1lim ( )

lim ( ) lim 1 1x x

xx x

f xNo f x

f x

NO es continua en x = 0 porque:

0

lim ( )x

No f x

La función es continua en R – {0}, y en x = 0 tiene una discontinuidad no evitable de primera especie de salto finito.

Una función presenta una discontinuidad no evitable de primera especie con

salto infinito o asintótica en un punto, x = a, cuando uno o los dos límites

laterales son o :

lim ( ) lim ( )x a x a

f x o f x es

1

11

lim ( )lim ( ) ; ( 1) 0,5

lim ( ) 0,5x

xx

f xno f x f

f x

3

lim ( ) ( )

(3)x

k x pero no es finito

no k

Ejemplo resuelto 1 - 25º

Estudia la continuidad de la siguiente función:

0 1( ) 1

11

si xf x

si xx

( . : 1 1 1ª )Sol Continua en R x Discontinuidad NO evitable de especiede salto infinito

La expresión 0 es una función constante y por tanto continua en todo R. Por consiguiente f(x) también lo es en el intervalo (-

∞,1)

La expresión 1/(x-1) es una función racional y por tanto es continua en todo su dominio, es decir, R – {1}. Por

consiguiente f(x) también lo es en el intervalo (1,+∞)

Veamos si f(x) es continua en el punto de ruptura, es decir, en x = 1:

1º. f(1) existe y vale 0.

Page 77: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 41

2º. Veamos si existe 1

lim ( )x

f x . Para ello estudiamos los límites laterales:

1 1

1

1 1

lim ( ) lim (0) 0

lim ( )1 1lim ( ) lim

1 0

x x

x

x x

f x

No f xf x

x

NO es continua en x = 1 porque:

1

lim ( )x

No f x

La función es continua en R – {1}, y en x = 1 tiene una discontinuidad no evitable de primera especie de salto infinito

Una función presenta una discontinuidad no evitable de segunda especie en

un punto, x = a, cuando uno o los dos límites laterales no existen:

lim ( ) lim ( )x a x a

f x o f x

En la tabla se esquematizan las discontinuidades evitables y las no evitables de primera especie:

Discontinuidad evitable Discontinuidad no evitable de primera especie

No evitable de salto finito No evitable de salto infinito

Page 78: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 42

Page 79: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 43

Ejemplo resuelto 1 - 26º

Clasifica las discontinuidades que presenta la siguiente función:

En x = -4, es discontinua no evitable con salto infinito o asintótica, al cumplirse:

4 4lim ( ) lim ( )

x xf x f x

En x = -2, la función es discontinua no evitable con salto finito, por existir los límites laterales, ser finitos y distintos.

En x = 1, la función es continua por la izquierda. Podría decirse que presenta una discontinuidad no evitable de segunda

especie al carecer de límite lateral por la derecha.

En x = 3, la función es continua por la derecha. Como el caso anterior podría ser considerada como discontinua no evitable de segunda especie al no tener límite lateral por la izquierda.

En x = 5, la función es discontinua evitable. Evitamos la discontinuidad redefiniendo la función en x = 5, haciendo f(5) = 4.

En x = 8, la función es discontinua no evitable con salto infinito al ser un límite lateral finito y otro infinito.

En x = 10, la función es discontinua evitable. Evitaremos la discontinuidad definiendo f(10) = 2.

Ejemplo resuelto 1 - 27º

Halla el valor del parámetro m para que la función f(x) sea continua en R.

10

( ) 12 0

si xf x x

x m si x

( . : 1 ( ) )Sol Si m f x es continua enR

La expresión

1

1xes una función racional y por tanto continua en todo su dominio que es R – [1]. Por consiguiente la

función f(x) es continua en el intervalo (-∞,0) independientemente del valor del parámetro m.:

La expresión 2x m es una función polinómica y por tanto continua en todo su dominio que es R . Por consiguiente

la función f(x) es continua en el intervalo (0,+∞) independientemente del valor del parámetro m.:

Veamos que ocurre con la continuidad de función f(x) en x = 0

1º. f(0) existe y vale -1.

Page 80: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 44

2º. Veamos si existe 0

lim ( )x

f x . Para ello estudiamos los límites laterales:

0 0

0

0 0

1lim ( ) lim 1

1 1 lim ( ) 1 (0)lim ( ) lim (2 )

x xx

x x

f xx si m f x f

f x x m m

Como vemos el valor de uno de los límites laterales depende del valor del parámetro m, y por tanto, la existencia o no del límite de f(x) en x = 0. Si queremos que dicho límite exista debemos imponer la condición de que los límites laterales

coincidan, es decir, m = - 1. De esta forma la función también será continua en x = 0.

Ejercicios 1 - 25º a 34º

25º.- Estudia la continuidad de la función:

2

22

1( )

3 22

2

xsi x

xf x

x xsi x

x

26º.- Halla el valor que deben tener a y b para que la siguiente función sea continua

en R:

2

5 1

( ) 1 23 2 2

x si xf x ax b si x

x si x

(Sol: a = 3 y b = - 8)

27º.- Halla el valor de a y b para que las funciones sean continuas en R:

2

20

1( ) 2 0 2

5 2

a xsi x

xf x x b si x

ax si x

28º.- Halla el valor (o los valores) del parámetro a para que la función:

xe si xf x

a a x e si x

2

1( )

( 2 ) 1 (Sol.: a = 0 y a = - 2)

sea continua en el punto x = 1. (e es la base de los logaritmos neperianos)

29º.- Estudia la continuidad de las siguientes funciones:

22

0 10

) ( ) 1 1 3 ; ) ( )2 1 0

5 3

xsi x

e si xa f x x si x b f x

x x si xx si x

Page 81: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 45

30º.- Dada la función:

axe si x

f x x a si x

x b si x

0

( ) 2 0 2

2

, calcula los valores de a y b

para que f(x) sea continua.

31º.- Comprueba que la función: x x

f xx

2 2 8( )

2 presenta una discontinuidad evitable

en el punto x = 2, y define una función g que sea continua en R y coincida con f en todo su dominio. (Sol.: g(x) = f(x) si x ≠ 2 y g(2) = 6)

32º.- Estudia la continuidad de las siguientes funciones:

si xx

a f x x si x

x si x

42

5) ( ) 3 1 2 3

2 2 3

(Sol.: Continua en R – {- 5, 2})

b g x x x 2) ( ) ln( 4) (Sol.: Continua en (4, +))

xc h x

x

2

1) ( )

3 (Sol.: Continua en [-1, +))

33º.- Estudia la continuidad de la función:

x si x

f x x si x

x x si x

2

2

1 0

( ) 1 0, 2

4 2 2

(Sol.: Continua en R – {2})

34º.- Estudia la continuidad de la función:

f x x ( ) 3

(Sol.: R)

Page 82: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 46

11ª.- Teorema de Bolzano (o Teorema de los ceros de una función).

Es un teorema muy intuitivo y consecuencia de la continuidad de una función en un intervalo cerrado.

“Si una función es continua en un intervalo cerrado y la función toma distinto signo en los extremos de dicho intervalo, entonces la función corta al eje de abscisas al menos una vez en dicho intervalo.”

En lenguaje simbólico el teorema se escribe:

f continua en a b c a b f csigno de f a signo de f b

[ , ], / ( ) 0

( ) ( )

Este teorema puede resultar muy intuitivo ya que si tenemos una función

continua que en f(a) es negativa (por debajo del eje de las x) y en f(b) es positiva (por encima del eje de las x), o viceversa, como la función es continua, tienen que estar conectados los puntos f(a) y f(b), por lo que la gráfica no tendrá más remedio que cruzar el eje de las x, con lo que existirá un valor c en su intervalo de definición donde f(c) = 0. Puedes evidenciarlo en las siguientes gráficas:

¿Sabrías decir porqué a este teorema se le llama también “Teorema de los ceros de una función”?

¿Podría haber más de un cero en el intervalo en cuestión? Justifícalo

¿Podría haber dos? Justifícalo.

Page 83: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 47

Sin la de continuidad de f(x), no tiene porqué cumplirse el Teorema de Bolzano, tal y como vemos en la figura siguiente

Este teorema tiene, entre otras, dos importantes aplicaciones:

1ª.- sirve para comprobar si hay o no hay ceros en una función continua y acotar dichos ceros.

2ª.- También sirve para comprobar si hay o no hay soluciones de una ecuación y acotarlas.

Ejemplo resuelto 1 - 28º

Demuestra que la función f R: (0, ) definida por xf x x e( ) ln( ) corta al eje de

las x en algún punto.

Tanteando la función f(x), encontramos que:

f ee

f ee

1

2

2

1(1) ln(1) 0 0,37 0

1(2) ln(2) ln(2) 0,69 0,14 0,55 0

Y como la función f(x) es continua en todo su dominio, y por tanto en el intervalo [1,2], podemos aplicar el teorema de Bolzano y asegurar que existe al menos un valor comprendido entre 1 y 2 en el que la función se anula, es decir, existe al menos un punto de corte de la función f(x) con el eje de abscisas comprendido entre 1 y 2.

IMPORTANTE: observa que:

1º.- El teorema de Bolzano no te permite descubrir dónde está exactamente el punto de corte.

2º.- Pero sí te permite acotarlo cada vez más porque puedes dividir al intervalo [1,2] por la mitad y ver en cuál de las dos mitades está, y así sucesivamente.

Ejemplo resuelto 1 - 29º

Demuestra que la ecuación x3 - 3x + 40 = 0 tiene alguna raíz real (tiene solución real).

Page 84: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 48

En este caso construimos previamente la función f R: (0, ) definida por f x x x3( ) 3 40 y

nos damos cuenta de que los ceros de nuestra función f(x) (o puntos de corte de su gráfica con el eje x)

son también las soluciones de la ecuación x3 - 3x +40 = 0 del ejercicio.

Tanteando la función f(x), encontramos que:

f

f

( 4) 12 0

( 3) 22 0

Y como la función f(x) es continua en todo su dominio, y por tanto en el intervalo [-4,-3], podemos aplicar el teorema de Bolzano y asegurar que existe al menos un valor comprendido entre -4 y -3 en el que la función se anula, y por tanto la ecuación tiene al menos una solución comprendida entre -4 y -3.

Ejemplo resuelto 1 - 30º

Comprueba que las gráficas de las funciones f g R R, : definidas por:

x x x xe e e ef x y g x

1( ) ( )

2 2 2

se cortan en algún punto.

Para averiguar el punto o puntos de corte de las gráficas de las funciones f y g tenemos que resolver la ecuación:

x x x x x x x x

xe e e e e e e ee

1 1 10 0

2 2 2 2 2 2 2

En este caso procedemos igual que en el ejemplo anterior, es decir, construimos previamente la función

h R R: definida por xh x e1

( )2

y nos damos cuenta de que los ceros de nuestra función

h(x) (o puntos de corte de su gráfica con el eje x) son también las soluciones de la ecuación

xe1

02

Tanteando la función h(x), encontramos que:

h e

h e

2

1

1( 2) 0,69 0,5 0,19 0

21

( 1) 0,37 0,5 0,13 02

Y como la función h(x) es continua en todo su dominio, y por tanto en el intervalo [-2,-1], podemos aplicar el teorema de Bolzano y asegurar que existe al menos un valor comprendido entre -2 y -1 en el que la función se anula, es decir, existe al menos una solución de la ecuación comprendida entre -2 y -1, y por tanto las gráficas de las funciones f(x) y g(x) se cortan al menos en un punto cuya abscisa está comprendida entre -2 y -1.

Page 85: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 49

Ejercicio 1 - 35º

A) Demuestra que la función f R: (0, ) definida por:

f x x x2( ) ln ( )

corta al eje de las x en algún punto.

B) Comprueba que la función f R: (0, ) definida por:

f x x sen x x2( ) . ( ) ln( )

corta al eje de las x en algún punto.

Ejercicio 1 - 36º

Demuestra que las ecuaciones siguientes tienen alguna solución real.

A) x x2 1 cos( )

B) x

x sen x.cos( ) 15. ( ) 152

Ejercicio 1 - 37º

Comprueba que las gráficas de las funciones f R R: y g R: (0, ) definidas

por:

xf x e y g x x( ) 3 ( ) ln( )

se cortan en algún punto.

Ejercicio 1 - 38º

Comprueba que las gráficas de las funciones f R: (0, ) y g R: (0, )

definidas por:

f x x x y g x x3( ) ln( ) ( )

se cortan en algún punto.

Page 86: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 50

Ejercicio 1 - 39º

A) Una ecuación polinómica de grado tres es seguro que tiene alguna raíz real. Demuéstralo aplicando el teorema de Bolzano.

B) ¿Se puede decir lo mismo de las ecuaciones polinómicas de grado cuatro?

Ejercicio 1 - 41º

La función f(x) = tg(x) toma valores de distinto signo en los extremos del intervalo [π/4, 3π/4] y, sin embargo, no se anula en él. ¿Contradice esto el Teorema de Bolzano?

Page 87: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 51

12ª.- Teorema de Weierstrass.

Al igual que el de Bolzano, es también un teorema muy intuitivo y consecuencia de la continuidad de una función en un intervalo cerrado.

“Si una función es continua en un intervalo cerrado, entonces la función tiene al menos un máximo y un mínimo en dicho intervalo cerrado.”

En lenguaje simbólico el teorema se escribe:

f continua en a b c d a b x a b f c f x f d[ , ] , [ , ] / [ , ] ( ) ( ) ( )

Por ser f(x) continua en el intervalo cerrado [a,b], en dicho intervalo la gráfica de f(x) será una curva que una los puntos (a, f(a)) y (b, f(b)) y entonces habrá al menos un punto donde la función alcanzará un máximo y otro dónde alcanzará un mínimo. Puedes evidenciarlo en las siguientes gráficas:

Observa que el máximo y/o el mínimo puede estar incluso en los extremos del intervalo.

Page 88: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 52

2. DERIVADAS Y TÉCNICAS DE DERIVACIÓN

1ª.- Tasas de variación media.

2ª.- Derivada de una función en un punto.

3ª.- Función derivada.

4ª.- Reglas de derivación.

5ª.- Interpretación geométrica de la derivada de una función

en un punto.

6ª.- Derivadas laterales.

7ª.- Continuidad y derivabilidad.

8ª.- Teorema de Rolle.

9ª.- Teorema del valor medio de Lagrange del cálculo

diferencial.

1ª.- Tasas de variación media e instantánea

En muchas situaciones reales interesa conocer propiedades relativas al cambio o

variación que experimenta una variable respecto a otra. Esta variación se puede evaluar a

través del cociente entre el incremento que sufre la variable dependiente y el incremento

de la variable independiente. A este cociente le llamamos tasa de variación media

(T.V.M.) de la función.

La tasa de variación media (T.V.M.) de una función f(x), en el intervalo [a, b], viene

dada por la expresión:

( ) ( ). . .

f b f aT V M

b a

Geométricamente, la T.V.M. de la función f en el intervalo [a, b] coincide con la

pendiente de la recta secante a la gráfica de la función f(x) que pasa por los puntos (a, f(a))

y (b, f(b)).

Page 89: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 53

Si hacemos el cambio b= a + h podemos expresarla como:

( ) ( )

. . .f a h f a

T V Mh

siendo h la amplitud del intervalo, tal y como se ve en la imagen siguiente:

Ejemplo resuelto 2 - 1º

Calcula la T.V.M. de la función 2( ) 2f x x x en el intervalo 1, 3 .

2

2

(3) (1) 3 ( 1)(3) 3 2.3 3. : . . 2(1) 1 2.1 1 3 1 2

f ffSol T V Mf

La T.V.M. de una función nos informa acerca de su variación en un intervalo, pero

no nos da información sobre la variación de la función en un punto. Si h es muy pequeño, o

próximo a cero, obtenemos una información más precisa sobre cómo varía la función en el

punto a . Por ejemplo, a la policía de tráfico en carretera le importa más la velocidad de un

vehículo al atravesar un núcleo urbano que su velocidad media por hora; por eso, se

instalan radares que detectan velocidades en un punto concreto del trayecto. Esta

velocidad es, de hecho, una velocidad media entre dos puntos muy próximos; en la

práctica es la que marca el cuentakilómetros en un instante determinado.

La tasa de variación instantánea (T.V.I.) en el punto a sería, pues, la variación

media entre los puntos a y a + h, muy próximos:

0

( ) ( ). . . lim

h

f a h f aT V I

h

Page 90: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 54

Ejemplo resuelto 2 - 2º

Calcula la T.V.I. de la función 2( ) 2f x x x en el punto x = - 1.

0

( 1 ) ( 1). . lim

h

f h fT V I como

h

2 2( 1 ) ( 1 ) 2( 1 ) 3 4 ( 1) 3f h h h h h y f

2

0 0

3 4 3. . lim lim ( 4 ) 4

h h

h hT V I h

h

2ª.- Derivada de una función en un punto

A la T.V.I. de la función f(x) en el punto x = a se le llama derivada de f(x) en el

punto de abscisa x = a, y se denota por f´(a) (otras formas: y´(a), Df(a), ( )df

adx

). Por

tanto:

0

( ) ( )( ) lim

h

f a h f af a

h

Ejemplo resuelto 2 - 3º

A) Dada la función ( ) 3 2f x x , calcula la derivada de la función f(x) en los puntos de

abscisa x = - 1 y x = 2:

0 0 0

( 1 ) ( 1) 3 5 ( 5) 3( 1 ) 3( 1 ) 2 3 5 ( 1) lim lim lim 3( 1) 3( 1) 2 5 h h h

f h f h hf h h h ff h h h

0 0 0

(2 ) (2) 3 4 4 3(2 ) 3(2 ) 2 3 4(2) lim lim lim 3

(2) 3(2) 2 4 h h h

f h f h hf h h h ff h h h

B) Calcula la derivada de la función 2( ) 2 3f x x x , en los puntos x = 1 y x = - 2.

2 2

0 0 0 0 0

(1 ) (1) (1 ) 2(1 ) 3 0 4 ( 4)(1) lim lim lim lim lim ( 4) 4

h h h h h

f h f h h h h h hf h

h h h h

2 2

0 0 0 0 0

( 2 ) ( 2) ( 2 ) 2( 2 ) 3 ( 3) 2 ( 2)( 2) lim lim lim lim lim ( 2) 2

h h h h h

f h f h h h h h hf h

h h h h

Ejercicio 2 - 1º

Aplicando la definición de derivada de una función en un punto, calcula las siguientes

derivadas en los puntos que se indican:

2

2

) ( ) 1 2) ( ) 2 3 1 1

1) ( ) 1

) ( ) 1 3

A f x x en xB g x x x en x

C h x en xx

D i x x en x

Page 91: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 55

3ª.- Función derivada

El cálculo del valor de la derivada de una función en un punto a exige la resolución

de un límite, en muchos casos engorroso. Sí, además, para una misma función tenemos

necesidad de calcular su derivada en distintos puntos, esta dificultad se acrecienta. La

manera de simplificar el proceso es hallar, de una vez, otra función genérica que nos dé el

valor de la derivada en cualquier punto con sólo sustituir en ella. Esta función recibe el

nombre de función derivada.

