COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes...

57
I:\MEPC\75\MEPC 75-4-3.docx S COMITÉ DE PROTECCIÓN DEL MEDIO MARINO 75º periodo de sesiones Punto 4 del orden del día MEPC 75/4/3 11 septiembre 2019 Original: INGLÉS Difusión al público antes del periodo de sesiones: ORGANISMOS ACUÁTICOS PERJUDICIALES EN EL AGUA DE LASTRE Solicitud de aprobación definitiva para CleanBallast ® Sistema de barreras oceánicas Nota presentada por Noruega RESUMEN Sinopsis: El presente documento contiene información no confidencial para la aprobación definitiva de CleanBallast ® Sistema de barreras oceánicas, de conformidad con lo dispuesto en el "Procedimiento para la aprobación de sistemas de gestión del agua de lastre en los que se utilizan sustancias activas (D9)", adoptado mediante la resolución MEPC.169(57). * Principios estratégicos, si son aplicables: 2 Resultados: 2.2 Medidas que han de adoptarse: Véase el párrafo 15. Documentos conexos: MEPC.169(57), BWM.2/Circ.13/Rev.4, BWM.2/Circ.71, MEPC 74/4/1 y MEPC 74/4/6. Introducción 1 La regla D-3.2 del Convenio internacional para el control y la gestión del agua de lastre y los sedimentos de los buques, 2004, indica que la Organización deberá aprobar los sistemas de gestión del agua de lastre en los que se utilicen sustancias activas para cumplir lo dispuesto en el Convenio con arreglo a un procedimiento elaborado por la Organización. 2 En el Procedimiento para la aprobación de los sistemas de gestión del agua de lastre en los que se utilicen sustancias activas (D9) se señala la información que debe incluirse en las propuestas de aprobación (resolución MEPC.169(57), párrafo 4.2.1) y las disposiciones relativas a la caracterización y el análisis de los riesgos (resolución MEPC.169(57), * Este documento tiene más de 20 páginas, por lo cual, de conformidad con lo dispuesto en el párrafo 6.11 del "Método de trabajo de los Comités" (MSC-MEPC.1/Circ.5/Rev.1), solamente se traducirán las primeras tres páginas en los tres idiomas de trabajo, dejándose el anexo en inglés solamente.

Transcript of COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes...

Page 1: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

I:\MEPC\75\MEPC 75-4-3.docx

S

COMITÉ DE PROTECCIÓN DEL MEDIO MARINO 75º periodo de sesiones Punto 4 del orden del día

MEPC 75/4/3

11 septiembre 2019 Original: INGLÉS

Difusión al público antes del periodo de sesiones: ☐

ORGANISMOS ACUÁTICOS PERJUDICIALES EN EL AGUA DE LASTRE

Solicitud de aprobación definitiva para CleanBallast® – Sistema de barreras oceánicas

Nota presentada por Noruega

RESUMEN

Sinopsis: El presente documento contiene información no confidencial para la aprobación definitiva de CleanBallast® – Sistema de barreras oceánicas, de conformidad con lo dispuesto en el "Procedimiento para la aprobación de sistemas de gestión del agua de lastre en los que se utilizan sustancias activas (D9)", adoptado mediante la resolución MEPC.169(57).*

Principios estratégicos, si son aplicables:

2

Resultados: 2.2

Medidas que han de adoptarse: Véase el párrafo 15.

Documentos conexos: MEPC.169(57), BWM.2/Circ.13/Rev.4, BWM.2/Circ.71, MEPC 74/4/1 y MEPC 74/4/6.

Introducción 1 La regla D-3.2 del Convenio internacional para el control y la gestión del agua de lastre y los sedimentos de los buques, 2004, indica que la Organización deberá aprobar los sistemas de gestión del agua de lastre en los que se utilicen sustancias activas para cumplir lo dispuesto en el Convenio con arreglo a un procedimiento elaborado por la Organización. 2 En el Procedimiento para la aprobación de los sistemas de gestión del agua de lastre en los que se utilicen sustancias activas (D9) se señala la información que debe incluirse en las propuestas de aprobación (resolución MEPC.169(57), párrafo 4.2.1) y las disposiciones relativas a la caracterización y el análisis de los riesgos (resolución MEPC.169(57),

* Este documento tiene más de 20 páginas, por lo cual, de conformidad con lo dispuesto en el párrafo 6.11

del "Método de trabajo de los Comités" (MSC-MEPC.1/Circ.5/Rev.1), solamente se traducirán las primeras tres páginas en los tres idiomas de trabajo, dejándose el anexo en inglés solamente.

Page 2: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Página 2

I:\MEPC\75\MEPC 75-4-3.docx

párrafo 5.3). De conformidad con la sección 6 del Procedimiento (D9), la Organización debe evaluar la información que se presenta en la solicitud.

3 De conformidad con la Metodología revisada para la recopilación de información y la realización del trabajo del Grupo de trabajo del GESAMP sobre el agua de lastre (GESAMP-BWWG) (BWM.2/Circ.13/Rev.4), el anexo del presente documento contiene la parte no confidencial del expediente de solicitud del fabricante, en la que se incluye:

.1 un resumen del expediente de solicitud de CleanBallast® – Sistema de barreras oceánicas; y

.2 una lista de referencias.

4 De conformidad con la circular BWM.2/Circ.71, las propuestas de aprobación de los sistemas de gestión del agua de lastre en los que se utilicen sustancias activas deben presentarse a la División del medio marino de la Organización para que las examine el GESAMP-BWWG.

5 La autoridad competente de Noruega ha comprobado el expediente de solicitud y los protocolos de prueba aplicados a todas las pruebas realizadas y considera que proporcionan los datos necesarios y exigidos para el Procedimiento (D9), adoptado mediante la resolución MEPC.169(57). Se realizaron pruebas a escala real con un enfoque validado para el aumento del agua utilizada para la prueba como base para recopilar muestras para el análisis de la toxicidad total del efluente WED y los subproductos de la desinfección (DBP) en lo que respecta a este expediente. El muestreo se efectuó de modo que se redujo a un mínimo la pérdida de sustancias volátiles. Los ensayos y el muestreo fueron efectuados por personal cualificado de terceras partes y los análisis químicos por laboratorios acreditados. La elaboración del expediente se ajustó a los procedimientos más recientes descritos en la Metodología (BWM.2/Circ.13/Rev.4).

6 Por consiguiente, Noruega presenta a la Organización, en el anexo del presente documento, la parte no confidencial del expediente del fabricante para que se evalúe de conformidad con el Procedimiento (D9). El expediente completo se pondrá a disposición de los expertos del GESAMP-BWWG en su 39ª reunión, entendiéndose que han de proteger la confidencialidad de la información.

Resumen de la información no confidencial de CleanBallast® – Sistema de barreras oceánicas

7 Veolia Water Technologies Deutschland GmbH ha fabricado CleanBallast® – Sistema de barreras oceánicas, que representa la segunda generación de tecnología de BWMS de Veolia Water Technologies. El CleanBallast® – Sistema de barreras oceánicas fue examinado en la 37ª reunión del GESAMP-BWWG en noviembre de 2018 y en el MEPC 74 se le concedió la aprobación inicial de conformidad con el Procedimiento (D9).

8 El proceso de tratamiento de CleanBallast® – Sistema de barreras oceánicas consta de las siguientes etapas:

.1 etapa de separación mecánica (filtrado) y etapa de desinfección en la tubería (electrocloración) durante la toma del agua de lastre;

.2 vigilancia del cloro activo libre (FAC) mediante un sensor en la tubería para controlar la dosis, según sea necesario, a fin de alcanzar la dosis prevista durante la toma;

Page 3: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Página 3

I:\MEPC\75\MEPC 75-4-3.docx

.3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar cualquier remanente de oxidante; y

.4 vigilancia en la tubería del cloro activo libre en el puesto de medición y análisis a fin de alcanzar el valor previsto de <0,1 TRO.

9 Al aplicar una corriente continua entre los anódos y cátodos en la unidad de electrocloración, se generan sustancias activas directamente a partir del agua y sus constituyentes en un proceso en el que el cloro, junto con el agua, y la corriente continua, forman cloro activo libre (FAC). El cloro activo libre desactivará los microorganismos presentes y los convertirá en otros oxidantes en función de la calidad del agua. Se considera que el cloro activo libre representa a los oxidantes residuales totales (TRO) para el control de la dosis en la unidad de electrocloración. A fin de garantizar el cumplimiento de la prescripción relativa a la dosis máxima admisible de TRO en la descarga, se sometieron a vigilancia los TRO y el FAC durante los ensayos. 10 Esta solicitud de aprobación definitiva incluye la identificación de sustancias activas y los resultados de los análisis de las pruebas de la toxicidad total del efluente (WET) y de los subproductos desinfectantes en agua dulce, agua salobre y agua del mar durante pruebas en tierra del sistema CleanBallast® – Sistema de barreras oceánicas. Se han llevado a cabo y se han incluido las evaluaciones de los riesgos para el medio ambiente, la seguridad del buque y la salud humana para cada una de las sustancias detectadas. 11 El riesgo potencial para el medio marino que se ha evaluado basándose en una serie de coeficientes PEC/PNC obtenidos utilizando la base de datos del GESAMP-BWWG. Estas evaluaciones arrojaron coeficientes <1 para todas las sustancias, salvo para el dibromoacetonitrilo en la hipótesis del puerto, y coeficientes <1 para todas las sustancias, salvo para el dibromoacetonitrilo, el ácido monocloroacético y el tibromometano en la hipótesis de las cercanías del buque con coeficientes <2. Entre las premisas conservadoras utilizadas en la evaluación, cabe citar una gran cantidad de compuestos aromáticos en el agua sometida a prueba, así como un valor conservador con respecto al PNEC del dibromocatonitrilo. La evaluación indica que la utilización de CleanBallast® – Sistema de barreras oceánicas no plantea ningún riesgo inaceptable para el medio ambiente. 12 Las pruebas WET llevadas a cabo con algas, crustáceos y peces en tres momentos en cada una de las tres salinidades muestran que la descarga del agua de lastre tratada no entraña ningún riesgo inaceptable para el medio marino. 13 Los cocientes de caracterización de riesgos (RCR) indicaron que el riesgo para la tripulación era aceptable. Los RCR, cuando se evaluaron las hipótesis de exposición más conservadoras, arrojaron valores <1. La evaluación indica que CleanBallast® – Sistema de barreras oceánicas no plantea ningún riesgo inaceptable para la tripulación. 14 En lo que respecta al público en general, los valores de los RCR indican que consumir alimentos marinos o nadar en agua que ha estado expuesta a agua de lastre tratada del CleanBallast® – Sistema de barreras oceánicas no entraña ningún riesgo inaceptable. Medidas cuya adopción se pide al Comité 15 Se pide al Comité que examine la propuesta de aprobación definitiva y adopte las decisiones que juzgue oportunas.

***

Page 4: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar
Page 5: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 1

I:\MEPC\75\MEPC 75-4-3.docx

ANNEX

NON-CONFIDENTIAL INFORMATION ON THE CLEANBALLAST® - OCEAN BARRIER SYSTEM

TABLE OF CONTENTS

1 INTRODUCTION 8

1.1 Response to the GESAMP-BWWG's comments to the application for Basic Approval 9

2 DESCRIPTION OF THE CB-OBS BWMS 12

2.1 Treatment Process - General Description 12 2.2 System Description 13 2.2.1 Electrochlorination (EC) unit - general function 13 2.2.2 Hydrogen handling 14 2.2.3 Neutralization 14 2.3 Full-scale testing of the CB-OBS BWMS 14 2.3.1 Overview of land-based testing 14 2.3.2 Test conditions 15 2.3.3 TRO-profiles 16 2.3.4 Sampling for WET and DBP-analyses 17

3 CHEMICALS ASSOCIATED WITH THE CLEANBALLAST® - OCEAN BARRIER SYSTEM 17

3.1 Electrochemical reactions in the EC unit 17 3.2 Identification of chemicals associated with the CB-OBS 19 3.2.1 Active Substances 19 3.2.2 Relevant Chemicals 19 3.2.3 Other Chemicals 19 3.2.4 Chemicals associated with the CB-OBS across water qualities 19

4 HAZARD PROFILE DATA AND EXPOSURE OF CHEMICALS ASSOCIATED WITH THE CB-OBS BWMS 31

4.1 Predicted no-effect concentrations 31 4.2 Derived no-effect levels (DNEL) and/or derived minimum effect levels (DMEL) 32 4.3 Exposure concentrations 35 4.3.1 Predicted Environmental Concentration 35 4.3.2 Concentration of chemicals associated with the CB-OBS BWMS in the atmosphere

36

5 WHOLE EFFLUENT TESTING 37

6 RISKS TO SHIP SAFETY 38

6.1 Increased corrosion 38 6.2 Fire and explosion risks 39 6.2.1 Hydrogen gas 39 6.3 Storage and handling of substances 39

Page 6: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 2

I:\MEPC\75\MEPC 75-4-3.docx

7 RISKS TO THE CREW AND PORT STATE WORKERS 40

7.1 Delivery, loading, mixing or adding chemicals to the BWMS 40 7.2 Ballast water sampling 40 7.3 Periodic ballast water tank cleaning 43 7.4 Ballast tank inspection 45 7.5 Crew performing normal work on deck 48

8 RISKS TO THE GENERAL PUBLIC 50

9 RISKS TO THE ENVIRONMENT 53

9.1 Assessment of persistence, bioaccumulation and toxicity 53 9.2 Calculation of PEC/PNEC ratios 53

10 CONCLUSIONS AND RECOMMENDATIONS 54

10.1 Risks to ship safety 54 10.2 Risks to the crew and the general public 54 10.3 Risks to the environment 55 10.4 Recommendation 56

11 REFERENCES 56

APPENDICES – CONTAINED IN THE CONFIDENTIAL DOSSIER

Page 7: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 3

I:\MEPC\75\MEPC 75-4-3.docx

ABBREVIATIONS USED IN THE TEXT

Abbreviations

AS Active Substance BA Basic Approval CB-OBS CleanBallast® - Ocean Barrier System BWMS Ballast water management system BWTS Ballast water treatment system CAS Chemical Abstract Service Cl2 Chlorine CMR Carcinogenicity, mutagenicity and reproductive toxicity DBP Disinfection by-product DC Direct Current DL Detection limit DMEL Derived Minimum Effect Levels DNEL Derived No-Effect Levels DOC Dissolved Organic Carbon DPD N,N-diethyl-p-phenylenediamine EC unit Electrochlorination unit EC50 Effective concentration, 50% (median effective concentration) EDCs Endocrine disrupting chemicals e.g. For example EPA Environmental Protection Agency etc. Et cetera ETV Protocol Generic Protocol for the Verification of Ballast Water Treatment

Technology, US EPA Environmental Technology Verification Program FAC Free Active Chlorine GESAMP-BWWG Joint Group of Experts on the Scientific Aspects of Marine

Environment Protection – Ballast Water Working Group H2 Hydrogen gas H2O Water HAA Haloacetic acid HAN Haloacetonitrile HOBr Hypobromous acid HOCl Hypochlorous acid hr hour IMO International Maritime Organization IUPAC International Union of Pure and Applied Chemistry kg Kilogram LC50 Lethal concentration, 50% LD50 Lethal dose, 50% LEL Lower explosive limit

Page 8: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 4

I:\MEPC\75\MEPC 75-4-3.docx

m Meters m3 Cubic meters MADC Maximum Allowable Discharge Concentration MEPC Marine Environment Protection Committee mg/kg bw/d Milligrams per kilogram of body weight per day mg/L Milligrams per litre NaCl Sodium chloride NaOH Sodium hydroxide Na2S2O3 Sodium thiosulfate ND Not Detectable O2 Oxygen PEC Predicted Environmental Concentration PBT Persistence, Bioaccumulation, Toxicity PNEC Predicted No Effect Concentration POC Particulate Organic Carbon Pow Octanol/Water Partition Coefficient PPE Personal Protective Equipment PSU Practical Salinity Units RCR Risk Characterization Ratio s Seconds THM Trihalomethane TOC Total Organic Carbon TRO Total Residual Oxidants TSS Total Suspended Solids μg/L Micrograms per litre µm Micrometer (or "micron") US United States WET Whole Effluent Toxicity

Page 9: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 5

I:\MEPC\75\MEPC 75-4-3.docx

1 INTRODUCTION The manufacturing company, Veolia Water Technologies Deutschland GmbH (in this document referred to as "RWO Veolia") is part of Veolia Water Technologies, a worldwide leading design and build company and a specialized provider of technological solutions in the areas of water and wastewater treatment. For more than 40 years, RWO Veolia has developed, designed, manufactured and serviced high-quality technologies for water treatment onboard ships and offshore installations, both new installations and retrofitting. With more than 15,000 systems sold, RWO Veolia is the world leading supplier of Oily Water Separators. The international network of more than 40 qualified sales/service stations ensures short communication links between customer and manufacturer, making RWO Veolia the ideal partner for companies in the maritime sector.

Using the principles of filtration and electrochlorination, RWO Veolia has developed the CleanBallast® - Ocean Barrier System (CB-OBS), a ballast water management system (BWMS) to prevent the transfer of potentially harmful aquatic invasive species via ship’s ballast water. The CB-OBS represents a second generation BWMS technology compared to the RWO Veolia’s IMO Type Approved CleanBallast® ballast water management system (BWMS), with Type Approval Certificate number 0800S41-4443/000/6 (issued by Germany/BSH). The CleanBallast® BWMS was reviewed at the 8th meeting of the GESAMP-BWWG in February 2009 and received Final Approval under the Procedure (G9) at MEPC 59. Compared to the CleanBallast® BWMS, the CB-OBS contains an updated electrochlorination cell (the EC unit), uses a higher dose of Active Substance which is applied during ballasting operation (intake of water) only. Apart from those differences, the filter and control system are the same. As per the framework for determining when a Basic Approval granted to one BWMS may be applied to another system that uses the same Active Substance or Preparations, BWM.2/Circ.27 (International Maritime Organization, 2010), the CB-OBS is not considered substantially similar to the CleanBallast® and a new Basic Approval was required. The CleanBallast® - Ocean Barrier System was reviewed at the thirty-seventh meeting of the GESAMP-BWWG in November 2018 and received Basic Approval under the Procedure (G9) at MEPC 74 (MEPC 74/18). The risk assessment presented in this application for Final Approval is based on analyses of water from full-scale testing of the CB-OBS BWMS. The assessment is based on a combination of data from the Basic Approval application complemented with data from analyses of water from land-based testing undertaken after the submission of the Basic Approval application. Since the BWMS uses an Active Substance that can be characterized as TRO, all Relevant Chemicals associated with the BWMS are included in the GESAMP-BWWG Database for chemicals most commonly associated with treated ballast water (https://gisis.imo.org). The Database has been used for all calculations needed to fulfil the requirements of the Methodology.

