Farmacología Cardiovascular

74
Farmacología Cardiovascular

description

Farmacología Cardiovascular . SISTEMA CIRCULATORIO: FUNCIONES PRINCIPALES. Transportar y distribuir sustancias esenciales a los tejidos Remover desechos metabólicos Ajustar la provisión de oxígeno y nutrientes en diferentes estados metabólicos Regulación de la temperatura corporal - PowerPoint PPT Presentation

Transcript of Farmacología Cardiovascular

Page 1: Farmacología Cardiovascular

Farmacología Cardiovascular

Page 2: Farmacología Cardiovascular

SISTEMA CIRCULATORIO: FUNCIONES PRINCIPALES

• Transportar y distribuir sustancias esenciales a los tejidos

• Remover desechos metabólicos• Ajustar la provisión de oxígeno y

nutrientes en diferentes estados metabólicos

• Regulación de la temperatura corporal• Comunicación humoral

Page 3: Farmacología Cardiovascular

Un sistema complicado

Page 4: Farmacología Cardiovascular

Que se puede simplificar

SERIES AND

PARALLEL CIRCUITS

Page 5: Farmacología Cardiovascular
Page 6: Farmacología Cardiovascular
Page 7: Farmacología Cardiovascular

CICLO CARDIACO

Page 8: Farmacología Cardiovascular

Potencial de acción cardíacom

v

0

-80mv

mv

0

-80mv

mv0

-80mv

ATRIUM VENTRICLE

SA NODE

time

Page 9: Farmacología Cardiovascular

Conductacias del PA cardíaco

Page 10: Farmacología Cardiovascular

Fast K closes Slow K opensFast K reopens

("Delayed rectifier")

Corrientes y PA cardíaco

Page 11: Farmacología Cardiovascular

Del PA al ECG

Page 12: Farmacología Cardiovascular
Page 13: Farmacología Cardiovascular
Page 14: Farmacología Cardiovascular
Page 15: Farmacología Cardiovascular

AV NODE AND AV BLOCKSFOCUS ON N REGION

NORMAL

ECG

1ST DEGREEPROLONGUED AVCONDUCTION TIME

2ND DEGREE

1/2 ATRIAL IMPULSES CONDUCTED TO VENTRICLES

3RD DEGREE

VAGAL MEDIATIONIN N REGION/COMPLETEBLOCK

Page 16: Farmacología Cardiovascular
Page 17: Farmacología Cardiovascular
Page 18: Farmacología Cardiovascular

• Cardiovascular disease is the major cause of death

• Cardiovascular function based on– Cardiac pumping ability

• Pace-making electrical signals• Force of contraction• Height of ventricle discharge pressure

– Integrity of vasculature• Presence of blockage• Muscular tone/structural integrity• Pressure drop needed to move blood to and through capillary

beds– Blood volume/composition

• Water, electrolyte, iron balances• Lipid and protein composition

ENFERMEDAD CARDÍACA

Page 19: Farmacología Cardiovascular

Patologías cardiovasculares que requieren farmacoterapia

• Hipertensión• Arritmia• Falla cardíaca• Trastornos de flujo vascular

Page 20: Farmacología Cardiovascular

I. Background to Hypertension -Regulation of Blood Pressure

• Arterial blood pressure due to combination of cardiac output (CO) and total peripheral resistance (TPR)

• CO – regulated by heart rate and stroke volume (CO = HR x SV)

• TPR function of – Viscosity of blood (hematocrit)– Length of blood vessels– Blood vessel luminal diameter (especially precapillary

arterioles)

Page 21: Farmacología Cardiovascular

Cardiac Output• Heart rate

– Function of • sympathetic, vagal nervous activity• Neuro-hormonal substances

– 1° angiotensin II– 2º vasopression (anti-diuretic hormone = ADH)

• Stroke volume– Function of

• Venous return (function of venous tone [contractile state] and circulating blood (vascular) volume)

– Venous tone function of sympathetic activity (α1, α2 receptors)– Vascular volume depends on

» Intake of fluids (thirst)» Output of fluids (urine, sweat, etc)» Distribution of fluids (Starling’s law)

• Myocardial contractility (MC proportional to sympathetic tone [β1 receptors])

Page 22: Farmacología Cardiovascular

Characteristics of some adrenoceptors (sympathetic nerves)