La función derivada de una función f es una función que asocia a cada valor de x,

su derivada. Se denota por f´(x), o por y´ o por ( )df x

dx:

0

( ) ( )( ) lim

h

f x h f xf x

h

A partir de la función derivada se puede definir, si existe, también su derivada, y

recibe el nombre de derivada segunda, se representa por f´´(x) o por y’´ o por 2

2

( )d f x

dx.

Análogamente se definen las sucesivas funciones derivadas derivada tercera,

cuarta,…

Ejemplo resuelto 2 - 4º

Dada la función 2( ) 3 2f x x x , calcula su función derivada, aplicando la definición.

2 2 2 2 2

0 0 0

2

0 0 0

( ) ( ) 3( ) 2( ) (3 2 ) 3 3 2 4 2 3 2( ) lim lim lim

3 4 2 (3 4 2 )lim lim lim(3 4 2 ) 3 4

h h h

h h h

f x h f x x h x h x x x h x xh h x xf x

h h hh xh h h x h

x h xh h

Ejercicio 2 - 2º

Aplicando la definición de derivada de una función, calcula la función derivada de:

2

2

) ( ) 1) ( ) 2 3 1

1) ( )

A f x xB g x x x

C h xx

IMPORTANTE

Page 92: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 56

Observa que el conocimiento de la función derivada de una función f(x) simplifica el

proceso de cálculo del valor de la derivada de f en cualquier punto de abscisa x = a,

porque bastaría con sustituir el valor de x = a en la función derivada f’(x).

Así, para calcular f´(- 1), siendo f la función del ejemplo anterior, bastará sustituir x

por -1 en la función derivada f´(x) = 3 - 4x: f´(- 1) = 3 – 4 (- 1) = 7

4ª.- Reglas de derivación

Para calcular la función derivada de una función dada no aplicaremos la definición,

el cálculo mediante el límite, sino que usaremos las siguientes reglas de derivación que se

recogen en la tabla de la página siguiente:

REGLAS DE DERIVACIÓN PARA EL CÁLCULO DE LA FUNCIÓN DERIVADA

Page 93: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 57

Función Forma simple Forma compuesta

Constante ( ) ( ) 0f x K f x

Identidad ( ) ( ) 1f x x f x

Potencial 1( ) ( )n nf x x f x n x 1

( ) ( ) ( ) ( ) ( )n n

f x g x f x n g x g x

Irracional 1

1( ) ( )n

n nf x x f x

n x

1

( )( ) ( ) ( )

( )

n

nn

g xf x g x f x

n g x

Exponencial ( ) , 0 ( ) lnx xf x a a f x a a

( ) ( ) lnx x xf x e f x e e e

( ) ( )( ) , 0 ( ) ln '( )h x h xf x a a f x a a h x

( ) ( )( ) ( ) '( )h x h xf x e f x e h x

Potencial-exponencial

( ) ( ) 1 ( )( ) ( ) ( ) ( ). ( ) ( ) ( ) ln ( ). '( )

h x h x h xf x g x f x h x g x g x g x g x h x

Logarítmica

1( ) ln ( )f x x f x

x

axe

xxfxxf aa

ln

11log

1)('log)(

( )( ) ln ( ) ( )

( )

g xf x g x f x

g x

axg

xge

xg

xgxfxgxf aa

ln

1

)(

)('log

)(

)(')(')(log)(

Trigonométrica

( ) ( )f x sen x f x cos x

( ) ( )f x cos x f x sen x

xxtgxftgxxf

2

2

cos

11)(')(

( ) ( ) ( ) ( ) ( )f x sen g x f x g x cos g x

( ) ( ) ( ) ( ) ( )f x cos g x f x g x sen g x

)(cos

)(')(1)(')(')()(

2

2

xg

xgxgtgxgxfxgtgxf

Funciones arco

2

1( ) ( )

1f x arcsen x f x

x

2

1( ) ( )

1f x arccos x f x

x

2

1( ) ( )

1f x arctg x f x

x

2

( )( ) ( ) ( )

1 ( )

g xf x arcsen g x f x

g x

2

( )( ) ( ) ( )

1 ( )

g xf x arccos g x f x

g x

2

( )( ) ( ) ( )

1 ( )

g xf x arctg g x f x

g x

Producto de un nº por una función

)('.)(')(.)( xgKxfxgKxf

Suma o resta de funciones

)(')(')(')()()( xhxgxfxhxgxf

Producto de funciones

)(').()().(')(')().()( xhxgxhxgxfxhxgxf

Cociente de funciones 2)(

)(').()().(')('

)(

)()(

xh

xhxgxhxgxf

xh

xgxf

Regla de la cadena o función

compuesta

( ) ( )( ) ( ) ( ( )) ( )f x g h x f x g h x h x

Page 94: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 58

Ejercicio 2 - 3º

Calcula las derivadas de las funciones que se indican:

3 3

9

44 57

2 4 2 32

4 5

3 3

3

) ( ) 6 ) ( ) 3 ) ( ) 8

2 1) ( ) ) ( ) ) ( ) 3 10

1) ( ) 3( 1) ) ( ) (2 3 3) ) ( )

3 5 6

) ( ) 3 ) ( ) ) ( ) 2

) ( ) 6 log ) ( ) ln (3 ) ) ( ) 2( ln )

) ( ) 4

x x x

a f x b f x x c f x x

d f x e f x f f x xx x

g f x x x h f x x x i f xx x

j f x k f x e l f x e

m f x x n f x x o f x x x

p f x x

2 2

4

1 3 2 55 ) ( ) ) ( )

5 2 2 3x

x x xx q f x r f x

e x x x

Ejercicio 2 - 4º

Calcula las derivadas de las funciones que se indican:

2 3 6 2 4 2

23 3

2

32 2

2 5 3 3 4 4

) ( ) ( 1) ( 2 ) ) ( ) (5 3 ) (7 3 )

5 1 2) ( ) ( 2 ) ( 5 7) ) ( ) ) ( )

5 1 ( 1)

3 1 2) ( ) ) ( ) ) ( )

4 5 2

) ( ) (1 ) (1 ) ) ( ) (2 1) ) ( )x x x

a f x x x x b f x x x x x

x xc f x x x x d f x e f x

x x

x x x xf f x g f x h f x

x x x

i f x e x j f x e x k f x e

2

3 2 3 3

2 1 3 1

3 5 4

3

2 3 3

3

( 1)

) ( ) (1 ) ln2 ) ( ) ln( 7 ) ) ( ) 4 ln( 1)

) ( ) ) ( ) ) ( )(2 1) 2 3

ln( 2) log (2 )ln) ( ) ) ( ) ) ( )

( 2) 2 1

) ( ) ln ((1 ) ( )) ) ( ) ln(

x x

x

x

x

l f x x x m f x x x x n f x x x

e x eo f x p f x q f x

x e x x

x xxr f x s f x t f x

x x x

u f x x x x v f x e 2)x

Ejercicio 2 - 5º

Halla la derivada de estas funciones en los puntos que se indican en cada caso:

2

2

2

) ( ) ( 1) (0)

3) ( ) (1)

1

xa f x x e f

xb f x f

x

Page 95: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 59

Ejercicio 2 - 6º

Halla las derivadas 1ª y 2ª de cada una de estas funciones:

6

3

) ( ) 3 2 1

) ( ) x

a f x x x

b f x e

Ejercicio 2 - 7º

Calcula la derivada de las siguientes funciones:

2

4 35

5 1 2 4

6

1 3

2 2 232

5 1) ( ) ) ( ) ) ( )

2

) ( ) 5(2 4 ) ) ( ) (2 3 1)

1) ( ) 2 ) ( ) ) ( ) 3

) ( ) ln2 ) ( ) log (2 3) ) ( ) (1 ln )

1 6 1) ( ) 2 ln ) ( ) 3 3 7 ) ( )

2

) ( )

x xx

x

x

a f x x b f x c f x xx

d f x x x e f x x x

f f x g f x h f x ee

i f x j f x x k f x x

xl f x x m f x x x n f x

x x x

o f x 2 21 2 15 ) ( ) 4

2 xx p f x x x

x x e

Ejercicio 2 - 8º

Calcula la derivada de las siguientes funciones:

2

4 3 2 6

4 3

2

2

2 3 3 7 3 6 3

3 5 2

) ( ) ( 3 )(4 2) ) ( ) ( 2 9 )( 5 )

) ( ) (5 2) (2 8)

2 1 (1 ) 2) ( ) ) ( ) ) ( )

3 2 2 (3 )

) ( ) (5 ) (7 2 ) ) ( ) (2 5) ) ( ) (5 )

) ( ) (2 7) ln( 1) ) (

x x x

a f x x x x b f x x x x x

c f x x x

x x xd f x e f x f f x

x x x

g f x x e x h f x e x i f x e x x

j f x x x k f x

3

2

5 3 2 3

5 7 1

2 3 2 6

2 3

2 3 2 2

1

) ln( 4 ) ) ( ) (7 1)ln

2 2) ( ) ) ( ) ) ( )

( 4) 5 8

5log7ln( 3 4 ) ln) ( ) ) ( ) ) ( )

5 2 ( 1)

2 1) ( ) ln ) ( ) 5

2

x x

x

x x

x x x l f x x x

e x em f x n f x o f x

x e x x

xx x xp f x q f x r f x

x x x

xs f x t f x x

x

Page 96: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 60

Ejercicio 2 - 9º

Halla la derivada de estas funciones en los puntos que se indican en cada caso:

2 5) ( ) ( 1) ( 1)

3) ( ) ln (6)

2

a f x x f

xb f x f

x

Ejercicio 2 - 10º

Halla las derivadas 1ª y 2ª de cada una de estas funciones:

3

1) ( )

2

) ( ) x

a f xx

b f x x e

5ª.- Interpretación geométrica de la derivada de una función en un punto

Hemos visto que la T.V.M. de la función f en el

intervalo [a, a+h] coincide con la pendiente de la recta

secante a la gráfica de la función por los puntos P y Q.

Cuando h tiende a 0, es decir, cuando Q se acerca a P, la recta

secante se convierte en la recta tangente a la curva en el punto P y la

pendiente de la recta secante en la pendiente de la recta tangente.

Por tanto, la pendiente, m, de la recta tangente en el punto P es la

T.V.I. en el punto P, es decir, la derivada f´(x) de la función f(x) en x =

a:

tan0

( ) ( )lim ( ) ( , ( ))

recta genteh

f a h f af a m en el punto a f a

h

Si tenemos en cuenta que la ecuación punto – pendiente de una recta es:

0 0( )y y m x x , donde (x0, y0) es un punto de la recta y m, su pendiente; y puesto que

f´(a) nos da la pendiente de la recta tangente a f en el punto (a, f(a)), se tiene que la

ecuación de la recta tangente a la gráfica de la función f en dicho punto es:

( ) ( )( )y f a f a x a ecuación de la recta tangente

Page 97: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 61

La recta normal en P es la recta que pasa por P y es perpendicular a la tangente, es

decir, tiene de pendiente el número

1'

( )m

f a, (recuerda que el producto de las

pendientes de dos rectas perpendiculares da como resultado -1: m.m’ = -1 por lo que su

ecuación es:

1( ) ( )

( )y f a x a

f a ecuación de la recta normal

Ejemplo resuelto 2 - 5º

Halla la ecuación de la recta tangente y de la recta normal a la gráfica de la función

2( ) 2f x x x en el punto de abscisa x = - 1. (Sol.: en forma explícita y = - 4x – 1)

La ecuación, en forma punto pendiente, de la recta tangente pedida es de la forma ( 1) '( 1)( 1)y f f x

Hallemos por tanto f(-1) y f’(-1)

2( 1) ( 1) 2.( 1) 1 2 3 3 4( 1) 4 1'( ) 2 2; '( 1) 2( 1) 2 4

f y x y xf x x f

La ecuación, en forma punto pendiente, de la recta normal pedida es de la forma

1 1 1 13( 1) ( 1) 3 ( 1)

'( 1) 4 4 4y f x y x y x

f

Ejemplo resuelto 2 - 6º

Dada la función 2( ) 1f x x x se ha trazado una recta tangente a ella que tiene

por ecuación 5 3y x . ¿En qué punto se ha trazado? Sol.: (2, 7)

La recta tangente trazada tiene de pendiente m = 5. Por tanto la derivada de la función en el punto de tangencia desconocido tiene que valer 5, es decir, f’(x) = 5. Si igualamos la derivada de la función a 5, obtenemos la abscisa del punto de tangencia:

Como 2( ) 1 '( ) 2 1 2 1 5 2f x x x f x x x x

Sustituyendo x = 2 en f(x), obtenemos la ordenada del punto de tangencia f(2) = 22 + 2 + 1 = 7

Ejemplo resuelto 2 - 7º

Escribe la ecuación de la tangente a la curva 2( ) 3f x x x que es paralela a la recta

7 1 0x y . (Sol.: en forma explícita y = -7x - 3)

La ecuación, en forma punto pendiente, de la recta tangente pedida es de la forma ( ) '( )( )y f a f a x a pero

desconocemos las coordenadas del punto de tangencia (a,f(a))

Como la recta tangente pedida es paralela a la recta de ecuación 7x +y + 1 = 0. Entonces ambas tienen que tener la misma pendiente, es decir, m = - 7, y por tanto ya conocemos que f’(a) = - 7

Si calculamos la función derivada de f(x) y la igualamos a – 7, obtenemos la abscisa del punto de tangencia, y así podremos calcular la ordenada f(a) para sustituir en la ecuación de la recta tangente.

Page 98: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 62

Como

2 6( ) 3 '( ) 6 1 6 1 7 1

6f x x x f x x x x

Sustituyendo x = - 1 en f(x), obtenemos la ordenada del punto de tangencia f(- 1) = 4

La ecuación de la recta tangente pedida es 4 7( 1) 7 3y x y x

Ejemplo resuelto 2 - 8º

Dada la función 3 2( ) 2 3 1f x ax x x ¿cuál debe ser el valor de a para que la

pendiente de la recta tangente en el punto de abscisa x = - 1 sea 11 ? (Sol.: a = 4)

Si la pendiente de la recta tangente a la gráfica de la función en el punto de abscisa x = - 1 tiene que valer 11, entonces, según la interpretación geométrica de la derivada de una función en un punto, esto es lo mismo que afirmar que la derivada de la función f(x) en el punto de abscisa x = - 1 vale 11, es decir, f’(- 1) = 11.

Por tanto, hallamos la función derivada y obligamos a que f’(- 1) = 11. De esta condición obtenemos el valor de a:

3 2 2

2

( ) 2 3 1 '( ) 3 4 3 '( 1) 113 ( 1) 4( 1) 3 11 3 4 3 11 4

f x ax x x f x ax x fa a a

Ejemplo resuelto 2 - 9º

Calcula el punto de corte de las rectas tangentes a las curvas 2( ) 5 11f x x x y

1

( )g xx

en el punto de abscisa x = 1. Sol.: (4, - 2)

Hallamos la ecuación de la recta tangente a cada una de las funciones en el punto indicado y buscamos el punto de intersección

de ambas rectas resolviendo el sistema de ecuaciones que forman sus ecuaciones:

La ecuación, en forma punto pendiente, de la recta tangente a la función f(x) en el punto de abscisa x = 1 es de la forma

(1) '(1)( 1)y f f x Hallemos por tanto f(1) y f’(1)

2(1) 1 5.1 11 1 5 11 7 7 3( 1) 3 10'( ) 2 5; '(1) 2.1 5 3

f y x y xf x x f

La ecuación, en forma punto pendiente, de la recta tangente a la función g(x) en el punto de abscisa x = 1 es de la forma

(1) '(1)( 1)y g g x Hallemos por tanto g(1) y g’(1)

2 2

1 1( ) (1) 1

1 1 1( 1) 21 1

'( ) ; '(1) 11

g x gx y x y x

g x gx

Resolviendo el sistema de ecuaciones lineales formado por las dos ecuaciones obtenemos una única solución que son las coordenadas del punto de intersección de ambas rectas:

x = 4 e y = - 2

Page 99: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 63

Ejemplo resuelto 2 - 10º

Halla en qué punto (o puntos) la recta tangente a la curva 3( ) 3 1f x x x es paralela

al eje OX; y encuentra la ecuación de esa (o esas) rectas. Sol.: (Hay dos puntos: (1, - 1), (- 1, 3); y las ecuaciones

de las rectas tangentes son: y = - 1, y = 3)

La pendiente del eje de abscisas (eje OX) vale 0 (m = 0; recuerda que su ecuación es y = 0). Por tanto, todas las rectas paralelas al eje de abscisas (eje OX) también tienen pendiente nula.

Como buscamos puntos de la gráfica de la función cuyas rectas tangentes sean paralelas al eje de abscisas, entonces buscamos puntos de la gráfica de la función cuya derivada sea nula (f’(x) = 0). Igualando la derivada de la función a 0 encontramos las abscisas de estos puntos:

3 2 2( ) 3 1 '( ) 3 3 3 3 0 1 1f x x x f x x x x

Como vemos hay dos puntos (1, f(1) = (1, - 1) y (- 1, f(- 1)) = (- 1, 3)

Las ecuaciones de las tangentes son: y = -1 e y = 3.

Ejemplo resuelto 2 - 11º

Una recta tangente a la curva 3( )f x x tiene pendiente 3 y pasa por el punto (0, -2).

¿Cuál es el punto de tangencia? Sol.: (1, 1)

Nos piden un punto (a, f(a)) de la gráfica de la función en el que la recta tangente tiene de pendiente m = 3. Aplicando la interpretación geométrica de la derivada de una función en un punto, sabemos que f’(a) = 3. Si imponemos la condición de

que la función derivada tiene que valer 3, descubriremos quien es a.

3 2 2( ) '( ) 3 3 3 1 1f x x f x x x x

Como vemos hay dos puntos (1, f(1)) = (1, 1) y (- 1, f(- 1)) = (- 1, - 1) de la gráfica de f cuyas respectivas rectas tangentes

tienen de pendiente 3, y sus respectivas ecuaciones son:

(1) '(1)( 1) 1 3( 1) 3 2y f f x y x y x

( 1) '( 1)( 1) 1 3( 1) 3 2y f f x y x y x

pero nos han pedido la recta tangente que pase por el punto (0, - 2), y sólo es la primera tangente la que pasa por este

punto.

Ejercicios 2 - 11º a 21º

11º.- Halla la ecuación de la recta tangente a la función 2

( )1

xf x

x en el punto

de abscisa x = 2.

12º.- Halla la ecuación de la recta tangente a la función

2

( )2

xf x

x que es paralela

a la recta de ecuación 3 1x y .