The application has been prepared in line with guidance contained in the revised Methodology for information gathering and conduct of work of the GESAMP-BWWG, BWM.2/Circ.13/Rev.4, dated 7 July 2017, which was the most current version available when testing was conducted.

Page 10: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 6

I:\MEPC\75\MEPC 75-4-3.docx

1.1 Response to the GESAMP-BWWG's comments to the application for Basic Approval As noted above, the CB-OBS was granted Basic Approval by MEPC 74 (document MEPC 74/18, paragraph 4.38.2). Recommendations and comments made by the GESAMP-BWWG during review (document MEPC 74/4/6, annex 5) of the Basic Approval application are summarized in Table 1. Table 1: Summary of GESAMP-BWWG comments and recommendations on CB-OBS

Basic Approval application and application responses

Document MEPC 74/4/6, annex 5 reference

GESAMP-BWWG comments and recommendations on CB-OBS Basic Approval Application

Applicant response

11.4.1.1 Maximum allowable dosage of Active Substance – the maximum dose for the Active Substance should be set as follows: TRO: 6 mg/L (as Cl2).

The maximum dose of 6 mg/L (as Cl2) has been incorporated into the system design and operation. See section 2 and Appendix 1.

11.4.1.2 Maximum allowable discharge concentration of Active Substance – the system should ensure a maximum discharge concentration of the Active Substance TRO: 0.1 mg/L (as Cl2).

Incorporated into system design and operation. See section 2 and Appendix 1.

11.4.2 The Group recommended that the DPD colorimetric TRO sensor should be used to monitor MADC, unless scientific evidence showing that the amperiometric method can be considered equivalent to the DPD-method is provided.

A functional verification study shows that the amperometric method can be considered equivalent and also more suitable than the DPD method to monitor MADC for the CB-OBS (Appendix 2). The study shows comparable readings from the two sensors and provide scientific evidence that the methods can be considered equivalent. In addition, the DHI test facility has verified the reliability of the BWMS amperometric discharge values from land-based testing with their DPD sensor installed at the test site. Please refer to Appendix 5 of this application (therein please refer to Appendix G).

11.4.3 The Group recommended that for further development of this BWMS, the applicant should ensure that the control scheme can maintain the TRO dose and the MADC effectively in the full-scale BWMS at all times, and in particular, to avoid unacceptable TRO levels at the beginning of discharge.

RWO Veolia have now been able to demonstrate a stable TRO dose throughout ballasting as well as compliance with the MADC during discharge in the biological efficacy testing at DHI test facility in all salinities, particularly in challenge water of < 1 PSU (Appendix 3). RWO

Page 11: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 7

I:\MEPC\75\MEPC 75-4-3.docx

Veolia has improved the system control philosophy to prevent unacceptably high TRO discharge values particularly during the initial discharge phase. This is ensured by a functionality that trigger neutralization based on flow. The volume-based release condition has been removed. By this, sodium thiosulfate overdosing at the start of discharge is assured, in line with GESAMP recommendations. Following this adaptation, at no point TRO values above MADC were registered by the BWTS and DHI test facility (Appendix 5).

11.4.4 The Group recommended that the safe storage and handling of sodium thiosulfate, along with the methodology for making up the neutralizer solution, be detailed in the instruction manual for the system. The Group also recommended that the control system for this procedure should be considered in any future application for Final Approval for the further development of this BWMS.

RWO Veolia has duly considered the Group’s recommendation to install a control system for the preparation of the Sodium Thiosulfate neutralization solution. RWO Veolia still considers the presently implemented mixing procedure as safe and adequate. Manual handling of the packaged crystalline chemical would be required in either case, hence no reduction of handling time and therefore exposure can be anticipated. Stirring of the solution is done by a fixed installed mixing device and does not involve further direct operator interaction. RWO Veolia is not aware of any issues from existing installations and observations from regular service inspections related to the neutralization mixing procedure. Based on the arguments above, RWO Veolia, do not find it reasonable to change the established procedure as this would add limited value and increased complexity to the BWMS.

11.4.5 The Group recommended that the applicant investigate the necessity of applying an overdose of the neutralizer in the case that this BWMS has to operate under low temperature conditions (paragraph

RWO Veolia measures TRO less than 5 m downstream of the neutralization injection point. At this position, neither homogenous mixing nor full effect of the neutralizer is expected to be completed

Page 12: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 8

I:\MEPC\75\MEPC 75-4-3.docx

4.1.4 of Methodology (BWM.2/Circ.13/Rev.4).

(ref. Moon et al. (2019)). This assures a very conservative approach with regards to dosing of the neutralizer. Furthermore, independent of the given water temperature, the dosing is controlled by measured TRO value. Consistent compliance with MADC has been demonstrated during full-scale biological efficacy land-based testing with water temperatures down to 5°C. In respect to the above, the Group is kindly asked to consider in their evaluation that the neutralization reaction continues downstream of the point of measurement until the point of overboard discharge. Thus, in a practical scenario, the actual TRO discharge concentration will be even lower than registered by the BWTS. Therefore, it is concluded that (regardless of water temperature) the CB-OBS is actually overdosing at the injection point seen from the relevant endpoint of overboard discharge for the temperature range the manufacturer seeks approval for. Reference is also made to a recent study by Moon et al. (2019) of secondary flow mixing.

11.4.6 The Group recommended that for any future application for Final Approval, the applicant make all scientifically possible efforts to lower the detection limits.

Significant efforts have been made to identify laboratories that could perform the chemical analyses with detection limits in line with GESAMPs recommendation for the 14 chemicals that were analysed with detection limits that were higher than the GESAMPs recommended detection limits for Basic Approval (Please also refer to section 3.2.4). 20 laboratories were contacted and a lower detection limit for 10 of the chemicals were achieved, but the detection limits for all 14 chemicals were still higher than GESAMPs recommended detection limits. We do argue

Page 13: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 9

I:\MEPC\75\MEPC 75-4-3.docx

that the dataset is still relevant for risk assessment of the CB-OBS BWTS as the three chemicals for which PEC/PNEC ratios > 1 were identified, were measured with analytical procedures meeting the GESAMP recommended DLs or had measured values above the achieved detection limit. None of the chemicals were detected at concentrations that indicate risk to crew or general public.

11.4.7 The Group recommended to the applicant that all relevant documentation, such as the document "CB-Ocean Barrier System Functional Description_rev1", should be included in any future application for Final Approval.

Please refer to Appendix 1.

11.4.8 The Group recognized that some of the PEC/PNEC ratios for the harbour and near ship scenario were above 1. The Group therefore considered that some unacceptable effects in the aquatic environment may be expected. The Group recommended that the applicant address this point in any future application for Final Approval.

PEC/PNEC ratios above 1 were identified for the relevant chemicals Dibromoacetonitrile (harbor and near ship), Monochloroacetic acid (near ship) and Tribromomethane (near ship). For the environmental risk assessment, results from WET-testing show low toxicity in all tested salinities and indicate no environmental risk from discharged ballast water treated with the CB-OBS BWMS. Please refer to section 9 for a discussion of potential risks to the environment.

2 DESCRIPTION OF THE CB-OBS BWMS 2.1 Treatment process - General description The CB-OBS consists of one mechanical separation step (filtration) and one disinfection step (electrochlorination (EC)). During ballasting/uptake, the system is operated inline, using filtration, followed by disinfection through the EC unit, before the water enters the ballast water tanks. During deballasting/discharge, only a measurement- and analysis station (TRO, pH and conductivity) is operated together with a neutralization step. Figure 1 below shows a basic flow chart for ballasting- and deballasting operations.

Page 14: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 10

I:\MEPC\75\MEPC 75-4-3.docx

Figure 1: Basic flow chart of the CB-OBS ballast water management system

Through this operation, the manufacturer ensures same function, efficiency and impact for all model sizes, particularly pertaining to discharge standards, as set out in Guidelines (G8) (D-2 standard) and US requirements (U.S. Coast Guards, 2012). 2.2 System description The automatic filter removes suspended solids and larger organisms while preventing sediment accumulation in the ballast water tanks. The filtrate leaving the filters is subsequently treated in-line by the EC unit. By applying a direct current (DC) between the anodes and cathodes in the EC unit, the Active Substances as defined under section 3, are produced directly from the water and its constituents in a process where chloride will, together with water and DC current, form Free Active Chlorine (FAC). The FAC will inactivate microorganisms present and convert into other oxidants depending on water quality. FAC is representative of total residual oxidants (TRO) for dose-control in the EC unit. The Active Substance is dosed with a set target concentration of 6 mg/L TRO for treatment of 500 m3/h of marine- and brackish water and 100 m3/h of fresh water. The above treatment steps are carried out at water uptake, i.e. the ballasting operation of the vessel. At discharge, i.e. the deballasting operation, only neutralization of any potential residual TRO is carried out. The neutralization agent used for this purpose is sodium thiosulphate (Na2S2O3), dosed in a stoichiometric ratio of 1: 4 versus the continuously measured FAC concentration at the time of discharge. 2.2.1 Electrochlorination (EC) unit - general function The specially designed advanced EC unit produces FAC for disinfection directly in the pipe of the CB-OBS without addition of chemicals. The produced FAC (the Active Substance) consists of a mixture of hypochlorite and hypochlorous acid (OCl-/HOCl) formed on the anodes of the electrolysis unit. The process uses only Direct Current (DC) and natural constituents of the water. FAC is consumed during the disinfection process and the residual can be analysed as TRO, which is the component efficiently preventing re-growth of organisms in the ballast tanks. The dose of Active Substances produced is controlled by changing the input DC current (voltage) from the rectifier. The voltage required to reach the target dose depends on the water quality and is higher in low salinities and low temperatures (i.e. in lower conductivity). The voltage is automatically adjusted by the implemented control philosophy including alarms, emergency shut-downs, etc. Input process parameters influencing the DC current set point are flow rate [m³/h], FAC [mg/L] and conductivity [mS/m]. The maximum concentration of FAC

Page 15: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 11

I:\MEPC\75\MEPC 75-4-3.docx

generated at the maximum current input corresponds to 6 mg/L in fresh water, 7 mg/L in brackish water and between 7 and 8 in marine water. The sensor measuring FAC is of amperometric type and is chosen because of short response time, high robustness and the absence of residual waste to be discharged. A study has been undertaken to document that the amperometric sensor provide similar readings as the DPD colorimetric TRO sensor (Appendix 2)1. The current control philosophy of the EC unit ensures safe and reliable operation conditions at any time, and the power consumption will always be kept to a necessary minimum during ballasting disinfection. 2.2.2 Hydrogen handling Hydrogen gas can only be formed by the CB-OBS BWMS disinfection unit (EC unit) during the ballasting operation mode (see further section 3.1, Equation 6). The amount of formed hydrogen is directly proportional to the DC current supplied to the EC unit by the rectifier. The CB-OBS BWMS is flow controlled: the input current set point to the EC unit is varied depending on the measured flowrate and adjusted by feedback signals of output TRO and water conductivity. This ensures correct dosing of the Active Substance to obtain sufficient disinfection. The hydrogen management philosophy of the CB-OBS is to ensure that hydrogen is not allowed to leave the water phase downstream of the EC unit, until the treated water enters the ballast water tanks. During filling of the tanks, hydrogen very quickly leaves the water phase and is efficiently vented via the ballast tank vent pipes during filling of the tank. This approach has been extensively studied theoretically and by surveyed tests, showing very high confidence and high safety factors related to potentially explosive concentrations. See further section 6.2.1. 2.2.3 Neutralization The neutralization agent sodium thiosulphate (Na2S2O3) is dosed in a stoichiometric ratio of 1: 4 versus the continuously measured FAC concentration at the time of discharge. Dosing start point has been calculated as a theoretic value which is needed to neutralize 3 ppm TRO at 500 m³/h. The start dose of neutralisation agent is about 5 - 7% of the dosing pump capacity and is constantly dosed during the deballasting process when flow is registered. Additional dosing is initiated if the measured TRO value exceeds 0.05 mg/L and is regulated in accordance with the measured TRO value. 2.3 Full-scale testing of the CB-OBS BWMS 2.3.1 Overview of land-based testing The CB-OBS is subject to full-scale land-based testing to satisfy the type approval requirements in accordance with the Guidelines for approval of ballast water management systems (G8) (resolution MEPC.279(79)) and the United States Coast Guard (USCG) Standards for Living Organisms in Ships Ballast Water Discharged in U.S Waters, Final Rule (Final Rule). DNV GL carried out a readiness evaluation of the CB-OBS BWMS prior to testing in accordance with the 2016 Guidelines (G8) (resolution MEPC.279(70) paragraph 1.5). In the readiness evaluation, DNV GL examined the design and construction of the BWMS and confirmed that the BWMS is able to operate safely on-board ships and was ready for biological efficacy testing. In addition, drawings and documents submitted by Veolia-RWO were examined for compliance with the 2016 Guidelines (G8) (resolution MEPC.279(70) annex 5) and DNV GL rules Pt.4 Ch.6 (Piping systems), Pt.4 Ch.8 (Electrical installations), Pt.4 Ch.9 (Control and monitoring systems) and Pt.6 Ch.7 Sec.1 (Ballast water management).

1 Comparable TRO discharge values verified comparability of measurements between the amperometric

(BWTS) and DPD (DHI test facility) sensors during land-based testing (Appendix 3).

Page 16: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 12

I:\MEPC\75\MEPC 75-4-3.docx

Data on chemicals (Active Substance, Relevant Chemicals and Other Chemicals) and toxicity of treated ballast water (whole effluent toxicity) included in this application have been generated during land-based testing of the CB-OBS in marine, brackish and fresh water. Analyses of water from two different full-scale land-based tests per water quality is included. The first dataset was already included in the Basic Approval application. The Basic Approval data was then complemented with analyses of water from test cycles later in the land-based test period to compensate for deficiencies, such as too high DLs and missing datapoints for some Relevant Chemicals in the first dataset. Water quality characteristics, TRO-profiles and results from WET-testing indicate that test conditions were comparable between test cycles in the same water quality (see sections 2.3.2 and 5). Testing was conducted at DHI in Denmark with DNV GL as the Recognized Organization for the Norwegian Maritime Authority (NMA), with test water fulfilling requirements of regular land-based testing as described in the 2016 Guidelines (G8) (resolution MEPC.279(70). The testing has been performed as described in pre-approved test-plans for DHI, included in Appendix 4 and 5 of the confidential dossiers. The identification of Relevant Chemicals has been performed at the timepoints defined in the Methodology section 3.2.3.9. Neutralized water after 5-days holding time was sampled for WET testing in line with the Methodology section 6.2.2. 2.3.2 Test conditions Table 2 summarizes the water quality parameters and the TRO measured at the point of discharge for the full-scale testing forming the basis for the data presented in this application (Appendices 1 and 2). SUVA values were calculated separately (Appendix 7). The water quality characteristics were comparable for most parameters between the two tests per water quality. Some differences are noticed for temperature and TSS. The temperature was higher during the last round of testing in fresh water (22°C) than in the first round (16°C). TSS values (measured after augmentation) were significantly higher in the first, than the second round of testing for marine water. In fresh water, TSS values from the last round of testing was significantly higher than in the first test. It is not expected that these differences have had a significant impact on the test-results.

Table 2: Summary of water quality data and average TRO-profiles from full scale testing. "Pre-Aug" refers to the measured values before augmentation, "Post-Aug" refers to measured values after augmentation and "Post-Neut" refers to measured values after neutralization at the time of discharge. Values in brackets represent

results from analyses of water from land-based tests used for additional DBP-analyses.

Parameter (units)

Fresh water Brackish water Marine water

Pre-Aug Post-Aug

Post-Neut

Pre-Aug

Post-Aug

Post-Neut

Pre-Aug

Post-Aug

Post-Neut

Salinity (PSU)

0.40 (0.38)

0.92 (0.89)

20 (18)

29 (29)

pH NA

8.4 (8.4)

8.4 (8.3) NA

8.2 (8.2)

8.0 (7.9) NA

8.1 (8.2)

8.1 (8.2)

Temperature (˚C) NA

16 (21)

16 (22) NA

19 (20)

18 (21) NA

18 (18)

18 (19)

TOC1) (mg/L)

NA, (7.3)

15 (14)

6.8 (<7.8) NA

15 (15)

6.7 (6.3)

NA (4.4)

13 (14)

7.4 (7.9)

DOC (mg/L)

8.2 (6.5)

7.5 (7.8)

6.5 (7.7)

3 (3.2)

6.5 (6.8)

5.9 (5.9)

3.0 (3.6)

7.0 (7.4)

6.9 (7.5)

POC (mg/L)

0.37 (0.81)

7.4 (6.4)

0.31 (<0.10)

0.0 (0.5)

8.2 (7.7)

0.8 (0.43)

0.0 (0.84)

6.0 (6.4)

0.49 (0.47)

Page 17: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 13

I:\MEPC\75\MEPC 75-4-3.docx

Parameter (units)

Fresh water Brackish water Marine water

Pre-Aug Post-Aug

Post-Neut

Pre-Aug

Post-Aug

Post-Neut

Pre-Aug

Post-Aug

Post-Neut

TSS (mg/L) NA (22)

40 (61)

8.1 (19)

NA (4.4)

66 (59)

8.2 (10)

NA (3.6)

66 (38)

19 (7.4)

% particulate matter2)

NA (11)

50 (45)

4.5 (1.3)

NA (14)

56 (53)

12 (5.4)

NA (19)

46 (46)

6.6 (5.9)

UVT% (unfiltered) (at 254 nm)

NA (61)

55 (52)

65 (59)

NA (87)

61 (87)

76 (93)

NA (88)

74 (61)

85 (74)

UVT% (filtered) (at 254 nm)

NA (76)

78 (76)

81 (77) NA

82 (83)

85 (71) NA

88 (79)

91 (81)

SUVA

NA (NA)

1.43 (1.825)

NA (NA)

NA (NA)

1.32 (0.89)

NA (NA)

NA (NA)

0.79 (1.38)

NA (NA)

TRO at discharge (mg/L Cl2) DPD-method 3)

0.02 (0.07)

<0.02 (<0.02)

<0.02 (0.05)

TRO at discharge (mg/L Cl2) Amperometric method 4)

<0.05

(0.02) 0.05

(0.02) 0.05

(0.02)

System Average TRO

4.65) (6)

5.3 (5.3)

5.6 (5.6)

Average TRO minus backflush

5.7 (6)

5.9 (5.7)

6.0 (5.8)

1)TOC = DOC + POC 2)% Particulate Matter = 100*(TOC-DOC)/TOC; 3) Values measured by DHIs inline DPD-based TRO-meter 4) Values measured by the system (mg/L FAC as Cl2) 5)Result from mal-functioning sensor.

