Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

38
Hierro El hierro es un elemento químico de número atómico 26 situado en el grupo 8 de la tabla periódica de los elementos. Su símbolo es Fe. Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro. Características principales Es un metal maleable, tenaz, de color gris plateado y presenta propiedades magnéticas; es ferromagnético a temperatura ambiente y presión atmosférica. Se encuentra en la naturaleza formando parte de numerosos minerales, entre ellos muchos óxidos, y raramente se encuentra libre. Para obtener hierro en estado elemental, los óxidos se reducen con carbono y luego es sometido a un proceso de refinado para eliminar las impurezas presentes. Es el elemento más pesado que se produce exotérmicamente por fusión, y el más ligero que se produce a través de una fisión, debido a que su núcleo tiene la más alta energía de enlace por nucleón (energía necesaria para separar del núcleo un neutrón o un protón); por lo tanto, el núcleo más estable es el del hierro-56 (con 30 neutrones). Presenta diferentes formas estructurales dependiendo de la temperatura y presión. A presión atmosférica: Hierro-α: estable hasta los 911 °C. El sistema cristalino es una red cúbica centrada en el cuerpo (bcc). Hierro-γ: 911 °C - 1392 °C; presenta una red cúbica centrada en las caras (fcc).

description

Un resumen

Transcript of Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Page 1: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Hierro

El hierro es un elemento químico de número atómico 26 situado en el grupo 8 de la tabla periódica de los elementos. Su símbolo es Fe.

Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro.

Características principales

Es un metal maleable, tenaz, de color gris plateado y presenta propiedades magnéticas; es ferromagnético a temperatura ambiente y presión atmosférica.

Se encuentra en la naturaleza formando parte de numerosos minerales, entre ellos muchos óxidos, y raramente se encuentra libre. Para obtener hierro en estado elemental, los óxidos se reducen con carbono y luego es sometido a un proceso de refinado para eliminar las impurezas presentes.

Es el elemento más pesado que se produce exotérmicamente por fusión, y el más ligero que se produce a través de una fisión, debido a que su núcleo tiene la más alta energía de enlace por nucleón (energía necesaria para separar del núcleo un neutrón o un protón); por lo tanto, el núcleo más estable es el del hierro-56 (con 30 neutrones).

Presenta diferentes formas estructurales dependiendo de la temperatura y presión. A presión atmosférica:

Hierro-α: estable hasta los 911 °C. El sistema cristalino es una red cúbica centrada en el cuerpo (bcc).

Hierro-γ: 911 °C - 1392 °C; presenta una red cúbica centrada en las caras (fcc).

Hierro-δ: 1392 °C - 1539 °C; vuelve a presentar una red cúbica centrada en el cuerpo.

Hierro-ε: Puede estabilizarse a altas presiones, presenta estructura hexagonal compacta (hcp).

El hierro-α es ferromagnético hasta la temperatura de Curie (768 °C), a partir de la cual pasa a ser paramagnético. Antiguamente, al hierro-α paramagnético se le llamaba hierro-β, aunque hoy en día no se suele distinguir entre las fases α y β.

Aplicaciones

El hierro es el metal más usado, con el 95% en peso de la producción mundial de metal. Fundamentalmente se emplea en la producción de acero, la aleación

Page 2: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

de hierro más conocida, consistente en aleaciones de hierro con otros elementos, tanto metálicos como no metálicos, que confieren distintas propiedades al material. Se considera que una aleación de hierro es acero si contiene menos de un 2% de carbono; si el porcentaje es mayor, recibe el nombre de fundición.

El acero es indispensable debido a su bajo precio y dureza, especialmente en automóviles, barcos y componentes estructurales de edificios.

Las aleaciones férreas presentan una gran variedad de propiedades mecánicas dependiendo de su composición o el tratamiento que se haya llevado a cabo.

Aceros

Los aceros son aleaciones de hierro y carbono, en concentraciones máximas de 2,11% de carbono en peso aproximadamente. El carbono es el elemento de aleación principal, pero los aceros contienen otros elementos.

Dependiendo de su contenido en carbono se clasifican en:

Acero bajo en carbono: menos del 0,25% de C en peso. Son blandos pero dúctiles. Se utilizan en vehículos, tuberías, elementos estructurales, etcétera. También existen los aceros de alta resistencia y baja aleación, que contienen otros elementos aleados hasta un 10% en peso; tienen una mayor resistencia mecánica y pueden ser trabajados fácilmente.

Acero medio en carbono: entre 0,25% y 0,6% de C en peso. Para mejorar sus propiedades son tratados térmicamente. Son más resistentes que los aceros bajos en carbono, pero menos dúctiles; se emplean en piezas de ingeniería que requieren una alta resistencia mecánica y al desgaste.

Acero alto en carbono: entre 0,60% y 1,4% de C en peso. Son aún más resistentes, pero también menos dúctiles. Se añaden otros elementos para que formen carburos, por ejemplo, con wolframio se forma el carburo de wolframio, WC; estos carburos son muy duros. Estos aceros se emplean principalmente en herramientas.

También existe otra clasificación de los aceros al carbono (sin alear) según su contenido en carbono:

o Los aceros hipoeutectoides, cuyo contenido en carbono a temperatura eutectoide (727°C) oscila entre 0.02% y 0,77%.

o Los aceros eutectoides cuyo contenido en carbono es de 0,77%. o Los aceros hipereutectoides con contenidos en carbono de 0,77%

a 2,11% Aceros inoxidables: uno de los inconvenientes del hierro es que se oxida

con facilidad. Hay una serie de aceros a los que se les añaden otros elementos aleantes (principalmente cromo) para que sean más resistentes a la corrosión, se llaman aceros inoxidables.

Fundición: cuando el contenido en carbono es superior a un 2,11% en peso, la aleación se denomina fundición. Generalmente tienen entre un 3% y un 4,5% de C en peso. Hay distintos tipos de fundiciones (gris,

Page 3: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

esferoidal, blanca y maleable); según el tipo se utilizan para distintas aplicaciones: en motores, válvulas, engranajes, etcétera.

Por otra parte, los óxidos de hierro tienen variadas aplicaciones: en pinturas, obtención de hierro, la magnetita (Fe3O4) y el óxido de hierro III en aplicaciones magnéticas, etcétera.

El Fe(OH)3, se utiliza en radioquímica para concentrar los actínidos mediante co-precipitación.

Abundancia y obtención

Es el metal de transición más abundante en la corteza terrestre, y cuarto de todos los elementos. También abunda en todo en el Universo, habiéndose encontrado meteoritos que lo contienen. Se encuentra formando parte de numerosos minerales, entre los que destacan la hematites (Fe2O3), la magnetita (Fe3O4), la limonita (FeO(OH)), la siderita (FeCO3), la pirita (FeS2), la ilmenita (FeTiO3), etcétera.

Se puede obtener hierro a partir de los óxidos con más o menos impurezas. Muchos de los minerales de hierro son óxidos, y los que no se pueden oxidar para obtener los correspondientes óxidos.

La reducción de los óxidos para obtener hierro se lleva a cabo en un horno denominado comúnmente alto horno (también, horno alto). En él se añaden los minerales de hierro en presencia de coque y carbonato de calcio, CaCO3, que actúa como escorificante.

Los gases sufren una serie de reacciones; el coque puede reaccionar con el oxígeno para formar dióxido de carbono:

C + O2 → CO2

A su vez el dióxido de carbono puede reducirse para dar monóxido de carbono:

CO2 + C → 2CO

Aunque también se puede dar el proceso contrario al oxidarse el monóxido con oxígeno para volver a dar dióxido de carbono:

2CO + O2 → 2CO2

El proceso de oxidación de coque con oxígeno libera energía y se utiliza para calentar (llegándose hasta unos 1900 °C en la parte inferior del horno).