13º.- Halla la ecuación de la recta tangente a la gráfica de la función 2( ) 3f x x x

en el punto de abscisa x = 2. Sol.: y = - x + 4

14º.- Obtén la ecuación de la recta tangente a la curva 2( ) 3f x x x que es paralela a

la recta 3 2 1 0x y . Sol.: y = -3/2x – 9/16

Page 100: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 64

15º.- Halla las ecuaciones de las rectas tangentes a la curva 2

( )1

f xx

que son

paralelas al segmento que une los puntos (1, -1) y (3, -5). Sol.: (0, 2), (- 2, - 2); y = - 2x+2, y = -

2x - 6

16º.- Halla la ecuación de las rectas tangentes a 3 2( ) 3 9f x x x x que son

paralelas al eje OX. Sol.: (-1, 5), (3, - 27); y = 5, y = - 27

17º.- Halla la ecuación de la recta tangente a la gráfica de la función: ( ) xf x eque es paralela a la bisectriz del primer cuadrante. Sol.: y = x + 1

18º.- (Selectividad 2003) Sea :f R R : la función definida por 3( )x

f x e ¿En

qué punto de la gráfica de f la recta tangente a esta pasa por el origen de

coordenadas?. Halla la ecuación de dicha tangente. Sol: (3, e) 3

ey x

19º.- 2004 4-A-2.

20º.- De entre todas las rectas que pasan por el origen de coordenadas, determina

las que son tangentes a la gráfica de la función definida por 21( ) 4 4

4f x x x

Calcula los puntos de tangencia correspondientes. Solc: hay dos rectas cuyas ecuaciones son

24 6( 4); 8 2( 4)y x y x

21º.- Halla la ecuación de la recta tangente a las gráficas de las funciones:

a.

2

3 5 2( )

7 4 2

x si xf x

x x si x en el punto de abscisa x = 4. Sol.: (

b.

33

( ) 13x

xsi x

f x xe si x

en el punto de abscisa x = 2. Sol.: (

c.

2 36

( ) 52 5 6

xsi x

f x xx si x

Page 101: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 65

6ª.- Derivadas laterales

Sabemos que para que un límite exista es necesario y suficiente que existan los

límites laterales y que sean iguales. Por tanto, y puesto que la derivada es un límite, estos

límites dan lugar a las dos derivadas laterales por la izquierda, f´(a - ), y por la derecha,

f´(a + ) , y se definen así:

0 0

( ) ( ) ( ) ( )( ) lim ( ) lim

h h

f a h f a f a h f af a f a

h h

Diremos por tanto, que una función es derivable en un punto si, y solo si, es

derivable por la izquierda y por la derecha en dicho punto y las derivadas laterales

coinciden:

( ) ( )( )

( ) ( )

f a y f af a

f a f a

Desde el punto de vista gráfico, que ( ) ( )f a f a significa que la recta tangente a

f(x) en el punto (a, f(a)) es única.

7ª.- Continuidad y derivabilidad

TEOREMA

Para que una función f(x) sea derivable en un punto es condición

necesaria pero, no suficiente, que la función f(x) sea continua en

dicho punto.

Este teorema nos enseña dos aspectos trascendentales de la relación entre la continuidad

y la derivabilidad:

1º.- Para que una función sea derivable en un punto, antes tiene que ser

continua.

2º.- La continuidad en un punto no garantiza la derivabilidad en dicho punto.

Page 102: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 66

Por ejemplo, la función del apartado a) es continua en el punto de abscisa x = 0,

pero sin embargo en dicho punto la función no es derivable porque sus derivadas laterales

no coinciden en x = 0, es decir la recta tangente a la función en el punto (0, f(0)) no es

única.

a

Lo mismo le ocurre a la función del apartado b) en el punto de abscisa x = a, donde

además se han trazado la tangente por la izquierda y la tangente por la derecha para

visualizar que no coinciden.

Las funciones elementales no presentan, en general, dificultades de derivabilidad

en los puntos de su dominio.

Para las funciones definidas a trozos, primero hay que estudiar su continuidad,

después su derivabilidad. En el primer caso hay que comparar los límites laterales; en el

segundo, las derivadas laterales.

Gráficamente, la derivabilidad puede calificarse como “suavidad”, como ausencia de

cambios bruscos. En la siguiente figura observados como la función f(x) es derivable en

todos sus puntos; en cambio, g(x) no es derivable en los puntos a , b y c. En el punto a ,

por no estar definida; en b , por no ser continua; en c , por no ser “suave”, es un punto

anguloso.

Ejemplo resuelto 2 - 12º

Averigua si la siguiente función es derivable en x = 2: (Soluc: no)

23 1 2( )

12 2

x si xf x

x si x

Veamos primero si f(x) es continua en x = 2.

1º. f(2) existe y vale 11.

2º. Veamos si existe 2

lim ( )x

f x . Para ello estudiamos los límites laterales:

2 2

2 2

2 2

lim ( ) lim 3 1 3.2 1 11

lim ( ) lim (12 ) 12.2 24x x

x x

f x x

f x x 2lim ( )x

f x

Page 103: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 67

No es continua en x = 2 porque 2

lim ( )x

f x y por tanto f(x) no es derivable en x = 2.

Ejemplo resuelto 2 - 13º

Estudia la derivabilidad de la función siguiente y calcula su derivada:

2

2

1 0

( ) 1 0, 2

4 2 2

x si x

f x x si x

x x si x

Primero veamos donde es continua f(x).

La expresión 2 1x es una función polinómica que es continua y derivable en todo du dominio que es R. Por

tanto f(x) también será continua y derivable en el intervalo (-∞, 0) y su derivada vale 2x

La expresión 1x es una función polinómica que es continua y derivable en todo du dominio que es R. Por

tanto f(x) también será continua y derivable en el intervalo (0. 2) y su derivada vale - 1.

La expresión 2 4 2x x es una función polinómica que es continua y derivable en todo du dominio que

es R. Por tanto f(x) también será continua y derivable en el intervalo (2, ∞) y su derivada vale 2x - 4

Veamos que ocurre en los puntos de ruptura:

Continuidad en x = 0:

1º. f(0) existe y vale f(0) = -0 + 1 = 1.

2º. Veamos si existe 0

lim ( )x

f x . Para ello estudiamos los límites laterales:

2

0 0

00 0

lim ( ) lim 1 1lim ( ) 1

lim ( ) lim ( 1) 1x x

xx x

f x xf x

f x x

3º. La función es continua en x = 0 porque

0

(0) 1 lim ( ) 1x

f f x

Derivabilidad en x = 0: Estudiemos las derivadas laterales de f(x) en x = 0

0 0

0 0

lim '( ) lim 2 0

lim '( ) lim ( 1) 1x x

x x

f x x

f x'(0)f

La función no es derivable en x = 0

Continuidad en x = 2:

1º. f(2) existe y vale f(2) = - 2 + 1 = - 1.

2º. Veamos si existe 2

lim ( )x

f x . Para ello estudiamos los límites laterales:

2 22

2 2

lim ( ) lim 1 1

lim ( ) lim ( 4 2) 2x x

x x

f x x

f x x x 2lim ( )x

f x

La función no es continua en x = 2 porque 2

lim ( )x

f x y por tanto tampoco es derivable en este punto

Su función derivada sería por tanto:

2 0

'( ) 1 (0,2)

2 4 2

x si x

f x si x

x si x

NOTA: Observa detenidamente como hemos indicado en la segunda rama que f’(0) y f’(2) NO existen

Page 104: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 68

Ejemplo resuelto 2 - 14º

Calcular m y n para que la siguiente función sea derivable en x = 1 (Soluc: m = 2 y n = - 1)

2

2

5 1( )

1

x x m si xf x

x nx si x

Para que f(x) sea derivable en x = 1, primero tiene que ser continua en dicho punto. Y para que f sea continua en x = 1 tiene

que

1

lim ( )x

f x y para ello los límites laterales en x = 1 tienen que coincidir. Al imponer esta condición obtenemos una

ecuación con dos incógnitas:

2 2

1 12 2

1 1

lim ( ) lim 5 1 5.1 44 1

lim ( ) lim ( ) 1 .1 1x x

x x

f x x x m m mm n

f x x nx n n

Como la función es derivable en x = 1, entonces sus derivadas laterales en dicho punto tienen que coincidir. Al imponer esta condición sale una nueva ecuación. Entre esta y la obtenida anteriormente hallamos m y n.

2

1 1 12

1 1 1

lim '( ) lim 5 ' lim 2 5 2.1 5 33 2 1

lim '( ) lim ( )' lim ( 2 ) 2.1 2x x x

x x x

f x x x m xn n

f x x nx x n n n

Y por tanto m = 2

Ejemplo resuelto 2 - 15º

Estudia en función de los valores de los parámetros a y b la derivabilidad de la función y calcula su derivada.

3

2

1( )

1

x x si xf x

ax bx si x

La expresión 3x x es una función polinómica que es continua y derivable en todo su dominio que es R. Por tanto f(x)

también será continua y derivable en el intervalo (-∞, -1) y su derivada en este intervalo vale 3x2 - 1

La expresión 2ax bx es una función polinómica que es continua y derivable en todo su dominio que es R,

independientemente de los valores de a y de b. Por tanto f(x) también será continua y derivable en el intervalo (- 1. +∞) y su derivada en este intervalo vale 2ax + b, independientente de los valores de a y de b.

Veamos que ocurre en el punto de ruptura x = -1:

Para que f(x) sea continua en x = -1, tiene que

1º.- Existir f(- 1) y existe: f(- 1) = a.(- 1)2 + b.(- 1) = a - b

2º.-

1

lim ( )x

f x y para ello los límites laterales tienen que coincidir. Al imponer esta condición obtenemos la primera

relación que han de cumplir a y b:

3 3

1 12 2

1 1

lim ( ) lim ( 1) ( 1) 1 1 00

lim ( ) lim ( ) .( 1) .( 1)x x

x x

f x x xa b a b

f x ax bx a b a b

3º.- Ambos valores coincidir, y lo hacen si a = b

Para que f(x) sea derivable en x = - 1 no basta con que sea continua, las derivadas laterales tienen que coincidir en dicho punto. Al imponer esta segunda condición obtenemos una segunda relación que, junto con la primera permite obtener a y b.

3 2

1 1 12

1 1 1

lim '( ) lim ' lim 3 1 22 2

lim '( ) lim ( )' lim (2 ) 2 2x x x

x x x

f x x x xa b

f x ax bx ax b a b a b

Por tanto para que f sea derivable en todo R debe cumplirse: a = b = - 2

CONCLUSIÓN: Si a = b = -2 la función f(x) es continua y derivable en todo R y su derivada sería:

Page 105: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 69

23 1 1'( )

4 2 1

x si xf x

x si x

Si a = b ≠ -2 o si a ≠ b sólo es derivable en R – {- 1}, y su derivada sería:

23 1 1'( )

2 1

x si xf x

ax b si x

Ejercicios 2 - 22º a 47º

22º.- Calcular m y n para que la siguiente función sea derivable en x = 1 :

23 1( ) 2

1

mx si xf x

si xnx

23º.- Determina, si es posible, el valor del parámetro a para que la función f(x) sea

derivable en todo su dominio de definición:

1

ln 0 1( )

(1 ) 1x

x x si xf x

a e si x

24º.- Estudia la derivabilidad de la siguiente función:

2

2

3 2 0

( ) 2 0 3

3 3

x x si x

f x x si x

x si x

25º.- Dada la siguiente función, calcula el valor de m y de n para que sea derivable:

0( ) 1

3 0

msi x

f x xx n si x

(Sol.: m = - 3; n = 3)

26º.- Estudia la derivabilidad de la siguiente función:

( ) 2f x x x

27º.- Estudia la derivabilidad de la siguiente función:

2( )f x x x

Page 106: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 70

28º.- 2003 1-B-2 2003 2-A-1 2003 3-B-2

29º.- 2004 3- A-2 2004 5-A-1 2006 1-A-2 apdo a)

30º.- 2006 5-A-1 2007 4-B-2 apdo a) 2007 5-A-2 apdo a)

31º.- 2008 1-A-1 2008 1-B-2 apdo a) 2008 2-A-1

32º.- 2008 3-B-2 apdo. a) 2008 4-A-1 2008 4-B-1

33º.- 2008 5-B-1 apdos. a) y b) 2009 1-B-2 apdo.a) 2009 4-B-1

34º.- 2009 1-A-1 2010 2-B-1 2010 2-A-1

35º.- 2010 3-A-1 2010 3-B-1 2010 4-B-2 apdo. a)

36º.- 2010 6-A-1 2010 6-B-1 2011 2-B-1 2011 6-B-2 apd.a)

37º.- Calcula la ecuación de la recta tangente a la gráfica de cada una de las siguientes funciones en los puntos que se indican:

) ( ) , 0

) ( ) , 4

xa f x e en x

b f x x en x Sol.: x+1; x/4+1

38º.- Determina los puntos de la curva de ecuación 3( ) 12f x x x en los que la

recta tangente es paralela al eje de abscisas. Sol.: (2, - 16), (- 2, 16)

39º.- Calcula la ecuación de la recta tangente a la gráfica de

2

2( )

1

xf x

x en el

punto de abscisa x = 1. ¿En qué punto la tangente es paralela al eje de abscisas? Sol.:

y – 1/2 = 1/2(x - 1); (0, 0)

40º.-Estudia la derivabilidad de las siguientes funciones:

a.

2

2

2 1 1

( ) 2 2 1 2

8 2

x x si x

f x x si x

x x si x

(Sol.: En x=-1 es cont., no deriv., en x=2 no es cont.)

b.

2 1( ) 2

1

x si xf x

si xx

(Sol.: En x=1 es cont., pero no deriv. presenta un punto anguloso)

c.

1

4( ) 1 1

31 ln 1

xe si x

f x si xx

x si x

(Sol.: En x=-1 no es cont., en x=1 es cont., pero no deriv.)

Page 107: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 71

41º.- Una función f(x) está definida:

2

2

0( )

0

x x si xf x

x ax b si x. Halla a y b para

que f(x) sea continua y derivable en x = 0. Sol.: b = 0, a = 1

42º.- Calcula los valores que deben tomar los parámetros a y c para que la función f(x) sea

derivable en x = 1:

2 1( )

ln 1

ax c si xf x

x si x. Da, en este caso, la ecuación de la recta

tangente a la gráfica de f en x = 1. Sol.: a = 1/2, c = -1/2; y = x - 1

43º.- Considérese la curva de ecuación 3 2( ) 6 18f x kx x kx

a) ¿Cuánto debe valer k si las tangentes en los puntos A (1, f(1)) y B (- 2, f(- 2)) son paralelas? b) Determinar las ecuaciones de ambas tangentes.

44º.- Halla la ecuación de la recta tangente a la gráfica de la función:

2

2

0( )

2 1 0

xe si xf x

x x si x en el punto de abscisa x = - 1

45º.- Comprueba si la función: ( )f x x es derivable en x = 0.

46º.- Representa gráficamente la función 2 2y x x . A partir de su gráfica,

indica en qué puntos no es derivable.

47º.- Comprueba si la función ( ) 1f x x es derivable en x = 1.

Page 108: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 72

8ª.- Teorema de Rolle

“Si una función es continua en un intervalo cerrado, derivable en el abierto y la función toma los mismos valores en los extremos de dicho intervalo, entonces la derivada de la función se anula en al menos un punto del intervalo abierto.”

En lenguaje simbólico el teorema se escribe:

f continua en a bf derivable en a b c a b f c

f a f b

[ , ]( , ) , / '( ) 0

( ) ( )

Por ser f(x) continua en el intervalo cerrado [a,b] y derivable en el abierto (a,b), en

dicho intervalo la gráfica de f(x) será una curva que una los puntos (a, f(a)) y (b, f(b) = f(a)) y entonces habrá al menos un punto del intervalo abierto donde la recta tangente a la gráfica de f sea paralela al eje de abscisas. Puedes verlo en las gráficas siguientes:

Antes de aplicar el Teorema de Rolle a una función, hay que asegurarse que cumple las hipótesis.

Ejercicios 2 - 48º

Analice si es aplicable el Teorema de Rolle a las siguientes funciones en los intervalos que se indican:

A) f(x) = x2 en el intervalo [-1, 1]

B) g(x) = |x| en el intervalo [2, 2]

C) h(x) = 1/x en el intervalo [-1, 1]

Page 109: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 73

9ª.- Teorema del Valor Medio de Lagrange del Cálculo

Diferencial

“Si una función es continua en un intervalo cerrado y derivable en el abierto, entonces hay al menos un punto del intervalo de derivación en el que el valor de la derivada coincide con la pendiente de la recta que contiene al segmento que une a los por extremos del intervalo de continuidad.”

En lenguaje simbólico el teorema se escribe:

f b f af continua en a b c a b f cf derivable en a b b a

( ) ( )[ , ], / '( )

( , )

Por ser f(x) continua en el intervalo cerrado [a,b] y derivable en el abierto (a,b), en dicho

intervalo la gráfica de f(x) será una curva que una los puntos (a, f(a)) y (b, f(b)) y entonces habrá al menos un punto del intervalo abierto donde la recta tangente a la gráfica de f sea paralela al segmento que une los puntos (a, f(a)) y (b, f(b)). Puedes verlo en las gráficas siguientes:

Ejercicios 2 - 49º

Analice si es aplicable el Teorema del valor medio de Lagrange a las siguientes funciones y, en caso afirmativo, calcule un valor de c:

A) f(x) = ln(x) en el intervalo [0, 1]

B) g(x) = x2- 4 en el intervalo [-2, 2]

C) h(x) = |x2- 4| en el intervalo [1, 4]

Page 110: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 74

3. APLICACIONES DE LA DERIVADA AL

ESTUDIO DE FUNCIONES.

1ª.- Monotonía de una función: Crecimiento y decrecimiento.

2ª.- Extremos relativos.

3ª.- Curvatura de una función: Concavidad y convexidad.

4ª.- Puntos de inflexión.

5ª.- Estudio y representación gráfica de funciones.

6ª.- Estudio y representación de funciones polinómicas.

7ª.- Estudio y representación de funciones racionales.

8ª.- Estudio y representación de funciones irracionales.

9ª.- Estudio y representación de funciones exponenciales.

10ª.- Estudio y representación de funciones logarítmicas.

11ª.- Estudio y representación de funciones definidas a trozos.

12ª.- Estudio y representación de funciones con valor absoluto.

13ª.- Optimización.

Page 111: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 75

1ª.- Monotonía: crecimiento y decrecimiento

La monotonía se basa en estudiar cómo aumenta o disminuye la variable

dependiente y, al aumentar o disminuir la variable independiente x.

En la figura se observa que f(x) es creciente para valores de x menores que x1 ;

decreciente, entre x1 y x2 , y nuevamente creciente para valores de x mayores que x2 .

En la misma figura se han trazado rectas tangentes a f(x), en los puntos a , x1 , b , c ,

x2 y d , para los cuales puede verse que donde la función es creciente la tangente tiene

pendiente positiva; donde es decreciente tiene pendiente negativa y en x1 y x2 , que son

donde la función toma sus valores máximo y mínimo, las tangentes son rectas horizontales

y, por tanto, de pendiente cero.

Teniendo en cuenta que el valor de la pendiente de la recta tangente a f(x) viene

dado por su derivada, ( )f x , en el punto correspondiente, en la práctica, para determinar

los puntos en los que una función crece o decrece bastará con estudiar el signo de la

derivada.

Si 0( ) 0f x ( )f x es creciente en x0.

Una función es creciente en un intervalo cuando lo es en cada uno de sus puntos.