2.3.3 TRO-profiles The Active Substance is dosed with a set target concentration of 6 mg/L of TRO (measured as mg/L FAC as Cl2) and the average TRO profiles from the tests are presented in Table 2. The systems reported average TRO-values from the first round of testing correspond to 4.6 in fresh water, 5.3 in brackish water and 5.6 in marine water (Appendix 4). For fresh water, the systems sensor readings declined during the test cycle, and a calibration was needed after the test. TRO measured with a DPD sensor immediately after the measurement station, verified a correct TRO dosing of 5.7 mg/L in fresh water. The type of system sensor was changed. The BWMS was then sustaining the target TRO dose throughout subsequent biological efficacy testing at DHI test facility in all salinities, particularly in challenge water of < 1 PSU (Appendices 3 and 5). Average TRO profiles from land-based tests used for additional DBP-analyses were similar to what was measured during the first round of testing. The TRO-dose logged by the system presented above can be considered conservative as they indicate the mean system outlet concentration including periods when the EC unit is turned off during backflushing of the filters. Average values based on time of operation not taking the backflushing into account corresponds to 5.7 mg/L as Cl2 in fresh water 5.9 mg/L as Cl2 in brackish water and 6 mg/L as Cl2 in marine water for the initial tests (Appendix 8). Average TRO-values minus backflush from land-based tests used for additional DBP-analyses were in the same range as the initial tests, corresponding to 5.7 mg/L in brackish water, 5.8 mg/L in marine water and 6.0 mg/L in fresh water (Appendix 8). The average TRO values excluding backflush events should be considered as a measure of the dose applied by the system.

Page 18: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 14

I:\MEPC\75\MEPC 75-4-3.docx

2.3.4 Sampling for WET and DBP-analyses Samples for WET and DBP analyses were acquired as per the Methodology and the test plans, as summarized in Table 3. Results of DBP analysis are presented in Section 3.1 and summarized in Table 4 through Table 6, and analytical reports are provided in Appendices 4 and 5. Toxicity test results are presented in section 5 and summarized in Table 14 with the corresponding laboratory reports provided in Appendices 4 and 5.

Table 3: Overview of samples for WET and DBP

Salinity Holding Time (h)

DBP analyses WET tests

Pre neutralization

Post neutralization

Control Post neutralization

Control

Fresh

24h x x x - -

72h x x x - -

120h x x x x x

Brackish

24h x x x - -

72h x x x - -

120h x x x x x

Marine

24h x x x - -

72h x x x - -

120h x x x x x

3 CHEMICALS ASSOCIATED WITH THE CLEANBALLAST® - OCEAN BARRIER SYSTEM

3.1 Electrochemical reactions in the EC unit

FAC is electrochemically formed via oxidation of Cl- (chloride ions, naturally present in the water) to Cl2 on the anodic surfaces in the cell (Equation 1). This reaction is driven by the electrolysis process, where a specific amount of DC current is fed through the anodes and cathodes of the EC unit. Due to the pH of natural waters, the Cl2 will immediately transform into a mixture of hypochlorous acid (HOCl) and hypochlorite (OCl-) (Equations 2 and 3), which are the FAC species performing the primary disinfection and inactivation of microorganisms. Thus, the EC unit only uses natural constituents of the water and DC current for its operation and disinfection. At natural seawater pH of around 8.2, roughly 80% of the FAC will exist in form of hypochlorite (OCl-), and at lower pH the part of HOCl will increase. 2Cl - → Cl2 + 2e - E0 = + 1.36 V (vs. NHE) (1) Cl2 + H2O → HOCl + H+ + Cl- (2) HOCl ↔ OCl- + H+ (3) The efficiency of FAC generation depends mainly on the chloride content of the water. The formation of chlorine will be more efficient in full salinity seawater than in brackish (or fresh) water. The maximum concentration of FAC can be calculated based on DC input and flow. The highest concentration will always be right after the EC unit. The FAC is then consumed in the disinfection process, to an extent depending on the water quality (i.e. pollutant level and number of microrganisms) and thereafter the residual FAC will transform into more stable oxidants (TRO) before finally, over time, degrading spontaneously back to the constituents of

Page 19: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 15

I:\MEPC\75\MEPC 75-4-3.docx

the water. TRO is a sum parameter including all residual oxidants formed in natural water, however (due to the content of bromide in natural saline waters) mostly consisting of hypobromous acid (Equation 4) and hypobromite in brackish/marine water quality. Similarly to HOCl/OCl-, these species are also in pH depending equilibrium (Equation 5). HOCl + Br - ↔ HOBr + Cl- (4)

HOBr ↔ OBr - + H+ (5) The anodic formation of FAC is competed by the common electrochemical oxidation of water into oxygen gas, water electrolysis (Equation 6). This competing oxygen formation generally does not exceed 25% of the Faradaic yield of the anodes, i.e. the efficiency for FAC formation is generally equal to- or higher than 75%. H2O → 1/2O2 + 2H+ + 2e - E0 = + 1.23 V (vs. NHE) (6) Corresponding electrochemical reactions (reductions) takes place on the cathodes. The cathodes (or the cathodic reactions or products) play no role in the disinfection nor have they any disinfection effect. Most important cathodic reaction is the formation of hydrogen (Equation 7). 2H+ (aq) + 2e- → H2 (g) (7) Hydrogen needs appropriate management (see further section 2.2.2) and the formation and accumulation is therefore extensively investigated and the management reviewed thoroughly in relation to the overall risk assessment/installation review. The risk assessment take a "worst case" approach, i.e. cathodic current efficiency (Faradaic yield) for hydrogen formation is assessed as being 100%. However, competing cathode reactions will occur such as e.g. reduction of O2 (dissolved in the water and additionally formed at the anode) and reduction of FAC species (formed at the anode). Thus, the real current exchange rate for hydrogen formation is significantly less. 3.2 Identification of chemicals associated with the CB-OBS Chemicals associated with the CB-OBS includes Active Substances, disinfection by-products Relevant Chemicals (disinfection by-products) and the neutralizing agent sodium thiosuolphate as Other Chemicals. The CB–OBS is not associated with the use of Preparations as specified in paragraph 4.1 of Procedure (G9). 3.2.1 Active Substances The Active Substance used by this disinfection process is Free Active Chlorine (FAC) which at in the relevant pH range will consist of a mixture of hypochlorous acid (HOCl) and hypochlorite (OCl-). The Active Substance is produced in-situ directly in the ballast water stream, using only direct current and no added chemicals. Together with the residual Active Substance they form the total residual oxidant content of the treated water (commonly referred to as TRO). 3.2.2 Relevant Chemicals Disinfection by-products (DBPs) are formed during interaction of TRO with organic matter present in the treated water, such as humic acids and lignin sulphonate. Examples of halogenated DBPs that may form in natural waters reacting with TRO are trihalomethanes (THM), haloacetic acids (HAA) and haloacteonitrils (HAN). The current risk assessment is

Page 20: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 16

I:\MEPC\75\MEPC 75-4-3.docx

based on the list of DBPs most commonly associated with ballast water treated with TRO-based technologies (BWM.2/Circ.13/Rev.4, appendix 6). 3.2.3 Other Chemicals The CB-OBS applies thiosulfate (S2O3

2-) for neutralization of residual oxidants in discharged ballast water. This is done with automatic dosing, which is performed by injecting a neutralization solution directly to the ballast water stream during the deballasting process. 3.2.4 Chemicals associated with the CB-OBS across water qualities More than 900 data on Active Substances, Relevant Chemicals and Other Chemicals are included in this assessment. The chemical analyses have been performed by ALS Denmark A/S (Appendix 4), SGS INSTITUTE FRESENIUS (Germany) (Appendix 6) and DHI (Appendix 5). The dataset includes analytical results used for Basic Approval, complemented with data from analyses of water from land-based testing undertaken after the submission of the Basic Approval application. Additional analyses prior to the Final Approval application was required to fill in a few missing data-points in the dataset and to apply analytical procedures with higher confidence and/or lower detection limits where possible. New data are presented for the following compounds: haloacetonitriles, monochloramine, sodium hypochlorite, bromate ion and chlorate ion. 3.2.4.1 Analytical detection limits in procedures used to identify Relevant Chemicals For 14 out of the targeted chemicals, despite all scientifically possible efforts, it was not possible to find analytical laboratories able to perform the analyses within the recommended detection limits (DL) as listed in appendix 7 of the Methodology. Twenty analytical laboratories were contacted2. The following chemicals/groups of chemicals (in total 27 chemicals) were analysed with a DL in line with the GESAMP-BWWG requirements: aldehydes, aldehyde hydrates, haloacetic acids, halopropionic acids, halomethanes (except Dichloromethane), haloethanes, halopropanes (except 1,2,3-trichloropropane). Chemicals analysed with a DL higher than recommended by the Methodology (in total 14 chemicals) include: haloacetonitriles, monochloramine, dibromomethane, dichloromethane, trichloroethene, 1,2,3-trichloropropane, bromate ion and sodium hypochlorite. For chemicals that were not detected, but where the achieved DL were higher than the GESAMP-BWWG recommended DL, the achieved DL was used as input to the risk assessment. The achieved DL and relevance of results from analytical procedures performed with a higher than recommended DL is commented below. For haloacetonitriles, the DL was lowered from 20 to 1 µg/L from the Basic Approval application to the Final Approval application. This is higher than the GESAMP-BWWG recommended DL of 0.02 µg /L for haloacetonitriles. Due to the short half-lives of monochloramine and sodium hypochlorite these compounds must be analysed on-site to provide relevant measurements. A manual TRO-measurement equipment based on the DPD-method (Appendix 5) was used to measure free and total TRO-values from the water samples. Values of free TRO (expressed as mg/L Cl2) were used to derive the sodium hypochlorite concentrations and the difference between total and free

2 The following laboratories were contacted: Synlab Sweden, GBA Germany, NSF Germany, TTZ Germany,

AgroLAB Denmark/Germany, LaDR GmbH Germany,SGS Taunusstein Germany, ALS Denmark, Eurofins Denmark and UK, Donslab Denmark, SGS laboratory (Sweden and Germany), Højvang Laboratorier A/S, Force Technology, VBM Laboratory, Intertek UK and Denmark, Analytech Denmark, University of Copenhagen, Dr.Drahn & Partner (Germany)

Page 21: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 17

I:\MEPC\75\MEPC 75-4-3.docx

TRO-values was used to derive the monochloramine concentrations (appendix 6). The achieved analytical DL for both compounds was 20 µg/L. The GESAMP-BWWG recommended DL for sodium hypochlorite is 0.2 µg/L, and for monochloramine 0.04 µg/L. Due to matrix interference for chlorate ion in marine and brackish water, the DL was significantly increased relative to the DL of the method itself. An increase in the DL from 50 µg/L to 2500 µg/L were obtained in marine water and an increase from 5 to 1000 µg/L were obtained in brackish water. The achieved DL for bromate was 5 µg/L in fresh water and 10 µg/L in brackish and marine water. The GESAMP-BWWG recommended DL for bromate is 0.2 µg/L. We argue that the risk assessments based on results from analyses of Relevant Chemicals with an achieved DL that is higher than the GESAMP-BWWG recommendation still are valid and relevant as both RCR and ratios PEC/PNEC are < 1 when using the achieved DLs as input to the risk assessments (Sections 6 to 9). 3.2.4.2 Results of chemical analyses The results of the chemical analyses at the requested time intervals, before and after neutralization are presented in Table 4 (fresh water), Table 5 (brackish water) and Table 6 (marine water). For the 10 compounds that were re-analysed, the measured values were comparable between the two datasets. To be conservative, the highest measured value from the two datasets is presented, where applicable. Thirty-one of the candidate chemicals defined by the Database were identified in the samples. The highest number of substances were detected in fresh water (around 10 more than in brackish and marine water). In addition, three chemicals, (dichloromethane, trichloroethene, 1.2.3-trichloropropane) were included in the assessment with concentrations equivalent to the achieved DLs, when the GESAMP-BWWG DL was not achieved. The concentration of most chemicals, except for monochloramine and sodium hypochlorite, does not seem to be significantly affected neither by neutralization nor time. As these compounds are measured as TRO this is as expected because of rapid degradation of TRO over time due to reactions with test-water. The highest concentration of monochloramine was observed in un-neutralized samples taken after 24 hours from brackish water and the highest values of sodium hypochlorite were seen in un-neutralized samples from marine water after 24 hours. In most cases, the concentrations of both compounds were significantly reduced in neutralized samples to levels below, or close to the analytical DL. The concentrations of aldehydes were slightly higher in fresh water than marine and brackish water. Among the halogenated disinfection by-products, the expected tendency of higher levels of brominated compounds in brackish and marine water vs higher levels of chlorinated compounds in fresh water was confirmed. Chloral hydrate was only detected in fresh water. Haloacetic acids were predominantly found in fresh water and only dibromoacetic acid and tribromoacetic acid were detected above the DL in the other water qualities. Of the trihalomethanes, the highest levels of trichloromethane were found in fresh water while tribromomethane was detected at highest concentrations in marine and brackish water. Haloacetonitriles occurred at higher concentrations in marine and brackish water than in fresh water. Bromate ion was not detected above (achieved) DL (5 and 10 µg/L) in samples from any of the water qualities. Concentrations of sodium thiosulphate are based on an estimate of dosing requirements for neutralizing 3 mg/L TRO, with no consumption of sodium thiosulphate in the sample.

Page 22: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 18

I:\MEPC\75\MEPC 75-4-3.docx

Table 4: Chemicals associated with the CB-OBS BWMS when operated in fresh water at 24 hours, 48 hours and 120 hours, before (pre) and after (post) neutralization.

Control water (120) hours is included for reference. Detection limits (DL) are listed for reference. GESAMP-BWWG recommended DLs (GDLs) are presented in brackets

when these are lower than the achieved DLs.

24 hours

(µg/L) 48 hours

(µg/L) 120 hours

(µg/L) Control

DL (µg/L)

pre post pre post pre post

Chemicals

Active Substance

Sodium hypochlorite1) 2) 20 (GDL=0.2) 55 66 104 70 55 55 83

Relevant Chemicals

Acetaldehyde

0.1 16 14 15 16 2 1.5 <0.1

Bromate ion

5.00 (GDL=0.2) <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

Bromochloroacetic acid

0.2 22 22 24 16 16 19 <0.20

Bromochloroacetonitrile

1 (GDL = 0.02) 5.51)

5.21)

4.71)

4.31)

2.11)

7.34)

<1

Chloral hydrate

10 30 10 28 24 32 25 <10

Chlorate ion

10 (GDL= NA)

11001)3)

847

11001) 3)

848

11001)

3)

1) 3) 1100

<10

Chloropicrin 0.02 0.064 0.045 0.040 0.072 0.077 0.082 <0.020

Dalapon

0.01 0.57 0.69 0.9 0.8 0.87 0.89 <0.010

Dibromoacetic acid

0.2 12 12 24 19 18 17 <0.20

Dibromoacetonitrile

1.0 (GDL=0.02) 5.71) 4.41) 4.11) 2.21) <1.01) 8.14) <1.0

Dibromochloroacetic acid

0.2

<0.20 <0.20 22 18 18 16 <0.20

Dibromochloromethane

0.02 73 63 50 52 57 61 <0.020

1.2-Dibromo-3-chloropropane

0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

1.1-Dibromoethane

0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Dibromomethane

0.1 (GDL=0.02) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Dichloroacetic acid

0.2 39 36 24 48 52 49 <0.20

Dichloroacetonitrile

1.0 (GDL=0,02) 2.81) 2.71) 2.41) 2.31) 1.01) 3.64) < 1.0

Dichlorobromoacetic acid

0.2 16 15 20 19 20 16 <0.20

Dichlorobromomethane

0.02 69 60 46 49 54 58 <0.020

1.1-Dichloroethane

0.02 <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

1.2-Dichloroethane

0.02 <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

Dichloromethane

0.1 (GDL=0,02) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Page 23: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 19

I:\MEPC\75\MEPC 75-4-3.docx

Table 5: Chemicals associated with the CB-OBS BWMS when operated in brackish water at 24 hours, 48 hours and 120 hours, before (pre) and after (post) neutralization. Control water (120) hours is included for reference. Detection limits (DL) are listed for

reference. GESAMP-BWWG recommended DLs (GDLs) are presented in brackets when these are lower than the achieved DLs.