En primer lugar los óxidos de hierro pueden reducirse, parcial o totalmente, con el monóxido de carbono, CO; por ejemplo:

Fe3O4 + 3CO → 3FeO + CO2 FeO + CO → Fe + CO2

Page 4: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Después, conforme se baja en el horno y la temperatura aumenta, reaccionan con el coque (carbono en su mayor parte), reduciéndose los óxidos. Por ejemplo:

Fe3O4 + C → 3FeO + CO

El carbonato de calcio (caliza) se descompone:

CaCO3 → CaO + CO2

Y el dióxido de carbono es reducido con el coque a monóxido de carbono como se ha visto antes.

Más abajo se producen procesos de carburación:

3Fe + 2CO → Fe3C + CO2

Finalmente se produce la combustión y desulfuración (eliminación de azufre) mediante la entrada de aire. Y por último se separan dos fracciones: la escoria y el arrabio: hierro fundido, que es la materia prima que luego se emplea en la industria.

El arrabio suele contener bastantes impurezas no deseables, y es necesario someterlo a un proceso de afino en hornos llamados convertidores.

En 2000 los cinco mayores productores de hierro eran China, Brasil, Australia, Rusia e India, con el 70% de la producción mundial.

Oxidación del hierro

El hierro en contacto con aire húmedo se transforma lentamente en herrumbre u oxido ferrico hidratado. Este oxido reacciona sobre el hierro y da un oxido ferroso:

Fe2 +Fe → 3FeO (oxido ferroso)

Este en el aire se convierte en oxido ferrico

4FeO + O2 → 2 Fe2O3

Compuestos

Los estados de oxidación más comunes son +2 y +3. Los óxidos de hierro más conocidos son el óxido de hierro (II), FeO, el óxido de hierro (III), Fe2O3, y el óxido mixto Fe3O4.

Forma asimismo numerosas sales y complejos en estos estados de oxidación. El hexacianoferrato (II) de hierro (III), usado en pinturas, se ha denominado azul de Prusia o azul de Turnbull; se pensaba que eran sustancias diferentes.

Page 5: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Papel biológico

El hierro se encuentra en prácticamente todos los seres vivos y cumple numerosas y variadas funciones.

Hay distintas proteínas que contienen el grupo hemo, que consiste en el ligando porfirina con un átomo de hierro. Algunos ejemplos:

o La hemoglobina y la mioglobina; la primera transporta oxígeno, O2, y la segunda lo almacena.

o Los citocromos; los citocromos c catalizan la reducción de oxígeno a agua. Los citocromos P450 catalizan la oxidación de compuestos hidrofóbicos, como fármacos o drogas, para que puedan ser excretados, y participan en la síntesis de distintas moléculas.

o Las peroxidasas y catalasas catalizan la oxidación de peróxidos, H2O2, que son tóxicos.

Ejemplo de centro de una proteína de Fe/S (ferredoxina) Las proteínas de hierro/azufre (Fe/S) participan en procesos de

transferencia de electrones. También se puede encontrar proteínas en donde átomos de hierro se

enlazan entre sí a través de enlaces puente de oxígeno. Se denominan proteínas Fe-O-Fe. Algunos ejemplos:

o Las bacterias metanotróficas, que emplean el metano, CH4, como fuente de energía y de carbono, usan proteínas de este tipo, llamadas monooxigenasas, para catalizar la oxidación de este metano.

o La hemeritrina transporta oxígeno en algunos organismos marinos.

o Algunas ribonucleótido reductasas contienen hierro. Catalizan la formación de desoxinucleótidos.

Los animales para transportar el hierro dentro del cuerpo emplean unas proteínas llamadas transferrinas. Para almacenarlo emplean la ferritina y la hemosiderina. El hierro entra en el organismo al ser absorbido en el intestino delgado y es transportado o almacenado por esas proteínas. La mayor parte del hierro se reutiliza y muy poco se excreta.

Tanto el exceso como el defecto de hierro pueden provocar problemas en el organismo. El envenenamiento por hierro ocurre debido a la ingesta exagerada de esté (como suplemento en el tratamiento de anemias).

Page 6: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

La hemocromatosis corresponde a una enfermedad de origen genético, en la cual ocurre una excesiva absorción del hierro, el cual se deposita en el hígado, causando disfunción de este y eventualmente llegando a la cirrosis hepática. En las transfusiones de sangre se emplean ligandos que forman con el hierro complejos de una alta estabilidad para evitar que quede demasiado hierro libre.

Estos ligandos se conocen como sideróforos. Muchos microorganismos emplean estos sideróforos para captar el hierro que necesitan. También se pueden emplear como antibióticos, pues no dejan hierro libre disponible.

Precauciones

El hierro en exceso es tóxico. El hierro reacciona con peróxido y produce radicales libres; la reacción más importante es:

Fe (II) + O2 → Fe (III) + OH- + OH•

Cuando el hierro se encuentra dentro de unos niveles normales, los mecanismos antioxidantes del organismo pueden controlar este proceso.

La dosis letal de hierro en un niño de 2 años es de unos 3 g. 1 g puede provocar un envenenamiento importante. El hierro en exceso se acumula en el hígado y provoca daños en este órgano.

Aluminio

El aluminio es un elemento químico, de símbolo Al y número atómico 13. Se trata de un metal no ferroso, abundante en la corteza terrestre, ya que constituye aproximadamente un 7,5% de su peso. En estado natural se encuentra en muchos silicatos (feldespatos, plagioclasas y micas). Como metal se extrae del mineral conocido con el nombre de bauxita, por transformación en aluminio mediante electrólisis sucesiva.

El aluminio es el metal que más se utiliza después del acero, debido a las buenas propiedades mecánicas que tiene. El aluminio fue aislado por primera vez en 1825 por el físico danés H. C. Oersted. El principal inconveniente para su obtención reside en la elevada cantidad de energía eléctrica requerida, dificultando así su mayor utilización. Este problema se compensa por su bajo coste de reciclado, su dilatada vida útil y la estabilidad de su precio.

Obtención:

Se obtiene por electrolisis de la alumina pura (Al2O3), disuelta en la criolita.

La reacción se verifica en un recipiente de hierro, forrado interiormente con carbón y que sirve de cátodo; el ánodo consta de varias barras de carbón que cuelgan de una varita de cobre, la cual puede bajarse o subirse según el caso.

Page 7: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Se llena parte del aparato con criolita, la cual se funde por el calor de la corriente y se ioniza.

El ion Al se deposita en el cátodo, fundido, se extrae periódicamente por la base del recipiente.

El fluor ataca a la alumina dando F3Al que vuelve a ionizarse y O que ataca al carbono del cátodo desprendiéndose CO.

La criolita se regenera continuamente a expensas del Al2O3, que es en realidad la verdadera materia prima.

F3Al → 3F- + Al3+

Al3+ → al ánodo

F- → F

F + Al2O3 → F3Al + O

O + C → CO

Características del aluminio

Características físicas

Entre las características físicas del aluminio se tienen las siguientes:

Es un metal ligero, cuya densidad o peso específico es de 2700 kg/m3

(2,7 veces la densidad del agua). Tiene un punto de fusión bajo 660ºC (933 K) El peso atómico del aluminio es de 26,9815 Es de color blanco brillante. Buen conductor del calor y de la electricidad. Resistente a la corrosión. Material abundante en la Naturaleza Material fácil y barato de reciclar.