Por tanto, si ( ) 0 ( , ) ( )f x x a b f x es creciente en el intervalo (a, b).

Si 0( ) 0f x ( )f x es decreciente en x0.

Una función es decreciente en un intervalo cuando lo es en cada uno de sus

puntos. Por tanto, si ( ) 0 ( , ) ( )f x x a b f x es decreciente en el intervalo (a,

b).

Page 112: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 76

Para calcular la monotonía de una función f(x), supuesta la existencia de la

derivada, conviene seguir estos pasos:

1. Calculamos ( )f x .

2. Hallamos los puntos singulares de la función, es decir, los puntos que anulan la

1ª derivada, ( ) 0f x . Determinamos también los puntos de discontinuidad de

( )f x .

3. Consideramos los intervalos determinados por las soluciones de ( ) 0f x

(puntos singulares o raices de la primera derivada) y los puntos de

discontinuidad de ( )f x .

4. Calculamos el signo de ( )f x en dichos intervalos:

Si f x ( ) 0 x a b , ( , ) , entonces f(x) es creciente en (a, b).

Si f x ( ) 0 x a b , ( , ) , entonces f(x) es decreciente en (a, b).

Ejemplos no resueltos 3 - 1º a 3º

1º.- Halla los intervalos de monotonía de:

1) ( )

3

xa f x

x

2 4

) ( )x

b f xx

(Sol.: decr.: ( 2, 0) (0,2) ; cre: ( , 2) (2, ) )

2º.- Determina los intervalos de monotonía de las funciones:

2 3 3) ( ) ; ) ( ) ; ) ( ) 3a f x x b f x x c f x x x

3º.- Estudia el crecimiento de la siguiente función:

22 1( )

1

x xf x

x

(Sol.: decrece: (0, 1) (1, 2) ; crece: ( , 0) (2, ) )

Ejercicios 3 - 1º

1º.- Halla los intervalos de monotonía de las funciones:

2 4 2 3 2) ( ) 1 ; ) ( ) 2 ; ) ( ) 2 1a f x x b f x x x c f x x x

Page 113: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 77

Ejercicios 3 - 2º

2º.- Halla los intervalos de monotonía de las funciones:

2) ( )

2

xa f x

x

(Sol.: decrece: ( , 2) ( 2, ) ; crece: ( 2, 2) )

) ( ) lnb f x x x (Recuerda: log xa P x a P ) (Sol.: decrece: 1(0, )e ; crece: 1( , )e )

) ( )ln

xc f x

x (Sol.: decrece: (0, 1) (1, )e ; crece: ( , )e )

) ( ) xd f x x e (Sol.: decrece: ( , 1) ; crece: ( 1, ) )

Page 114: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 78

2ª.- Extremos relativos: máximos y mínimos

Un punto crítico de una función f(x) es un punto donde la primera derivada vale

cero (punto singular), 0( ) 0f x , o la derivada no está definida, 0

( )f x (no existe f’(x0)).

Los máximos y mínimos relativos de una función sólo pueden darse en los puntos

críticos; sin embargo, no todo punto crítico es necesariamente un máximo o un mínimo.

TEOREMA

00

0

'( )( ) 0

( )Si f x y

f xf x tiene un extremo relativo en x

Para la determinación de los extremos relativos de una función podemos utilizar los

resultados del estudio de su monotonía (teniendo la precaución de no incluir como

extremos puntos en los que la función no esté definida) o seguir el siguiente procedimiento:

1. Calculamos ( )f x .

2. Hallamos los puntos que anulan la 1ª derivada, ( ) 0f x .

3. Calculamos ( )f x y sustituimos en ella los valores de x que han anulado la

primera derivada y estudiamos el signo de 0( )f x :

Si 0( ) 0f x en x = x0 hay un máximo relativo.

Si 0( ) 0f x en x = x0 hay un mínimo relativo.

Si 0( ) 0f x , este criterio no puede aplicarse, y recurriríamos a estudiar el

signo de la primera derivada para valores muy próximos por la izquierda y

por la derecha del punto, es decir, la monotonía, de forma que:

♦ Si ( )f x es positiva a la izquierda de un punto crítico (función creciente) y

negativa a la derecha (función decreciente), el punto crítico es un

máximo.

♦ Si ( )f x es negativa a la izquierda de un punto crítico y positiva a la

derecha, el punto crítico es un mínimo.

Page 115: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 79

IMPORTANTE

Para que una función tenga un máximo o un mínimo no es necesario que ( ) 0f x .

Por ejemplo, ( )f x x tiene un mínimo en x = 0 y, sin embargo, (0)f no está definida.

Por tanto, la caracterización dada se refiere a funciones derivables.

Ejemplos no resueltos 3 – 4º a 7º

4º.- Calcular los extremos relativos de las funciones:

3) ( ) 3a f x x x (Sol.: mínimo relativo: (1, 2) ; máximo relativo: ( 1, 2) )

7 3) ( )

2 4

xb f x

x

(Sol.: ( ) 0f x no tiene solución, luego no hay extremos relativos. Es decreciente)

5º.- Hallar los extremos relativos de la siguiente función:

22 1( )

1

x xf x

x

(Sol.: mínimo relativo: (2, 9) ; máximo relativo: (0, 1) )

6º.- Calcula los intervalos de monotonía y los extremos relativos de la siguiente función:

24( ) lnf x x

x (Sol.: decrece: ( , 0) (0,2) ; crece: (2, ) ; mínimo relativo: (2, 2 ln4) )

7º.- Dada la función 3 2( ) 5f x x ax , hallar el valor de a para que tenga un

extremo relativo (máximo o mínimo) cuando x = 2. (Sol.: a = -3)

Ejercicio 3 – 3º

Hallar los extremos relativos de las funciones:

2) ( ) 2 3 2a f x x x

2

) ( )2

xb f x

x (Sol.: mínimo relativo:

2( 2, )

4; máximo relativo:

2( 2, )

4)

) ( ) lnc f x x x (Sol.: mínimo relativo: 1 1( , )e e )

) ( )ln

xd f x

x (Sol.: mínimo relativo: ( , )e e )

) ( ) xe f x x e (Sol.: mínimo relativo: 1( 1, )e )

Ejercicio 3 – 4º

Calcula los intervalos de monotonía y los extremos relativos de la siguiente función:

3 2) ( ) 3 4 3a f x x x x

4 3 2) ( ) 4 4 1b f x x x x (Sol.: decrece: ( , 0) (1,2) ; crece: (0, 1) (2, ) ; mínimo relativo:

(2, 1) (0, 1)y ; máximo relativo: (1, 0) )

Page 116: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 80

3ª.- Curvatura de una función: concavidad y convexidad

Diremos que una función es cóncava en un intervalo, si las pendientes de las rectas

tangentes trazadas a la curva van disminuyendo. Por el contrario, si las pendientes van

aumentando, diremos que la función es convexa en ese intervalo.

El estudio de la derivada segunda, ( )f x , de una función ( )f x nos va a permitir

deducir la curvatura de la gráfica asociada a la función.

La concavidad y la convexidad dependen de la posición desde la que se observa la

gráfica. Nosotros seguiremos el siguiente criterio:

Una función f (x) es cóncava en un intervalo

(a, b) si la gráfica de la función queda debajo de la

recta tangente en cada uno de los puntos del

intervalo.

Una función f (x) es convexa en un intervalo

(a, b) si la gráfica de la función queda encima de la

recta tangente en cada uno de los puntos del

intervalo.

Para determinar los intervalos de concavidad y convexidad procederemos del

siguiente modo:

1. Calculamos ( )f x .

2. Hallamos los puntos que anulan la 2ª derivada, ( ) 0f x . Determinamos

también los puntos de discontinuidad de ( )f x .

3. Consideramos los intervalos determinados por las soluciones de ( ) 0f x y los

puntos de discontinuidad de ( )f x .

4. Calculamos el signo de ( )f x en dichos intervalos:

Si f x ( ) 0 x a b , ( , ) , entonces f(x) es cóncava en (a, b).

Si f x ( ) 0 x a b , ( , ) , entonces f(x) es convexa en (a, b).

Page 117: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 81

Ejemplos no resueltos 3 – 8º y 9º

8º.- Estudia el tipo de concavidad que presentan las funciones:

3 2) ( ) 6 9a f x x x x (Sol.: convexa: (2, ) ; cóncava: ( , 2) )

2) ( ) 2 4 lnb f x x x (Sol.: convexa: (1, ) ; cóncava: (0, 1) )

9º.- Estudia la monotonía y la concavidad de la función:

( ) ( 1) xf x x e (Sol.: decrece: (2, ) ; crece: ( , 2) ; máximo (2 , 0,14) ; convexa: (3, ) ; cóncava: ( , 3) )

Ejercicio 3 – 5º

Determina los intervalos de curvatura de las siguientes funciones:

23 2) ( ) 8 ; ) ( ) ; ) ( )

1xx

a f x x x x b f x c f x x ex

Page 118: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 82

4ª.- Puntos de inflexión

Una función tiene un punto de inflexión en un punto, si la

función cambia de curvatura en dicho punto.

La tangente a la función en un punto de inflexión atraviesa la

gráfica de la misma.

Si una función tiene en x = x0 un punto de inflexión, entonces 0( ) 0f x . El

teorema recíproco no es cierto.

Ejemplo resuelto 3 – 10º

La derivada segunda de la función 4( )f x x es

2( ) 12f x x , luego (0) 0f y

como se puede observar en la figura, en el punto (0, 0) la función no tiene un punto de inflexión.

La determinación de los puntos de inflexión podemos hacerla a partir del estudio de

la curvatura de la función o mediante el siguiente proceso:

1. Calculamos ( )f x .

2. Hallamos los puntos que anulan la 2ª derivada, ( ) 0f x .

3. Calculamos ( )f x y sustituimos en ella los valores de x que han anulado la

segunda derivada:

Si 0( ) 0f x , entonces diremos que la función tiene un punto de inflexión

en x = x0 .

Si 0( ) 0f x , este criterio no puede aplicarse, y recurriríamos a estudiar el

signo de la segunda derivada para valores muy próximos por la izquierda y

por la derecha del punto, es decir, la curvatura, de forma que:

♦ Si ( )f x es positiva a la izquierda del

punto y negativa a la derecha, se trata

de un punto de inflexión convexo -

cóncavo.

Page 119: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 83

♦ Si ( )f x es negativa a la izquierda del

punto y positiva a la derecha, se trata

de un punto de inflexión cóncavo -

convexo.

Ejemplos no resueltos 3 – 10º y 11º

10º.- Determina los puntos de inflexión de las funciones:

4 2) ( ) 6a f x x x (Sol.: ( 1, 5), (1, 5) )

6) ( ) 2b f x x (Sol.: no tiene)

11º.- Calcular la ecuación de la recta tangente a la gráfica de la función 3 2y x x en su punto de inflexión. (Sol.: P.I.: y x(0, 2) 2 )

Ejemplo resuelto 3 – 12º

Halla a, b y c de modo que la función 3 2y x ax bx c tenga un mínimo para x

= 3 y un punto de inflexión en (0, 2). (Sol.: a = 0; b = - 27; c=2)

La función 3 2( )f x x ax bx c es una función polinómica y por tanto es continua y derivable en todo su dominio que es R.

Por tanto en los puntos donde alcance sus extremos se cumple que su primera derivada se anula '( ) 0f x y en los puntos de

inflexión se cumple que su segunda derivada también se anula ''( ) 0f x

Como 2'( ) 3 2f x x ax b y f(x) tiene un mínimo en x = 3 2'(3) 0 3.3 2 .3 0 27 6 0f a b a b

Como ''( ) 6 2f x x a y f(x) tiene un PI en (0, 2) ''(0) 0 6.0 2 0 0f a a

Como a = 0 y 27 + 6a + b = 0 27b

Nos falta obtener el valor de c. Para ello razonamos del siguiente modo:

Como el punto (0, 2) es un PI de f(x), dicho punto también es de su gráfica y por tanto se cumple que

3 2(0) 2 0 0.0 27.0 2 2f c c

Page 120: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 84

Ejemplo no resuelto 3 – 13º

Sea f(x) una función polinómica de la que se conoce la gráfica de su función derivada f´(x), representada en la figura. Determina:

a) Extremos relativos e intervalos de monotonía de f(x). (Sol.: Crec. (0, 2) ), Decrec. ( ,0) (2, ) ; Mín.: x = 0; Máx.: x = 2)

b) Puntos de inflexión e intervalos de curvatura de f(x). (Sol.: P.I.: x = 1, Conv. ( ,1) , Conc. (1, ) ;

los intervalos de curvatura de f(x) coinciden con los de monotonía de f´(x))

Ejercicios 3 – 6º a 29º

6º.- Estudia monotonía, extremos relativos, curvatura y puntos de inflexión de las siguientes funciones:

3 2

3

2 3) ( ) 3 9 22 ; ) ( )

1

2) ( ) 3 4 ; ) ( )

1

xa f x x x x b f x

x

xc f x x x d f x

x

7º.- Estudiar el tipo de concavidad y la existencia o no de puntos de inflexión en las siguientes funciones:

2) ( )

2

xa f x

x

(Sol.: conv.: ( 6,0) ( 6, ) ; cónc: ( , 6) (0, 6) ;P.I.: x x x6; 0; 6 )

) ( ) lnb f x x x (Sol.: convexa: (0, ) ; P.I.: no tiene)

) ( )ln

xc f x

x (Sol.: convexa: e 2(1, ) ; cóncava: e 2(0, 1) ( , ) ; P.I.: e

e2

2( , )2

)

) ( ) xd f x x e (Sol.: convexa: ( 2, ) ; cóncava: ( , 2) P.I.: e 2( 2, 2 ) )

8º.- Se sabe que la función :f R R viene definida por la expresión

3 2( )f x ax bx cx d , que su gráfica pasa por el punto (0, 4), que tiene un PI en

(1, 2) y que la recta tangente a la gráfica de la función en el punto de abscisa x = 0 es

horizontal. Calcula a, b, c y d. (Sol : a = 1, b = - 3, c = 0 y d = 4)

9º.- Sea f la función : 0,f R definida por la expresión 2( ) ln( )f x x x .

a) Determina los intervalos de crecimiento y de decrecimiento de f y sus

extremos relativos (puntos dónde se obtienen y valores que se alcanzan)

b) Calcula la ecuación de la recta tangente a la gráfica de f en el punto de

abscisa x e

Page 121: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 85

Sol : a) En 1

(0, )e

decrece y en 1

( , )e

crece. Tiene un mínimo en 1 1

( , )2ee

.b) 1 3

2 22 2

y e e x e y ex e

10º.- La figura muestra la gráfica de la función derivada f ´(x) de la función f(x). Determina, a partir de la gráfica, los máximos y mínimos relativos y los puntos de inflexión de f(x), y haz su representación aproximada. (Sol.: Mín.: x = 1; Máx.: x = 10; P.I.: x = 2, x = 4, x = 7)

11º.- Sea f la función :f R R definida por la expresión ( ) 1 1 2f x x x x

.

a) Halla las ecuaciones de la recta tangente y normal a la gráfica de f en el

punto de abscisa x = 1.

b) Determina los intervalos de concavidad y convexidad de f. ¿Tiene puntos

de inflexión ?.

Sol : a) 1 1

2 22 2

y x y x b) En 2

( , )3

cóncava y en 2

( , )3

convexa. Tiene un PI en 2 20

( , )3 27

12º.- De la función : 0,f R definida por

2

( )ax b

f xx

.se sabe que la recta

tangente a su gráfica en el punto de abscisa x = 1 viene dada por y = - 2.

a) Calcula a y b.

b) Determina los intervalos de crecimiento y decrecimiento y sus extremos

relativos. Sol : a) a = b = -1 b) Crece en el intervalo (0,1) y decrece en el intervalo (1, ) . Tiene un máximo en (1, 2)

13º.- Estudia la derivabilidad de la función : 0,f R definida por

23 0 1( ) 1

14

x si xf x x

si xx

.y calcula su derivada

Sol :

2

2

0 13'( )

1 11

4

xsi x

xf xsi x

x

14º.- Dada la función

2 2 1 1( )

1 1

x x si xf x

x si x

a) Halla su función derivada. (Sol.: no en x = 1)

b) ¿Tiene f(x) algún punto en el que f´(x) = 0 ? (Sol.: x = - 1)

Page 122: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 86

c) Estudia el crecimiento y decrecimiento de f(x). (Sol.: decrece: ( , 1) ; crece: ( 1, ) )

d) Escribe la ecuación de la recta tangente a f(x) en x = 0.

15º.- Dada la función f(x), estudiar la monotonía de f(x) y calcular la recta tangente a la gráfica de f(x) en el punto de abscisa x = 2.

2 1( ) 2

1

x si xf x

si xx

(Sol.: )

16º.- La función 3 2( ) 4f x x ax x b corta al eje de abscisas en x = 3 y tiene

un punto de inflexión en x = 2/3. Hallar a y b. (Sol.: a = 2; b = - 21)

17º.- Hallar a y b para que la función 2( ) lnf x a x bx x tenga extremos en los

puntos x = 1 y en x = 2. Para esos valores de a y b, ¿qué tipo de extremos tiene la función en x = 1 y en x = 2? (Sol.: )

18º.- Dada la función 3 2( )f x ax bx cx d , halla los coeficientes a, b, c y d

para que se cumplan las siguientes condiciones: la gráfica de la función tiene un punto de inflexión en (-1, 1), siendo la tangente en este punto paralela a la recta

4 5x y y, además, pasa por el punto (0, 1). (Sol.: a = 4/5, b = -12/5, c = -16/5, d = 1)

19º.- Una función polinómica de tercer grado verifica que su gráfica pasa por el punto (-1, 0) y tiene tangente paralela al eje OX en el punto (0, 4). Sabemos también que el coeficiente de tercer grado de la función es 2. Determina la función. (Sol.: f(x)=2x

3–2x

2 + 4)

20º.- 2003 2-B-1 2003 2-A-1 2003 5-A-1

21º.- 2004 2-B-1 2004 3-B-1 2004 6-A-2

22º.- 2004 6-B-1 2005 1-A-1 2005 -1-A-2a)

23º.- 2005 5-A-2 2005 6-B-1 2006 1-A-1

24º.- 2006 2-A-1 2006 6-A-1 2007 1-A-1

25º.- 2007 2-B-1 2007 4-B-1 2007 5-A-1

26º.- 2007 5-B-1 2008 4-A-1 2008 4-B-1

Page 123: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 87

27º.- 2008 5-A-1 2008 6-A-1 2009 1-A-1

28º.- 2009 4-A-1 2010 5-B-1 2010 6-A-1

29º.- 2011 3-B-1 2011 4-B-1 2011 5-A-1

5ª.- Estudio y representación de funciones

Para hacer un estudio completo de una función y representarla gráficamente

conviene ser sistemático a la hora de obtener la información sobre ella, y es necesario

interpretar gráficamente los resultados que se van obteniendo.

No siempre son necesarios todos los cálculos, pero un posible esquema para

realizar el estudio de una función es el siguiente:

1. Dominio y continuidad

Calcular el conjunto de números reales que puede tomar x , para los cuales está

definida la función: | ( )Dom f x f x

Hacer también un estudio de posibles discontinuidades.