24 hours

(µg/L) 48 hours

(µg/L) 120 hours

(µg/L)

DL(µg/L) pre post pre post pre post control

Chemicals

Active Substance

Sodium Hypochlorite 1)2)

20 (GDL= 0.2) 31 <20 31 <20 28 24 <20

1.2-Dichloropropane

0.02 <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

Formaldehyde

0.1 24 22 24 23 22 15 <0.1

Monobromoacetic acid

0.2 25 4.6 5.2 4.5 0.37 <0.20 <0.20

Monobromoacetonitrile1) 1 (GDL=0,02) <1.0 <1.0 1.2 1.9 2.6 2.5 <1.0

Monochloramine1)

20 (GDL =0,04) 352 <20 251 <20 134 <20 <20

Monochloroacetic acid

0.2 <0.20 <0.20 5.8 4.6 0.58 <0.20 <0.20

Monochloroacetonitrile1)

1.0 (GDL = 0,02) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

Tetrachloromethane

0.02 <0.020 <0.020 <0.020 0.051 <0.020

<0.020 <0.020

Tribromoacetic acid

0.2 0.71 <0.20 6.5 5.6 5.1 4.7 <0.20

Tribromomethane

0.02 20 19 16 22 17 17 <0.020

2.4.6-Tribromophenol

0.02 0.031 <0.020 <0.020

<0.020 0.066 0.06 <0.020

Trichloroacetic acid

0.2 15 15 28 27 34 34 <0.20

Trichloroacetonitrile1)

1 (GDL=0,02) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

1.1.1-Trichloroethane

0.02 <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

1.1.2-Trichloroethane

0.02 <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

Trichloroethene

0.02 (GDL = 0.001) <0.020 <0.020 <0.020

<0.020 <0.020

<0.020 <0.020

Trichloromethane

0.02 69 59 45 51 57 66 <0.020

1.2.3-Trichloropropane

0.1 (GDL= 0.0002) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Other Chemical

Sodium thiosulphate 100 NA 26403 NA 26403 NA 26403 NA

1) Data from 2019 2) Measured as TRO 3) Achieved DL 4) SGS-data 2018 5) Estimate based on dosing requirements for neutralizing 3 mg/L TRO, with no consumption of Sodium

Thiosulphate

Page 24: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 20

I:\MEPC\75\MEPC 75-4-3.docx

24 hours (µg/L)

48 hours (µg/L)

120 hours (µg/L)

DL(µg/L) pre post pre post pre post control

Chemicals

Relevant Chemicals

Acetaldehyde

0.1 6 3 <0.10 <0.1 <0.1 <0.1 1.5

Bromate ion 1) 10 (GDL=0.2) 10 10 10 10 10 10 <10

Bromochloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Bromochloroacetonitrile 1) 1 (GDL= 0,02) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0

Chloral hydrate

10,00 <10 <10 <10 <10 <10 <10 <10

Chlorate ion1)

50 (10003)) (GDL= NA) <1000 <1000 <1000 <1000 <1000 <1000 <1000

Chloropicrin 0.02 (0.103) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Dalapon

0.01 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Dibromoacetic acid

0.2 37 32 32 46 41 39 4,0

Dibromoacetonitrile 1 (GDL= 0.02) 101) 141) 264) 264) 254) 254) <1

Dibromochloroacetic acid 0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Dibromochloromethane

0.02 16 11 12 10 13 11 <0.020

1,2-Dibromo-3-chloropropane

0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

1,1-Dibromoethane

0.1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Dibromomethane

0.1 (GDL= 0.02) <0.10 <0.10 <0.10 <0.10 0.15 0.11 <0.10

Dichloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Dichloroacetonitrile1)

1 (GDL = 0.02) <1 <1 <1 <1 <1 <1 <1

Dichlorobromoacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Dichlorobromomethane

0.02 0.41 0.29 0.31 0.24 0.34 0.27 <0.020

1,1-Dichloroethane 0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

1,2-Dichloroethane

0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Dichloromethane

0.1 (GDL = 0.02) <0.10 0.80 <0.10 <0.10 <0.10 <0.10 <0.10

1,2-Dichloropropane

0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Formaldehyde

0.1 21 19 19 19 12.5 12.5 1.5

Monobromoacetic acid

0.2

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

Monobromoacetonitrile

1.0 (GDL = 0.02) 7.01) 5.01) 9.01) 91) 1.64) 1.64) <1.01)

Monochloramine1)

20 (GDL =0.04) 361 <20 <20 <20 <20 <20 <20

Monochloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Monochloroacetonitrile1)

1.0 (GDL = 0.02) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0

<0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Page 25: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 21

I:\MEPC\75\MEPC 75-4-3.docx

24 hours (µg/L)

48 hours (µg/L)

120 hours (µg/L)

DL(µg/L) pre post pre post pre post control

Chemicals

Tetrachloromethane 0.02

Tribromoacetic acid

0.2 58 53 55 52 63 60 <0.20

Tribromomethane

0.02

340

470

410

390

420

420

0.38

2,4,6-Tribromophenol

0.02 0.062 0.054 0.076 <0.070 0.36 <0.02 0.04

Trichloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Trichloroacetonitrile1)

1.0 (GDL=0.02) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0

1,1,1-Trichloroethane

0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

1,1,2-Trichloroethane

0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Trichloroethene

0.02 (GDL=0.003) <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Trichloromethane

0.02 0.024 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

1,2,3-Trichloropropane

0.1 (GDL =0.0002) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Other Chemical

Sodium Thiosulphate NA

NA

26404)

NA

26404)

NA

26404)

NA

1) Data from 2019 2) Measured as TRO 3) Achieved DL 4) SGS-data 2018 5) Estimate based on dosing requirements for neutralizing 3 mg/L TRO, with no consumption of Sodium

Thiosulphate

Table 6: Chemicals associated with the CB-OBS BWMS when operated in marine water

at 24 hours, 48 hours and 120 hours before (pre) and after (post) neutralization. Control water (120) hours is included for reference. Detection limits (DL) are listed for

reference. GESAMP-BWWG recommended DLs (GDLs) are presented in brackets when these are lower than the achieved DLs.

24 hours

(µg/L) 48 hours

(µg/L) 120 hours

(µg/L) control

Chemical DL (µg/L) Pre post pre Post pre post

Active Substance

Sodium hypochlorite2)

20 (GDL=0.2)

813 421) 2781) 281) 911) 491) 281)

Relevant Chemicals

Acetaldehyde

0.1

13

11

13

13

8

6

<0.1

Bromate ion 1) 10 (GDL=0.2) 20 20 < 10 20 < 10 < 10 < 10

Bromochloroacetic acid

0.2

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

Bromochloroacetonitrile1) 1.0 (GDL=0.2) < 1.0 1.0 1.1 < 1.0 < 1.0 < 1.0 < 1.0

Chloral hydrate

10,00

<10

<10

<10

<10

<10

<10

<10

Page 26: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 22

I:\MEPC\75\MEPC 75-4-3.docx

24 hours (µg/L)

48 hours (µg/L)

120 hours (µg/L)

control

Chemical DL (µg/L) Pre post pre Post pre post

Chlorate ion

(1000 and 2500)3) (GDL= NA)

<2500

<2500 <10001) <10001) <10001) <10001) <10001)

Chloropicrin

0.1 (GDL =0.02)

<0.10

<0.10

<0.10

<0.10

<0.10

<0.10

<0.10

Dalapon

0.01

<0.010

<0.010

<0.010

<0.010

<0.010

<0.010

<0.010

Dibromoacetic acid

0.2

210

220

230

210

320

160

<0.20

Dibromoacetonitrile1) 1.0 (GDL=0.2) <1.00 30 31 2.7 4.7 1.00 <1.00

Dibromochloroacetic acid

0.2

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

<0.20

Dibromochloromethane

0.02

20

17

19

17

24

21

<0.020

1,2-Dibromo-3-chloropropane 0.1

<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

1,1-Dibromoethane

0.1

<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

Dibromomethane

0.1 (GDL= 0.02)

<0.10 <0.10 <0.10 0.13 <0.10 <0.10 <0.10

Dichloroacetic acid

0.2

<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Dichloroacetonitrile1) 1.0 (GDL = 0,02) <1 <1 <1 <1 1 <1 <1

Dichlorobromoacetic acid 0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Dichlorobromomethane

0.02 0.50 0.46 0.44 0.37 0.68 0.59 <0.020

1,1-Dichloroethane 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

1,2-Dichloroethane

0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Dichloromethane

0.1 (GDL= 0.02) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10

1,2-Dichloropropane

0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Formaldehyde

0.1 17 12 15 15 11 10 <0.10

Monobromoacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Monobromoacetonitrile1) 1.0 (GDL=0.02) 18 2.2 2.7 20 19 20 <1

Monochloramine1)

20 (GDL = 0.04) 175 <20 146 <20 115 <20 <20

Monochloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Monochloroacetonitrile1)

1 (GDL = 0.02) <1 <1 <1 <1 <1 <1 <1

Tetrachloromethane 0.02 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020

Tribromoacetic acid

0.2 81 67 76 67 174 76 <0.20

Tribromomethane

0.02 910 800 920 920 800 710 0.35

2,4,6-Tribromophenol

0.02 <0.020 <0.020 0.61 <0.020 <0.020 <0.020 0.033

Trichloroacetic acid

0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20

Trichloroacetonitrile1)

1.0 (GDL = 0.02) < 1.0 < 1.0 < 1.0 < 1.0 < 1.,0 < 1.0 < 1.0

Page 27: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 23

I:\MEPC\75\MEPC 75-4-3.docx

24 hours (µg/L)

48 hours (µg/L)

120 hours (µg/L)

control

Chemical DL (µg/L) Pre post pre Post pre post

1,1,1-Trichloroethane

0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

1,1,2-Trichloroethane 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Trichloroethene

0.02 (GDL = 0.001) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Trichloromethane 0.02 <0.020 <0.020 0.026 0.025 0.041 0.036 <0.020

1,2,3-Trichloropropane

0.1 (GDL =0.0002) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Other Chemicals

Sodium thiosulphate

Na 26404) na 26404) na 26404)

1) Data from 2019 2) Measured as TRO 3) Achieved DL 4) Estimate based on dosing requirements for neutralizing 3 mg/L TRO, with no consumption of Sodium

Thiosulphate

Substances with detectable concentrations, in addition to chemicals were the achieved DLs were above the DL recommended in the Methodology in treated ballast water, are identified in Table 7.

Table 7: Identification of chemicals

Substance (IUPAC Name)

CAS Number

Molecular Weight

Empirical

Formula

Structural Formula

GHS Information

Active Substance

Sodium hypochlorite

7681-52-9

74 NaOCl

Skin corrosion/ irrit. 2, 1A, B, C; Serious eye damage/ eye irrit.1; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Hazardous to the aquatic environment, acute 1; Hazardous to the aquatic environment, long-term hazard 2.

Relevant Chemicals

Acetaldehyde 75-07-0 44 C2H4O

Acute tox. oral 4; Acute tox. dermal 3; Skin sensitization 1; Serious eye damage/eye irrit. 2A; Acute tox. inhalation 4; Specific target organ tox., single exposure; Narcotic effects 3; Germ cell mutagenicity 2; Carcinogenicity 1A, 1B; Reproductive tox. 1A, 1B; Specific target organ tox., single exposure 1; Specific target organ tox., repeated exposure 1; Hazardous to the aquatic environment, acute hazard 3.

Bromate ion 15541-45-4

128 BrO3-

Not classified

Bromochloro-acetic acid

5589-96-8

173

C2H2BrClO2

Skin corrosion/irrit. 1A, B, C;

Bromochloro-acetonitrile

83463-62-1

154 C2HBrC

lN

Acute tox., oral 4; Serious eye damage /eye irrit. 2A

Page 28: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 24

I:\MEPC\75\MEPC 75-4-3.docx

Substance (IUPAC Name)

CAS Number

Molecular Weight

Empirical

Formula

Structural Formula

GHS Information

Chloral hydrate

302-17-0 165 C2H3Cl3

O2

Acute tox., oral 4; Skin corrosion/irrit. 1A, B, C; Serious eye damage/eye irrit. 1; Specific target organ tox., single exposure; Narcotic effects 3; Germ cell mutagenicity, 1A, 1B; Specific target organ tox., single exposure 1; Specific target organ tox., repeated exposure 1; Specific target organ tox., repeated exposure 2

Chlorate ion 14866-68-3

84 ClO3-

Not classified

Chloropicrin 76-06-2 164 CCl3NO

2

Acute tox., oral 3; Skin corrosion/irrit. 1A, B, C; Serious eye damage/eye irrit. 1; Acute tox., inhalation 1,2; Specific target organ tox., single exposure 1; Specific target organ tox., repeated exposure 1; Hazardous to the aquatic environment, acute hazard 1; Hazardous to the aquatic environment, long-term hazard 1.

Dalapon 75-99-0 143 C3H4Cl2

O

Skin corrosion/irrit. 2; Serious eye damage/ eye irrit. 1; Hazardous to the aquatic environment, long-term hazard 3

Dibromo- acetic acid

631-64-1 218 C2H2Br2

O2

Acute tox., oral 4; Acute tox. dermal 4; Skin corrosion/ irrit. 1A, B, C; Acute tox., inhalation 4

Dibromo-acetonitrile

3252-43-5

200 C2HBr2

N

Acute tox. oral 4; Acute tox. dermal 4; Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; Acute tox., inhalation 4; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Carcinogenicity 2; Hazardous to the aquatic environment, acute hazard 1

Dibromo-chloroacetic acid

5278-95-5

252 C2HBr2

ClO2

Skin corrosion/ irrit. 1A, B, C; Serious eye damage/ eye irrit. 1

Dibromo- chloromethane

124-48-1 208 CHBr2C

l

Acute tox. oral 4; Germ cell mutagenicity 2.

Dibromo-methane

74-95-3 174 CH2Br2

Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; Acute tox., inhalation 4; Specific target organ tox., single exposure; Narcotic effects 3; Reproductive tox. 2; Hazardous to the aquatic environment, acute hazard 2; Hazardous to the aquatic environment, long-term hazard 3

Dichloro- acetic acid

79-43-6 129

1. C2H2Cl2O2

Skin corrosion/irrit. 1A, B, C; Acute tox. dermal 3; Skin corrosion/irrit. 1A, B, C; Serious eye damage/ eye irrit. 1; Germ cell mutagenicity 2; Carcinogenicity 2; Reproductive tox. 1A, 1B; Specific target organ tox., single exposure 1; Specific target organ tox., repeated exposure 1; Specific target organ tox., repeated exposure 2; Hazardous to the aquatic environment, acute hazard 2

Dichloro-acetonitrile

3018-12-0

110 C2HCl2

N

Flammable liquids 3; Acute tox., oral 4; Skin corrosion/ irrit. 1A, B, C;

Dichloro-bromoacetic acid

71133-14-7

208 C2HBrC

l2O2

Acute tox., oral 4; Acute tox. dermal 4; Skin corrosion/irrit. 1A, B, C; Serious eye damage/ eye irrit. 1; Acute tox., inhalation 4

Page 29: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 25

I:\MEPC\75\MEPC 75-4-3.docx

Substance (IUPAC Name)

CAS Number

Molecular Weight

Empirical

Formula

Structural Formula

GHS Information

Dichloro-bromomethane

75-27-4 164 CHBrCl

2

Acute tox. oral 4; Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Carcinogenicity 1A, 1B, 2.

Dichloro-methane

75-09-2 85 CH2Cl2

Acute tox. oral 4; Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Specific target organ tox., single exposure; Narcotic effects 3; Germ cell mutagenicity 2; Carcinogenicity 2; Specific target organ tox., repeated exposure 2

Formaldehyde 50-00-0 30 CH2O

Acute tox. oral 4; Acute tox. dermal 4; Skin corrosion/ irrit. 2; Sensitization,Skin 1; Serious eye damage/ eye irrit. 1; Serious eye damage/ eye irrit. 2A; Acute tox., inhalation 4; Sensitization, respiratory 1; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Carcinogenicity 2.

Monobromo-acetic acid

79-08-3 139 C2H3Br

O

Acute tox. oral 3; Acute tox. dermal 3; Skin corrosion/ irrit. 1A, B, C; Skin sensitization 1; Acute tox., inhalation 3; Hazardous to the aquatic environment, acute hazard 1;

Monobromo-acetonitrile

590-17-0 120 C2H2Br

N

Acute tox., oral 3; Acute tox., dermal Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; Acute tox., inhalation 1,2; Acute tox., inhalation 3; Specific target organ tox., single exposure; Respiratory tract irrit. 3

Monochloro-acetic acid

79-11-8 95 C2H3Cl

O2

Acute tox. oral 3; Acute tox. dermal 3; Skin corrosion/irrit. 1A, B, C; Serious eye damage/eye irrit. 1; Acute tox., inhalation 1,2; Acute tox., inhalation 3; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Hazardous to the aquatic environment, acute hazard 1

Monochloro- acetonitrile

107-14-2 76 C2H2Cl

N

Flammable liquids 3; Acute tox. oral 3; Acute tox. dermal 3; Serious eye damage/eye irrit. 2A; Acute tox., inhalation 3; Hazardous to the aquatic environment, long-term hazard 2

Monochloro- amine

10599-90-3

51 NH2Cl; ClH2N

Skin corrosion/irrit. 1A, B, C; Skin corrosion/irrit. 1A, B, C; Skin corrosion/irrit. 2; Serious eye damage/eye irrit. 2A; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Specific target organ tox., repeated exposure 1; Hazardous to the aquatic environment, long-term hazard 3

Tetrachloro-methane

56-23-5 154 CCl4

Acute tox. oral 3; Acute tox. dermal 3; Skin sensitization 1; Acute tox., inhalation 3; Carcinogenicity 2; Specific target organ tox., repeated exposure 1; Hazardous to the aquatic environment, long-term hazard 3; Hazardous to the ozone layer 1

Tribromoacetic acid

75-96-7 297 C2HBr3

O2

Skin corrosion/irrit. 1A, B, C;

Page 30: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 26

I:\MEPC\75\MEPC 75-4-3.docx

Substance (IUPAC Name)

CAS Number

Molecular Weight

Empirical

Formula

Structural Formula

GHS Information

Tribromo-methane (bromoform)

75-25-2 250 CHBr3

Acute tox., oral 4; Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2B; Specific target organ tox., single exposure; Respiratory tract irrit. 3; Specific target organ tox., single exposure; Narcotic effects 3; Germ cell mutagenicity 2; Carcinogenicity 2; Reproductive tox. 2; Specific target organ tox., single exposure 1; Specific target organ tox., repeated exposure 2; Hazardous to the aquatic environment, acute hazard 2, Hazardous to the aquatic environment, long-term hazard 3

2,4,6-Tribromo-phenol

118-79-6 331 C6H3Br3

O

Skin sensitization 1; Serious eye damage/ eye irrit. 2A; Hazardous to the aquatic environment, acute hazard 1;

Trichloro-acetic acid

76-03-9 163 C2HCl3

O2

Skin corrosion/ irrit. 1A, B, C; Hazardous to the aquatic environment, acute hazard 1; Hazardous to the aquatic environment, long-term hazard 1;

Trichloro-acetonitrile

545-06-2 144 C2Cl3N

Acute tox. oral 3; Acute tox. dermal 3; Serious eye damage/eye irrit. 1; Acute tox., inhalation 3; Hazardous to the aquatic environment, long-term hazard 2

Trichloroethene 79-01-6 131 C2HCl3

Carcogenicity 1B; Mutagen 2; Aquatic Chronic toxicity 3; Skin irritation 2; Eye irritation 2

Trichloro-methane (Chloroform)

67-66-3 119 CHCl3

Acute tox., oral 4; Skin corrosion/ irrit. 2; Serious eye damage/eye irrit. 2A; tox., inhalation 3; Specific target organ tox., single exposure; Narcotic effects 3 Carcinogenicity 2 Reproductive tox. 2; Specific target organ tox., repeated exposure 1; Specific target organ tox., repeated exposure 2

1,2,3-Trichloro-propane

7789-89-1

148 C3H5Cl3

Acute tox. oral 3; Acute tox. oral 4; Acute tox. dermal 3; Acute tox. dermal 4; Serious eye damage/eye irrit. 2A; Acute tox., inhalation 3; Acute tox., inhalation 4; Germ cell mutagenicity 2; Carcinogenicity 1A, 1B; Carcinogenicity 2; Reproductive tox. 1A, 1B; Specific target organ tox., repeated exposure 1; Specific target organ tox., repeated exposure 2; Hazardous to the aquatic environment, long-term hazard 2

Other Chemicals

Sodium thiosulfate pentahydrate

10102-17-7

248 H10Na2

O8S2

Not classified

Table 8 summarizes the substances and concentrations considered relevant to the aquatic environmental- and human health risk assessments. For each of the detected chemicals, the highest concentrations across water qualities pre-neutralization are selected to be representative for the in-tank concentration and the highest concentration post-neutralization are selected to be representative of the maximum concentration in the discharged ballast water.