α1 α2 β1 β2

Smooth muscle Arteries/ veins

constrict constrict/dilate

dilate

Skeletal muscle

dilate

Heart

Rate (increase)

Force of contraction

increase

Tissues and effects receptors

Page 23: Farmacología Cardiovascular

Autonomic Regulation of the Heart

• Heart Rate– Parasympathetic input via vagus nerve

causes decrease in HR (dominates) – Sympathetic input to sino-atrial node causes

increase in HR (usually minor)

• Heart contractility– Increased by sympathetic activity causing

release of epinephrine, norepinephrine from adrenal gland

Page 24: Farmacología Cardiovascular

Hipertensión

Page 25: Farmacología Cardiovascular

Antihypertensive Classes

• diuretics• beta blockers• angiotensin-converting enzyme (ACE)

inhibitors • calcium channel blockers• vasodilators

Page 26: Farmacología Cardiovascular

Alpha1 Blockers

Stimulate alpha1 receptors -> hypertension

Block alpha1 receptors -> hypotension

• doxazosin (Cardura®)• prazosin (Minipress®)• terazosin (Hytrin®)

Page 27: Farmacología Cardiovascular

Central Acting Adrenergics• Stimulate alpha2 receptors

– inhibit alpha1 stimulation• hypotension

• clonidine (Catapress®)• methyldopa (Aldomet®)

Page 28: Farmacología Cardiovascular

Peripheral Acting Adrenergics

• reserpine (Serpalan®)• inhibits the release of NE• diminishes NE stores• leads to hypotension• Prominent side effect of depression

– also diminishes seratonin

Page 29: Farmacología Cardiovascular

Adrenergic Side Effects

• Common– dry mouth, drowsiness, sedation &

constipation– orthostatic hypotension

• Less common– headache, sleep disturbances, nausea, rash

& palpitations

Page 30: Farmacología Cardiovascular

Sistema renina-angiotensina

Page 31: Farmacología Cardiovascular

Angiotensin I

ACE

Angiotensin II

1. potent vasoconstrictor- increases BP

2. stimulates Aldosterone- Na+ & H2Oreabsorbtion

ACE Inhibitors .

RAAS

Page 32: Farmacología Cardiovascular

Renin-Angiotensin Aldosterone System

• Angiotensin II = vasoconstrictor• Constricts blood vessels & increases BP• Increases SVR or afterload• ACE-I blocks these effects decreasing SVR &

afterload

Page 33: Farmacología Cardiovascular

ACE Inhibitors

• Aldosterone secreted from adrenal glands cause sodium & water reabsorption

• Increase blood volume

• Increase preload

• ACE-I blocks this and decreases preload

Page 34: Farmacología Cardiovascular

Angiotensin Converting Enzyme Inhibitors

• captopril (Capoten®)• enalapril (Vasotec®)• lisinopril (Prinivil® & Zestril®)• quinapril (Accupril®)• ramipril (Altace®)• benazepril (Lotensin®)• fosinopril (Monopril®)

Page 35: Farmacología Cardiovascular

Calcium Channel Blockers

• Used for:• Angina

• Tachycardias

• Hypertension

Page 36: Farmacología Cardiovascular

Antagonistas de calcio como vasodilatadores

Page 37: Farmacología Cardiovascular

Calcium Channel Blockers

• diltiazem (Cardizem®)

• verapamil (Calan®, Isoptin®)

• nifedipine (Procardia®, Adalat®)

Page 38: Farmacología Cardiovascular

CCB Site of Action

diltiazem & verapamil

nifedipine (and otherdihydropyridines)

Page 39: Farmacología Cardiovascular

CCB Action

• diltiazem & verapamil• decrease automaticity & conduction in SA & AV nodes

• decrease myocardial contractility

• decreased smooth muscle tone

• decreased PVR

• nifedipine• decreased smooth muscle tone

• decreased PVR

Page 40: Farmacología Cardiovascular

Side Effects of CCBs

• Cardiovascular• hypotension, palpitations & tachycardia

• Gastrointestinal• constipation & nausea

• Other• rash, flushing & peripheral edema

Page 41: Farmacología Cardiovascular

Diuretics

• Thiazides:• chlorothiazide (Diuril®) & hydrochlorothiazide (HCTZ®,

HydroDIURIL®)