Características mecánicas

Entre las características mecánicas del aluminio se tienen las siguientes:

De fácil mecanizado. Muy maleable, permite la producción de láminas muy delgadas. Bastante dúctil, permite la fabricación de cables eléctricos. Material blando (Escala de Mohs2-3). Límite de resistencia en tracción

160-200 N/mm2 en estado puro, en estado aleado el rango es de 1400-6000 N/mm2. El duraluminio es una aleación particularmente resistente.

Material que forma aleaciones con otros metales para mejorar las propiedades mecánicas.

Page 8: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Permite la fabricación de piezas por fundición y moldeo. Material soldable

Características químicas

Debido a su elevado estado de oxidación se forma rápidamente al aire una fina capa superficial de óxido de aluminio (Alúmina Al2O3) impermeable y adherente que detiene el proceso de oxidación, lo que le proporciona resistencia a la corrosión y durabilidad. Esta capa protectora, de color gris mate, puede ser ampliada por electrólisis en presencia de oxalatos.

El aluminio tiene características anfóteras. Esto significa que se disuelve tanto en ácidos (formando sales de aluminio) como en bases fuertes (formando aluminatos con el anión [Al(OH)4]- liberando hidrógeno.

La capa de oxido formada sobre el aluminio se puede disolver en ácido cítrico formando citrato de aluminio.

El principal y casi único estado de oxidación del aluminio es +III como es de esperar por sus tres electrones en la capa de valencia.

Estructura atómica del aluminio

El aluminio reacciona con facilidad con HCl, NaOH, perclórico, pero en general resiste la corrosión debido al óxido. Sin embargo cuando hay iones Cu(++) y Cl(-) su pasivación desaparece y es muy reactivo. Los alquilAluminios son tan reactivos que destruyen el tejido humano y arden al aire.- El óxido de aluminio es tan estable que se utiliza el metal para obtener otros metales a partir de sus óxidos (Cromo,Manganeso etc) por el proceso aluminotérmico

Aleaciones de aluminio

Desde el punto de vista físico, el aluminio puro posee una resistencia muy baja a la tracción y una dureza escasa. En cambio, unido en aleación con otros elementos, el aluminio adquiere características mecánicas muy superiores. A estas aleaciones se las conoce con el nombre genérico de Duraluminio, y pueden ser centenares de aleaciones diferentes. El duraluminio contiene pequeñas cantidades de cobre (Cu) (3-5%), Magnesio (Mg) (0,5-2%), Manganeso (Mn) (0,25-1%) y Zinc (3,5-5%).

Son también importantes los diversos tipos de aleaciones llamadas anticorodal, a base de aluminio (Al) y pequeños aportes de Magnesio (Mg) y Silicio (Si). Pero que pueden contener a veces Manganeso (Mn), Titanio (Ti) y Cromo (Cr).

Page 9: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

A estas aleaciones se las conoce con el nombre de avional, duralinox, silumin, hidronalio, peraluman, etc.

Como hay distintas composiciones de aluminio en el mercado, es importante considerar las propiedades que éstas presentan, pues, en la industria de la manufactura, unas son más favorables que otras.

Aplicaciones y usos del aluminio

Estatua de aluminio dedicada a Eros y ubicada en Picadilly- Londres, construida en 1893

Ya sea considerando la cantidad o el valor del metal empleado, el uso industrial del aluminio excede al del cualquier otro metal exceptuando el hierro / acero. Es un material importante en multitud de actividades económicas y ha sido considerado un recurso estratégico en situaciones de conflicto.

Aluminio metálico

El aluminio se utiliza rara vez 100% puro, casi siempre se usa aleado con otros metales. El aluminio puro se emplea principalmente en la fabricación de espejos, tanto para uso doméstico como para telescopios reflectores.

Los principales usos industriales de las aleaciones metálicas de aluminio son:

Transporte, como material estructural en aviones, automóviles, tanques, superestructuras de buques, etc.

Estructuras portantes de aluminio en edificios, ver Eurocódigo 9 Embalaje; papel de aluminio, latas, tetrabriks, etc. Carpintería metálica Puertas, ventanas, cierres, armarios, etc Bienes de uso doméstico; utensilios de cocina, herramientas, etc. Transmisión eléctrica. Aunque su conductividad eléctrica es tan sólo el

60% de la del cobre, su mayor ligereza disminuye el peso de los conductores y permite una mayor separación de las torres de alta tensión, disminuyendo los costes de la infraestructura.

Page 10: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Recipientes criogénicos (hasta -200 °C, ya que no presenta temperatura de transición (dúctil a frágil) como el acero, así la tenacidad del material es mejor a bajas temperaturas.

Calderería. Bicicletas

Debido a su gran reactividad química, el aluminio se usa finamente pulverizado como combustible sólido de cohete espacial y para aumentar la potencia de explosión.

También se usa como ánodo de sacrificio y en procesos de aluminotermia (termita) para la obtención y soldadura de metales.

Compuestos no metálicos de aluminio

El óxido de aluminio, también llamado alúmina, (Al2O3) es un producto intermedio de la obtención de aluminio a partir de la bauxita. Se utiliza como revestimiento de protección y como adsorbente para purificar productos químicos. El óxido de aluminio cristalino se llama corindón y es utilizado sobre todo como abrasivo. El corindón transparente se llama rubí cuando es rojo y zafiro en los otros casos, utilizándose en joyería y en los emisores de rayos láser. El rubí y el zafiro también pueden ser producidos artificialmente.5

Los haluros de aluminio tienen características de ácido Lewis y son utilizados como tales como catalizadores o reactivos auxiliares. En particular, el cloruro de aluminio (AlCl3) se emplea en la producción de pinturas y caucho sintético así como en el refinamiento de petróleo.

Los aluminosilicatos son una clase importante de minerales. Forman parte de las arcillas y son la base de muchas cerámicas y vidrios. En vidrios y cerámicas también se utilizan óxidos de aluminio y el borato de aluminio (Al2O3 B2O3).

El hidróxido de aluminio (Al(OH)3) se emplea como antiácido, como mordiente, en tratamiento de aguas, en la producción de cerámica y vidrio y en la impermeabilización de tejidos.

Los hidruros complejos de aluminio son reductores valiosos en síntesis orgánica.

El sulfato de aluminio (Al2(SO4)3) y el sulfato de amonio y aluminio (Al(NH4)(SO4)2) se emplean como mordiente, en tratamiento de aguas, en la producción de papel, como aditivo alimentario y en el curtido del cuero.6

El fosfato de aluminio (AlPO4) se usa, entre otros, como deshidratante a alta temperatura.

El borohidruro de aluminio (Al(BH4)3) se añade como aditivo a los combustibles de aviones a reacción.

Page 11: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Las sales de aluminio de los ácidos grasos (p. ej. el estearato de aluminio) forman parte de la formulación del napalm.

En muchas vacunas, ciertas sales de aluminio realizan la función de adyuvante inmune, para ayudar a la proteína de la vacuna a adquirir suficiente potencia para estimular al sistema inmunológico.

El Al(CH2CH3)3 arde violentamente al aire y destruye rápidamente los tejidos.

Corrosión del aluminio

El aluminio metálico se recubre espontáneamente de una delgada capa de óxido que evita su corrosión. Sin embargo, esta capa desaparece en presencia de ácidos, particularmente del perclórico y clorhídrico; asimismo, en soluciones muy alcalinas de hidróxido potásico (KOH) o hidróxido sódico (NaOH) ocurre una enérgica reacción. La presencia de CuCl2 o CuBr2 también destruye el óxido y hace que el aluminio se disuelva enérgicamente en agua. Con mercurio y sales de éste, el aluminio reacciona si está limpio formando una amalgama que impide su pasivación. Reacciona también enérgicamente en frío con bromo y en caliente con muchas sustancias, dependiendo de la temperatura, reduciendo a casi cualquier óxido (proceso termita). Es atacado por los haloalcanos. Las reacciones del aluminio a menudo van acompañadas de emisión de luz. 7 (Reacciones exoérgicas).