2. Simetría

Simetría par ( ) ( )f x f x

Simetría impar ( ) ( )f x f x

Cuando se da alguna de estas dos simetrías es fácil intuir como es la función a la

izquierda del origen de coordenadas si se conoce como es a la derecha, y viceversa-

3. Puntos de corte con los ejes de coordenadas

a) Puntos de corte con el eje X (abscisas)

Son las soluciones del sistema:

( )0

y f xy

( ) 0f x

b) Puntos de corte con el eje Y (ordenadas)

Son las soluciones del sistema:

( )(0)

0y f x

y fx

Page 124: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 88

4. Signo de la función

Para determinar dónde la función es positiva y dónde es negativa, señalaremos en

la recta real las abscisas de los puntos de corte con el eje OX y también los puntos de

discontinuidad. De este modo la recta real queda dividida en intervalos. A continuación

estudiamos el signo de la función en ellos tomando un valor cualquiera de x en cada uno

de los intervalos, hallamos su imagen y así sabremos el signo de la función.

Esta propiedad permite situar a la gráfica de la función por encima o por debajo del

eje OX.

5. Asíntotas. Ramas infinitas

Estudiamos la existencia de A.V., de A.H. y de A.O y, en caso de que las haya

averiguamos sus expresiones.

Es importante destacar que aunque no tenga A.H. si es interesante saber el

comportamiento de la función cuando x tiende a y a , es decir cómo son las ramas

de la función en y a .

6. Monotonía: crecimiento y decrecimiento

Ya hemos indicado en este tema como hacerlo-

7. Extremos relativos: máximos y mínimos relativos

La determinación de los extremos relativos puede salir del estudio del apartado

anterior, es decir de la monotonía.

Si sólo nos pidieran los extremos relativos podríamos seguir el método descrito en la

pregunta correspondiente en este mismo tema.

8. Curvatura: tipo de concavidad

Ya se ha descrito anteriormente.

9.- Puntos de inflexión

Podemos obtenerlos del estudio del apartado anterior o siguiendo el proceso

descrito en la pregunta correspondiente.

10.- Tabla de valores

Puede resultar conveniente construir una tabla de valores en el caso de no haber

obtenido suficientes datos en los apartados anteriores, o bien, si queremos hacer una

representación gráfica más precisa.

Page 125: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 89

6ª.- Estudio de funciones polinómicas

Las funciones polinómicas, 1 0( ) nnf x a x a x a , son continuas y derivables

en todo R, es decir, su dominio es: ( )Dom f x ; por tanto, no tienen asíntotas de ningún

tipo.

Para representar una función polinómica:

1.º Estudiar si tiene o no tiene simetría.

2.º Calcular, si es posible, los puntos de corte con los ejes.

3.º Estudiar el signo de la función.

4.º Hallar sus dos ramas infinitas: lim ( ) , lim ( )

x xf x f x

5.º Estudiar la monotonía de la función y hallar sus extremos.

6.º Estudiar la curvatura de la función y hallar sus puntos de inflexión.

7.º Para obtener mayor precisión en la representación gráfica construir una tabla

de valores.

Veamos la gráfica de algunas funciones polinómicas:

Constantes

Lineales Afines

Parabólicas

Polinómicas de 3er

grado

Page 126: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 90

Para dibujar una parábola, vamos a tener que calcular varios puntos:

Puntos de corte con los ejes

Con el eje OX: y ax bx c20 0

Con el eje OY: x y c Punto c0 0,

Coordenadas del vértice

La abscisa del vértice de la parábola es b

xa0 2

; para calcular la ordenada

sustituimos este valor en la función, ( )2

bf

a .

Ejemplo no resuelto 3 – 14º

Estudia y representa las funciones:

2) ( ) 3 2a f x x x

2) ( ) 6 4b f x x x

Ejercicios 3 – 30º a 32º

30º.- Estudia y representa las funciones:

2) ( ) 4a f x x

2) ( ) 5 6b f x x x

31º.- Estudia y representa las funciones siguientes:

3 2) ( ) 6 9 5a f x x x x (Sol.: M: (1, 9) ; m: (3, 5) ; P.I.: (2, 7) )

3) ( ) 3b f x x x (Sol.: M: ( 1, 2) ; m: (1, 2) ; P.I.: (0, 0) )

y x x 3 23 4

Page 127: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 91

3) ( ) ( 2) 3c f x x (Sol.: no M; no m; P.I.: (2, 3) )

3 2) ( ) 6d f x x x (Sol.: M: (0, 0) ; m: ( 4, 32) ; P.I.: ( 2, 16) )

32º.- Estudia y representa las funciones:

3) ( ) 3 2a f x x x (Sol.: M: ( 1, 4) ; m: (1, 0) ; P.I.: (0, 2) )

3 2) ( ) 3 24 3b f x x x x (Sol.: M: ( 4, 83) ; m: (2, 25) ; P.I.: ( 1, 29) )

3 2) ( ) 2 21 60 32c f x x x x (Sol.: M: ( 4, 83) ; m: (2, 25) ; P.I.: ( 1, 29) )

7ª.- Estudio de funciones racionales

Una función racional es aquella que puede escribirse como cociente de polinomios,

( )( )

( )

P xf x

Q x , donde P y Q son polinomios.

El dominio es el conjunto de los números reales, excluidos los números para los

que se anule el denominador (ceros o raíces):

( ) | ( ) 0Dom f x x Q x

valores que anulan el denominadorDom f ( x )

Las funciones racionales son continuas y derivables en su dominio de definición.

Para representar una función racional:

1.º Calcular el dominio.

2.º Simetría.

3.º Calcular, si es posible, los puntos de corte con los ejes.

4.º Signo de la función.

5.º Hallar las asíntotas verticales y horizontales (existe A.H. cuando el grado

del numerador es menor o igual que el grado del denominador, en cuyo caso,

es la misma tanto en como en ).

6.º Estudiar la monotonía de la función y hallar sus extremos.

7.º Estudiar la curvatura de la función y hallar sus puntos de inflexión.

8.º Para obtener mayor precisión en la representación gráfica construir una tabla

de valores.

Page 128: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 92

Las gráficas de las funciones racionales pueden ser:

Funciones de proporcionalidad inversa. Son funciones racionales cuyo

numerador es una constante, k

f xx

( ) . Las gráficas de estas funciones son

hipérbolas equiláteras.

Ejemplo no resuelto 3 – 15º

Estudia y representa las funciones siguientes:

2

) ( )1

xa f x

x

2

2) ( )

1

xb f x

x

Page 129: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 93

2 3

2

4 2) ( )

x xc f x

x

1) ( )

3d f x

x

Ejercicio 3 – 33º

Estudia y representa las funciones siguientes:

xa f x

x

3

2) ( )

1

x xb g x

x

2 2 8) ( )

Ejercicio 3 – 34º

Estudia y representa las funciones siguientes:

xa f x

x

2

2

9) ( )

4

x xb g x

x

3

2

2) ( )

1

8ª.- Estudio de funciones irracionales

a) Irracionales: ( ) ( )nf x g x

Si n es impar, el dominio de f(x) coincide con el dominio de g(x):

( ) ( )Dom f x Dom g x

Si n es par, el dominio de f(x) es el conjunto de los números reales tales que

( ) 0g x :

0( ) | ( )Dom f x x g x

Las funciones irracionales son continuas y derivables en su dominio de definición.

Para representar una función irracional:

1º. Calcular el dominio.

2º. Simetría.

3º. Calcular, si es posible, los puntos de corte con los ejes.

Page 130: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 94

4º. Signo de la función.

5º. Hallar las asíntotas verticales y horizontales. Cuidado con las ramas en y

en , ya que alguna puede no existir.

6º. Estudiar la monotonía de la función y hallar sus extremos.

7º. Estudiar la curvatura de la función y hallar sus puntos de inflexión.

8º. Para obtener mayor precisión en la representación gráfica construir una tabla de

valores.

Cuando g(x) es un polinomio de primer grado su representación gráfica es una parábola con eje de simetría el eje de abscisas.

Ejemplo no resuelto 3 16º

Estudia y representa las funciones siguientes:

) ( )a f x x

) ( ) 3 6b f x x

2) ( ) 2c f x x x

Ejercicio 3 – 34º

Estudia y representa las funciones siguientes:

a f x x x2) ( ) 2

b f x x 2) ( ) 9

9ª.- Estudio de funciones exponenciales

Exponenciales: ( )( ) g xf x a

El dominio de estas funciones, con a > 0 y a ≠ 1, coincide con el dominio de g(x):

( ) ( )Dom f x Dom g x

Page 131: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 95

Para su representación gráfica se siguen todos los pasos detallados en la

pregunta nº 5.

La representación gráfica de la función ( ) xf x a será:

Ejemplo 3 - 17º

Haz la representación gráfica de xf x xe( )

Ejercicio 3 – 34º

Representa a la función: xe

f xx

( )

Ejercicio 3 – 35º

Estudia y representa las funciones siguientes:

xe

a f xx 2

) ( )

xeb f x

x) ( )

Page 132: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 96

10ª.- Estudio de funciones logarítmicas

Logarítmicas: ( ) log ( )af x g x

El dominio de estas funciones, con a > 0 y a ≠ 1, es el subconjunto de los

números reales tales que hacen g(x) positivo:

0( ) | ( )Dom f x x R g x

Recuerda que no se pueden calcular logaritmos de números negativos ni

tampoco está definido el logaritmo de 0.

Para representarla gráficamente seguimos el esquema general.

La representación gráfica de la función ( ) logaf x x será:

NOTA: La primera gráfica corresponde, por tanto, a log(x) y a ln(x).

Ejemplo 3 – 18º

Representar las funciones: x

a f x x x b f xx

) ( ) ln ) ( )ln

(Sol.:

Ejercicio 3 – 36º

Representa las funciones:

2) ( ) ln( 1)a f x x ) ( )ln( )

xb f x

x

Ejercicio 3 – 37º

Representa gráficamente la función:

2) ( ) ln(4 )a f x x

2 2) ( )

x

x xb f x

e

Page 133: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 97

11ª.- Estudio de funciones definidas a trozos

En este tipo de funciones la expresión analítica depende de los tramos del dominio

en los que se encuentre la variable independiente. Habrá que hacer el estudio de cada una

de las funciones y adaptarlo a su dominio de definición.

Debemos tener especial cuidado en los puntos de ruptura. Estudiaremos la

continuidad y la derivabilidad en dichos puntos. Puede ocurrir que la función sea continua y

no derivable en un punto de ruptura y que tenga un máximo o un mínimo relativo en dicho

punto. Por ejemplo, ( )f x x tiene un mínimo en x = 0 y, sin embargo, (0)f no está

definida.

Ejemplo no resuelto 3 – 19º

Estudia y representa las funciones:

1 0

) ( ) 0 21 2

si xx

a f x x si xsi x

2

2 2 2) ( )

2

x si xb f x

x si x

Ejercicio 3 – 38º

Estudia y representa las funciones:

0) ( )

0

xe si xa f x

x si x

2 9 3) ( )

3 3

x si xb f x

x si x

Page 134: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 98

12ª.- Estudio de funciones con valor absoluto

Si la función es de la forma: ( ) ( )f x g x podemos representar a la función

g(x) y pasar arriba todo el tramo de la gráfica que esté por debajo del eje de

abscisas.

En cualquier otro caso convertimos a la función f(x) en una función a trozos o

por ramas.

Ejemplo 3 – 20º

Estudia y representa las funciones:

2) ( ) 3a f x x

) ( )b f x x x

Ejercicio 3 – 39º

Estudia y representa las funciones:

3

2) ( )

1

xa f x

x

1) ( )

1b f x

x

) ( ) 2c f x x x

) ( ) 2d f x x x

Ejercicios 3 - 40º a 43º

40º.- 2003 4-B-2 2004 1-A-1 2005 1-B-1

41º.- 2005 2-A-1 2005 4-A-1 2005 6-A-2

42º.- 2006 3-B-1 2006 4-B-1 2009 3-B-1

43º.- 2009 6-A-1 2010 4-B-1

Page 135: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 99

13ª.- Optimización de funciones

A lo largo de este tema hemos tratado una de las aplicaciones más usuales de la

derivada, la representación gráfica de curvas, en esta pregunta veremos otra aplicación, la

optimización.

Respecto a la optimización, todos sabemos que uno de los retos permanentes de la

Humanidad es el máximo aprovechamiento de los recursos: alimentos, materias primas,

espacio y tiempos disponibles, etc.

A las empresas dedicadas a la fabricación de recipientes les interesa conocer las

dimensiones de los envases que, manteniendo la misma capacidad, necesitan menos

material para su construcción.

Los avances técnicos y los modelos matemáticos son algunas de las respuestas que

el ser humano ha sabido dar al problema.

Hallar máximos y mínimos de funciones es un problema que se plantea

frecuentemente, no sólo en matemáticas, sino también en numerosos ámbitos: social,

económico, tecnológico... Así, es frecuente oír expresiones como mínimo consumo,

máximo rendimiento… Son problemas de optimización de funciones.

Se trata de encontrar la solución óptima, es decir, la que da mayor beneficio o la que

cuesta menos. Para ello utilizaremos el cálculo de derivadas que, como sabemos, da las

condiciones de existencia de máximos y mínimos.

El proceso general a seguir para resolver este tipo de problemas es:

1. Hacer un esquema o dibujo de la situación, siempre que sea posible

2. Hallar la expresión algebraica de la función que se debe optimizar (si es que no

nos la han dado, que será lo más habitual).

3. Si la función depende de más de una variable, hay que buscar una relación

entre ellas; esta relación siempre es una igualdad. Expresaremos una variable

en términos de la otra y la sustituiremos en la función a optimizar, con lo que

obtendremos una función de una sola variable.

4. Se halla la derivada primera y se calculan los valores que la anulan: ( ) 0f x .

Entre estos valores se hallan los máximos y mínimos de la función.

5. Comprobar que los resultados obtenidos tienen sentido y son válidos en el

contexto del problema y se da la solución al enunciado..

Page 136: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 100

Ejemplos no resueltos 3 – 21º a 28º

21º.- Una discoteca abre a las 10 de la noche y cierra cuando se han marchado todos sus clientes. La expresión que representa el número de clientes en función del

número de horas que lleva abierta, t, es 2( ) 80 10N t t t .

a) ¿A qué hora el número de clientes es máximo? ¿Cuántos clientes hay en ese momento? (Sol.: 2 de la mañana; 160 personas)

b) ¿A qué hora cerrará la discoteca? (Sol.: 6 de la mañana)

22º.- Halla dos números positivos cuya suma es 30 y el producto de uno por el cuadrado del otro es máximo. Razona la respuesta. (Sol: f x x x Sol y2( ) (30 ) . 20 10 )

23º.- Una hoja de papel debe tener 18 cm2 de texto impreso. Los márgenes superior e inferior han de ser de 2 cm de altura y los laterales de 1 cm de anchura. Halla las dimensiones de la hoja para que el coste del papel sea mínimo.

(Sol: A x y x y A x x Solx36

( 2)( 4) ; 18 ( ) 26 4 . 5 10 )

24º.- Se desea construir, al lado de una carretera, una zona de descanso para automovilistas. Tendrá forma rectangular y estará vallada por los tres lados no adyacentes a la carretera. Si su superficie es de 7200 m2, ¿qué dimensiones debe tener para que el coste de la valla sea mínimo?

(Sol:

2 14400

2 ; 7200 ( ) . 120 60 240x

L x y x y L x Sol m m m de vallax

)

25º.- Se ha de construir un gran depósito cilíndrico de 381 m de volumen. La

superficie lateral ha de ser construida con un material que cuesta 30€/ m2, y las dos bases con un material que cuesta 45€/ m2.

¿Qué dimensiones (radio y altura) ha de tener el depósito para que el coste de los materiales necesarios para construirlo sea el mínimo posible?.

¿Cuál será, en este caso, el coste del material?.

SOLUC: Función a optimizar:

cilindrodelradioelrsiendorr

rC 2904860

)(

La base del cilindro debe medir 3 m de radio y la altura debe medir 9 m.

La superficie lateral cuesta 5086,8 € y las dos bases 2543,4 €. Total = 7630,2

26º.- Un fabricante desea diseñar una caja abierta con base cuadrada y que tenga un área total de 108 metros cuadrados de superficie. ¿Qué dimensiones producen la caja de máximo volumen? Dato: La abertura de la caja es uno de los lados cuadrangulares.

SOLUC: Función a optimizar: 3

4

127)( xxxV siendo x la longitud de uno de los lados de la base de la caja.

Se trata de una caja rectangular de base cuadrada de 6 m de lado y 3 m de altura.

Page 137: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 101

27º.- Determina el punto Q de la parábola 2y x que está más próximo al punto P(3,

0). Comprueba que la recta QP es perpendicular a la tangente a la parábola en Q.

SOLUC: Función a optimizar: 96)( 24 xxxxd

Se trata del punto Q = (1,1).

La recta que pasa por QP tiene de ecuación y= - x/2 + 3/2 ; La recta tangente a la parábola en el punto Q tiene de ecuación y = 2x – 1. Por tanto ambas rectas son perpendiculares puesto que sus pendientes cumplen la condición de perpendicularidad: m.m’ = - 1

28º.- Determina un punto de la curva

2

. xy x e en la que la pendiente de la recta

tangente sea máxima.

SOLUC: Función a optimizar: )21()( 22

xexm x

Ejercicios 3 – 44º a 71º

44º.- Expresar el número 60 como suma de tres enteros positivos de forma que el

segundo sea triple del primero y su producto sea máximo. Determinar el valor de dicho producto.

SOLUC: Función a optimizar:

32 12180)( xxxP Son los números: 10, 30 Y 20.

46º.- Un número más el cuadrado de otro número suman 48. Hallar ambos números para que su producto sea máximo.

SOLUC: Función a optimizar:

El primero es 32 y el segundo es 4.

45º.- Un solar rectangular de 11250 m2 se divide en tres zonas rectangulares iguales, como muestra la figura, para venderlo. Se valla el borde del campo y la separación de las zonas. Calcula las dimensiones del solar para que la longitud de la valla utilizada sea mínima.

SOLUC: Función a optimizar:

gularreczonacadadeanchoelxsiendox

xxl tan15000

6)(

El solar debe medir 150 m x 75 m.

Page 138: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 102

47º.- Determina las dimensiones de un rectángulo de área máxima que puede

inscribirse en el semicírculo determinado por 2 2 25, 0x y y .

SOLUC: Función a optimizar rectángulodelbaselademitadlaxsiendoxxxA 2252)(

Sería un rectángulo cuya base mide 25 u y su altura mide 2

25 u

48º.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa determina el de área máxima.

SOLUC: Función a optimizar: 2252

1)( xxxA

Se trata de un triángulo rectángulo isósceles cuyos catetos miden 2

25 u cada uno

49º.- Con una cartulina de 8X5 metros se desea construir una caja sin tapa, de volumen máximo. Hallar las dimensiones de dicha caja.

