Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca, Agosto 2008

51
Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca, Agosto 2008 Clase 2, Sistemas de vacío Dr. Antonio M. Juárez Reyes, ICF UNAM Física Atómica, Molecular y óptica.

description

Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca, Agosto 2008 Clase 2, Sistemas de vacío Dr. Antonio M. Juárez Reyes, ICF UNAM F ísica A tómica, M olecular y ó ptica. Cuernavaca, Agosto 2008. TEMARIO PARTE 1 - PowerPoint PPT Presentation

Transcript of Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca, Agosto 2008

Page 1: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Curso de Métodos experimentalesEn la Física PCF UNAM

Cuernavaca, Agosto 2008

Clase 2, Sistemas de vacío Dr. Antonio M. Juárez Reyes, ICF UNAM

Física Atómica, Molecular y óptica.

Page 2: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

TEMARIO PARTE 1

I.- Instrumentos y conceptos básicos (Toño, 5 semanas)I.1.- Conceptos básicos de instrumentación

-Conceptos generales de seguridad en el laboratorio (eléctrica, de gases comprimidos, láseres y químicos. --El proceso de medida y asignación de incertidumbres.

I.2.- Instrumentos básicos2.1 sistemas de vacío.

-Conductancia, velocidad de bombeo,-bombas: Rotatorias, de diafragma, difusoras, turbo, de sublimación, ionicas. razón de compresión en bombas,

- transductores de presión, pirani, Bayer Alpert, Baratrón, análisis de gases residuales.

2.2 Instrumentos básicos de electrónica: -osciloscopios, generadores de señales, electrómetros, 2.3 Instrumentos avanzados-Amplificador Lock In-Integrador Boxcar-Monocromadores

Page 3: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

Sistemas de vacío.

1.- Motivación. ¿En qué se emplean sistemas de vacío? ¿Por qué empleamos sistemas de vacío en el lab?

2.- Conceptos generales

2.1 Mean free path, coeficiente de knudsen2.2 tasa de formación de monocapas2.3 coeficiente de “pegajosidad” –sticking coefficient-2.4 presión de vapor

3.- Conceptos específicos3.1 Velocidad de bombeo3.2 throughput3.3 conductancia

4.- Tipos de bombas

5.- Procedimientos prácticos.

Page 4: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 ¿Ideas?.

Mencionenme aplicaciones prácticas de vacío…. .

Page 5: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 Las aplicaciones del vacío en la vida diaria son inmumerables:

1.- Iluminación de ciudades ( las lámparas de las ciudades están evacuadas, y después llenas Con gases nobles)

2.- Empaquetado de alimentos

3.- Criogenia.- Los contenedores de materiales criogénicos tienen una pared en la cual se practica el vacío, que es el aislante térmico ideal.

4.- Deposición de películas delgadas en lentes, joyas, etc..

.

Page 6: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 Las aplicaciones científicas son aún mas numerosas:

1.- Sistemas de soldado por impacto electrónico2.- Microscopía electrónica

3.- Procesamiento de semiconductores por ataque de plasma o Químico

4.- Aceleradores de partículas LHC

.

Page 7: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Uno de los experimentos más cruciales de la física actualDepende totalmente de sus sistemas de vacío.

Page 8: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Rangos de vacío

Presión atmosférica 760 Torr 101.3 kPa

Vacío Bajo 760 to 25 Torr 100 to 3 kPa

Vacío medio 25 to 1×10-3 Torr 3 kPa to 100 mPa

Alto vacío 1×10-3 to 1×10-9 Torr

100 mPa to 100 nPa

Ultra alto vacío 1×10-9 to 1×10-12 Torr 100 nPa to 100 pPa

Vacío extremo <1×10-12 Torr <100 pPa

Espacio exterior 1×10-10to <3×10-17 Torr 100 µPa to <3fPa

Page 9: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

En el lab, nuestros experimentos abarcan Las 3 primeras líneas

Presión atmosférica 760 Torr 101.3 kPa

Vacío Bajo 760 to 25 Torr 100 to 3 kPa

Vacío medio 25 to 1×10-3 Torr 3 kPa to 100 mPa

Alto vacío 1×10-3 to 1×10-9 Torr 100 mPa to 100 nPa

Ultra alto vacío 1×10-9 to 1×10-12 Torr 100 nPa to 100 pPa

Vacío extremo <1×10-12 Torr <100 pPa

Espacio exterior 1×10-10to <3×10-17 Torr 100 µPa to <3fPa

Page 10: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

2.- Conceptos generales2.1 Mean free path, y número de

knudsen2.2 tasa de formación de monocapas2.3 coeficiente de “pegajosidad” –sticking coefficient-2.4 presión de vapor