Producción de aluminio

Moneda de aluminio y trozo de metal

Lingote de aluminio

Aunque el aluminio es un material muy abundante en la corteza terrestre (8,1%), raramente se encuentra libre. El tipo de tierra de que se extrae el aluminio se llama mineral de bauxita. La bauxita es un mineral rico en óxido de aluminio, formado a lo largo de millones de años mediante la erosión química de rocas que contienen silicatos de aluminio. Primero se extrajo en Francia y desde entonces se ha encontrado en muchos lugares en todo el mundo.

Page 12: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Actualmente, la mayor parte de la minería de bauxita está situada en el Caribe, Australia y África.8

Para convertir bauxita en aluminio, se muele el mineral y se mezcla con cal viva y sosa cáustica; se bombea esta mezcla en recipientes a alta presión y se calienta. El óxido de aluminio que buscado se disuelve por efecto de la sosa cáustica y después se precipita a partir de esta solución; se lava y se calienta para quitar el agua. Lo que queda es el polvo blanco parecido al azúcar, denominado alúmina u óxido de aluminio (Al2O3).

Con cuatro toneladas de bauxita, es posible refinar aproximadamente dos toneladas de alúmina – un polvo blanco de óxido de aluminio. La tecnología es compleja y el equipo es masivo. A partir de esas dos toneladas de alúmina se puede fundir una tonelada de aluminio. La fundición del aluminio fue inventada en 1888. Sus aplicaciones industriales son relativamente recientes, produciéndose a escala industrial desde finales del siglo XIX.

La alúmina se convierte en aluminio en un proceso de reducción electrolítica conocido como fundición. Se disuelve la alúmina en un baño de criolita dentro de grandes células revestidas de carbono, conocidas como cubas electrolíticas. Cuando pasa una fuerte corriente eléctrica por el baño, el metal aluminio se separa de la solución química y se extrae mediante sifón.

La electrólisis es un proceso electroquímico en el que se utiliza el paso de la corriente eléctrica a través de una solución que contiene compuestos disociados en iones para provocar una serie de transformaciones químicas. La corriente eléctrica se proporciona a la solución sumergiendo en ella dos electrodos, uno llamado cátodo y otro llamado ánodo, conectados respectivamente al polo negativo y al polo positivo de una fuente de corriente continua. Para la producción electrolítica del aluminio se opera sobre una solución particular, obtenida disolviendo alúmina en un compuesto llamado criolita (fluoruro doble de aluminio y sodio) fundida para lo que son necesarias temperaturas del orden de 1000ºC. Por esta razón el consumo energético que se utiliza para obtener aluminio es muy elevado y lo convierte en uno de los metales más caros de obtener, ya que es necesario gastar de 17 a 20 kWh para obtener un kilo de metal de aluminio. Sin embargo, ya existen procesos alternativos que permiten una reducción de la energía necesaria; permiten una reducción del 70% respecto al procedimiento electrolítico. Estos procedimientos parten de arcillas ricas en aluminio en vez de partir de la bauxita.

El aluminio procedente de las cubas electrolíticas pasa a hornos para mezclarlo de manera precisa con otros metales para formar diversas aleaciones con propiedades específicas diseñadas para diversos usos. El metal se purifica en un proceso denominado adición de fundente y después se vierte en moldes o se funde directamente en lingotes. Los procesos adicionales pueden ser la fundición en moldes, laminación, forjado, extracción o extrusión.

Con una tonelada de aluminio es suficiente para fabricar más de 60.000 latas de refrescos o cerveza. Suficiente para fabricar las carrocerías de siete automóviles. Suficiente para fabricar 40.000 discos de memoria de

Page 13: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

computadora, capaces de almacenar todos los libros que se hayan publicado hasta la fecha.

Bobina de chapa de aluminio

Cuando fue descubierto se encontró que era extremadamente difícil su separación de las rocas de las que formaba parte, por lo que durante un tiempo fue considerado un metal precioso, más caro que el oro. Sin embargo, con las mejoras de los procesos los precios bajaron continuamente hasta colapsarse en 1889 tras descubrirse un método sencillo de extracción del metal. Las primeras síntesis del metal se basaron en la reducción del cloruro de aluminio con potasio elemental. En 1859 Henri Sainte-Claire Deville publicó dos mejoras al proceso de obtención al sustituir el potasio por sodio y el cloruro simple por doble; posteriormente, la invención del proceso Hall-Héroult en 1886 abarató el proceso de extracción del aluminio a partir del mineral, lo que permitió, junto con el proceso Bayer del mismo año, que se extendiera su uso hasta hacerse común en multitud de aplicaciones. Actualmente el proceso ordinario de obtención del metal consta de dos etapas, la obtención de alúmina por el proceso Bayer a partir de la bauxita, y posterior electrólisis del óxido para obtener el aluminio.

La elevada reactividad del aluminio impide extraerlo de la alúmina mediante reducción, siendo necesaria la electrólisis del óxido, lo que exige a su vez que éste se encuentre en estado líquido. No obstante, la alúmina tiene un punto de fusión de 2000 °C, excesivamente alta para acometer el proceso de forma económica por lo que era disuelta en criolita fundida, lo que disminuía la temperatura hasta los 1000°C. Actualmente, la criolita se sustituye cada vez más por la criolita un fluoruro artificial de aluminio, sodio y calcio.

La recuperación del metal a partir de la chatarra (reciclado) era una práctica conocida desde principios del siglo XX. Es, sin embargo, a partir de los años 1960 cuando se generaliza, más por razones medioambientales que estrictamente económico.

Trabajando con aluminio

Precauciones

El aluminio es uno de los pocos elementos abundantes en la naturaleza que parecen no tener ninguna función biológica beneficiosa. Algunas personas manifiestan alergia al aluminio, sufriendo dermatitis por contacto, e incluso desórdenes digestivos al ingerir alimentos cocinados en recipientes de aluminio; para el resto de personas, no se considera tan tóxico como los metales pesados, aunque existen evidencias de cierta toxicidad si se consume

Page 14: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

en grandes cantidades. El uso de recipientes de aluminio no se ha encontrado que acarree problemas de salud, estando éstos relacionados con el consumo de antiácidos o antitranspirantes que contienen aluminio. Se ha sugerido que el aluminio puede estar relacionado con el Alzheimer, aunque la teoría ha sido refutada.9

Equipo de protección personal debe ser empleado dependiendo del trabajo que se ha de realizar con el material; esto incluye lentes de protección, guantes, etc.

Soldadura

Normas de precaución son de importancia referentes al proceso de soldar aluminio, por ejemplo, se debe tomar en cuenta el empleo del voltaje o que durante el proceso de soldadura, gases se hacen presentes. El resplandor que el aluminio emite al ser soldado es blanco verdoso y brillante.

Doblado

El aluminio se presenta en el mercado en diversas formas, ya sean estas barras con diversos perfiles u hojas de varios tamaños y grosores entre otras. Cuando se trabaja con aluminio, específicamente en crear algún doblez en una hoja, o en una parte de ésta, es importante considerar la dirección del grano; esto significa que la composición en el metal, después de haber sido fabricado, ha tomado una tendencia direccional en su microestructura, mostrando así una mayor longitud hacia una dirección que hacia otra. Así es que el aluminio puede quebrarse si la dirección del grano no es considerada al crear algún doblez, o si el doblez es creado con un radio demasiado pequeño, el cual sobrepase la integridad elástica del tipo de aluminio.