SOLUC: Función a optimizar: xxxxV 40264)( 23 siendo x la altura de la caja

La caja debe tener 6 m de largo, 3 m de ancho y 1 m de alto.

50º.- Un rectángulo esta acotado por los ejes y por la gráfica de

6

2

xy

¿Qué longitud debe tener el rectángulo para que su área sea máxima?

SOLUC: Función a optimizar: 2

3)(2x

xxA

Se trata de un rectángulo cuya base mide 3 u y cuya altura mide 3/2 u

51º.- Dos postes de 12 y 28 metros de altura, distan 30 metros entre si. Hay que

conectarlos mediante un cable que este atado en algún punto del suelo entre los postes. ¿En que punto ha de amarrarse al suelo con el fin de utilizar la menor longitud de cable posible?

SOLUC: Función a optimizar: 168460144)( 22 xxxxl siendo x la distancia del poste menor al

punto del suelo donde se ata la cuerda

Se debe de atar a 9 m del poste menor y por tanto a 21 m del mayor.

Page 139: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 103

52º.- Se pide calcular el volumen máximo de un paquete rectangular enviado por correo, que posee una base cuadrada y cuya suma de anchura + altura + longitud sea 108.

SOLUC: Función a optimizar: 32 2108)( xxxV siendo x la longitud de uno de los lados de la base del

paquete rectangular de base cuadrada.

El volumen es de 46656 u3 (*observa que el paquete que ha salido es cúbico).

53º.- Una página rectangular ha de contener 24 dm2 de texto, con márgenes superior e inferior de 1,5 dm y laterales de 1 dm , ¿Qué dimensiones de la página requieren la mínima cantidad de papel?

SOLUC: Función a optimizar: xx

xxA 3

2

24)(

siendo x el ancho de la página.

La página debe medir 6 dm de ancho y 9 dm de largo.

54º.- Con 4 metros de alambre se desean construir una circunferencia y un cuadrado. ¿Cuánto alambre hay que emplear en cada figura para lograr que entre ambas encierren el área mínima posible?

SOLUC: Función a optimizar: 22484

)( xxx

xA

siendo x la longitud de uno de los lados del cuadrado.

La circunferencia debe tener 4

2 m de radio, y el cuadrado debe tener

4

4 m de lado.

Por tanto para la circunferencia habría que emplear m8,14

22

y para el cuadrado m2,2

4

44

de

alambre

55º.- Dado un cilindro de volumen 4 m3, determinar sus dimensiones para que su área total sea mínima.

SOLUC: Función a optimizar: cilindrodelradioelrsiendor

rrA8

2)( 2

Radio del cilindro udoracioalizau

3 2

32

)(2

Altura del cilindro udoracioalizau 3 23

2

22

)(4

4

Page 140: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 104

56º.- Inscribir en una esfera de radio 1 m un cilindro circular que tenga:

a) Volumen máximo

b) Área lateral máxima.

En ambos casos determinar sus dimensiones, radio de la base y altura.

SOLUC: a) Función a optimizar: 4

)(3h

hhV

siendo h la altura del cilindro

Radio del cilindro 3

6

3

2 m Altura del cilindro

3

32

3

2 m

b) Función a optimizar: 22

4.4

12)( hhhh

hS

siendo h la altura del cilindro

Radio del cilindro 2

2 m Altura del cilindro 2 m

SOLUC: Función a optimizar: xxx

xxP24

4)(

siendo x la longitud de la base de la puerta

Base de la puerta

4

44

4

4 m Altura del rectángulo

4

42

4

2 m

58º.- Hallar las dimensiones del rectángulo de área máxima que tiene un lado sobre

el eje X y está inscrito en el triangulo determinado por las rectas 0, , 4 2y y x y x .

59º.- Entre todos los rectángulos de perímetro 10 cm., encontrar el que tiene área máxima.

60º.- De entre todas las rectas del plano que pasan por el punto (1,2), encuentra aquella que forma con las partes positivas de los ejes coordenadas un triángulo de área mínima. Halla el área de dicho triángulo.

57º.- Determina las dimensiones de una puerta normanda (formada por un rectángulo y un semicírculo como en la figura), sabiendo que es la que tiene un perímetro mínimo entre las que tienen un área igual a 2 m2.

Page 141: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 105

61º.- Se tiene un alambre de longitud L (12 cm.) y se desea dividirlo en dos trozos para formar con cada uno de ellos un triángulo equilátero. Hallar la longitud de cada trozo para que la suma de las áreas de los dos triángulos sea mínima.

62º.- De una lámina cuadrada de cartón de lado L se debe cortar de en cada esquina un cuadrado, de modo que con el cartón resultante, doblando convenientemente, se pueda construir una caja sin tapa. Determinar la longitud del lado del cuadrado de las esquinas para que la capacidad de la caja sea máxima.

63º.- Una ventana está formada por un rectángulo rematado con un semicírculo en la parte superior. Si el marco ha de tener una longitud p, determinar sus dimensiones para que la superficie de la ventana sea máxima.

64º.- De entre todos los rectángulos de perímetro 8 cm., determina las dimensiones del que tiene diagonal de menor longitud.

65º.- Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando un cono. ¿Qué valor debe darse a la base para que el volumen del cono sea máximo?.

66º.- Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo sea un mínimo.

67º.- Un rectángulo esta acotado por los ejes y por la gráfica de

6

2

xy

¿Qué longitud debe tener el rectángulo para que su área sea máxima?

68º.- Hallar la base x y la altura y de una cartulina rectangular de perímetro 60 cm.

que, al dar una vuelta completa alrededor de un lado vertical, genere un cilindro de volumen máximo.

Page 142: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 106

69º.- Un fabricante desea diseñar una caja abierta con base cuadrada y que tenga un área total de 108 metros cuadrados de superficie. ¿Qué dimensiones producen la caja de máximo volumen? Dato: La abertura de la caja es uno de los lados cuadrangulares.

70º.- Una página rectangular ha de contener 24 dm2 de texto, con márgenes superior e inferior de 1.5 dm y laterales de 1 dm pulgada, ¿Qué dimensiones de la página requieren la mínima cantidad de papel?

71º.- De todas las rectas del plano que pasan por el punto (1;-3) determina la que forma un triángulo de área máxima con la parte positiva del eje de abscisas y la negativa del eje de ordenadas.

Page 143: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 107

TEMA 4: INTEGRAL INDEFINIDA

1ª.- Primitiva de una función.

2ª.- Integrales inmediatas.

3ª.- Integración por cambio de variable o sustitución.

4ª.- Integración por partes.

5ª.- Integración de funciones racionales.

6ª.- Descomposición de funciones racionales en suma de

fracciones simples.

1ª.- Primitiva de una función

Se dice que la Función F(x) es una primitiva de la función f(x) si se cumple que

'( ) ( )F x f x , es decir, si f(x) es la derivada de F(x). Esto se expresa del siguiente

modo:

( ) ( ) '( ) ( )f x dx F x F x f x

Ejemplo resuelto 4 – 1º

a) Una primitiva de f(x) = 2x, es la función F(x) = x2 puesto que F’(x) =(x2)’ = 2x = f(x). También lo es F(x) = x2 + 2 y F(x) = x2 - 7 y F(x) = x2 + 5, etc, etc. Por eso escribimos:

22 ( .)xdx x C C cte

b) Una primitiva de f(x) = 2x +3, es la función F(x) = x2 + 3x puesto que F’(x) =(x2

+3x)’ = 2x + 2 = f(x). También lo es F(x) = x2 + 3x +6 y F(x) = x2 + 3x – 1, etc. Por eso escribimos:

2(2 3) 3x dx x x C

c) Una primitiva de f(x) = 7, es la función F(x) = 7x puesto que F’(x) =(7x)’ = 7 =

f(x). También lo es 7x -10 y 7x +2, etc. Por eso escribimos:

Page 144: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 108

7 7dx x C

d) Una primitiva de f(x) = x, es la función 21( )

2F x x puesto que

'

21'( ) ( )

2F x x x f x . También lo es si le sumamos cualquier

constante C, y por eso escribimos:

21

2xdx x C

IMPORTANTE: Cada función f(x) tiene infinitas primitivas. En efecto: si F(x) es una

primitiva de f(x), también F(x) + C (C una constante) será primitiva de f(x) Por esta

razón no hablamos de la primitiva de f(x) , sino del conjunto de todas sus primitivas

y escribimos:

( ) ( )f x dx F x C

Y a F(x) + C que representa al conjunto de todas las primitivas de f(x) se le

denomina integral indefinida de f(x) .

Si en el enunciado se impone alguna condición a la primitiva, entonces podemos concretar el valor de la constante C.

A la expresión ( ) ( )f x dx F x C se le llama también integral indefinida

de f(x) o simplemente integral de f(x) Por eso, al cálculo de primitivas se le llama también cálculo de integrales o integración.

NOTA: Observa que la integración es el proceso inverso a la derivación.

Ejemplo resuelto 4 – 2º

De todas las primitivas de la función f(x) = 3x2 – x + 2, halla la que pasa por el punto (-1, 2)

2 3 21(3 2) 2

2x x dx x x x C

Ahora imponemos que la primitiva tiene que pasar por el punto indicado y, por tanto:

Page 145: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 109

3 21 1 11( 1) ( 1) 2( 1) 2 1 2 2

2 2 2C C C

La primitiva pedida es:

3 21 11( ) 2

2 2F x x x x

Ejercicio 4 – 1º

Realiza las siguientes integrales:

(2 5 2)) ) ) xdx x dx e dxa b c

1 1

cos( )21

) ) )x dx dx dxx x

d e f

Ejercicio 4 – 2º

a) De todas las primitivas de la función f(x) = 3x2 -1, halla la que pasa por el punto (2,0)

b) De todas las primitivas de la función f(x) = ex, halla la que pasa por el punto (0,1)

c) De todas las primitivas de la función f(x) = 1/x, halla la que pasa por el punto (1,3)

2ª.- Integrales inmediatas

Son aquellas integrales que se pueden realizar de forma directa o con alguna sencilla modificación.

En la tabla de la siguiente hoja tienes las reglas de integración que te permitirán realizar las integrales inmediatas. Observa que no son más que las reglas de derivación vistas en sentido inverso.

Cuando una integral no se pueda adaptar de forma sencilla para poder aplicar las reglas de integración de la tabla, diremos que no es una integral inmediata. Para hacer frente a este tipo de integrales existen diversos mecanismos que se irán dando en las próximas preguntas.

Page 146: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 110

REGLAS DE INTEGRACIÓN PARA CALCULAR LA PRIMITIVADE UNA FUNCIÓN

Función Forma simple Forma compuesta

Constante kdx kx C

Potencial (n ≠ -1) 11

( 1)1

n nx dx x C nn

1

( )'( ) ( ) ( 1)

1

n

n f xf x f x dx C n

n

Logarítmica o Potencial (n = -1)

1 1lnx dx dx x C

x

'( )

ln ( )( )

f xdx f x k

f x

Irracional Se tratan como potenciales

Exponencial ln

xx a

a dx Ca

x xe dx e C

( )( )'( )

ln

f xf x a

f x a dx Ca

( ) ( )'( ) f x f xf x e dx e C

Seno cossen x dx x C '( ) ) cos )f x sen f(x dx f(x C

Coseno cos x dx sen x C '( )cos ) )f x f(x dx sen f(x C

Tangente

2 2

2

(1 ) sec

1

cos

tg x dx x dx

dx tg x C x

2 2

2

'( )(1 )) '( )sec )

'( ))

cos )

f x tg f(x dx f x f(x dx

f x dx tg f(x C

f(x

Cotangente

2 2

2

(1 ) sec

1cot

ctg x dx co x dx

dx g x Csen x

2 2

2

'( )(1 )) '( ) sec )

'( ))

)

f x cotg f(x dx f x co f(x dx

f x dx cotg f(x C

sen f(x

Arco seno 2

1

1dx arcsen x C

x

2

'( )( )

1 ( )

f xdx arcsen f x C

f x

Arco coseno 2

1arccos

1dx x C

x

2

'( )arccos ( )

1 ( )

f xdx f x C

f x

Arco tangente 2

1

1dx arctg x C

x

2 2

1 1 xdx arctg C

a x a a

2

'( )( )

1 ( )

f xdx arctg f x C

f x

22

'( ) 1 ( )

( )

f x f xdx arctg C

a aa f x

Producto de un nº por una función

dxxfkdxxfk )(.)(.

La integral del producto de una constante por una función, es igual a la constante por la integral de la función.

Suma o resta de funciones

dxxgdxxfdxxgxf )()())()((

La integral de la suma / resta de dos funciones, es igual a la suma / resta de la integral de cada una de ellas.

Page 147: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 111

Ejemplo no resuelto 4 – 3º

POTENCIAL SIMPLE: Calcula las siguientes integrales indefinidas:

12 72

) ) )x dx x dx dxx

a b c

.2

) ) ) xxdx x xdx dx

xd e f

5 623

23) ) )x

x dx dx dxx

g h i

2 3 235 (2 3 )

32) ) )x

x dx dx x x x dxx

j k l

3 5

(2 )2 3

) xx dx

x xm

Ejemplo no resuelto 4 – 4º

POTENCIAL COMPUESTA: Calcula las siguientes integrales indefinidas:

32 3( 1) (2 5)

2(5 )) ) )x dx x dx dx

xa b c

2

1 ( 3 4)35

) ) )x dx x dx dxx

d e f

2 2 2 3 5

2 ( 1) (3 1)( )) )x x dx x x x dxg h

2 2 2 3

cos cos2 2( 3 )

) ) ) xsen x xdx xsenxdx dx

x xi j k

Ejemplo no resuelto 4 – 5º

LOGARÍTMICA: Calcula las siguientes integrales indefinidas:

4 1 3

2 8) ) )dx dx dx

x x xa b c

24

2 2 31 1 8) ) )x x x

dx dx dxx x x

d e f

) )tgxdx ctgxdxg h

Regla de la cadena o función

compuesta

' ( ) '( ) ( )g f x f x dx g f x C Esta es la regla que se ha aplicado en todas las formas compuestas.

Page 148: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 112

Ejemplo no resuelto 4 – 6º

EXPONENCIAL: Calcula las siguientes integrales indefinidas:

2 2 3 1

2) ) )x x xe dx e dx dxa b c

ln2cos

cos) ) )xsenx x

e xdx e senxdx dxx

d e f

Ejemplo no resuelto 4 – 7º

TRIGONOMÉTRICAS: Calcula las siguientes integrales indefinidas:

2

(3 2 cos ) 3 sec2

) ) )senxsenx x dx dx xdxa b c

7 2 2 2 3

(5 5 ) 3 sec ( 9)2cos

) ) )dx tg x dx x x dxx

d e f

2 2

2 cos(1 ) (2 1) cos( )) ) )xsenx dx x dx x x x dxg h i

2 3

cos cos( 9) cos(5 )) ) )x xe e dx x x dx x dxj k l

2 2 2

3 c sc (5 5 cot )) ) )tg xdx o xdx g x dxm n o

8 2

c sc (2 1)2

) )dx o x dxsen x

p q

Ejemplo no resuelto 4 – 8º

ARCO: Calcula las siguientes integrales indefinidas:

2 2

2 4 21 1 1) ) )

xx edx dx dx

xx x ea b c

1 1 1

2 22 3 3 1 91 (ln )) ) )dx dx dx

x xx xd e f

2cos 1

2 6 21 1 1 3) ) )x x

dx dx dxsen x x x

g h i

1 1 1

2 2 29 2 1) ) )dx dx dx

x x x xj k l

1 1

2 21 4 4 4) )dx dx

x x x xm n

Ejercicio 4 – 3º

x x xx dx dx dx

xxa b c

4 24

2

1 5 3 47) ) )

x x xxdx dx x dx

xd e f

4 23 27 5 3 4

52

) ) )

x x xdx dx x tgx dx

x xg h i

3 33

3

5 5(3 5 )

3 3) ) )

Page 149: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 113

xx dx tgx x dx dx

xj k l 3

(5 cos 3 ) (3 5 cos )2 1

) ) )

x

dx xdx sen xdxx

m n o3 32cos

2 1) ) )

3ª.- Integración por cambio de variable (o sustitución).

Cuando una integral no es inmediata, algunas veces es posible convertirla en

inmediata, haciendo un cambio de variable apropiado.

Este método consiste en cambiar una expresión de la variable x por una nueva

variable t, de forma que la integral en la nueva variable t sea inmediata.

( ) ( )f x dx g t dt

La dificultad de este método está en encontrar el cambio de variable apropiado.

Ejemplo resuelto 4 – 9º

Halla las primitivas de las siguientes funciones:

1

1) dx

x xa

¿La ves como una integral inmediata?

Hagamos el cambio t = ( x -1 )1/2

22

1 112 2 2 2 ( 1)

2 21 ( 1) 1

11 12

dx tdt dt arctgt arctg xx x t t t

x tSi t x t x sustituyendodx tdt

C

1

1 ln) dx

x xb

¿La ves como una integral inmediata?

Hagamos el cambio t = 1 - lnx

Page 150: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 114

1 111 2 22 2

1 1. 12 2

1 ln1 ln 1

2 1 lndt t txdtt dt C t

tx t

t xSi t x sustituyendo

dt dx dx xdtx

C C x C

Ejercicio 4 – 4º

Calcula la integral indefinida de las siguientes funciones mediante el cambio de variable que se indica.

3

21 1 2

2 3(1 ) 3cos 1 1 2) ) )dx dx x

t x t tgx dx t xx x x tgx x

a b c

2

1) x

dx t xx

d ( 1) 1) x xe dx t ee

Soluc: 233

)2 ) (1 )2

a arctg x C b tgx C

2 2 333 (1 2 ) (1 2 ) 2(1 2 ) 1) )2 ln(1 )

8 8 5 2 3 2

x x x x xc C d x x C

)2 1 1x xe e arctg e C

4ª.- Integración por partes.

Este método se utiliza también para integrales que no son inmediatas y se basa en la derivada de un producto de funciones. En efecto a partir de la derivada del producto de dos funciones se obtiene una regla que permite calcular la integral de un producto de dos funciones.

DEMOSTRACIÓN (no es necesaria):

La fórmula de la derivada de un producto de dos funciones u y v es:

( . )' '. . 'u v u v u v

Que escrita en forma diferencial sería:

( . ) . .d u v du v u dv

Integrando los dos miembros:

( . ) . . . . .d u v v du u du u v v du u dv

Page 151: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 115

y despejando obtenemos la expresión de la integración por partes:

. . .u dv u v v du

Hay que elegir u y dv adecuadamente, de forma que la nueva integral que aparece debe de ser más sencilla que la inicial. En caso contrario hay que cambiar de elección.

Ejemplo resuelto 4 – 10º

Halla la integral indefinida de las siguientes funciones:

) xA xe dx : ( 1)xSol e x C

int

.