Page 31: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 27

I:\MEPC\75\MEPC 75-4-3.docx

Table 8: Selected Relevant Chemicals and maximum concentrations for further risk assessment

Chemical Maximum

concentration (ballast tank, µg/L)

Maximum concentration

(discharged ballast water, µg/L )

Active Substances

Sodium hypochlorite 8.1E+2 7.0E+1

Relevant Chemicals

Acetaldehyde 1.6E+1 1.6E+1

Bromate ion 2.0E+1 2.0E+1

Bromochloroacetic acid 2.4E+1 2.2E+1

Bromochloroacetonitrile 5.5E+0 7.5E+0

Chloral hydrate 3.2E+1 2.5E+1

Chlorate ion 2.5E+3 2.5E+3

Chloropicrin 1.0E-1 1.0E-1

Dalapon 9.0E-1 8.9E-1

Dibromoacetic acid 3.2E+2 2.2E+2

Dibromoacetonitrile 3.1E+1 3.0E+1

Dibromochloroacetic acid 2.2E+1 1.8E+1

Dibromochloromethane 7.3E+1 6.3E+1

Dibromomethane 1.5E-1 1.3E-1

Dichloroacetic acid 5.2E+1 4.9E+1

Dichloroacetonitrile 2.8E+0 3.6E+0

Dichlorobromoacetic acid 2.0E+1 1.9E+1

Dichlorobromomethane 6.9E+1 6.0E+1

Dichloromethane 1.0E-1 1.0E-1

Formaldehyde 2.4E+1 2.3E+1

Monobromoacetic acid 2.5E+1 4.6E+0

Monobromoacetonitrile 1.9E+1 2.0E+1

Monochloramine 3.6E+2 2.0E+1

Monochloroacetic acid 5.8E+0 4.6E+0

Monochloroacetonitrile 1.0E+0 1.0E+0

Tribromoacetic acid 1.7E+2 7.6E+1

Tribromomethane 9.2E+2 9.2E+2

2,4,6-Tribromophenol 3.6E-1 7.0E-2

Trichloroacetic acid 3.4E+1 3.4E+1

Trichloroacetonitrile 1.0E+0 1.0E+0

Trichloroethene 2.0E-2 2.0E-2

Trichloromethane 6.9E+1 6.6E+1

1,2,3-Trichloropropane 1.0E-1 1.0E-1

Other Chemical

Sodium thiosulphate 0 2.60E+3

Page 32: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 28

I:\MEPC\75\MEPC 75-4-3.docx

4 HAZARD PROFILE DATA AND EXPOSURE OF CHEMICALS ASSOCIATED WITH THE CB-OBS BWMS

This section contains a summary of the hazards to humans and the environment associated with or generated by the CB-OBS BWMS. As the Active Substance applied by the CB-OBS BWMS is characterized as TRO, the substances listed in the Database are used as basis for this risk assessment. Information from the Database on the physico-chemistry, ecotoxicology and toxicology for these substances are not repeated. The calculation tool in the Database has been used to perform all the calculations needed to fulfil the requirements of the Methodology. 4.1 Predicted no-effect concentrations The chemicals included in the aquatic environment risk assessment and relevant predicted -no-effect concentrations (PNEC) values are summarized in Table 9.

Table 9: PNEC values of chemicals associated with the CB-OBS BWMS

Chemical

Harbour Near ship

PNEC (µg/L) PNEC (µg/L)

Active Substance

Sodium Hypochlorite 2.1E-1 2.1E-1

Relevant Chemicals

Acetaldehyde 2.2E+0 2.2E+1

Bromate ion 1.4E+2 1.4E+3

Bromochloroacetic acid 1.6E+1 1.6E+1

Bromochloroacetonitrile 6.9E-1 6.9E+0

Chloral hydrate 9.7E+1 9.7E+2

Chlorate ion 4.8E+3 4.8E+3

Chloropicrin 2.5E-2 2.5E-2

Dalapon 1.1E+1 1.1E+2

Dibromoacetic acid 6.9E+3 6.9E+3

Dibromoacetonitrile 5.5E-2 5.5E-1

Dibromochloroacetic acid 3.0E+2 3.0E+2

Dibromochloromethane 6.3E+0 2.7E+2

Dibromomethane 4.5E+2 4.5E+2

Dichloroacetic acid 2.3E+1 2.3E+2

Dichloroacetonitrile 2.4E+1 2.4E+2

Dichlorobromoacetic acid 6.0E+1 1.0E+2

Dichlorobromomethane 7.8E+1 7.8E+1

Dichloromethane 1.2E+2 2.7E+2

Formaldehyde 5.8E+0 3.1E+1

Monobromoacetic acid 1.6E+1 1.6E+1

Monobromoacetonitrile 2.3E+1 2.3E+2

Monochloramine 9.8E-1 6.4E+0

Monochloroacetic acid 5.8E-1 5.8E-1

Monochloroacetonitrile 1.6E-1 4.1E+0

Tribromoacetic acid 1.4E+4 2.2E+4

Page 33: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 29

I:\MEPC\75\MEPC 75-4-3.docx

Chemical

Harbour Near ship

PNEC (µg/L) PNEC (µg/L)

Tribromomethane 9.6E+1 9.6E+1

2,4,6-Tribromophenol 2.0E+0 2.6E+0

Trichloroacetic acid 3.0E+2 3.0E+2

Trichloroacetonitrile 6.0E+0 6.0E+1

Trichloroethene 3.0E+0 2.2E+2

Trichloromethane 1.5E+2 1.5E+2

1,2,3-Trichloropropane 4.0E-1 2.7E+1

Other Chemical

Sodium thiosulphate 8.1E+2 8.1E+2

4.2 Derived no-effect levels (DNEL) and/or derived minimum effect levels (DMEL) The carcinogenic, mutagenic and reprotoxicity (CMR) data available in the Database is presented in Table 10.

Table 10: CMR properties for selected chemicals

Chemical Carcinogenic Yes/No

Mutagenic Yes/No

Reprotoxicity Yes/No CMR

Active Substance

Hypochlorite ion NO NO NO NO

Relevant Chemicals

Acetaldehyde NO NO NO NO

Bromate ion YES NO NO YES

Bromochloroacetic acid YES NO YES YES

Bromochloroacetonitrile NO NO NO NO

Chloral hydrate NO NO NO NO

Chlorate ion NO NO NO NO

Chloropicrin NO NO NO NO

Dalapon NO NO NO NO

Dibromoacetic acid YES NO NO YES

Dibromoacetonitrile NO NO NO NO

Dibromochloroacetic acid NO NO NO NO

Dibromochloromethane YES NO NO YES

Dibromomethane NO NO NO NO

Dichloroacetic acid YES NO NO YES

Dichloroacetonitrile NO NO NO NO

Dichlorobromoacetic acid YES NO NO YES

Dichlorobromomethane YES NO NO YES

Dichloromethane NO NO NO NO

Formaldehyde YES NO NO YES

Monobromoacetic acid NO NO NO NO

Page 34: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 30

I:\MEPC\75\MEPC 75-4-3.docx

Chemical Carcinogenic Yes/No

Mutagenic Yes/No

Reprotoxicity Yes/No CMR

Monobromoacetonitrile NO NO NO NO

Monochloramine NO NO NO NO

Monochloroacetic acid NO NO NO NO

Monochloroacetonitrile NO NO NO NO

Tribromoacetic acid NO NO NO NO

Tribromomethane YES NO NO YES

2,4,6-Tribromophenol NO NO NO NO

Trichloroacetic acid NO NO NO NO

Trichloroacetonitrile NO NO NO NO

Tricholoroethene YES NO NO YES

Trichloromethane NO NO YES YES

1,2,3-Trichloropropane YES NO YES YES

Other Chemical

Sodium thiosulphate NO NO NO NO

The GESAMP-BWWG chemical Database was used to identify the applicable Derived No-Effect Levels (DNELs) and Derived Minimum Effect Levels (DMELs) for each chemical requiring assessment (Table 11).

Table 11: DNELs and DMELs used in the risk assessment for humans

Chemical DNEL (µg/kg bw/d) General Public

DNEL (mg/kg bw/d) Crew

DMEL (µg/kg bw/d)

Active Substance

Sodium hypochlorite 1.4E+2 2.8E-1

Relevant Chemicals

Acetaldehyde 2.1E+2 4.4E-3

Bromate ion 1.1E+1 4.1E-1 1.1E-1

Bromochloroacetic acid 3.8E+2 6.0E-3 1.3E-1

Bromochloroacetonitrile 7.5E+1 5.5E-3

Chloral hydrate 3.3E+2 6.8E-3

Chlorate ion 5.0E+1 1.4E+0

Chloropicrin 2.0E+0 1.9E-5

Dalapon 8.4E+1 2.4E-4

Dibromoacetic acid 3.6E+1 6.0E-2 1.3E-1

Dibromoacetonitrile 8.2E+1 7.1E-3

Dibromochloroacetic acid 1.5E+2 4.9E-3

Dibromochloromethane 1.1E+2 1.1E-2 1.5E+0

Dibromomethane 5.5E+2 2.3E-5

Dichloroacetic acid 6.0E+1 1.3E-2 1.7E+0

Page 35: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 31

I:\MEPC\75\MEPC 75-4-3.docx

Chemical DNEL (µg/kg bw/d) General Public

DNEL (mg/kg bw/d) Crew

DMEL (µg/kg bw/d)

Dichloroacetonitrile 2.9E+1 5.4E-3

Dichlorobromoacetic acid 2.5E+3 5.2E-3 1.7E+0

Dichlorobromomethane 2.0E+1 9.9E-3 2.4E+0

Dichloromethane 6.0E+1 1.4E-5

Formaldehyde 1.0E+2 6.3E-3 2.2E-1

Monobromoacetic acid 3.5E+1 1.3E-3

Monobromoacetonitrile 4.0E+0 5.4E-3

Monochloroacetic acid 3.5E+1 1.3E-3 Monochloroacetonitrile 4.1E+0 5.2E-3 Monochloramine 9.5E+1 1.9E-1

Tribromoacetic acid 4.3E+2 2.1E-2

Tribromomethane 8.9E+1 1.8E-1 7.7E+0

2,4,6-Tribromophenol 3.6E+2 1.9E-5

Trichloroacetic acid 4.3E+2 9.3E-3

Trichloroacetonitrile 1.7E+0 3.3E-3

Trichloroethene 3.3E-1 6.7E-4

Trichloromethane 1.2E+2 1.0E-2

1,2,3-Trichloropropane 2.9E+1 1.9E-5 2.0E-4

Other Chemical 6.7E-4

Sodium thiosulphate 9.6E+3 1.9E+1 4.3 Exposure concentrations Exposure concentrations (environment and humans) of substances associated with use and discharge of treated ballast water from the CB-OBS BWMS have been derived by using the calculation tool in the Database (https://gisis.imo.org/). The highest Relevant Chemical concentrations detected in fresh, brackish and marine waters treated during the full-scale BWMS testing estimated exposure concentrations were used as input. Exposure concentrations were calculated for:

­ the air space in the ship's ballast water tank; ­ the atmosphere surrounding the ship; and ­ leakages and spills when operating the system ­ in the harbour water and surrounding area

4.3.1 Predicted Environmental Concentration The highest concentration of chemicals detected in neutralized fresh, brackish and marine samples (across all time points) collected during full-scale BWMS testing was used as input to the database in order to estimate the Predicted Environmental Concentration (PEC) for the general and the near ship scenario. PEC values for both scenarios are shown in Table 12.

Page 36: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 32

I:\MEPC\75\MEPC 75-4-3.docx

Table 12: PEC for the harbour and the near ship scenario

PEC (µg/L)

Chemical General Near Ship

Active Substance

Sodium hypochlorite 1.2E+0 1.4E+1

Relevant Chemicals Acetaldehyde 2.7E-1 3.3E+0

Bromate ion 3.4E-1 4.1E+0

Bromochloroacetic acid 3.7E-1 4.6E+0

Bromochloroacetonitrile 1.3E-1 1.6E+0

Chloral hydrate 4.2E-1 5.2E+0

Chlorate ion 4.2E+1 5.2E+2

Chloropicrin 1.1E-3 2.0E-2

Dalapon 1.5E-2 1.8E-1

Dibromoacetic acid 3.7E+0 4.6E+1

Dibromoacetonitrile 5.1E-1 6.2E+0

Dibromochloroacetic acid 3.0E-1 3.7E+0

Dibromochloromethane 7.0E-1 1.3E+1

Dibromomethane 1.4E-3 2.7E-2

Dichloroacetic acid 8.3E-1 1.0E+1

Dichloroacetonitrile 6.0E-2 7.5E-1

Dichlorobromoacetic acid 3.2E-1 3.9E+0

Dichlorobromomethane 6.1E-1 1.2E+1

Dichloromethane 8.8E-4 2.0E-2

Formaldehyde 3.9E-1 4.8E+0

Monobromoacetic acid 7.8E-2 9.5E-1

Monobromoacetonitrile 3.3E-1 4.1E+0

Monochloramine 1.5E-1 4.1E+0

Monochloroacetic acid 7.8E-2 9.5E-1

Monochloroacetonitrile 1.6E-2 2.1E-1

Tribromoacetic acid 1.3E+0 1.6E+1

Tribromomethane 1.1E+1 1.9E+2

2,4,6-Tribromophenol 1.2E-3 1.5E-2

Trichloroacetic acid 5.8E-1 7.0E+0

Trichloroacetonitrile 1.0E-2 2.0E-1

Trichloroethene 1.9E-4 4.1E-3

Trichloromethane 6.2E-1 1.3E+1

1,2,3-Trichloropropane 1.2E-3 2.0E-2

Other Chemicals

Sodium thiosulphate 4.5E+1 5.5E+2

Page 37: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 33

I:\MEPC\75\MEPC 75-4-3.docx

4.3.2 Concentration of chemicals associated with the CB-OBS BWMS in the atmosphere

The highest concentrations of chemicals in un-neutralized and neutralized samples were used as input to the database to retrieve the concentrations to be used in the risk assessment for crew (un-neutralized samples) and the public (neutralized samples). The resulting concentrations are presented in Table 13.