Electroerosión

La conductividad del aluminio es suficiente para ser mecanizado empleando descarga eléctrica.

Reciclaje

En primer lugar el producto de aluminio a reciclar se clasifica y compacta. Luego en un horno, se le saca la pintura y en algunos casos se las muele en pequeñas láminas. Por último el material va a un horno de fundición y de esta manera se obtienen nuevos lingotes o láminas para hacer más productos de aluminio. Cabe destacar que este material, al igual que el vidrio puede ser reciclado infinidad de veces, ya que no pierde calidad en los distintos procesos.

El aluminio no cambia sus características químicas durante el reciclado. El proceso se puede repetir indefinidamente y los objetos de aluminio se pueden fabricar enteramente con material reciclado. Muchos desechos de aluminio como las latas se pueden prensar fácilmente, reduciendo su volumen y facilitando su almacenamiento y transporte, las latas usadas de aluminio tienen

Page 15: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

el valor más alto de todos los residuos de envases y embalajes, lo anterior es un incentivo para su recuperación.

Latas de aluminio comprimidas.

Algunos beneficios del reciclaje de aluminio son:

Al utilizar aluminio recuperado en el proceso de fabricación de nuevos productos existe un ahorro de energía del 95% respecto a si se utilizara materia prima virgen (bauxita).

El proceso de reciclado es normalmente fácil, ya que los objetos de aluminio desechados están compuestos normalmente sólo de aluminio por lo que no se requiere una separación previa de otros materiales.

Un residuo de aluminio es fácil de manejar: es ligero, no se rompe, no arde y no se oxida, por lo mismo es también fácil de transportar.

El aluminio es un material cotizado y rentable con un mercado importante a nivel mundial. Por ello todo el aluminio recogido tiene garantizado su reciclado. El reciclaje de aluminio produce beneficios ya que proporciona fuente de ingresos y ocupación para la mano de obra no calificada.11

Acciones emprendidas

Muchas personas en los países en desarrollo se dedican a la recolección de aluminio de desecho, principalmente latas, por lo que contribuyen al reciclaje de este metal. Otras personas lo hacen por conciencia ambiental; en muchas partes del mundo organizaciones comunales, supermercados, escuelas y tiendas de todos tamaños cuentan con un programa de reciclaje de aluminio.

Por ejemplo, en Chile hay una empresa que mantiene convenios de recogida de envases en colegios y centros de recreación. También ha dispuesto contenedores especiales para que los consumidores dispongan las latas vacías en ellas. Algunos de estos contenedores son más sofisticados y cuentan con un dispositivo especial que aplasta las latas cuando se dispone en el contenedor de modo de maximizar su capacidad.

Page 16: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Cromo

El cromo es un elemento químico de número atómico 24 que se encuentra en el grupo 6 de la tabla periódica de los elementos. Su símbolo es Cr. Es un metal que se emplea especialmente en metalurgia.

Características principales

El cromo es un metal de transición duro, frágil, gris acerado y brillante. Es muy resistente frente a la corrosión.

Su estado de oxidación más alto es el +6, aunque estos compuestos son muy oxidantes. Los estados de oxidación +4 y +5 son poco frecuentes, mientras que los estados más estables son +2 y +3. También es posible obtener compuestos en los que el cromo presente estados de oxidación más bajos, pero son bastante raros.

Obtención:

El cromo se prepara reduciendo el oxido por el aluminio en polvo; la dificultad de su producción proviene de su afinidad para el C y el O.

Cr2O3 + 2Al → Al2O3 + 2Cr

Aplicaciones

El cromo se utiliza principalmente en metalurgia para aportar resistencia a la corrosión y un acabado brillante.

o En aleaciones, por ejemplo, el acero inoxidable es aquel que contiene más de un 12% en cromo, aunque las propiedades antioxidantes del cromo empiezan a notarse a partir del 5% de concentración.

o En procesos de cromado (depositar una capa protectora mediante electrodeposición). También se utiliza en el anodizado del aluminio.

Sus cromatos y óxidos se emplean en colorantes y pinturas. En general, sus sales se emplean, debido a sus variados colores, como mordientes.

El dicromato de potasio (K2Cr2O7) es un reactivo químico que se emplea en la limpieza de material de vidrio de laboratorio y, en análisis volumétricos, como agente valorante.

Es común el uso del cromo y de alguno de sus óxidos como catalizadores, por ejemplo, en la síntesis de amoníaco (NH3).

El mineral cromita (Cr2O3·FeO) se emplea en moldes para la fabricación de ladrillos (en general, para fabricar materiales refractarios). Con todo, una buena parte de la cromita consumida se emplea para obtener cromo o en aleaciones.

En el curtido del cuero es frecuente emplear el denominado "curtido al cromo" en el que se emplea hidroxisulfato de cromo (III) (Cr(OH)(SO4)).

Page 17: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Para preservar la madera se suelen utilizar sustancias químicas que se fijan a la madera protegiéndola. Entre estas sustancias se emplea óxido de cromo (VI) (CrO3).

Cuando en el corindón (α-Al2O3) se sustituyen algunos iones de aluminio por iones de cromo se obtiene el rubí; esta gema se puede emplear, por ejemplo, en láseres.

El dióxido de cromo (CrO2) se emplea para fabricar las cintas magnéticas empleadas en las casetes, dando mejores resultados que con óxido de hierro (Fe2O3) debido a que presentan una mayor coercitividad.

Historia

Óxido de cromo

En 1761 Johann Gottlob Lehmann encontró en los Urales un mineral naranja rojizo que denominó plomo rojo de Siberia; este mineral se trataba de la crocoita (PbCrO4), y se creyó que era un compuesto de plomo con selenio y

Compuestos

El dicromato de potasio, K2Cr2O7, es un oxidante enérgico y se utiliza para limpiar material de vidrio de laboratorio de cualquier resto orgánico que pueda contener.

El "verde de cromo" (es el óxido de cromo (III), Cr2O3) es un pigmento que se emplea, por ejemplo, en pinturas esmaltadas y en la coloración de vidrios. El "amarillo de cromo" (es un cromato de plomo, PbCrO4) también se utiliza como pigmento.

No se encuentran en la naturaleza ni el ácido crómico ni el dicrómico, pero sus aniones se encuentran en una amplia variedad de compuestos. El trióxido de cromo, CrO3, el que sería el anhídrido del ácido crómico, se vende industrialmente como "ácido crómico".

Papel biológico

En principio, se considera al cromo (en su estado de oxidación +3) un elemento esencial, aunque no se conocen con exactitud sus funciones. Parece participar en el metabolismo de los lípidos, en el de los hidratos de carbono, así como otras funciones.

Page 18: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Se ha observado que algunos de sus complejos parecen participar en la potenciación de la acción de la insulina, por lo que se los ha denominado "factor de tolerancia a la glucosa"; debido a esta relación con la acción de la insulina, la ausencia de cromo provoca una intolerancia a la glucosa, y esta ausencia provoca la aparición de diversos problemas.

No se ha encontrado ninguna metaloproteína con actividad biológica que contenga cromo y por lo tanto no se ha podido explicar cómo actúa.

Por otra parte, los compuestos de cromo en el estado de oxidación +6 son muy oxidantes y son carcinógenos.