( 1)

x x

x x x x x

x

u x derivando du dxSi llamamosdv e dx egrando v e

xe dx udv u v vdu xe e dx xe e C

e x C

) lnB xdx : (ln 1)Sol x x C

1ln

int1

ln . ln ln

ln (ln 1)

u x derivando du dxSi llamamos xdv dx egrando v x

xdx udv u v vdu x x x dx x x dxx

x x x x x C

En estos dos ejemplos sólo ha habido que utilizar una vez la integración por partes. Otras veces hay que repetir la integración por partes en la segunda integral que aparece

Ejemplo resuelto 4 - 11º

Halla la integral indefinida de la siguiente función:

2x senxdx

2: cos 2 2cosSol x x xsenx x

Page 152: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 116

2

2 2

2

2int cos

. .( cos ) ( cos ).2

cos 2 cos

derivando du xdxu xSi llamamosegrando v xdv senxdx

x senxdx udv u v vdu x x x xdx

x x x xdx

La integral cosx xdx obtenida es más sencilla que la inicial, pero no es

inmediata. Veamos qué ocurre si a esta nueva integral le aplicamos la integración por partes:

cos int

cos .

( cos ) cos

u x derivando du dxSi llamamosdv xdx egrando v senx

x xdx udv u v vdu xsenx senxdx

xsenx x C xsenx x C

Sustituyendo este último resultado en la integral que obtuvimos en la primera integración por partes queda:

2 2 2

2

cos 2 cos cos 2 cos

cos 2 2cos

x senxdx x x x xdx x x xsenx x C

x x xsenx x C

También puede ocurrir que al cabo de una o dos integraciones sucesivas se obtenga en el segundo miembro una integral que coincida con la de partida. En este caso se agrupa la integral del segundo miembro con la del primero y se despeja.

Ejemplo resuelto 4 – 12º

Halla la integral indefinida de la siguiente función:

cosxe xdx : ( cos )

2

xeSol senx x C

cos int

.

x x

x x x

u e derivando du e dxSi llamamosdv xdx egrando v senx

e cosxdx udv u v vdu e senx e senxdx

Page 153: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 117

La integral xe senxdx obtenida, aunque no es la misma que la inicial, si es

del mismo tipo que la inicial. Veamos qué ocurre si a esta nueva integral le aplicamos la integración por partes:

int cos

. ( cos ) ( cos )

cos cos

x x

x x x

x x

u e derivando du e dxSi llamamosdv senxdx egrando v x

e senxdx udv u v vdu e x x e dx

e x e xdx

Como podemos observar nos ha salido la misma integral del inicio. Sustituyendo este último resultado en la integral que obtuvimos en la primera integración por partes queda:

cos ( cos ) cos

cos cos

x x x x x x

x x x

e xdx e senx e senxdx e senx e x e xdx

e senx e x e xdx

Si agrupamos las dos integrales en el primer miembro y despejamos obtenemos el resultado que nos habían pedido:

cos cos cos

2 cos cos

coscos ( cos )

2 2

x x x x

x x x

x x xx

e xdx e xdx e senx e x

e xdx e senx e x

e senx e x ee xdx senx x C

Ejercicio 4 – 5º

Calcula la integral indefinida de las siguientes funciones mediante integración por partes.

) cos ) )a x xdx b arctgxdx c arcsenxdx

2 3) cos ) ) lnxd x xdx e e senxdx f x xdx

2 2 2) ) cos ) 2 cos(2 )xg x e dx h xdx i x x dx

2 21

: ) cos ) . ln(1 ) ) . 12

Sol a xsenx x C b x arctgx x C c x arcsenx x C

4 4

2) 2 cos 2 ) ( cos ) ) ln2 4 16

xe x xd x senx x x senx C e senx x C f x C

2 21 1) ( 2 2) ) (cos . ) ) (2 ) cos(2 ) (2 )

2 2xg e x x C h x senx x C i x sen x x x sen x C

Page 154: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 118

5ª.- Integración de funciones racionales.

Las funciones racionales son del tipo ( )

( )( )

P xf x

Q x siendo P(x) y Q(x) dos

polinomios. Para integrar este tipo de funciones hemos de seguir las siguientes etapas.

Si el grado del numerador es mayor o igual que el grado del denominador efectuamos la división P(x) : Q(x)

( ) ( )( ) ( )

P x Q xR x C x

y teniendo en cuenta la regla de la división expresamos el dividendo como el producto del divisor por el cociente mas el resto:

( ) ( ). ( ) ( )P x Q x C x R x

y dividiendo los dos lados de la igualdad entre el divisor obtenemos la siguiente expresión para la función racional:

( ) ( )

( )( ) ( )

P x R xC x

Q x Q x

De esta forma la integral de la función racional se reduciría a la suma de dos

integrales: una polinómica (C(x)), que es inmediata, mas otra racional ( )

( )

R xQ x

dónde el

grado del numerador es menor que el del denominador.

( ) ( )

( )( ) ( )

P x R xdx C x dx dx

Q x Q x

Para calcular la segunda integral pasaríamos al punto siguiente.

Page 155: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 119

Si el grado del numerador es menor que el grado del denominador lo primero que debemos tener en cuenta es si es una integral inmediata. Para ello, como regla general, comprobamos si el integrando pertenece a uno de estos tipos:

1 Forma potencial

(n ≠ 1)

1( )'( )

'( ) ( )1( )

n

n

n

f xf xdx f x f x dx

nf x

2 Forma neperiana '( )

ln ( )( )

f xdx f x

f x

3 Forma arco tangente

2

'( )( )

1 ( )

f xdx arctgf x

f x

22

'( ) 1 ( )

( )

f x f xdx arctg

a aa f x

Si no pertenece a ninguno de los tres tipos anteriores, entonces descomponemos a la función racional en suma de fracciones simples (pregunta siguiente).

Ejemplo resuelto 4 – 13º

Halla las siguientes integrales indefinidas:

3 23 5 2

)2

x x xa dx

x 3 2

: 3 8ln| 2|3 2

x xSol x x C

Como el polinomio del numerador es de mayor grado que el del denominador, efectuamos la división y, haciendo uso de la expresión:

( ) ( )

( )( ) ( )

P x R xC x

Q x Q x

podemos expresar a la función racional como:

3 223 5 2 8

32 2

x x xx x

x x

Y por tanto:

3 23 2 823 5 2( 3) 3 8 ln | 2 |

2 3 22

x xx x xdx x x dx dx x x

xxC

Page 156: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 120

2

5)b dx

x

5

:Sol Cx

2 1 12

2

5 55 5 5

2 1 1

x xdx x dx C

xx

2 3

2 1)

( 3)

xc dx

x x 2 2

1:

2( 3)Sol C

x x

2 3 1( 3) 12 1 2 3(2 1)( 3)

2 23 12 3 2( 3)( 3)

x xxdx x x x dx

x xx xC

3

4

1)

4 2

xd dx

x x 41: ln( 4 2)

4Sol x x C

3 3 31 1 41 4( 1) 4 4

ln( 4 2)4 44 4 44 2 4( 4 2) 4 2

x x xdx dx dx x x

x x x x x xC

4

2)

1

xe dx

x2: ( )Sol arctag x C

22 2

( )4 2 21 1 ( )

x xdx dx arctag x

x xC

2

1)

2 1f dx

x x

2 4 1

: ( )7 7

xSol arctag C

1 8 8 8

2 2 2 22 1 16 8 8 16 8 1 7 (4 1) 7

4 1 4 12.42 2. ( )

2 22 2 7 7(4 1) ( 7 )(4 1) ( 7 )

dx dx dx dxx x x x x x x

xdx dx arctag

xxC

Ejercicio 4 – 6º

Calcula la integral indefinida de las siguientes funciones:

dx x x xdx dx dx

x x x xa b c d

23 3 4 3 7 4

3 2 5 3 2 3) ) ) )

3

: )ln | 3| ) ln |2 5| )3 5ln| 3|2

Sol a x C b x C c x x C

23 5 1) ln|2 3|4 4 8

d x x x C

Page 157: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 121

Ejercicio 4 – 7º

Calcula la integral indefinida de las siguientes funciones:

x x x x x xdx dx dx dx

x xx xa b c d

2 2 2

2 2

21 ( 1) 3 5 1 3 5 1

4 2 11 1) ) ) )

6ª.- Descomposición de funciones racionales en suma

de fracciones simples.

Para descomponer a una fracción racional ( )

( )( )

P xf x

Q x (con grado del

numerador menor que el del denominador) en suma de fracciones simples, hemos de hallar las raíces de su denominador. Una vez halladas las raíces del polinomio del denominador nos podemos encontrar con las situaciones siguientes:

Raíces reales simples.

Si el polinomio del denominador tiene sólo raíces reales simples (por ej: x1, x2, x3,…), entonces la descomposición en suma de fracciones simples es la siguiente:

1 2 3

( )...

( )

P x A B CQ x x x x x x x

Como vemos la integral de la función racional se reduciría a una suma de integrales inmediatas de tipo logaritmo neperiano.

Antes de integrar hay que hallar los valores de los números A, B, C… Esto se consigue dándole a x, sucesivamente, los valores de la distintas raíces

Ejemplo resuelto 4 – 14º

Halla la siguiente integral indefinida:

2

2xdx

x x : 2ln| | 3ln| 1|Sol x x C

Es la integral de una función racional con el grado del numerador menor que el del denominador y, como no es inmediata, hallamos las raíces del denominador que son x = 0 y x = -1 y ambas son simples pues: x2 + x = x(x + 1) .

La descomposición en suma de fracciones simples es:

2

2 2

( 1) 1

x x A Bx x x xx x

Para hallar las constantes A y B antes quitamos denominadores

2 ( 1)2 ( 1)

( 1) ( 1) ( 1)

x A x Bxx A x Bx

x x x x x x

Page 158: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 122

Si hacemos x = 0 en la última expresión obtenemos el valor de A:

0 0 2 (0 1) .0 2Si x A B A

Si hacemos x = -1 en la última expresión obtenemos el valor de B:

1 1 2 ( 1 1) .( 1) 3Si x A B B

Por tanto la función racional expresada en suma de fracciones simples es:

2

2 2 2 3

( 1) 1

x xx x x xx x

Y la integral quedaría:

2 2 3

2 ln | | 3 ln | 1 |2 1

xdx dx dx x x

x xx xC

Raíces reales simples y múltiples.

Si tiene raíces reales simples y múltiples: (por ej: x1 (simple), x2 (doble), x3 (simple), …), entonces la descomposición en suma de fracciones simples es la siguiente:

2

1 2 32

( )...

( ) ( )

P x A B C DQ x x x x x x xx x

Como vemos la integral de la función racional se reduciría a una suma de integrales inmediatas de tipo logaritmo neperiano y otras de tipo potencial.

Antes de integrar hay que hallar los valores de los números A, B, C… Los valores de las constantes de las fracciones que no tienen potencias en el monomio del denominador, se obtienen dándole a x, sucesivamente, los valores de las distintas raíces.

Para hallar los valores de las constantes de las fracciones que tienen potencias en el monomio del denominador hay que dar a x un valor distinto a las raíces del denominador.

Ejemplo resuelto 4 – 15º

Halla la siguiente integral indefinida:

3 5

3 2 1

xdx

x x x

1 1 4: ln| 1| ln| 1|

2 2 1Sol x x C

x

Es la integral de una función racional con el grado del numerador menor que el del denominador y, como no es inmediata, hallamos las raíces del denominador que son x = -1, que es simple y x = 1, que es doble puesto que x3.+ x2 - x +1 = (x + 1)(x – 1)2

La descomposición en suma de fracciones simples es:

3 2 2 2

3 5 3 5

1 11 ( 1)( 1) ( 1)

x x A B Cx xx x x x x x

Para hallar las constantes A, B y C antes quitamos denominadores

Page 159: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 123

2

2 2 2 2

3 5 ( 1) ( 1)( 1) ( 1)

( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)( 1)

x A x B x x C xx x x x x x x x

23 5 ( 1) ( 1)( 1) ( 1)x A x B x x C x

Si hacemos x = 1 en la última expresión obtenemos el valor de C:

1 3.1 5 .0 .0 .2 4Si x A B C C

Si hacemos x = -1 en la última expresión obtenemos el valor de A:

2 1

1 3( 1) 5 ( 1 1) .0 .02

Si x A B C A

Para hallar el valor de B podemos dar a x un valor cualquiera, por ejemplo x = 0.

21 1

0 3.0 5 ( 1) .1.( 1) 4.12 2

Si x B B

Por tanto la función racional expresada en suma de fracciones simples es:

3 2 2 2

1 13 5 2 42 2

1 11 ( 1)( 1) ( 1)

x xx xx x x x x x

Y la integral quedaría:

1 1

3 5 42 23 2 21 11 ( 1)1 1 4

ln | 1 | ln | 1 |2 2 1

xdx dx dx dx

x xx x x x

x x x C

Raíces reales y complejas

Esta situación no se exige en este curso.

Ejercicio 4 – 8º

Calcula las siguientes integrales indefinidas:

32 1 3 2 1

2 2 33 1) ) )x x

dx dx dxx x x x

a b c

2 5 4 3 22 5 6 7 5 5 223 6 5 3 21 ( 3) 2 2

) ) )dx x x x x x xxdx dx

xx x x x x xd e f

3 22 5 1: ) 3 18 55ln| 3| ) ln| 1| ln| 1|

3 2 21 1

)ln| | ln|1 | ln1

Sol a x x x x C b x x C

xc x x C C

x x x

4

3 2

2

9 9 2 1) 3ln | 1| 4ln | | ln )

1 1 3| 1| 2( 3)2 2 2

)ln | | 5ln | 1|1 ( 1)

xd x x C C e C

x x xx x

f x x Cx x x

Page 160: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 124

Ejercicio 4 – 9º

x x xdx dx

x x xa b

2

3 3

5 3 2 6

( 1)) )

Ejemplo resuelto 4 – 16º

De una función f: R R se sabe que f’’(x) = x2 + 2x + 2, y que su gráfica tiene

tangente horizontal en el punto P = (1, 2). Halla la expresión de f.

f’(x) será una primitiva de f’’(x), es decir:

2 3 21'( ) ''( ) ( 2 2) 2

3f x f x dx x x dx x x x C

Y f(x) será una primitiva de f’(x), es decir:

3 2 4 3 21 1 1

( ) '( ) ( 2 )3 12 3

f x f x dx x x x C dx x x x Cx D

Tendremos que calcular cuánto valen los parámetros C y D.

Como la gráfica de f tiene tangente horizontal en el punto P = (1, 2), entonces la derivada de la función f en ese punto tiene que

valer 0, es decir:

3 21 10'(1) 0 '(1) 1 1 2.1 0

3 3f f C C

Y como el punto P =(1, 2) es un punto de la gráfica de la función, entonces:

4 3 21 1 47(1) 2 (1) 1 1 1 .1 2

12 3 12f f C D D

Por tanto la función f tiene como expresión:

4 3 21 1 10 47( )

12 3 3 12f x x x x x

Ejercicio 4 - 10º

Determina la función f: R R sabiendo que su derivada segunda es constante e igual

a 3 y que la recta tangente a su gráfica en el punto de abscisa x = 1 es 5x – y – 3 = 0.

23 3: ( ) 2

2 2Sol f x x x

Ejercicio 4 - 11º

Encuentra la primitiva de la función f(x) = x2 sen(x), sabiendo que el valor de la función

para x = π es 3.

2 2: ( ) cos 2 2cos 5Sol f x x x xsenx x

Page 161: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 125

Ejercicio 4 - 12º

Determina la expresión de la función f(x) sabiendo que:

f ’’(x) = xLn(x) f’(1) = 0 y f(e) = e/4

3

3 31 5 1: ( ) ln

6 36 4 36

eSol f x x x x x

Ejercicio 4 - 13º

Determina la expresión de la función f(x) sabiendo que:

2

1)0(.)('

2

fyexxf x

21

: ( ) 12

xSol f x e

Ejercicio 4 - 14º

Sea la función g: R → R definida por )1ln()( 2 xxg (donde ln denota logaritmo

neperiano). Calcula la primitiva de g que pasa por el origen de coordenadas.

2: ln( 1) 2 2 ( )Sol x x x arctg x

Ejemplo resuelto 4 – 17º

Determina una función derivable f: R R sabiendo que sabe que f(1) = -1, y que

01

02)('

2

xsie

xsixxxf

x

f(x) será una primitiva de f’(x), es decir:

0

03

1

)(

2

1

23

xsiCxe

xsiCxxxf

x

Tendremos que calcular cuánto valen las constantes C1 y C2

Con la condición f(1) = -1 obtenemos el valor de C2, es decir:

12 2

(1) 1 1 1f e C C e

Page 162: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 126

Para calcular C1 razonamos del siguiente modo: como la función f es derivable en R, también es continua en R y, por tanto en el

punto de ruptura x = 0. La constante C1 la calculamos igualando los límites laterales de la función en el punto de ruptura x = 0, es

decir:

3 2 01 1

0 0

1lim ( ) lim ( ) 0 0 0 1

3x xf x f x C e e C e

3 211 0: ( ) 3

0x

x x e si xSol f xe x e si x

Ejercicio 4 - 15º

De una función derivable f: R → R se sabe que pasa por el punto (-1, -4) y que su derivada es:

1

1

12

)('xsi

x

xsix

xf

Halla la expresión de f(x)

21 32 1: ( ) 2 2

( ) 1

x x si xSol f xLn x si x

Ejercicio 4 - 16º a 24º

16.- A) 2003 1-B-1 B) 2003 3-B-1 C) 2003 4-A-1

17º.- A) 2004 3-B-2 B) 2004 6-A-1 C) 2005 2-A-2

18º.- A) 2005 5-B-2 B) 2006 2-A-2 C) 2006 2-B-2

19º.- A) 2006 4-A-2 B) 2006 5-A-2 C) 2007 1-B-1

20º.- A) 2007 2-B-2 B) 2007 4-A-2 C) 2007 6-A-1

21º.- A) 2008 1-A-2 B) 2008 6-A-2 C) 2009 2-B-2

22º.- A) 2010 1-A-2 B) 2010 5-A-2 C) 2010 6-A-2

23º.- A) 2011 1-B-2 B) 2011 2-A-2 C) 2011 2-B-2

24º.- A) 2011 3-B-2

Page 163: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 127

Ejercicio 25

Calcula la integral indefinida de las siguientes funciones mediante el cambio de variable que se indica.

3

2

2

2) 1 ) 1 )

1 1 21

xx

dx xa t x b dx t x c dx t e

x ex

2 2

2

3 5) ) ( ) )

24 9 1

x

x

xd dx t x e sen x dx t x f dx t e

x e

2) ) 1 )( 1)( 1) 1 1 1

x xx xx x x

e x eg dx t e h dx t x i dx t e

e e x e

1 1

) ) )1 2 ( )

x dxj dx t x k dx t x l t x

x x x x x x

2( 1)

) 2 1 2 ( 1 )1 1

dx ta dt x Ln x C

tx

3

2 3 2

2

1 1) ( 1 ) 1

321

x tb dx dt x x C

tx

2

2 2) (2 )

2 2

xxc dx dt x Ln e C

e t t

2 2

1 1 3) ( )

6 24 9 1

xd dx dt arcsen x C

x t

) ( ) 2 ( ) 2 cos( ) 2s ( )e sen x dx t sen t dt x x en x C

5 1

) 10 5 10 ( 1)(1 )1

xx

f dx dt x Ln e Ct te

2 2

1 1 1 1) ( 1) ( 1)

4 4( 1)( 1) ( 1)( 1) 2( 1)

xx x

x x x

eg dx dt Ln e Ln e C

e e t t e

2

31 2) ( 2 ) 1 (1 )

1 31 1

x th dx t dt x x C

tx

2

) 2 2 ( 1)11

xx x

x

e ti dx dt e Ln e C

te

1 2) 2 (1 )

1j dx dt Ln x C

tx x

2

31 1 2) 2 4 4 ( 1)

1 31

x tk dx tdt x x x Ln x C

tx

3 2

1 1) ( ) ( 1)

2 ( )

dxl dt Ln x Ln x C

x x x t t x

Page 164: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 128

TEMA 5: INTEGRAL DEFINIDA

1ª.- Integral definida de una función.