Table 13: Resulting concentrations to be used in the risk assessment for humans

Chemical

Crew General public

Concentration in Tank (µg/L)

Concentration in Air (mg/m3)

Max. Concentration in MAMPEC (µg/L)

Concentration in Air (mg/m3

Active Substance

Sodium hypochlorite 8.1E+2 3.3E-3 1.2E+0 4.7E-6

Relevant Chemicals

Acetaldehyde 1.6E+1 5.8E-5 2.7E-1 9.9E-7

Bromate ion 2.0E+1 8.2E-5 3.4E-1 1.4E-6

Bromochloroacetic acid 2.4E+1 1.6E-5 3.7E-1 2.5E-7

Bromochloroacetonitrile 5.5E+0 2.8E-4 1.3E-1 6.5E-6

Chloral hydrate 3.2E+1 3.9E-6 4.2E-1 5.1E-8

Chlorate ion 2.5E+3 5.3E-9 4.2E+1 9.0E-11

Chloropicrin 1.0E-1 1.8E-3 1.1E-3 2.1E-5

Dalapon 9.0E-1 2.4E-6 1.5E-2 4.0E-8

Dibromoacetic acid 3.2E+2 5.9E-5 3.7E+0 6.9E-7

Dibromoacetonitrile 3.1E+1 5.2E-4 5.1E-1 8.5E-6

Dibromochloroacetic acid 2.2E+1 2.4E-6 3.0E-1 3.3E-8

Dibromochloromethane 7.3E+1 3.0E+0 7.0E-1 2.9E-2

Dibromomethane 1.5E-1 5.1E-3 1.4E-3 4.8E-5

Dichloroacetic acid 5.2E+1 1.8E-5 8.3E-1 2.9E-7

Dichloroacetonitrile 2.8E+0 4.4E-4 6.0E-2 9.5E-6

Dichlorobromoacetic acid 2.0E+1 6.6E-6 3.2E-1 1.1E-7

Dichlorobromomethane 6.9E+1 6.1E+0 6.1E-1 5.4E-2

Dichloromethane 1.0E-1 1.4E-2 8.8E-4 1.2E-4

Formaldehyde 2.4E+1 3.3E-4 3.9E-1 5.4E-6

Monobromoacetic acid 2.5E+1 6.8E-6 7.8E-2 2.1E-8

Monobromoacetonitrile 1.9E+1 2.8E-3 3.3E-1 4.9E-5

Monochloramine 3.6E+2 6.1E+0 1.5E-1 2.6E-3

Monochloroacetic acid 5.8E+0 2.2E-6 7.8E-2 3.0E-8

Monochloroacetonitrile 1.0E+0 4.5E-4 1.6E-2 7.3E-6

Tribromoacetic acid 1.7E+2 2.4E-5 1.3E+0 1.8E-7

Tribromomethane 9.2E+2 2.0E+1 1.1E+1 2.4E-1

2,4,6-Tribromophenol 3.6E-1 7.1E-7 1.2E-3 2.3E-9

Trichloroacetic acid 3.4E+1 2.3E-5 5.8E-1 3.9E-7

Trichloroacetonitrile 1.0E+0 5.6E-2 1.0E-2 5.7E-4

Page 38: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 34

I:\MEPC\75\MEPC 75-4-3.docx

Chemical

Crew General public

Concentration in Tank (µg/L)

Concentration in Air (mg/m3)

Max. Concentration in MAMPEC (µg/L)

Concentration in Air (mg/m3

Trichloroethene 2.0E-2 8.2E-3 1.9E-4 7.7E-5

Trichloromethane 6.9E+1 1.0E+1 6.2E-1 9.3E-2

1,2,3-Trichloropropane 1.0E-1 1.3E-3 1.2E-3 1.5E-5

Other Chemical

Sodium Thiosulphate Not applicable Not applicable 4.5E+1 1.8E-4

5 WHOLE EFFLUENT TESTING As described in section 2.4, full-scale land-based test cycles of the CB-OBS BWMS were performed in three water types (fresh, brackish and marine). Water for WET-testing was sampled at the time of discharge (120 h), post neutralization for all water qualities. Sampled water was tested for acute toxicity to three taxonomic groups (algae, crustaceans and fish) in line with Procedure (G9) and the Methodology, section 3.3.2. For fish, only one test concentration was tested (limit test) to reduce the number of fishes. Two species of algae were tested for each water quality. Additional tests with the most sensitive species of algae (Pseudokirchneriella subcapitata in fresh water and Skeletonema costatum in brackish and marine water) in each water quality were performed to demonstrate comparability of the two sets of test water used for DBP-analyses. All tests fulfilled method specific validity criteria, except for a slight overrun of the criteria of control pH increase during the marine water tests with the algae Tetraselmis suecica. The observed pH increase was 1.1 compared to the target value of ≤ 1. This is not considered to have influenced the quality of the test. The growth inhibition tests on algae did fulfil the criteria defined by section 6.2.1.4. of the Methodology. Results from WET testing across water qualities indicate low toxicity of water treated with the CB-OBS. The results are expressed as effective concentration (EC) values or lethal concentration values (LC) as summarized in Table 14. Laboratory reports are provided in Appendices 4 and 5 of the confidential dossiers.

Table 14: Results from WET testing. Values in brackets represent results from analyses of water from land-based tests used for additional DBP-analyses.

Test Test organism Salinity (PSU)

Endpoints

Effect estimates (%)

References/ Guidelines

EC10/ LC10

EC50/ LC50

Fresh water

Algae Pseudokirchneriella subcapitata

0.9 PSU Growth rate

53 (73)1)

>88 (>88)1)

ISO 8692 OECD 201

Desmodesmus subspicatus

0.9 PSU Growth rate

>88 >88 ISO 8692

OECD 201

Crustacean Daphnia magna 0.9 PSU Immobili-zation

>100 >100 OECD 202 ISO 6341

Fish Danio rerio 0.9 PSU Mortality (limit test)

> 50 >50 OECD 203

Brackish water

Algae Skeletonema costatum1) 20 PSU Growth rate

>91 (>91) 1)

>91 (>91)1)

ISO 10253

Tetraselmis suecica

20 PSU Growth rate

>91 >91 ISO10253

Crustacean Acartia tonsa 20 PSU Mortality >100 >100 ISO14669 ISO 1999

Fish Platichthys flesus 20 PSU Mortality >100 > 100 OECD 203

Page 39: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 35

I:\MEPC\75\MEPC 75-4-3.docx

Test Test organism Salinity (PSU)

Endpoints

Effect estimates (%)

References/ Guidelines

EC10/ LC10

EC50/ LC50

(limit test)

Marine water

Algae Skeletonema costatum 1) 29 PSU Growth rate

71 (>53)1)

>91 (>911)

ISO 10253

Tetraselmis suecica

29 PSU Growth rate

>91 > 91 ISO 10253

Crustacean Acartia tonsa 29 PSU Mortality 61 >100 ISO 14699 ISO 1999

Fish Platichthys flesus 29 PSU Mortality (limit test)

>91 >91 OECD203

. 1) The strain NIVA Bac 1, which was recently renamed S. pseudocostatum.

6 RISKS TO SHIP SAFETY The operations manual provided for the BWMS include information regarding the safe operation of the system under normal use. In case of operational errors, the control system will give appropriate alarms alerting the crew to instigate corrective actions or shutdown procedures. This section covers the potential risks of damage to the structure of the ship from installing and using the CB-OBS onboard vessels. 6.1 Increased corrosion Increased corrosion is not part of this evaluation, considering document BWM.2/Circ.13/Rev.4, section 7.1.3.2, which only stipulates validation of compatibility with coating systems, for TRO dosages equal or larger than 10 mg/L expressed as Cl2. TRO, measured as FAC by the CB-OBS control system show maximum level of 7- 8 mg /L at maximum current input (RWO Veolia, 2018). This is in-line with the calculated maximum TRO generated during operation based on applied current (assuming 80% current efficiency for Cl2 generation in marine and brackish water). 6.2 Fire and explosion risks 6.2.1 Hydrogen gas Hydrogen gas mixed with air forms potentially explosive mixtures at concentrations above the Lower Explosion Limit (LEL), expressed as Vol%. The hydrogen management philosophy of the CB-OBS (see section 2.1.2) has been thoroughly investigated in a separate risk/safety assessment. The risk assessment indicates that the H2 produced as by-product by the CB-OBS will not imply any safety concerns or risks for explosive environment. Multiple independent safety layers safeguard the proper inactivation of the electrolysis process if specified process operation parameters are not met. Process control and operation ensures that the H2 formed is only evacuated from water entering the ballast water tank. In the ballast water tank, H2 leaves the treated water fast and disperses quickly in the tank open volume and thus vented very efficiently during filling of the tanks. Based on the risk assessment it is concluded that the H2 evacuation process via ballast tank venting pipes is fully sufficient even when applying high safety factors vs. the Lower Explosion Limit (LEL). Therefore, H2 formed during the CB-OBS treatment process will pose no risks to crew, ship or environment.

Page 40: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 36

I:\MEPC\75\MEPC 75-4-3.docx

6.3 Storage and handling of substances The only substance that requires storage and handling is the neutralization agent, sodium thiosulfate, in crystalline form as sodium thiosulfate pentahydrate (Na2S2O3 * 5H2O) as well as a neutralization solution as described under section 2.2.3. The Safety Data Sheet for the crystalline chemical is provided in Appendix 9 of the confidential dossier. The crystalline sodium thiosulfate pentahydrate (Na2S2O3 * 5H2O) is delivered in packages of 25 kg lined with a plastic sheeting which prevents agglutination of crystals, even in humid storage spaces. The required amount of tap water is filled in the tank and crystalline sodium thiosulfate pentahydrate constantly added through the 160 mm wide dosing tank opening at moderate quantities, while a rotary stirrer assures complete dissolution of the chemical. The rotary stirrer shall be kept running until the solution has assumed near ambient temperatures, as the solution initially cools down. Storage of the substance shall be in cool (recommended < 40°C) and dry conditions, segregated from acids and sources of ignition. A typical storage place is in the engine room store or in vicinity of the neutralization station in order to reduce handling efforts for the crew. The neutralization solution (prepared by the crew in accordance with instructions given in the manufacturer Operations, Maintenance and Safety Manual) is stored in the tank associated with the CB-OBS neutralization station. The handling of crystalline sodium thiosulfate pentahydrate requires standard Personal Protective Equipment (PPE) including splash googles, gloves, chemical resistant safety-shoes and respirator. The neutralization station does not include any exposed moving parts. In case of prolonged skin contact the safety data sheet recommends use of gloves or protection cream. The formation of dust shall be prevented during handling and good ventilation/exhaustion to be ensured at the workspace. Depending on type of trade and TRC of CB-OBS installed, 200 - 400 yearly operating hours can be anticipated. Assuming 1 mg/L TRO (measured as Cl2) as discharge average for a 500 m³/h system, at 200 operating hours (discharge only) and 3-fold overdosing, the yearly amount of crystalline sodium thiosulfate pentahydrate required is 264 kg, about eleven packages. These can be easily stored and delivered on a single standard pallet. It is the operator’s responsibility to keep the neutralization tank at an adequate level for the desired ballast water volume to be discharged. However, the system casts a low-level message to the operator, which is set to a level permitting the operator to stop deballasting without risking overboard discharge of non-compliant ballast water. RWO Veolia presently uses the above stated form of packaging, storage and handling of crystalline sodium thiosulfate pentahydrate on all CleanBallast® BWMS installations which has proven a safe and reliable solution to date. 7 RISKS TO THE CREW AND PORT STATE WORKERS Exposure scenarios associated with the CB-OBS BWMS relevant for risk to the crew may be related to:

.1 delivery, loading, mixing or adding chemicals to the BWMS

.2 ballast water sampling;

.3 periodic cleaning of ballast tanks

.4 ballast tank inspections, and,

.5 normal wok on deck.

Page 41: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 37

I:\MEPC\75\MEPC 75-4-3.docx

Scenario 1 is discussed without further modelling (section 7.1), whereas the scenarios 2-5 are addressed in sections 7.2- 7.5 by deriving relevant Risk Characterization Ratios (RCR). By using the calculation tool in the Database, exposure concentrations were compared to the applicable Derived No Effect Level (DNEL) in addition to the Derived Minimal Effect Level (DMEL) where relevant. When the RCR is <1, potential exposure risks are considered to be controlled. In cases where the Tier 1 RCR is >1, Tier 2 assessments are presented. 7.1 Delivery, loading, mixing or adding chemicals to the BWMS The neutralizer (sodium thiosulfate) is the only chemical that requires delivery, loading, mixing or dosing to the BWMS. The chemical may be handled by crew performing tasks including a potential for exposure. Sodium thiosulfate is supplied to a vessel as a dry crystalline product which can be stored onboard and, after manual preparation of the neutralizing solution, automatically dosed / injected to neutralize treated ballast water. There is potential for dermal exposure to sodium thiosulfate during preparation of the solution or during handling of the bags containing sodium thiosulfate supplied to the vessel, but the risks are considered to be mitigated by the use of appropriate PPE. Based on the guidance in the Methodology (BWM.2/Circ.13/Rev.4, appendix 4, section 2.1.2.2), as well as the chemical properties and hazard profile, potential inhalation risks from the non-volatile and water-based sodium thiosulfate solutions are considered unlikely and are not assessed. 7.2 Ballast water sampling Because neutralization is completed before ballast water discharge the substances relevant to an assessment of human health risks during ballast water sampling are those measured in ballast water post-neutralization. The highest Relevant Chemical concentrations across water qualities were used to as input into the Database to generate the report on "Worker Risk Assessment – Ballast Water Sampling". The results are summarized in Table 15 - Table 17. All calculated RCR’s using the Tier 1 DNEL approach for potential exposure risks to crew and/or port State control workers during ballast water sampling are < 1 (see Table 15). Table 15: Crew/port State control, potential exposure, ballast water sampling scenario:

DNEL approach - Tier 1 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DNEL (mg/kg bw/d)

DNEL based

RCR Tier 1

Active Substance

Sodium hypochlorite 1.2E-7 9.8E-6 9.9E-6 2.8E-1 3.6E-5

Relevant Chemicals

Acetaldehyde 2.4E-8 2.2E-6 2.3E-6 4.2E-1 5.4E-6

Bromate ion 3.4E-8 2.8E-6 2.8E-6 2.2E-2 1.3E-4

Bromochloroacetic acid 6.2E-9 3.1E-6 3.1E-6 7.5E-1 4.1E-6

Bromochloroacetonitrile 1.6E-7 1.0E-6 1.2E-6 1.5E-1 8.1E-6

Chloral hydrate 1.3E-9 3.5E-6 3.5E-6 6.7E-1 5.3E-6

Chlorate ion 2.2E-12 3.5E-4 3.5E-4 1.0E-1 3.5E-3

Chloropicrin 7.5E-7 1.4E-8 7.6E-7 4.1E-3 1.9E-4

Page 42: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 38

I:\MEPC\75\MEPC 75-4-3.docx

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DNEL (mg/kg bw/d)

DNEL based

RCR Tier 1

Dalapon 9.9E-10 1.2E-7 1.3E-7 1.7E-1 7.4E-7

Dibromoacetic acid 1.7E-8 3.1E-5 3.1E-5 7.2E-2 4.3E-4

Dibromoacetonitrile 2.1E-7 4.2E-6 4.4E-6 1.6E-1 2.7E-5

Dibromochloroacetic acid 8.1E-10 2.5E-6 2.5E-6 3.0E-1 8.5E-6

Dibromochloromethane 1.1E-3 8.8E-6 1.1E-3 2.1E-1 5.1E-3

Dibromomethane 1.8E-6 1.8E-8 1.9E-6 1.1E+0 1.7E-6

Dichloroacetic acid 7.1E-9 6.9E-6 6.9E-6 1.2E-1 5.8E-5

Dichloroacetonitrile 2.4E-7 5.0E-7 7.4E-7 5.7E-2 1.3E-5

Dichlorobromoacetic acid 2.6E-9 2.7E-6 2.7E-6 5.0E+0 5.3E-7

Dichlorobromomethane 2.2E-3 8.4E-6 2.2E-3 4.0E-2 5.5E-2

Dichloromethane 5.6E-6 1.4E-8 5.6E-6 1.2E-1 4.7E-5

Formaldehyde 1.3E-7 3.2E-6 3.4E-6 2.0E-1 1.7E-5

Monobromoacetic acid 5.2E-10 6.4E-7 6.4E-7 7.0E-2 9.2E-6

Monobromoacetonitrile 1.2E-6 2.8E-6 4.0E-6 8.0E-3 5.0E-4

Monochloramine 1.4E-4 2.8E-6 1.4E-4 1.9E-1 7.6E-4

Monochloroacetic acid 7.4E-10 6.4E-7 6.4E-7 7.0E-2 9.2E-6

Monochloroacetonitrile 1.9E-7 1.4E-7 3.3E-7 8.2E-3 4.0E-5

Tribromoacetic acid 4.4E-9 1.1E-5 1.1E-5 8.6E-1 1.2E-5

Tribromomethane 8.5E-3 1.3E-4 8.6E-3 1.8E-1 4.8E-2

2,4,6-Tribromophenol 5.7E-11 9.8E-9 9.9E-9 7.1E-1 1.4E-8

Trichloroacetic acid 9.7E-9 4.8E-6 4.8E-6 8.6E-1 5.6E-6

Trichloroacetonitrile 2.3E-5 1.4E-7 2.3E-5 3.3E-3 7.0E-3

Trichloroethene 3.4E-6 2.8E-9 3.4E-6 6.7E-4 5.1E-3

Trichloromethane 4.1E-3 9.2E-6 4.2E-3 2.4E-1 1.7E-2

1,2,3-Trichloropropane 5.5E-7 1.4E-8 5.6E-7 5.7E-2 9.9E-6

Other Chemicals

Sodium thiosulphate 4.5E-6 3.7E-4 3.7E-4 1.9E+1 2.0E-5

Results from the scenario report of the DMEL based RCR Tier 1 assessment of the CMR substances indicate RCRs < 1 for all substances except tribromomethane and 1,2,3-trichloropropane, as shown in Table 16. The group RCR is above 1. For the DMEL approach – Tier 2 assessment, all CMR substances have RCRs < 1 and the group RCR is 1, indicating no unacceptable risk to workers performing ballast water sampling (Table 17). Table 16: Crew/port State control, potential exposure, ballast water sampling scenario:

DMEL approach- Tier 1 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DMEL (mg/kg bw/d)

DMEL based RCR

Tier 1

Bromate ion 3.4E-8 2.8E-6 2.8E-6 1.1E-4 2.6E-2

Bromochloroacetic acid 6.2E-9 3.1E-6 3.1E-6 1.3E-4 2.4E-2

Dibromoacetic acid 1.7E-8 3.1E-5 3.1E-5 1.3E-4 2.4E-1

Page 43: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 39

I:\MEPC\75\MEPC 75-4-3.docx

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DMEL (mg/kg bw/d)

DMEL based RCR

Tier 1

Dibromochloromethane 1.1E-3 8.8E-6 1.1E-3 1.5E-3 7.3E-1

Dichloroacetic acid 7.1E-9 6.9E-6 6.9E-6 1.7E-3 4.0E-3

Dichlorobromoacetic acid 2.6E-9 2.7E-6 2.7E-6 1.7E-3 1.6E-3

Dichlorobromomethane 2.2E-3 8.4E-6 2.2E-3 2.4E-3 9.2E-1

Formaldehyde 1.3E-7 3.2E-6 3.4E-6 2.2E-4 1.5E-2

Tribromomethane 8.5E-3 1.3E-4 8.6E-3 7.7E-3 1.1E+0

Trichloroethene 3.4E-6 2.8E-9 3.4E-6 2.1E-4 1.6E-2

1,2,3-Trichloropropane 5.5E-7 1.4E-8 5.6E-7 2.0E-7 2.8E+0

Sum 5.9E+0

Table 17: Crew/port State control potential exposure, ballast water sampling scenario:

DMEL approach – Tier 2 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kgbw/d)

DMEL (mg/kg bw/d)

Corrected Aggr. Exp.