Abundancia y obtención

Se obtiene cromo a partir de la cromita (FeCr2O4). El cromo se obtiene comercialmente calentando la cromita en presencia de aluminio o silicio (mediante un proceso de reducción). Aproximadamente la mitad de la cromita se extrae de Sudáfrica. También se obtiene en grandes cantidades en Kazajistán, India y Turquía

Los depósitos aún sin explotar son abundantes, pero están geográficamente concentrados en Kazajistán y el sur de África.

Aproximadamente se produjeron en 2000 quince millones de toneladas de cromita, de la cual la mayor parte se emplea para aleaciones (cerca de un 70%), por ejemplo para obtener ferrocromo (una aleación de cromo y hierro, con algo de carbono). Otra parte (un 15% aproximadamente)se emplea directamente como material refractario y, el resto, en la industria química para obtener diferentes compuestos de cromo.

Se han descubierto depósitos de cromo metal, aunque son poco abundantes; en una mina rusa (Udachnaya) se producen muestras del metal, en donde el ambiente reductor ha facilitado la producción de diamantes y cromo elemental.

Se han caracterizado 19 radioisótopos, siendo el más estable el cromo-50 con un periodo de semidesintegración de más de 1,8 x 1017 años, seguido del cromo-51 con uno de 27,7025 días. El resto tiene periodos de semidesintegración de menos de 24 horas, la mayoría de menos de un minuto. Este elemento también tiene dos metaestados.

El cromo-53 es el producto de decaimiento del manganeso-53. Los contenidos isotópicos en cromo están relacionados con los de manganeso, lo que se emplea en geología. Las relaciones isotópicas de Mn-Cr refuerzan la evidencia de aluminio-26 y paladio-107 en los comienzos del Sistema Solar. Las variaciones en las relaciones de cromo-53/cromo-52 y Mn/Cr en algunos meteoritos indican una relación inicial de 53Mn/55Mn que sugiere que las relaciones isotópicas de Mn-Cr resultan del decaimiento in situ de 53Mn en cuerpos planetarios diferenciados. Por lo tanto, el 53Cr da una evidencia adicional de procesos nucleosintéticos justo antes de la coalescencia del Sistema Solar.

Page 19: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

El peso atómico de los isótopos del cromo va desde 43 uma (cromo-43) a 67 uma (cromo-67). El primer modo de decaimiento antes del isótopo estable más abundante, el cromo-52, es la captura electrónica, mientras que después de éste, es la desintegración beta

Precauciones

Generalmente, no se considera que el cromo metal y los compuestos de cromo (III) sean, especialmente, un riesgo para la salud; se trata de un elemento esencial para el ser humano, pero en altas concentraciones resulta tóxico.

Los compuestos de cromo (VI) son tóxicos si son ingeridos, siendo la dosis letal de unos pocos gramos. En niveles no letales, el Cr (VI) es carcinógeno. La mayoría de los compuestos de cromo (VI) irritan los ojos, la piel y las mucosas. La exposición crónica a compuestos de cromo (VI) puede provocar daños permanentes en los ojos.

La Organización Mundial de la Salud (OMS) recomienda desde 1958 una concentración máxima de 0.05 mg/litro de cromo (VI) en el agua de consumo. Este valor ha sido revisado haciendo nuevos estudios sobre sus efectos en la salud, pero ha permanecido constante.

Cobalto

El cobalto (del alemán kobalt, voz derivada de kobold, término utilizado por los mineros de Sajonia en la Edad Media para describir al mineral del cual se obtiene) es un elemento químico de número atómico 27 y símbolo Co situado en el grupo 9 de la tabla periódica de los elementos.

Obtención

Se obtiene por tostación de sus minerales: cobaltina o esmaltina, que se convierten en CoO y luego este se reduce por el carbón o la laminotermia.

Aluminotermia

4SAsCo + 9O2 → 2As2O3 + 4SO2 +4CoO

3CoO + 2Al → Al2O3 + 3Co

Carbon

As2Co + 2O2 → As2O3 + CoO

CoO + C → CO + Co

Características principales

Page 20: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

El cobalto es un metal duro, ferromagnético, de color blanco azulado. Su temperatura de Curie es de 1388 K. Normalmente se encuentra junto con níquel, y ambos suelen formar parte de los meteoritos de hierro. Es un elemento químico esencial para los mamíferos en pequeñas cantidades. El Co-60, un radioisótopo de cobalto, es un importante trazador y agente en el tratamiento del cáncer.

El cobalto metálico está comúnmente constituido de una mezcla de dos formas alotrópicas con estructuras cristalinas hexagonales y cúbica centrada en las caras siendo la temperatura de transición entre ambas de 722 K.

Presenta estados de oxidación bajos. Los compuestos en los que el cobalto tiene un estado de oxidación de +4 son poco comunes. El estado de oxidación +2 es muy frecuente, así como el +3. También existen complejos importantes con el estado de oxidación +1.

Aplicaciones

Aleaciones entre las que cabe señalar superaleaciones usadas en turbinas de gas de aviación, aleaciones resistentes a la corrosión, aceros rápidos, y carburos cementados y herramientas de diamante. Herramientas de corte en procesos de fabricación para fresadoras.

Imanes (Alnico) y cintas magnéticas. Catálisis del petróleo e industria química. Recubrimientos metálicos por deposición electrolítica por su aspecto,

dureza y resistencia a la oxidación. Secante para pinturas, barnices y tintas. Recubrimiento base de esmaltes vitrificados. Pigmentos (cobalto azul y cobalto verde). Electrodos de baterías eléctricas Cables de acero de neumáticos. El Co-60 se usa como fuente de radiación gamma en radioterapia,

esterilización de alimentos (pasteurización fría) y radiografía industrial para el control de calidad de metales (detección de grietas).

Papel biológico

El cobalto en pequeñas cantidades es esencial para numerosos organismos, incluidos los humanos. La presencia de cantidades entre 0,13 y 0,30 ppm en el suelo mejora ostensiblemente la salud de los animales de pastoreo. El cobalto es un componente central de la vitamina B12 (cianocobalamina)

Compuestos

Debido a los varios estados de oxidación que presenta, existe un abundante número de compuestos de cobalto. Los óxidos CoO y Co3O4 son ambos antiferromagnéticos a baja temperatura.

Precauciones

Page 21: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

El cobalto metálico en polvo finamente dividido es inflamable. Los compuestos de cobalto en general deben manipularse con precaución por la ligera toxicidad del metal.

El Co-60 es radiactivo y la exposición a su radiación puede provocar cáncer. La ingestión de Co-60 conlleva la acumulación de alguna cantidad en los tejidos, cantidad que se elimina muy lentamente. En una eventual confrontación nuclear, la emisión de neutrones convertiría el hierro en Co-60 multiplicando los efectos de la radiación tras la explosión y prolongando en el tiempo los efectos de la contaminación radioactiva; con este propósito se diseñan algunas armas nucleares denominadas bombas sucias (del inglés dirty bomb). En ausencia de guerra nuclear, el riesgo proviene de la inadecuada manipulación o mantenimiento de las unidades de radioterapia.

Níquel

El níquel es un elemento químico de número atómico 28 y símbolo Ni, situado en el grupo 10 de la tabla periódica de los elementos.

Aplicaciones]

Aproximadamente el 65% del níquel consumido se emplea en la fabricación de acero inoxidable austenítico y otro 12% en superaleaciones de níquel. El restante 23% se reparte entre otras aleaciones, baterías recargables, catálisis, acuñación de moneda, recubrimientos metálicos y fundición:

Alnico, aleación para imanes. El mu-metal se usa para apantallar campos magnéticos por su elevada

permeabilidad magnética. Al aleaciones níquel-cobre (monel) son muy resistentes a la corrosión,

utilizándose en motores marinos e industria química. La aleación níquel-titanio (nitinol-55) presenta el fenómeno de memoria

de forma y se usa en robótica, también existen aleaciones que presentan superplasticidad.