2ª.- Propiedades de la integral definida.

3ª.- Función integral y teorema fundamental del cálculo integral.

4ª.- Regla de Barrow.

5ª.- La integral definida y el cálculo de áreas.

1ª.- Integral definida de una función

Supongamos que tenemos una función f(x) continua en un intervalo cerrado [a,b] y

que en dicho intervalo la función es positiva (f(x) ≥ 0).

Si quisiéramos calcular el área de la región que forma su gráfica con el eje OX en

dicho intervalo, podríamos proceder del siguiente modo: Podemos dividir el intervalo [a,b]

en n subintervalos, de modo que la función f(x) tiene en cada uno de estos subintervalos

un máximo y un mínimo

Si tomamos el valor mínimo que toma f(x) en cada

subintervalo, el recinto que forma la función con el eje de

abscisas queda dividido en un conjunto de rectángulos

como se indica en la figura. La suma de las áreas de estos

rectángulos se aproximaría al área buscada pero por

defecto (el área de los n rectángulos es menor que la que

buscamos).

sn (Suma de las áreas de los n rectángulos inferiores) < A

Es evidente que cuando mayor sea n (nº de subintervalos en los que dividimos el

intervalo [a,b]), más nos aproximaremos al valor del área buscada.

Page 165: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 129

Si tomamos ahora el máximo que toma la función en cada subintervalo, el recinto

quedará también dividido en n rectángulos tal y como se

muestra en la figura. En este caso, la suma de las áreas

de los n rectángulos nos aproximará, por exceso, al valor

del área buscada (obtendríamos un valor superior al

buscado). Obviamente cuanto mayor sea el nº de

rectángulos considerados, mejor será la aproximación.

sn (Suma de las áreas de los n rectángulos superiores) > A

Es decir:

sn < A < Sn

Si hacemos que el nº de subintervalos tienda a infinito ( )n , ambas sumas

coincidirían entre sí y obtendríamos el valor del área buscada, es decir:

lim limn nn n

s A S

Este límite común recibe el nombre de integral definida de la función f(x) en el

intervalo [a,b], y se designa por:

( )

bf x dx

a

Page 166: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 130

2ª.- Propiedades de la integral definida.

1ª.- Si los límites de integración son iguales entonces la integral definida vale 0.

( ) 0a

Si a b f x dxa

2ª.- Signo de la integral definida: Si el integrando es una función positiva en el

intervalo de integración, entonces la integral definida también lo será, pero si el integrando

es una función negativa entonces la integral definida será negativa.

( ) 0 ( [ , ] ( ) 0

( ) 0 ( [ , ] ( ) 0

bSi f x x a b f x dx

ab

Si f x x a b f x dxa

3ª.- Aditividad con respecto al intervalo de integración: si dividimos al intervalo

de integración en dos o más subintervalos, la integral definida coincide con la suma de las

integrales definidas en cada uno de los subintervalos.

[ , ] ( ) ( ) ( )b c b

Si c a b f x dx f x dx f x dxa a c

4ª.- Linealidad respecto al integrando: si el integrando se puede expresar como

suma / resta de dos o más funciones, entonces la integral definida coincide la suma / resta

de dichas funciones.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )b b b b

Si f x g x h x f x dx g x h x dx g x dx h x dxa a a a

5ª.- Monotonía respecto al integrando: si tenemos dos funciones y una de ellas

toma valores menores o iguales que la otra en cada uno de los puntos del intervalo de

integración, entonces la integral definida de la primera también será menor o igual que la

de la segunda en dicho intervalo.

[ , ]( ) ( ) ( ) ( ) ( )x a b

b bSi f x g x f x dx g x dx

a a

Page 167: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 131

6ª.- Integral del producto de un nº real por una función: si el integrando se

puede expresar como producto de un nº real por una función, entonces la integral definida

coincide con el producto de dicho nº real por la integral de la función.

( ) . ( ) ( ) ( ) . ( ) ( )b b b

Si f x k g x k R f x dx k g x dx k g x dxa a a

7ª.- Si permutamos los límites de integración, la integral definida cambia de signo.

( ) ( )b a

f x dx f x dxa b

8ª.- Teorema del valor medio del cálculo integral: si el integrando es una

función continua en el intervalo cerrado de integración, entonces siempre existirá un valor x

= c del intervalo abierto de modo que la integral definida se pueda expresar mediante el

área de un rectángulo de base la amplitud del intervalo de integración y de altura f(c).

( ) [ , ] ( , ) ( ) ( ).( )/b

Si f x es continua en a b c a b f x dx f c b aa

3ª.- Función Integral y teorema fundamental del cálculo

integral.

Como hemos visto la integral definida de una función f(x) es un nº real (positivo,

negativo o nulo). Pero si el límite superior de integración no lo fijamos, sino que lo dejamos

variable, podemos definir la siguiente expresión que es una función que depende de x y

que se denomina función integral:

( ) [ , ] [ , ]( ) ( ) ( )f t continua en a b y x a b

xF x f t dt

a

El teorema fundamental del cálculo integral dice que la función integral es derivable y

que su derivada coincide con el integrando:

( ) ( ) '( ) ( )x

F x f t dt es derivable y F x f xa

Es decir, F es una primitiva de f

Page 168: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 132

4ª.- Regla de Barrow

Al inicio del tema definimos a la integral definida como un límite. Pero en la

práctica este mecanismo es fácil sólo para funciones sencillas y, de hecho, nosotros

todavía no lo hemos aplicado en este tema para calcular el valor de una integral definida.-

El matemático inglés Barrow dedujo una regla práctica para hallar el valor de las

integrales definidas y es la siguiente:

REGLA DE BARROW

La integral definida de una función f(x) en un intervalo [a, b] es igual al valor que

toma una cualquiera de sus primitivas en el extremos superior del intervalo menos el valor

que toma esa misma primitiva en el extremo inferior del intervalo.

En lenguaje simbólico sería:

( ) ( ) ( ) ( )b

a

bf x dx G x G b G a

a

Siendo G(x) una primitiva de f(x)

Para aplicar la regla de Barrow podemos seguir el siguiente esquema:

1º.- Buscamos una primitiva cualquiera G(x) del integrando, es decir:

( ) ( )G x f x dx

2º.- Calculamos el valor de la primitiva en los extremos del intervalo de

integración, es decir, calculamos G(a) y G(b).

3º.- Hacemos la diferencia entre los valores anteriores:

( ) ( ) ( ) ( )b

a

bf x dx G x G b G a

a

Es importante darnos cuenta que la primitiva G(x) a utilizar es indiferente, puesto

que al hacer la diferencia entre los extremos del intervalo, la constante de la primitiva se

anularía y el resultado de la diferencia sería el mismo para cualquier primitiva de f(x). Por

tanto podemos utilizar, si queremos, la primitiva más sencilla, que sería aquella en la que la

constante C vale 0.

Page 169: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 133

Ejemplo resuelto 5 – 1º

Calcula las siguientes integrales definidas:

2 2 2

2 2) (2 3) 3 2 3.2 1 3.1 2 2 0

11A x dx x x

Como la integral es inmediata no he indicado los tres pasos a seguir y los he aplicado directamente y secuencialmente.

1

) ln ln ln 1 1 0 111

e eB dx x e

x

Aquí ocurre igual que en el apartado anterior.

4

3 1)

(ln )2C dx

x x

En este caso, aunque parece que no es una integral inmediata, en realidad sí lo es si la preparamos. Preparémosla para

calcular una integral indefinida de f(x).

34

4 3

1 1 (ln ) 1(ln )

3(ln ) 3(ln )

xdx x dx

xx x x

Y ahora calculemos la integral definida:

4 3 3 3 3 3 3 3

33 1 1 1 1 1 1 1 1 13(ln ) 3(ln ) 3(ln3) 3(ln2) 3(ln3) 3(ln2)2 (ln2) (ln3)2

dxx x x

3 42

) . cos .0

D sen x x dx

En este caso también tenemos que prepararla para que sea inmediata.

3 4 2 4 2 4

5 74 6 4 6

. cos . . . cos . .(1 cos ). cos .

cos cos( . cos . cos ) ( ). cos ( ). cos

5 7

sen x x dx senx sen x x dx senx x x dx

x xsenx x senx x dx senx xdx senx xdx

La integral definida sería:

5 73 4 2cos cos 22 . cos . ...

5 7 350 0

x xsen x x dx

Page 170: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 134

Ejercicio 5 – 1º

Calcula las siguientes integrales definidas:

2

( : 105)

5) (3 2 3)

2SOLA x x dx

( : 2))0

SOLB senxdx

3

( : 2 6)) (ln )1

SOL e

eC x dx

2

( : ( 1))5) (2 )0

xSOL eD e sen x dx

Ejercicio 5 – 2º

A x x dx3 4

6) (4 4 3)

1

B dxx 2

1 1)

10

Page 171: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 135

5ª.- La integral definida y el cálculo de áreas

Una de las aplicaciones de la integral definida es el cálculo de áreas de recintos

limitados por las gráficas de funciones.

Para aplicarla lo haremos en grado creciente de dificultad en los siguientes

apartados:

5.1 Área de la región limitada por la gráfica de una función y el eje

OX.

Podemos encontrarnos con dos situaciones:

a) La función no cambia de signo en el intervalo de integración.

Si la función f(x) tiene signo constante en el intervalo de integración, entonces la

función delimita con el eje de abscisas sólo un recinto.

Si la función f(x) es positiva, la región estaría por

encima del eje de abscisas y la integral definida nos daría el

área de esta región.

( )

bf x dx

aA

Pero si la función es negativa en el intervalo de

integración, la región estaría por debajo del eje de abscisas. La

integral definida sería negativa y su valor absoluto nos

proporcionaría el valor del área de esta región.

( )b

f x dxa

A

b) La función cambia de signo en el intervalo de integración.

Si la función f(x) no tiene signo constante en el intervalo de integración, entonces

su gráfica determina con el eje de abscisas varias regiones tal y como se indica en la

figura:

Page 172: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 136

En este caso el área del recinto que determina la gráfica de f con el eje de abscisas

será la suma de las áreas de cada uno de los recintos

1 2 3( ) ( ) ( )

R R R

c d bf x dx f x dx f x dx

a c dA A A A

Siendo c y d las abscisas de los dos puntos de corte de la gráfica de f con el eje OX-

Ejemplo no resuelto 5 – 2º

Halla el área del recinto limitado por la parábola y = x2 , el eje OX, la recta x = 1 y la

recta x = 5. (SOL: 124/3 u2)

Ejemplo no resuelto 5 – 3º

Halla el área del recinto limitado por la curva y = - x2 , el eje OX y las rectas x = - 2 y

x = 2. (SOL: 16/3 u2)

Ejemplo no resuelto 5 – 4º

Halla el área limitada por la curva y = x3 – 6x2 + 8x y el eje OX. (SOL: 8 u2)

Ejemplo no resuelto 5 – 5º

Halla el área de la región comprendida entre la función f(x) = x3 – x2 – 4x + 4 y el eje

de abscisas. (SOL: 71/6 u2)

Ejemplo no resuelto 5 – 6º (selectividad 2003)

En la figura adjunta puedes ver representada en el intervalo [0,2] la gráfica de la

parábola y = x2/4. Halla el valor de m para el que las áreas de las superficies rayadas

son iguales. (SOL: m = 17/12)

Page 173: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 137

5.2 Área de la región limitada por las gráficas de dos funciones.

En esta figura se ve claramente que el área pedida es la

diferencia entre las áreas que forman con el eje de abscisas f

y g.

( ) ( )f g

b bf x dx g x dx

a aA A A

Aquí las funciones se cortan en el intervalo de

integración y eso significa que en el primer subintervalo

g es mayor que f y en el segundo ocurre al contrario. El

área pedida sería:

1 2( ) ( ) ( ) ( )

R R

c bg x f x dx f x g x dx

a cA A A

IMPORTANTE

Existe un procedimiento o norma general para estos casos y consiste en definir

una nueva función h(x) = f(x) – g(x) (o al contrario: h(x) = g(x) – f(x)). A continuación se

calcula el área de la gráfica de esta nueva función con el eje de abscisas procediendo

del mismo modo que en el punto 5.1 anterior, es decir, tendríamos que ver si h(x)

mantiene o cambia su signo en el intervalo de integración.

Ejemplo no resuelto 5 – 7º

Halla el área del recinto limitado por las funciones y = x2 e y = x1/2 .

(SOL: 1/3 u2)

Ejemplo no resuelto 5 – 8º

Halla el área de la región comprendida entre las funciones f(x) = x3 y g(x) = x

(SOL: 1/2 u2)

Page 174: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 138

Ejemplo no resuelto 5 – 9º (Selectividad 2008)

Sea la función f : R → R y g : R → R las funciones definidas mediante:

)2()( xxxf y 4)( xxg

a) Esboza las gráficas de f y g sobre los mismos ejes. Calcula los puntos de corte entre ambas gráficas.

b) Calcula el área del recinto limitado por ambas gráficas.

(SOL: 109/6 u2)

Ejemplo no resuelto 5 – 10º (Selectividad 2012)

Halla el área del recinto limitado por las funciones f(x) = x3 – 4x y g(x) = 3x - 6

(SOL: 131/4 u2)

Page 175: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 139

5.3 Área de la región limitada por las gráficas de dos o más

funciones y el eje de abscisas.

En la siguiente gráfica se ha representado la región delimitada entre dos funciones

f(x) y g(x) y los ejes de coordenadas.

F(x) g(x)

0 a b

Puedes observar que el área de dicho recinto es la resta de dos áreas: el área que

forma la gráfica de la función f(x) con el eje de abscisas en el intervalo [0,b] menos la

que forma la gráfica de la función g(x) con el eje de abscisas en el intervalo [a,b], es

decir:

( ) ( )0f g

b bf x dx g x dx

aA A A

Es importante destacar que el área que forma f(x) con el eje de abscisas, en este

caso particular, coincide con el área de un rectángulo y, por tanto, podríamos calcular

dicha área sin necesidad de realizar la integral definida, bastaría con aplicar la fórmula

de base por altura.

Ejercicio no resuelto 5 –10º

Halla el área de la región del plano limitada por las gráficas de las funciones f(x) =

lnx, g(x) = 2 y los ejes de coordenadas. (SOL: e2 – 1 u2 )

Ejercicio no resuelto 5 – 11º

Halla el área de la región del plano limitada por la parábola y = 4x - x2, y las

tangentes a la curva en los puntos de intersección con el el eje de abscisas.

(SOL: 16/3 u2 )

Ejercicios de selectividad 5 – 3º al 34º

3º.- a) 2003 1 – A – 2 b) 2003 2 – A – 2 c) 2003 2 – B – 2

4º.- a) 2003 3 – A – 2 b) 2003 4 – A – 2 c) 2003 4 – B – 1

Page 176: JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017 … › wp-content › uploads › 2018 › 05 › ... · 2019-02-09 · JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO

JUAN XXIII CARTUJA MATEMÁTICAS II: ANÁLISIS CURSO 2017-18

SEMINARIO DE MATEMÁTICAS José Escudero Martínez Página 140

5º.- a) 2003 5 – A – 2 b) 2003 5 – B – 1 c) 2003 6 – B – 2

6º.- a) 2004 1 – A – 2 b) 2004 1 – B – 1 c) 2004 1 – B – 2

7º.- a) 2004 2 – A – 2 b) 2004 2 – B – 2 c) 2004 3 – A – 1

8º.- a) 2004 4 – A – 1 b) 2004 4 – B – 1 c) 2004 5 – A – 2

9º.- a) 2004 5 – B – 2 b) 2004 6 – B – 2 c) 2005 1 – A – 2

10º.- a) 2005 1 – B – 2 b) 2005 2 – B – 2 c) 2005 3 – A – 2

11º.- a) 2005 3 – B – 2 b) 2005 4 – A – 2 c) 2005 4 – B – 2

12º.- a) 2005 5 – A – 1 b) 2005 6 – A – 1 c) 2005 6 – B – 2

13º.- a) 2006 1 – A – 2 b) 2006 1 – B – 2 c) 2006 2 – B – 2

14º.- a) 2006 3 – A – 2 b) 2006 3 – B – 2 c) 2006 4 – A – 1

15º.- a) 2006 4 – B – 2 b) 2006 5 – A – 2 c) 2006 5 – B – 2

16º.- a) 2006 6 – A – 2 b) 2006 6 – B – 2 c) 2007 1 – A – 2

17º.- a) 2007 1 – B – 2 b) 2007 2 – A – 2 c) 2007 3 – A – 2

18º.- a) 2007 3 – B – 2 b) 2007 4 – B – 2 c) 2007 5 – A – 2

19º.- a) 2007 5 – B – 2 b) 2007 6 – A – 1 c) 2007 6 – A – 2

20º.- a) 2007 6 – B – 2 b) 2008 1 – A – 2 c) 2008 1 – B – 1

21º.- a) 2008 1 – B – 2 b) 2008 2 – A – 2 c) 2008 2 – B – 2

22º.- a) 2008 3 – A – 2 b) 2008 3 – B – 2 c) 2008 4 – A – 2

23º.- a) 2008 4 – B – 2 b) 2008 5 – A – 2 c) 2008 5 – B – 1

24º.- a) 2008 5 – B – 2 b) 2008 6 – A – 2 c) 2008 6 – B – 2

25º.- a) 2009 1 – A – 2 b) 2009 1 – B – 2 c) 2009 2 – A – 2

26º.- a) 2009 3 – A – 2 b) 2009 3 – B – 2 c) 2009 4 – A – 2

27º.- a) 2009 4 – B – 2 b) 2009 5 – A – 2 c) 2009 5 – B – 2

28º.- a) 2009 6 – A – 2 b) 2009 6 – B – 2 c) 2010 1 – B – 2

29º.- a) 2010 2 – A – 2 b) 2010 2 – B – 2 c) 2010 3 – A – 2

30º.- a) 2010 3 – B – 2 b) 2010 4 – A – 2 c) 2010 4 – B – 2

31º.- a) 2010 5 – B – 2 b) 2010 6 – B – 2 c) 2011 1 – A – 2

32º.- a) 2011 3 – A – 2 b) 2011 4 – A – 2 c) 2011 4 – B – 2

33º.- a) 2011 5 – A – 2 b) 2011 5 – B – 2 c) 2011 6 – A – 2

34º.- a) 2011 6 – B – 2