Page 11: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

  Es posible probar que la Trayectoria libre media de unaMolécula en un gas a presión PEstá dada por:

Rango Presión (mbar)

mean free path

Presión ambiente 68 nm

Vacío Bajo 0.1-100 μm

Medium vacuum 0.1-100 mm

High vacuum 10 cm-1 km

Ultra high vacuum 1 km-105 km

Extremely high vacuum >105 km

Page 12: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 Dependiendo del nivel de presión, y para propósitos deVacío, un gas puede considerarse como un fluido o como Un conjunto de partículas individuales( viscous flow or molecular flow, respectivamente)

En el primer caso, se pueden emplear las ecuaciones de Navier-Stokes para modelar un fluido en un sistema de vacío. En el segundo caso, se emplea mecánica estadística o simulacionesmontecarlo

La distinción entre este tipo de regimenes se puede cuantificarEmpleando el número de knundsen, que se define, simplementeComo:

Page 13: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 La distinción entre este tipo de regimenes se puede cuantificarEmpleando el número de knundsen, que se define, simplementeComo:

Si Kn es muy pequeño, estamos en el régimen de fluidos.

Si Kn es igual o mayor que 1, se considera que el gas o fluidose encuentra en el régimen molecular

Page 14: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 15: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

2.2 coeficiente de “pegajosidad” – sticking coefficient2.3- tasa de formación de monocapas

Page 16: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

  2.2 coeficiente de “pegajosidad” –sticking coefficient

Se define, sencillamente, como la razón de adsorción en una superfice, contra la razón de impacto de una especie molecular particular. Es inversamente proporcional a la exponencial de la temperatura y depende de la naturaleza de la superfice.

Page 17: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

  2.2 coeficiente de “pegajosidad” –sticking coefficient

¿Por qué es importante?

Especialmente en aplicaciones de semiconductores o materiales nanoestructurados, dependiendo del coeficiente de stickiness, es necesario implementar sistemas de ultra-alto vacío ,con el fin de evitar monocapas de materiales indeseados.

Page 18: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

  2.2 coeficiente de “pegajosidad” –sticking coefficient

Page 19: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

  2.4 Presión de vapor. ( o presión de equilibrio de vapor)

Es la presión a la cual una substancia sólida ( dada una temperatura) se encuentra en equilibrio dinámico con la fase gaseosa.

Materiales con presión de vapor alta se denominan “volátiles” y no son buenos para ser usados en sistemas de vacío.

Page 20: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Materiales con presión de vapor alta se denominan “volátiles” y no son buenos para ser usados en sistemas de vacío.

Los metales en general presentan presiones de vapor muy bajas a temperatura ambiente, por lo que se emplean en sistemas de vacío

Page 21: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 22: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 23: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

3.- Conceptos específicos3.1 Velocidad de bombeo3.2 throughput3.3 conductancia

Page 24: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

3.- Conceptos específicos3.1 Velocidad de bombeo Se refiere al la

tasa de desalojo de volumen de un gas, ejercido por una bomba. Esta cantidad se especifica en volumen/unidad de tiempo : dV/dt

3.2 throughput Q.- Se define como la velocidad de bombeo multiplicada por la presión del gas bombeado: p dV/dt. A una temperatura constante, t, el throughput equivale al número de moléculas bombeadas por unidad de tiempo.