Crisoles de laboratorios químicos. Níquel Raney: catalizador de la hidrogenación de aceites vegetales.

Papel biológico

Muchas, aunque no todas, las hidrogenasas contienen níquel, especialmente en aquéllas cuya función es oxidar el hidrógeno. Parece que el níquel sufre cambios en su estado de oxidación lo que parece indicar que el núcleo de níquel es la parte activa de la enzima.

El níquel está también presente en la enzima metil CoM reductasa y en bacterias metanogénicas.

Abundancia y obtención

Page 22: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

El níquel aparece en forma de metal en los meteoritos junto con el hierro (formando las aleaciones kamacita y taenita) y se cree que se encuentra en el núcleo de la Tierra junto con el mismo metal. Combinado se encuentra en minerales diversos como garnierita, millerita, pentlandita y pirrotina.

Las minas de Nueva Caledonia (Francia) y Canadá producen hoy día el 70% del níquel consumido. Otros productores son Cuba, Puerto Rico, Rusia y China.

El mineral sulfuro o arseniuro se tuesta para eliminar el S o As en forma de SO2

o As2O3; con esto queda NiO y óxidos de otros metales; se disuelven estos por el H2SO4 diluido y queda NiO que a 300 °C se reduce con una mezcla de CO + H2.

2NiO + (CO + H2) → CO2 + H2O + 2Ni

Principales minerales de níquel

La niquelita (NiAs), la garnierita (Si4O13[Ni, Mg]2•2 H2O), este último es uno de los minerales más utilizados en la extracción del níquel, también existen los sulfuros, de ellos los más importantes son los sulfuros de hierro y níquel, pentlandita y pirrotita (Ni, Fe) xSy, otros minerales que se encuentran en la naturaleza son los arseniuros, silicatos, sulfoarseniuros. y en Argentina hay mucho que lo hace el 1º productor del mundo

Precauciones

La exposición al níquel metal y sus compuestos solubles no debe superar los 0,05 mg/cm³ medidos en niveles de níquel equivalente para una exposición laboral de 8 horas diarias y 40 semanales. Los vapores y el polvo de sulfuro de níquel se sospecha que sean cancerígenos.

El carbonilo de níquel (Ni(CO)4), generado durante el proceso de obtención del metal, es un gas extremadamente tóxico.

Las personas sensibilizadas pueden manifestar alergias al níquel. La cantidad de níquel admisible en productos que puedan entrar en contacto con la piel está regulada en la Unión Europea; a pesar de ello, la revista Nature publicó en 2002 un artículo en el que investigadores afirmaban haber encontrado en monedas de 1 y 2 euros niveles superiores a los permitidos, se cree que debido a una reacción galvánica

Manganeso

El manganeso es un elemento químico de número atómico 25 situado en el grupo 7 de la tabla periódica de los elementos y se simboliza como Mn.

Características principales

El manganeso es un metal de transición blanco grisáceo, parecido al hierro. Es un metal duro y muy frágil, refractario y fácilmente oxidable. El manganeso

Page 23: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

metal puede ser ferromagnético, pero sólo después de sufrir un tratamiento especial.

Sus estados de oxidación más comunes son +2, +3, +4, +6 y +7, aunque se han encontrado desde +1 a +7; los compuestos en los que el manganeso presenta estado de oxidación +7 son agentes oxidantes muy enérgicos. Dentro de los sistemas biológicos, el catión Mn+2 compite frecuentemente con el Mg+2. Se emplea sobre todo aleado con hierro en aceros y en otras aleaciones.

Obtención

Se obtiene reduciendo el oxido rojo Mn3O4 por el aluminio en polvo

3Mn3O4 + 8Al → 4Al2O3 + 9Mn

Papel biológico

El manganeso es un oligoelemento; es considerado un elemento químico esencial para todas las formas de vida.

Se ha comprobado que el manganeso tiene un papel tanto estructural como enzimático. Está presente en distintas enzimas, destacando la superóxido dismutasa de manganeso (Mn-SOD), que cataliza la dismutación de superóxidos, O2

-; la Mn-catalasa, que cataliza la dismutación de peróxido de hidrógeno, H2O2; así como en la concavanila A (de la familia de las lectinas), en donde el manganeso tiene un papel estructural.

En humanos, el manganeso se absorbe en el intestino delgado, acabando la mayor parte en el hígado, de donde se reparte a diferentes partes del organismo.

Abundancia y obtención

Es el decimosegundo elemento más abundante en la corteza terrestre y está ampliamente distribuido.

Se encuentra en cientos de minerales, aunque sólo una docena tiene interés industrial. Destacan: pirolusita (MnO2), psilomelana (MnO2·H2O), manganita (MnO(OH)), braunita (3Mn2O3·MnSiO3), rodonita (MnSiO3), rodocrosita (MnCO3), hübnerita (MnWO4), etc. También se ha encontrado en nódulos marinos, en donde el contenido en manganeso oscila entre un 15 y un 30%, y en donde sería posible extraerlo.

Los países con mayores yacimientos de minerales de manganeso son Sudáfrica, Ucrania, Bolivia y China.

El metal se obtiene por reducción de los óxidos con aluminio, y el ferromanganeso se obtiene también reduciendo los óxidos de hierro y manganeso con carbono.

Page 24: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Compuestos

Óxido de manganeso

El permanganato de potasio, KMnO4, es un reactivo de laboratorio muy común debido a sus propiedades oxidantes.

El dióxido de manganeso, MnO2 se emplea como despolarizador en pilas secas. También se puede usar para decolorar vidrio que presente color verde debido a la presencia de trazas de hierro. Este óxido también se emplea para dar color amatista al vidrio, y es responsable del color de la amatista (una variedad del cuarzo). Además, se utiliza en la producción de cloro y oxígeno.

Precauciones

El manganeso es un elemento esencial, siendo necesario un aporte de entre 1 a 5 mg por día, cantidad que se consigue a través de los alimentos.

El manganeso en exceso es tóxico. Exposiciones prolongadas a compuestos de manganeso, de forma inhalada u oral, pueden provocar efectos adversos en el sistema nervioso, respiratorio, y otros.

El permanganato de potasio, KMnO4, es corrosivo.

zinc

El zinc o cinc es un elemento químico de número atómico 30 y símbolo Zn situado en el grupo 12 de la tabla periódica de los elementos.

Características principales

El zinc es un metal, a veces clasificado como metal de transición aunque estrictamente no lo sea, que presenta cierto parecido con el magnesio y el berilio además de con los elementos de su grupo. Este elemento es poco

Page 25: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

abundante en la corteza terrestre pero se obtiene con facilidad. Una de sus aplicaciones más importantes es el galvanizado del acero. Es un elemento químico esencial.

Es un metal de color blanco azulado que arde en aire con llama verde azulada. El aire seco no le ataca pero en presencia de humedad se forma una capa superficial de óxido o carbonato básico que aísla al metal y lo protege de la corrosión. Prácticamente el único estado de oxidación que presenta es el +2. En el año 2004 se publicó en la revista Science el primer y único compuesto conocido de zinc en estado de oxidación +1, basado en un complejo organometálico con el ligando pentametilciclopentadieno. Reacciona con ácidos no oxidantes pasando al estado de oxidación +2 y liberando hidrógeno y puede disolverse en bases y ácido acético.