Tier 2 DMEL (mg/kg bw/d)

DMEL based RCR Tier 2

Bromate ion 3.4E-8 2.8E-6 2.8E-6 1.1E-4 5.0E-7 4.5E-3

Bromochloroacetic acid 6.2E-9 3.1E-6 3.1E-6 1.3E-4 5.4E-7 4.2E-3

Dibromoacetic acid 1.7E-8 3.1E-5 3.1E-5 1.3E-4 5.4E-6 4.2E-2

Dibromochloromethane 1.1E-3 8.8E-6 1.1E-3 1.5E-3 1.9E-4 1.3E-1

Dichloroacetic acid 7.1E-9 6.9E-6 6.9E-6 1.7E-3 1.2E-6 7.1E-4

Dichlorobromoacetic acid

2.6E-9 2.7E-6 2.7E-6 1.7E-3 4.7E-7 2.8E-4

Dichlorobromomethane 2.2E-3 8.4E-6 2.2E-3 2.4E-3 3.9E-4 1.6E-1

Formaldehyde 1.3E-7 3.2E-6 3.4E-6 2.2E-4 5.9E-7 2.7E-3

Tribromomethane 8.5E-3 1.3E-4 8.6E-3 7.7E-3 1.5E-3 2.0E-1

Trichloroethene 3.4E-6 2.8E-9 3.4E-6 2.1E-4 6.0E-7 2.9E-3

1,2,3-Trichloropropane 5.5E-7 1.4E-8 5.6E-7 2.0E-7 9.9E-8 5.0E-1

Sum 1.0E+0

7.3 Periodic ballast water tank cleaning As the CB-OBS BWMS neutralizes the TRO during discharge, the substances most relevant for the assessment of human health risks during periodic ballast tank cleaning are those potentially associated with treated ballast water pre-neutralization. The highest identified values in the chemical analyses of water sampled before neutralization was used as input to the Database in order to generate the report for scenario "Worker risk Assessment – Ballast Tank Cleaning". All calculated RCR’s using the Tier 1 DNEL approach for potential exposure risks are < 1 except for Dichlorobromomethane and Tribromomethane as shown in Table 18. The Tier 2 assessment show RCR <1 for both compounds (Table 19).

Page 44: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 40

I:\MEPC\75\MEPC 75-4-3.docx

Table 18: Crew potential exposure, periodic ballast water tank cleaning scenario: DNEL approach -Tier 1 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DNEL (mg/kg bw/d)

DNEL based RCR Tier 1

Active Substance

Sodium hypochlorite 5.6E-5 2.6E-3 2.7E-3 2.8E-1 9.8E-3

Relevant Chemicals

Acetaldehyde 9.7E-7 5.2E-5 5.3E-5 4.2E-1 1.3E-4

Bromate ion 1.4E-6 6.5E-5 6.6E-5 2.2E-2 3.0E-3

Bromochloroacetic acid 2.7E-7 7.8E-5 7.8E-5 7.5E-1 1.0E-4

Bromochloroacetonitrile 4.7E-6 1.8E-5 2.3E-5 1.5E-1 1.5E-4

Chloral hydrate 6.5E-8 1.0E-4 1.0E-4 6.7E-1 1.6E-4

Chlorate ion 8.9E-11 8.1E-3 8.1E-3 1.0E-1 8.1E-2

Chloropicrin 3.0E-5 3.2E-7 3.0E-5 4.1E-3 7.4E-3

Dalapon 4.0E-8 2.9E-6 3.0E-6 1.7E-1 1.7E-5

Dibromoacetic acid 9.8E-7 1.0E-3 1.0E-3 7.2E-2 1.4E-2

Dibromoacetonitrile 8.7E-6 1.0E-4 1.1E-4 1.6E-1 6.6E-4

Dibromochloroacetic acid

4.0E-8 7.1E-5 7.1E-5 3.0E-1 2.4E-4

Dibromochloromethane 5.0E-2 2.4E-4 5.0E-2 2.1E-1 2.3E-1

Dibromomethane 8.5E-5 4.9E-7 8.6E-5 1.1E+0 7.8E-5

Dichloroacetic acid 3.0E-7 1.7E-4 1.7E-4 1.2E-1 1.4E-3

Dichloroacetonitrile 7.4E-6 9.1E-6 1.6E-5 5.7E-2 2.9E-4

Dichlorobromoacetic acid

1.1E-7 6.5E-5 6.5E-5 5.0E+0 1.3E-5

Dichlorobromomethane 1.0E-1 2.2E-4 1.0E-1 4.0E-2 2.5E+0

Dichloromethane 2.3E-4 3.2E-7 2.3E-4 1.2E-1 1.9E-3

Formaldehyde 5.6E-6 7.8E-5 8.3E-5 2.0E-1 4.2E-4

Monobromoacetic acid 1.1E-7 8.1E-5 8.1E-5 7.0E-2 1.2E-3

Monobromoacetonitrile 4.6E-5 6.1E-5 1.1E-4 8.0E-3 1.3E-2

Monochloramine 1.0E-1 1.2E-3 1.0E-1 1.9E-1 5.4E-1

Monochloroacetic acid 3.7E-8 1.9E-5 1.9E-5 7.0E-2 2.7E-4

Monochloroacetonitrile 7.5E-6 3.2E-6 1.1E-5 8.2E-3 1.3E-3

Tribromoacetic acid 3.9E-7 5.5E-4 5.5E-4 8.6E-1 6.4E-4

Tribromomethane 3.4E-1 3.0E-3 3.4E-1 1.8E-1 1.9E+0

2,4,6-Tribromophenol 1.2E-8 1.2E-6 1.2E-6 7.1E-1 1.6E-6

Trichloroacetic acid 3.9E-7 1.1E-4 1.1E-4 8.6E-1 1.3E-4

Trichloroacetonitrile 9.3E-4 3.2E-6 9.3E-4 3.3E-3 2.8E-1

Trichloroethene 1.4E-4 6.5E-8 1.4E-4 6.7E-4 2.0E-1

Trichloromethane 1.7E-1 2.2E-4 1.7E-1 2.4E-1 7.1E-1

1,2,3-Trichloropropane 2.2E-5 3.2E-7 2.2E-5 5.7E-2 3.9E-4

Page 45: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 41

I:\MEPC\75\MEPC 75-4-3.docx

Table 19: Crew potential exposure, periodic ballast water tank cleaning scenario: DNEL approach -Tier 2 assessment

Chemical

Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure (mg/kg bw/d)

Corrected Aggr.Exp.Tier 2 (DNEL) (mg/kg/ bw/d)

DNEL based RCR Tier 2

Dichlorobromomethane 1.0E-1 2.2E-4 1.0E-1 1.4E-3 3.5E-2

Tribromomethane 3.4E-1 3.0E-3 3.4E-1 4.7E-3 2.6E-2

For the DMEL based RCR Tier 1 assessment, the report shows RCR > 1 for dibromoacetic acid, dibromochloromethane, dichlorobromomethane, Tribromomethane and 1,2,3-Trichlorpropane. The group RCR was also > 1 as shown in Table 20. RCRs for all compounds are <1 in the DMEL based RCR Tier 2 assessment as shown in Table 21 and the group RCR is below 1. The assessment indicates no unacceptable risk to workers performing periodic ballast water tank cleaning when the CB-OBS BWMS has been used.

Table 20: Crew potential exposure, periodic ballast water tank cleaning scenario: DMEL 1 approach: Tier 1 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

DMEL (mg/kg bw/d)

DMEL based RCR Tier 1

Bromate ion 1.4E-6 6.5E-5 6.6E-5 1.1E-4 6.0E-1

Bromochloroacetic acid 2.7E-7 7.8E-5 7.8E-5 1.3E-4 6.0E-1

Dibromoacetic acid 9.8E-7 1.0E-3 1.0E-3 1.3E-4 8.0E+0

Dibromochloromethane 5.0E-2 2.4E-4 5.0E-2 1.5E-3 3.4E+1

Dichloroacetic acid 3.0E-7 1.7E-4 1.7E-4 1.7E-3 9.9E-2

Dichlorobromoacetic acid

1.1E-7 6.5E-5 6.5E-5 1.7E-3 3.8E-2

Dichlorobromomethane 1.0E-1 2.2E-4 1.0E-1 2.4E-3 4.2E+1

Formaldehyde 5.6E-6 7.8E-5 8.3E-5 2.2E-4 3.8E-1

Tribromomethane 3.4E-1 3.0E-3 3.4E-1 7.7E-3 4.5E+1

Trichloroethene 1.4E-4 6.5E-8 1.4E-4 2.1E-4 6.5E-1

1,2,3-Trichloropropane 2.2E-5 3.2E-7 2.2E-5 2.0E-7 1.1E+2

Sum 2.4E+2

Table 21: Crew potential exposure, periodic ballast water tank cleaning scenario: DMEL approach- Tier 2 assessment

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

Corrected Aggr. Exposure (DMEL) (mg/kg bw/d)

DMEL based RCR Tier 2

Bromate ion 1.4E-6 6.5E-5 6.6E-5 2.6E-7 2.3E-3

Bromochloroacetic acid 2.7E-7 7.8E-5 7.8E-5 3.0E-7 2.3E-3

Dibromoacetic acid 9.8E-7 1.0E-3 1.0E-3 4.1E-6 3.1E-2

Page 46: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 42

I:\MEPC\75\MEPC 75-4-3.docx

Chemical Inhalation exposure

Dermal exposure

(mg/kg bw/d)

Aggregated exposure

(mg/kg bw/d)

Corrected Aggr. Exposure (DMEL) (mg/kg bw/d)

DMEL based RCR Tier 2

Dibromochloromethane 5.0E-2 2.4E-4 5.0E-2 2.0E-4 1.3E-1

Dichloroacetic acid 3.0E-7 1.7E-4 1.7E-4 6.6E-7 3.9E-4

Dichlorobromoacetic acid

1.1E-7 6.5E-5 6.5E-5 2.5E-7 1.5E-4

Dichlorobromomethane 1.0E-1 2.2E-4 1.0E-1 4.0E-4 1.7E-1

Formaldehyde 5.6E-6 7.8E-5 8.3E-5 3.3E-7 1.5E-3

Tribromomethane 3.4E-1 3.0E-3 3.4E-1 1.3E-3 1.7E-1

Trichloroethene 1.4E-4 6.5E-8 1.4E-4 5.3E-7 2.5E-3

1,2,3-Trichloropropane 2.2E-5 3.2E-7 2.2E-5 8.7E-8 4.4E-1

SUM 9.5E-1

7.4 Ballast tank inspection Inspections of ballast tanks happens after the tanks have been emptied of treated, un-neutralized ballast water and the highest chemical concentrations identified in water sampled before neutralization was used as input to the Database for generating the report on the scenario "Worker Risk Assessment – Ballast Tank Inspection". The DNEL RCR values for the Tier 1 assessment, as calculated by the Database, are < 1 for all chemicals (Table 22).

Table 22: Crew/port State control potential exposure, ballast tank inspections scenario: DNEL approach -Tier 1 assessment

Scenario

(mg/kg bw/d) DNEL (mg/kg bw/d)

DNEL based RCR Tier 1

Chemical Inhalation

Active Substance

Sodium hypochlorite 2.1E-5 2.8E-1 7.6E-5

Relevant Chemicals

Acetaldehyde 3.7E-7 4.2E-1 8.8E-7

Bromate ion 5.1E-7 2.2E-2 2.3E-5

Bromochloroacetic acid 1.0E-7 7.5E-1 1.3E-7

Bromochloroacetonitrile 1.8E-6 1.5E-1 1.2E-5

Chloral hydrate 2.4E-8 6.7E-1 3.6E-8

Chlorate ion 3.3E-11 1.0E-1 3.3E-10

Chloropicrin 1.1E-5 4.1E-3 2.8E-3

Dalapon 1.5E-8 1.7E-1 8.9E-8

Dibromoacetic acid 3.7E-7 7.2E-2 5.1E-6

Dibromoacetonitrile 3.3E-6 1.6E-1 2.0E-5

Dibromochloroacetic acid 1.5E-8 3.0E-1 5.0E-8

Dibromochloromethane 1.9E-2 2.1E-1 8.8E-2

Page 47: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 43

I:\MEPC\75\MEPC 75-4-3.docx

Scenario

(mg/kg bw/d) DNEL (mg/kg bw/d)

DNEL based RCR Tier 1

Chemical Inhalation

Dibromomethane 3.2E-5 1.1E+0 2.9E-5

Dichloroacetic acid 1.1E-7 1.2E-1 9.5E-7

Dichloroacetonitrile 2.8E-6 5.7E-2 4.8E-5

Dichlorobromoacetic acid 4.1E-8 5.0E+0 8.2E-9

Dichlorobromomethane 3.8E-2 4.0E-2 9.5E-1

Dichloromethane 8.4E-5 1.2E-1 7.0E-4

Formaldehyde 2.1E-6 2.0E-1 1.0E-5

Monobromoacetic acid 4.2E-8 7.0E-2 6.0E-7

Monobromoacetonitrile 1.7E-5 8.0E-3 2.2E-3

Monochloramine 3.8E-2 1.9E-1 2.0E-1

Monochloroacetic acid 1.4E-8 7.0E-2 2.0E-7

Monochloroacetonitrile 2.8E-6 8.2E-3 3.5E-4

Tribromoacetic acid 1.5E-7 8.6E-1 1.7E-7

Tribromomethane 1.3E-1 1.8E-1 7.2E-1

2,4,6-Tribromophenol 4.4E-9 7.1E-1 6.2E-9

Trichloroacetic acid 1.5E-7 8.6E-1 1.7E-7

Trichloroacetonitrile 3.5E-4 3.3E-3 1.0E-1

Trichloroethene 5.1E-5 6.7E-4 7.7E-2

Trichloromethane 6.5E-2 2.4E-1 2.7E-1

1,2,3-Trichloropropane 8.2E-6 5.7E-2 1.4E-4

The report on the CMR substances, show that the Tier 1 RCRs are < 1 for all compounds except dibromochloromethane, dichlorobromomethane, tribromomethane and 1,2,3-trichloropropane. The group RCR is above 1 (Table 23). A Tier 2 DMEL assessment generates RCR values < 1 for all compounds as shown in Table 24. This result indicates no unacceptable risk for workers performing inspections of ballast tanks that have been used to store ballast water treated with the CB-OBS.

Table 23: Crew/port State control potential exposure, ballast tank inspections scenario: DMEL approach -Tier 1 assessment

Scenario (mg/kg bw/d) DMEL (mg/kg bw/d)

DMEL based RCR Tier 1

Inhalation

Chemical

Bromate ion 5.1E-7 1.1E-4 4.7E-3

Bromochloroacetic acid 1.0E-7 1.3E-4 7.8E-4

Dibromoacetic acid 3.7E-7 1.3E-4 2.8E-3

Dibromochloromethane 1.9E-2 1.5E-3 1.3E+1

Dichloroacetic acid 1.1E-7 1.7E-3 6.7E-5

Dichlorobromoacetic acid 4.1E-8 1.7E-3 2.4E-5

Page 48: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 44

I:\MEPC\75\MEPC 75-4-3.docx

Scenario (mg/kg bw/d) DMEL (mg/kg bw/d)

DMEL based RCR Tier 1

Inhalation

Chemical

Dichlorobromomethane 3.8E-2 2.4E-3 1.6E+1

Formaldehyde 2.1E-6 2.2E-4 9.5E-3

Tribromomethane 1.3E-1 7.7E-3 1.7E+1

Trichloroethene 5.1E-5 2.1E-4 2.4E-1

1,2,3-Trichloropropane 8.2E-6 2.0E-7 4.1E+1

SUM 8.6E+1

Table 24: Crew/port State control potential exposure, ballast tank inspections scenario: DMEL approach – Tier 2 assessment

Scenario (mg/kg bw/d) DMEL (mg/kg

bw/d)

DMEL based RCR Tier 2

Corrected inhalation DMEL (mg/kg bw/d)

Chemical

Bromate ion 4.8E-9 1.1E-4 4.4E-5

Bromochloroacetic acid 9.5E-10 1.3E-4 7.3E-6

Dibromoacetic acid 3.5E-9 1.3E-4 2.7E-5

Dibromochloromethane 1.8E-4 1.5E-3 1.2E-1

Dichloroacetic acid 1.1E-9 1.7E-3 6.3E-7

Dichlorobromoacetic acid 3.9E-10 1.7E-3 2.3E-7

Dichlorobromomethane 3.6E-4 2.4E-3 1.5E-1

Formaldehyde 2.0E-8 2.2E-4 8.9E-5

Tribromomethane 1.2E-3 7.7E-3 1.6E-1

Trichloroethene 4.8E-7 2.1E-4 2.3E-3

1,2,3-Trichloropropane 7.7E-8 2.0E-7 3.9E-1

SUM 8.1E-1

7.5 Crew performing normal work on deck The potential for exposure in this scenario is through inhalation of air released from the air vents for crew performing normal work on deck. The highest concentration of chemicals in water sampled before neutralization was used as input in the database to generate the report from the scenario "Worker Risk Assessment Normal Work on Deck". The report shows RCR values < 1 for all chemicals for the DNEL based RCR tier 1 scenario (Table 25). For the DMEL approach for the CMR compounds, the RCRs Tier 1 are < 1 for all CMR substances except 1,2,3-trichloropropane and the group RCR is above 1 (Table 26). The DMEL Tier 2 RCR is however < 1 for this chemical, indicating no unacceptable risk to crew performing work on deck in relation to the use of the CB-OBS BWMS (Table 27).