• Loop Diuretics• furosemide (Lasix®), bumetanide (Bumex®)

• Potassium Sparing Diuretics• spironolactone (Aldactone®)

Page 42: Farmacología Cardiovascular

Diuretic Site of Action

.

loop of Henle

proximaltubule

Distal tubule

Collecting duct

Page 43: Farmacología Cardiovascular

Mechanism

• Water follows Na+

• 20-25% of all Na+ is reabsorbed into the blood stream in the loop of Henle

• 5-10% in distal tubule & 3% in collecting ducts

• If it can not be absorbed it is excreted with the urine

Blood volume = preload !

Page 44: Farmacología Cardiovascular

Side Effects of Diuretics

• electrolyte losses [Na+ & K+ ]• fluid losses [dehydration]• myalgia• N/V/D• dizziness• hyperglycemia

Page 45: Farmacología Cardiovascular

Vasodilators

• diazoxide [Hyperstat®]• hydralazine [Apresoline®]• minoxidil [Loniten®]• sodium Nitroprusside [Nipride®]

Page 46: Farmacología Cardiovascular
Page 47: Farmacología Cardiovascular

Mechanism of Vasodilators

• Directly relaxes arteriole smooth muscle• Decrease SVR = decrease afterload

Page 48: Farmacología Cardiovascular

Nitratos como vasodilatadores

Page 49: Farmacología Cardiovascular

Side Effects of Vasodilators

• hydralazine (Apresoline®)– Reflex tachycardia

• sodium nitroprusside (Nipride®)– Cyanide toxicity in renal failure– CNS toxicity = agitation, hallucinations, etc.

Page 50: Farmacología Cardiovascular

II. Background to Arrhythmia - Rhythm of the Heart

• Human heart is four-chambered

• Chambers need to contract sequentially (atria, then ventricles) and in synchronicity

• Also need relaxation between contractions to allow refilling of chambers

• Above controlled electrically (Purkinje fibers allow rapid, organized spread of activation)

Page 51: Farmacología Cardiovascular

Regulation of Heart Rate

– Primarily accomplished by sinoatrial node (SA)• Located on right atrium• Receives autonomic input• When stimulated, SA signals atrial contractile fibers

atria depolarization and contraction (primes ventricles with blood)

– Depolarization picked up by atrioventricular node (AV node) depolarizes ventricles blood discharged to pulmonary artery and dorsal aorta eventually rest of body

Page 52: Farmacología Cardiovascular

Sequential Discharge of SA and AV nodes

Page 53: Farmacología Cardiovascular

Dysrhythmia Generation

• Abnormal conduction

• Analogies:– One way valve– Buggies stuck in

muddy roads

Page 54: Farmacología Cardiovascular

Antiarrítmicos: conducción cardíaca

Page 55: Farmacología Cardiovascular

Antiarrítmicos: bloqueo de canales de sodio

Page 56: Farmacología Cardiovascular

Warning!• All antidysrhythmics have arrythmogenic

properties• In other words, they all can CAUSE

dysrhythmias too!

Page 57: Farmacología Cardiovascular

Class I: Sodium Channel Blockers

• Decrease Na+ movement in phases 0 and 4

• Decreases rate of propagation (conduction) via tissue with fast potential (Purkinje)– Ignores those with slow potential (SA/AV)

• Indications: ventricular dysrhythmias

Page 58: Farmacología Cardiovascular

Class Ia Agents

• Slow conduction through ventricles

• Decrease repolarization rate– Widen QRS and QT

intervals• May promote

Torsades des Pointes!

• PDQ:– procainamide

(Pronestyl®)– disopyramide

(Norpace®)– qunidine – (Quinidex®)

Page 59: Farmacología Cardiovascular

Class Ib Agents

• Slow conduction through ventricles

• Increase rate of repolarization

• Reduce automaticity– Effective for ectopic

foci• May have other uses

• LTMD:– lidocaine (Xylocaine®)– tocainide (Tonocard®)– mexiletine (Mexitil®)– phenytoin (Dilantin®)

Page 60: Farmacología Cardiovascular

Class Ic Agents

• Slow conduction through ventricles, atria & conduction system

• Decrease repolarization rate

• Decrease contractility• Rare last chance drug

• flecainide (Tambocor®)