El metal presenta una gran resistencia a la deformación plástica en frío que disminuye en caliente, lo que obliga a laminarlo por encima de los 100°C. No se puede endurecer por acritud y presenta el fenómeno de fluencia a temperatura ambiente —al contrario que la mayoría de los metales y aleaciones— y pequeñas cargas provocan deformaciones no permanentes.

Obtención

Se obtiene por tostación de los sulfuros o por calcinación de los carbonatos que pasan a oxido, el cual se reduce por el carbón:

1° 2SZn + 3O2 → 2SO2 + 2ZnO

2° CO3Zn → CO2 + ZnO

3° ZnO + C → CO + Zn

Aplicaciones

La principal aplicación del zinc —cerca del 50% del consumo anual— es el galvanizado del acero para protegerle de la corrosión, protección efectiva incluso cuando se agrieta el recubrimiento ya que el zinc actúa como ánodo de sacrificio. Otros usos incluyen

Baterías de Zn-AgO usadas en la industria aeroespacial para misiles y cápsulas espaciales por su óptimo rendimiento por unidad de peso y baterías zinc-aire para computadoras portátiles.

Piezas de fundición inyectada en la industria de automoción. Metalurgia de metales preciosos y eliminación de la plata del plomo.

Papel biológico

El zinc es un elemento químico esencial para las personas: interviene en el metabolismo de proteínas y ácidos nucleicos, estimula la actividad de aproximadamente 100 enzimas, colabora en el buen funcionamiento del sistema inmunológico, es necesario para la cicatrización de las heridas,

Page 26: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

interviene en las percepciones del gusto y el olfato y en la síntesis del ADN. El metal se encuentra en la insulina, las proteínas dedo de zinc y diversas enzimas como la superóxido dismutasa.

El zinc se encuentra en diversos alimentos como las ostras, carnes rojas, aves de corral, algunos pescados y mariscos, habas y nueces. La ingesta diaria recomendada de zinc ronda los 10 mg, menor para bebés, niños y adolescentes (por su menor peso corporal) y algo mayor para mujeres embarazadas y durante la lactancia.

La deficiencia de zinc puede producir retardo en el crecimiento, pérdida del cabello, diarrea, impotencia, lesiones oculares y de piel, pérdida de apetito, pérdida de peso, tardanza en la cicatrización de las heridas y anomalías en el sentido del olfato. Las causas que pueden provocar una deficiencia de zinc son la deficiente ingesta y la mala absorción del mineral —caso de alcoholismo que favorece su eliminación en la orina o dietas vegetarianas en las que la absorción de zinc es un 50% menor que de las carnes— o por su excesiva eliminación debido a desórdenes digestivos.

El exceso de zinc se ha asociado con bajos niveles de cobre, alteraciones en la función del hierro y disminución de la función inmunológica y de los niveles del colesterol bueno.

Abundancia y obtención

Zinc

El zinc es el 23º elemento más abundante en la corteza terrestre. Las minas más ricas contienen cerca de un 10% de hierro y entre el 40 y 50% de zinc. Los minerales de los que se extrae son la esfalerita y blenda (sulfuro), smithsonita (carbonato), hemimorfita (silicato) y franklinita (óxido).

Las reservas mundiales demostradas cuya explotación es económica ascienden a casi 220 millones de toneladas, repartiéndose más de la mitad a partes iguales entre EE. UU., Australia, China y Kazajstán. Las reservas conocidas (incluyendo aquéllas cuya explotación no es hoy día económica) rozan los 2000 millones de toneladas.

La producción minera mundial fue en el 2003, según datos de la agencia de prospecciones geológicas estadounidense (US Geological Survey) de 8,5 millones de toneladas, liderada por China con el 20% del total y Australia con el

Page 27: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

19%. Se estima que cerca de un tercio del zinc consumido es reciclado (secundario).

La producción del zinc comienza con la extracción del mineral que puede realizarse tanto a cielo abierto como en yacimientos subterráneos. Los minerales extraídos se trituran con posterioridad y se someten a un proceso de flotación para obtener el concentrado.

Los minerales con altos contenidos de hierro se tratan por vía seca: primeramente se tuesta el concentrado para transformar el sulfuro en óxido, que recibe la denominación de calcina, y a continuación se reduce éste con carbono obteniendo el metal (el agente reductor es en la práctica el monóxido de carbono formado). Las reacciones en ambas etapas son:

2 ZnS + 3 O2 → 2 ZnO + 2 SO2 ZnO + CO → Zn + CO2

Por vía húmeda primeramente se realiza el tueste obteniendo el óxido que se lixivia con ácido sulfúrico diluido; las lejías obtenidas se purifican separando las distintas fases presentes. El sulfato de zinc se somete posteriormente a electrólisis con ánodo de plomo y cátodo de aluminio sobre el cual se deposita el zinc formando placas de algunos milímetros de espesor que se retiran cada cierto tiempo. Los cátodos obtenidos se funden y se cuela el metal para su comercialización.

Como subproductos se obtienen diferentes metales como mercurio, óxido de germanio, cadmio, oro, plata, cobre, plomo en función de la composición de los minerales. El dióxido de azufre obtenido en la tostación del mineral se usa para producir ácido sulfúrico que se reutiliza en el lixiviado comercializando el excedente producido.

Los tipos de zinc obtenidos se clasifican según la norma ASTM en función de su pureza:

SHG, Special High Grade (99,99%) HG, High Grade (99,90%) PWG Prime Western Grade (98%)

La norma EN 1179 considera cinco grados Z1 a Z5 con contenidos de zinc entre 99,995% y 98,5% y existen normas equivalentes en Japón y Australia. Para armonizar todas ellas la ISO publicó en 2004 la norma ISO 752 sobre clasificación y requisitos del zinc primario.

Aleaciones

Las aleaciones más empleadas son las de aluminio (3,5-4,5%, Zamak; 11-13%, Zn-Al-Cu-Mg; 22%, Prestal, aleación que presenta superplasticidad) y cobre (alrededor del 1%) que mejoran las características mecánicas del zinc y su aptitud al moldeo.

Page 28: Hierro Alumio Cromo Cobalto Niquel Manganeso Zinc

Es componente minoritario en aleaciones diversas, principalmente de cobre como latones (3 a 45% de zinc), alpacas (Cu-Ni-Zn) y bronces (Cu-Sn) de moldeo.

Compuestos

El óxido de zinc es el más conocido y utilizado industrialmente, especialmente como base de pigmentos blancos para pintura, pero también en la industria del caucho y en cremas solares. Otros compuestos importantes son el cloruro de zinc (desodorantes) y sulfuro de zinc (pinturas luminiscentes).

Precauciones

El zinc metal no está considerado como tóxico pero sí algunos de sus compuestos como el óxido y el sulfuro

En la década de los 40 se observó que en la superficie del acero galvanizado se forman con el tiempo «pelos de zinc que pueden liberarse al ambiente provocando cortocircuitos y fallos en componentes electrónicos. Estos pelos se forman tras un período de incubación que puede durar días o años y crecen a un ritmo del orden de 1 mm al año. El problema causado por estos pelos se ha agudizado con el paso del tiempo por haberse construido las salas de ordenadores y equipos informáticos sobre suelos elevados para facilitar el cableado en las que era común el uso de acero galvanizado, tanto en la estructura portante como en la parte posterior de las baldosas. Las edades de dichas salas, en muchos casos de 20 o 30 años propician la existencia de pelos en cantidades y longitudes peligrosas susceptibles de provocar fallos informáticos. Además, la progresiva miniaturización de los equipos disminuye la longitud necesaria para provocar el fallo y los pequeños voltajes de funcionamiento impiden que se alcance la temperatura de fusión del metal provocando fallos crónicos que pueden ser incluso intermitentes.