Page 25: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

3.- Conceptos específicos3.3 Conductancia de tubos

Debido a la viscosidad de un gas, los tubos y conductosQue dirigen el flujo a través del sistema pueden presentar Fuerzas viscosas, que dependen en general de la geometríaDe los conductos. En general es un parámetro difícil deCalcular. Sin embargo se puede aproximar en casos idealizados

La conductancia se define como el trhoughput del gas dividido Entre el diferencial de presión:

Conductancia = throughput/ (P2-P1) = Q/DeltaP

Page 26: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

3.- Conceptos específicos3.3 Conductancia de tubos (ejemplos)

Page 27: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

3.- Conceptos específicos

Page 28: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 3.1 Vacuum Concepts ¿How are they used in practice? a) System Volumes, Leak Rates and Pumping Speeds 

The system to be pumped has a System Volume, V, measured in liters, at pressure p (mbarr or Torr). It is pumped with a pump, with a Pumping Speed, S liter/s. There is a Leak Rate Q into the system, expressed in (mbar or Torr)liters/s. The Pump-down equation, which you can think about, is then:  

pS = -Vdp/dt + Q.   

Page 29: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 3.2 Vacuum Concepts

 The leak rate is composed of two elements: Q = Ql + Qo, where Ql is the true leak rate (i.e. due to a hole in the wall) and Qo is a virtual leak rate. A virtual leak is one which originates inside the system volume; it can be caused by degasssing from the walls, or from trapped volumes, which are to be strongly avoided.  

Page 30: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 2.2 Vacuum ConceptsThe solution of the pump-down equation has: 

i) a short time limit: p = p0exp(-t/), with = V/S, where the leak rate is negliglible. This stage will be essentially complete in 10.  Exercise 1. In the vaccucm system of the optogalvanic experiment, assess the volume of the chamber and tubes, and, using the rotary pump, determine thevalue of S,the effective pumping speed, assuming the leak rate to be negligible.    

Page 31: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 2.2 Vacuum Concepts 

ii) a long time limit: pu, the ultimate pressure = Q/S. If we don’t have any true leaks, Q Qo, which depends on the surface area, material and the treatment. For example, if the system volume V = 50 liter, roughly 50x20x50 cm3, then A is roughly 1 m2. Qo = qA, with a typical (good) value for q around 10-8 mbar.liter.m-2.s-1, pu = 2x10-10 mbar. This is a pressure to aim for after bakeout in surface science experiments. In plasma or spectroscopic experiment, 1x10-7 or -8 is usually good enough. The bakeout is required to desorb gases, particularly H2O, from the walls.

What is the pump needed to reach the Pu value stated?   

Page 32: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 b) The Idea of Conductance 

The pumping speed of the pump is reduced by the high impedance, or low conductance, of the pipework between the pump and the vacuum chamber. But, of course, large pipes increase both the system volume and the internal surface area. So, one needs to take care in the design of the system, to avoid obvious pitfalls. Typically pipes have a conductance Ci, and these are in series (draw). Then with the pump speed as S0, we have the effective pumping speed S given by

S-1 = Ci-1 +S0

-1,   

Page 33: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

 Exercise 2: using the value of S obtained in the exercise 1, and knowing the nominal value of the rotary pumps speed ( check the manuals or read straight from the) calculate the inverse of the effective conductance

Ci-1

of the whole vacuum tubing connecting the pump to the chamber.    

Page 34: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

 where Ci are measured in liters/s. In this case, inverse conductances and pumping speeds therefore add as add as resistances in series. Thus we need to choose Ci large enough so that S is not << S0; or equivalently, if S is sufficient, we can economise on the size (S0) of the pump. As with all design problems, we need to have enough in hand so that our solution works routinely and is reliable. On the other hand, over-provision is (very) expensive.    

Page 35: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

  -bombas: Rotatorias, de diafragma, difusoras, turbo, de sublimación, ionicas. razón de compresión en bombas,     

Page 36: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 37: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 38: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 39: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 40: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 41: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 42: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 43: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Cuernavaca, Agosto 2008

 

Page 44: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

BOMBAS DE SUBLIMACION

 

Page 45: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

Comparacion

 

Page 46: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Page 47: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Page 48: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Page 49: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Page 50: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Page 51: Curso de Métodos experimentales En la Física PCF UNAM Cuernavaca,  Agosto 2008

 

Masss quadrupole

Se aplica un campo de radiofrecuencia ( con frecuencia variable) ( ver notas)

Solo algunas de las partículas, con razones q/m Dadas atraviesan el campo cuadrupolar sin deflectarse. Esas son detectadas por una Faraday cup o un channeltron.

Un espectro de masas como función de la frecuencia determina las especies presentes en el gas