• propafenone (Rythmol®)

Page 61: Farmacología Cardiovascular

Class II: Beta Blockers

• Beta1 receptors in heart attached to Ca++ channels– Gradual Ca++ influx responsible for

automaticity• Beta1 blockade decreases Ca++ influx

– Effects similar to Class IV (Ca++ channel blockers)

• Limited # approved for tachycardias

Page 62: Farmacología Cardiovascular

Class II: Beta Blockers

• propranolol (Inderal®)• acebutolol (Sectral®)• esmolol (Brevibloc®)

Page 63: Farmacología Cardiovascular

Class III: Potassium Channel Blockers

• Decreases K+ efflux during repolarization• Prolongs repolarization• Extends effective refractory period• Prototype: bretyllium tosylate (Bretylol®)

– Initial norepi discharge may cause temporary hypertension/tachycardia

– Subsequent norepi depletion may cause hypotension

Page 64: Farmacología Cardiovascular

Class IV: Calcium Channel Blockers

• Similar effect as ß blockers

• Decrease SA/AV automaticity

• Decrease AV conductivity• Useful in breaking

reentrant circuit• Prime side effect:

hypotension & bradycardia

• verapamil (Calan®)• diltiazem (Cardizem®)

• Note: nifedipine doesn’t work on heart

Page 65: Farmacología Cardiovascular

III. Background to Congestive Heart Failure Maintenance of Normal Heart Function

• Normal cardiac output needed to adequately perfuse peripheral organs– Provide O2, nutrients, etc– Remove CO2, metabolic wastes, etc– Maintain fluid flow from capillaries into interstitium and back into venous

system if flow reduced or pressure increased in venous system build up of interstitial fluid = edema

• Because CO is a function of– Heart Rate – determined by pacemaker cells in the sinoatrial node– Stroke volume – determined by fill rate and contractile force– Atrial/ventricular/valvular coordination

Any negative change on above can lead to inadequate perfusion and development of the syndrome of heart failure

Page 66: Farmacología Cardiovascular

FALLA CARDÍACACAUSES: Impairment of electrical activity

Muscle damageValvular defectsCardiomyopathiesResult of drugs or toxins

PROBLEM: Maintaining circulation with a weak pump( Cardiac output & cardiac reserve; RAP)

SOLUTIONS: Sympathetic tone via baroreceptor reflex - Heart rate and contractility

-Venoconstriction ( MCP)-Vasoconstriction ( Arterial BP)

Fluid retention ( MCP)-Capillary fluid shift-ADH-Renin-angiotensin-aldosterone

Page 67: Farmacología Cardiovascular

Glicósidos:Efectos cardíacos

Page 68: Farmacología Cardiovascular

IV. Background to Reduced Vascular Blood Flow: Blood Vessel Anatomy and Function

• Arterial blood vessels– Smooth muscle (slow, steady contraction)– elastic tissue (stretch on systole, recoil on diastole)– Contain about 10% of blood volume– Arterioles have sphincters which regulate 70% of blood pressure

• Venous blood vessels– Highly distensible, some contractility– Contain over 50% of blood volume

• Capillaries– Tiny but contain greatest cross-sectional area to allow high exchange rate– Contain precapillary sphincters to regulate blood flow– 5% of blood volume

All vasculature under ANS and humeral control

Page 69: Farmacología Cardiovascular

Misc. Agents

• adenosine (Adenocard®)– Decreases Ca++ influx & increases K+ efflux

via 2nd messenger pathway• Hyperpolarization of membrane• Decreased conduction velocity via slow potentials• No effect on fast potentials

• Profound side effects possible (but short-lived)

Page 70: Farmacología Cardiovascular

Misc. Agents

• Cardiac Glycocides• digoxin (Lanoxin®)

– Inhibits NaKATP pump– Increases intracellular Ca++

• via Na+-Ca++ exchange pump– Increases contractility– Decreases AV conduction velocity

Page 71: Farmacología Cardiovascular

Fármacos con acción cardíaca

Page 72: Farmacología Cardiovascular

Tratamiento de la angina de pecho (angor)

Page 73: Farmacología Cardiovascular

Tratamiento del infarto agudo de miocardio

Page 74: Farmacología Cardiovascular

Tratamiento del infarto agudo de miocardio