Page 49: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 45

I:\MEPC\75\MEPC 75-4-3.docx

Table 25: Crew potential exposure, normal work on deck scenario: DNEL approach-Tier 1 assessment

Chemical Scenario (mg/kg

bw/d) DNEL (mg/kg

bw/d) DNEL based RCR Tier 1

Inhalation

Active Substance

Sodium hypochlorite 7.0E-7 2.8E-1 2.5E-6

Relevant Chemicals

Acetaldehyde 1.2E-8 4.2E-1 2.9E-8

Bromate ion 1.7E-8 2.2E-2 7.8E-7

Bromochloroacetic acid 3.4E-9 7.5E-1 4.5E-9

Bromochloroacetonitrile 5.9E-8 1.5E-1 4.0E-7

Chloral hydrate 8.1E-10 6.7E-1 1.2E-9

Chlorate ion 1.1E-12 1.0E-1 1.1E-11

Chloropicrin 3.8E-7 4.1E-3 9.2E-5

Dalapon 5.0E-10 1.7E-1 3.0E-9

Dibromoacetic acid 1.2E-8 7.2E-2 1.7E-7

Dibromoacetonitrile 1.1E-7 1.6E-1 6.6E-7

Dibromochloroacetic acid 5.0E-10 3.0E-1 1.7E-9

Dibromochloromethane 6.3E-4 2.1E-1 2.9E-3

Dibromomethane 1.1E-6 1.1E+0 9.7E-7

Dichloroacetic acid 3.8E-9 1.2E-1 3.2E-8

Dichloroacetonitrile 9.2E-8 5.7E-2 1.6E-6

Dichlorobromoacetic acid 1.4E-9 5.0E+0 2.7E-10

Dichlorobromomethane 1.3E-3 4.0E-2 3.2E-2

Dichloromethane 2.8E-6 1.2E-1 2.3E-5

Formaldehyde 7.0E-8 2.0E-1 3.5E-7

Monobromoacetic acid 1.4E-9 7.0E-2 2.0E-8

Monobromoacetonitrile 5.8E-7 8.0E-3 7.3E-5

Monochloramine 1.3E-3 1.9E-1 6.7E-3

Monochloroacetic acid 4.7E-10 7.0E-2 6.6E-9

Monochloroacetonitrile 9.4E-8 8.2E-3 1.2E-5

Tribromoacetic acid 4.9E-9 8.6E-1 5.7E-9

Tribromomethane 4.3E-3 1.8E-1 2.4E-2

2,4,6-Tribromophenol 1.5E-10 7.1E-1 2.1E-10

Trichloroacetic acid 4.8E-9 8.6E-1 5.7E-9

Trichloroacetonitrile 1.2E-5 3.3E-3 3.5E-3

Trichloroethene 1.7E-6 6.7E-4 2.6E-3

Trichloromethane 2.2E-3 2.4E-1 8.8E-3

1,2,3-Trichloropropane 2.7E-7 5.7E-2 4.8E-6

Page 50: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 46

I:\MEPC\75\MEPC 75-4-3.docx

Table 26: Crew potential exposure, normal work on deck scenario: DMEL approach -Tier 1 assessment

Chemical Scenario

(mg/kg bw/d) DMEL (mg/kg

bw/d) DMEL RCR Tier 1

Inhalation

Bromate ion 1.7E-8 1.1E-4 1.6E-4

Bromochloroacetic acid 3.4E-9 1.3E-4 2.6E-5

Dibromoacetic acid 1.2E-8 1.3E-4 9.4E-5

Dibromochloromethane 6.3E-4 1.5E-3 4.2E-1

Dichloroacetic acid 3.8E-9 1.7E-3 2.2E-6

Dichlorobromoacetic acid 1.4E-9 1.7E-3 8.0E-7

Dichlorobromomethane 1.3E-3 2.4E-3 5.3E-1

Formaldehyde 7.0E-8 2.2E-4 3.2E-4

Tribromomethane 4.3E-3 7.7E-3 5.5E-1

Trichloroethene 1.7E-6 2.1E-4 8.1E-3

1,2,3-Trichloropropane 2.7E-7 2.0E-7 1.4E+0

SUM 2.9E+0

Table 27: Crew potential exposure, normal work on deck scenario: DMEL approach- Tier 2 assessment

Chemical Scenario (mg/kg bw/d)

DMEL (mg/kg bw/d)

DMEL RCR Tier 2

Corrected Exposure Inhalation

Bromate ion 2.4E-9 1.1E-4 2.2E-5

Bromochloroacetic acid 4.7E-10 1.3E-4 3.6E-6

Dibromoacetic acid 1.7E-9 1.3E-4 1.3E-5

Dibromochloromethane 8.8E-5 1.5E-3 5.9E-2

Dichloroacetic acid 5.3E-10 1.7E-3 3.1E-7

Dichlorobromoacetic acid 1.9E-10 1.7E-3 1.1E-7

Dichlorobromomethane 1.8E-4 2.4E-3 7.4E-2

Formaldehyde 9.8E-9 2.2E-4 4.5E-5

Tribromomethane 6.0E-4 7.7E-3 7.8E-2

Trichloroethene 2.4E-7 2.1E-4 1.1E-3

1,2,3-Trichloropropane 3.9E-8 2.0E-7 1.9E-1

SUM 4.1E-1

8 RISKS TO THE GENERAL PUBLIC Risks to the general public are most likely to occur as a result of:

.1 swimming in seawater contaminated with treated ballast water where exposure may be via ingestion (accidental swallowing), inhalation and dermal contact, and

.2 consumption of seafood which has been exposed to Relevant Chemicals in

the treated ballast water

Page 51: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 47

I:\MEPC\75\MEPC 75-4-3.docx

DNEL and DMEL values, exposure levels resulting from swimming (inhalation, dermal exposure, oral uptake), consumption of seafood and aggregated exposure concentrations were derived from the Database using the maximum concentration of chemicals in water sampled after neutralization and the report on "General Public Risk Assessment – Tier 1". The report indicates RCR values < 1 for all chemicals in this scenario as shown in Table 28.

Table 28: General public scenario: swimming and consumption of seafood

Exposure concentration (µg/kg bw/d) Aggreg-

ated Exposure

(µg/kg bw/d)

DNEL (µg/kg bw/d)

RCR Tier 1

Swimming

Seafood Consump-

tion

Chemical Oral Dermal

Inhala-tion

Oral

Active Substance

Sodium hypochlorite 1.2E-3 1.9E-2 2.5E-6 NA 2.0E-2 1.4E+2 1.4E-4

Relevant Chemicals

Acetaldehyde 2.8E-4 4.4E-3 5.1E-7 2.7E-3 7.4E-3 2.1E+2 3.5E-5

Bromate ion 3.5E-4 5.5E-3 7.2E-7 2.1E-4 6.0E-3 1.1E+1 5.5E-4

Bromochloroacetic acid 3.9E-4 6.0E-3 1.3E-7 3.7E-3 1.0E-2 3.8E+2 2.7E-5

Bromochloroacetonitrile 1.3E-4 2.0E-3 3.4E-6 1.2E-3 3.4E-3 7.5E+1 4.5E-5

Chloral hydrate 4.4E-4 6.8E-3 2.7E-8 6.6E-3 1.4E-2 3.3E+2 4.2E-5

Chlorate ion 4.4E-2 6.8E-1 4.7E-

11 4.2E-1 1.1E+0 5.0E+1 2.3E-2

Chloropicrin 1.2E-6 1.9E-5 1.1E-5 2.9E-5 5.9E-5 2.0E+0 2.9E-5

Dalapon 1.6E-5 2.4E-4 2.1E-8 1.4E-4 4.0E-4 8.4E+1 4.7E-6

Dibromoacetic acid 3.9E-3 6.0E-2 3.6E-7 2.3E-3 6.6E-2 3.6E+1 1.8E-3

Dibromoacetonitrile 5.3E-4 8.2E-3 4.4E-6 1.6E-4 8.9E-3 8.2E+1 1.1E-4

Dibromochloroacetic acid

3.2E-4 4.9E-3 1.7E-8 3.0E-3 8.3E-3 1.5E+2 5.6E-5

Dibromochloromethane 7.2E-4 1.1E-2 1.5E-2 1.5E-2 4.2E-2 1.1E+2 3.9E-4

Dibromomethane 1.5E-6 2.3E-5 2.5E-5 1.8E-5 6.7E-5 5.5E+2 1.2E-7

Dichloroacetic acid 8.6E-4 1.3E-2 1.5E-7 1.0E-3 1.5E-2 6.0E+1 2.6E-4

Dichloroacetonitrile 6.3E-5 9.7E-4 4.9E-6 5.6E-4 1.6E-3 2.9E+1 5.6E-5

Dichlorobromoacetic acid

3.4E-4 5.2E-3 5.5E-8 3.2E-3 8.7E-3 2.5E+3 3.5E-6

Dichlorobromomethane 6.4E-4 9.9E-3 2.8E-2 9.2E-3 4.8E-2 2.0E+1 2.4E-3

Dichloromethane 9.2E-7 1.4E-5 6.2E-5 1.5E-5 9.2E-5 6.0E+1 1.5E-6

Formaldehyde 4.0E-4 6.3E-3 2.8E-6 3.6E-3 1.0E-2 1.0E+2 1.0E-4

Monobromoacetic acid 8.1E-5 1.3E-3 1.1E-8 2.4E-5 1.4E-3 3.5E+1 3.9E-5

Monobromoacetonitrile 3.5E-4 5.4E-3 2.5E-5 5.2E-3 1.1E-2 4.0E+0 2.8E-3

Monochloramine 1.6E-4 2.5E-3 1.3E-3 1.4E-4 4.1E-3 9.5E+1 4.3E-5

Monochloroacetic acid 8.1E-5 1.3E-3 1.6E-8 2.4E-5 1.4E-3 3.5E+1 3.9E-5

Monochloroacetonitrile 1.7E-5 2.6E-4 3.8E-6 1.5E-4 4.3E-4 4.1E+0 1.1E-4

Tribromoacetic acid 1.3E+0 1.3E-3 2.1E-2 9.3E-8 1.0E-2 3.2E-2 4.3E+2

Tribromomethane 1.1E+1 1.1E-2 1.8E-1 1.3E-1 4.2E-1 7.3E-1 8.9E+1

2,4,6-Tribromophenol 1.2E-3 1.2E-6 1.9E-5 1.2E-9 1.9E-3 1.9E-3 3.6E+2

Page 52: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 48

I:\MEPC\75\MEPC 75-4-3.docx

Exposure concentration (µg/kg bw/d)

Aggreg-ated

Exposure (µg/kg bw/d)

DNEL (µg/kg bw/d)

RCR Tier 1

Swimming

Seafood Consump-

tion

Chemical Oral Dermal

Inhala-tion

Oral

Trichloroacetic acid 5.8E-1 6.0E-4 9.3E-3 2.1E-7 1.8E-3 1.2E-2 4.3E+2

Trichloroacetonitrile 1.0E-2 1.1E-5 1.6E-4 3.0E-4 2.5E-4 7.3E-4 1.7E+0

Trichloroethene 1.9E-4 2.0E-7 3.1E-6 4.0E-5 5.3E-5 9.7E-5 3.3E-1

Trichloromethane 6.2E-1 6.5E-4 1.0E-2 4.9E-2 8.7E-3 6.8E-2 1.2E+2

1,2,3-Trichloropropane 1.2E-3 1.2E-6 1.9E-5 8.0E-6 3.3E-5 6.1E-5 2.9E+1

Other Chemical

Sodium thiosulphate 4.7E-2 7.2E-1 9.6E-5 NA 7.7E-1 9.6E+3 8.1E-5

For the CMR substances, all RCR values are < 1 (Table 29), but the group average is slightly above 1. The Tier 2 assessment results in a ratio RCR < 1 for all chemicals and the group RCR is below 1. (Table 30). The assessment indicates that there is no unacceptable risk to the general public from CB-OBS treated ballast water.

Table 29: General public scenario: swimming and consumption of seafood: DMEL approach -Tier 1 assessment

Exposure concentration (µg/kg bw/d)

Aggregated exposure

(µg/kg bw/d)

DMEL (µg/kg bw/d)

RCR Tier-1

Swimming

Sea food consump-

tion

Oral Dermal

Inhala-tion

Oral

Bromate ion 3.5E-4 5.5E-3 7.2E-7 2.1E-4 6.0E-3 1.1E-1 5.5E-2

Bromochloroacetic acid 3.9E-4 6.0E-3 1.3E-7 3.7E-3 1.0E-2 1.3E-1 7.8E-2

Dibromoacetic acid 3.9E-3 6.0E-2 3.6E-7 2.3E-3 6.6E-2 1.3E-1 5.1E-1

Dibromochloromethane 7.2E-4 1.1E-2 1.5E-2 1.5E-2 4.2E-2 1.5E+0 2.8E-2

Dichloroacetic acid 8.6E-4 1.3E-2 1.5E-7 1.0E-3 1.5E-2 1.7E+0 9.0E-3

Dichlorobromoacetic acid

3.4E-4 5.2E-3 5.5E-8 3.2E-3 8.7E-3 1.7E+0 5.1E-3

Dichlorobromomethane 6.4E-4 9.9E-3 2.8E-2 9.2E-3 4.8E-2 2.4E+0 2.0E-2

Formaldehyde 4.0E-4 6.3E-3 2.8E-6 3.6E-3 1.0E-2 2.2E-1 4.7E-2

Tribromomethane 1.1E-2 1.8E-1 1.3E-1 4.2E-1 7.3E-1 7.7E+0 9.5E-2

Trichloroethene 2.0E-7 3.1E-6 4.0E-5 5.3E-5 9.7E-5 2.1E-1 4.6E-4

1,2,3-Trichloropropane 1.2E-6 1.9E-5 8.0E-6 3.3E-5 6.1E-5 2.0E-4 3.0E-1

SUM 1.2E+0

Page 53: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 49

I:\MEPC\75\MEPC 75-4-3.docx

Table 30: General public scenario: swimming and consumption of seafood: DMEL approach – Tier 2 assessment

Exposure concentration (µg/kg bw/d)

Aggregated exposure

(µg/kg bw/d)

DMEL (µg/kg bw/d)

RCR Tier-2

Swimming

Sea food consump-

tion

Chemical Oral Dermal Inhala-

tion Oral

Bromate ion 3.9E-6 6.0E-5 7.9E-9 2.3E-6 6.6E-5 1.1E-1 6.0E-4

Bromochloroacetic acid 4.2E-6 6.6E-5 1.4E-9 4.1E-5 1.1E-4 1.3E-1 8.5E-4

Dibromoacetic acid 4.2E-5 6.6E-4 3.9E-9 2.6E-5 7.3E-4 1.3E-1 5.6E-3

Dibromochloromethane 6.3E-6 9.7E-5 1.3E-4 1.3E-4 3.6E-4 1.5E+0 2.4E-4

Dichloroacetic acid 9.4E-6 1.5E-4 1.6E-9 1.1E-5 1.7E-4 1.7E+0 9.8E-5

Dichlorobromoacetic acid

3.7E-6 5.7E-5 6.0E-10 3.5E-5 9.5E-5 1.7E+0 5.6E-5

Dichlorobromomethane 5.2E-6 8.0E-5 2.3E-4 7.5E-5 3.9E-4 2.4E+0 1.6E-4

Formaldehyde 4.4E-6 6.9E-5 3.1E-8 4.0E-5 1.1E-4 2.2E-1 5.1E-4

Tribromomethane 1.0E-4 1.6E-3 1.2E-3 3.8E-3 6.7E-3 7.7E+0 8.7E-4

Trichlorethene 1.5E-9 2.3E-8 3.1E-7 4.1E-7 7.4E-7 2.1E-1 3.5E-6

1,2,3-Trichloropropane 1.1E-8 1.7E-7 7.2E-8 2.9E-7 5.5E-7 2.0E-4 2.7E-3

SUM 1.2E-2

9 RISKS TO THE ENVIRONMENT 9.1 Assessment of Persistence, Bioaccumulation and Toxicity None of the Relevant Chemicals detected in treated ballast water discharge and listed in the GESAMP-BWWG Database fulfil the PBT criteria. 9.2 Calculation of PEC/PNEC ratios The PEC/PNEC ratio is a measure of the risk that each chemical present to the environment. PEC/PNEC ratios for each chemical in both the harbour and near ship scenarios as calculated by the Database are presented in Table 31 below. The PNEC and PEC values have been presented in sections 4.1 and 4.3.1, respectively. The calculated PEC/PNEC ratios are < 1 for all chemicals except dibromoacetonitrile and sodium hypochlorite in the harbour scenario and dibromoacetonitrile, Monochloroacetic acid, Sodium hypochlorite and Tribromomethane in the near ship scenario. The potential environmental risk indicated for sodium hypochlorite in both harbour and the near ship scenario is not commented further, as it is considered covered by the TRO measurements on treated discharge water showing values well below the Maximum Allowable Discharge Concentration (MADC) of 0.1 mg/L (Cl2) as confirmed by DHIs online monitoring of TRO at discharge ( < 0,03 mg/L as Cl2). FAC measured by the CB-OBS were in the range of 0,05 mg / L (as Cl2), as shown in Table 2. The Other Chemicals with PEC/PNEC > 1 are commented further in section 10.2.

Page 54: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 50

I:\MEPC\75\MEPC 75-4-3.docx

Table 31: PEC/PNEC ratio

Chemical Harbour Near ship

PEC (µg/L) PNEC (µg/L)

PEC/PNEC PEC (µg/L) PNEC (µg/L)

PECns/PNECns

Active Substance

Sodium hypochlorite 1.2E+0 2.1E-1 5.5E+0 1.4E+1 2.1E-1 6.9E+1

Relevant Chemicals

Acetaldehyde 2.7E-1 2.2E+0 1.2E-1 3.3E+0 2.2E+1 1.5E-1

Bromate ion 3.4E-1 1.4E+2 2.5E-3 4.1E+0 1.4E+3 3.0E-3

Bromochloroacetic acid 3.7E-1 1.6E+1 2.3E-2 4.6E+0 1.6E+1 2.8E-1

Bromochloroacetonitrile 1.3E-1 6.9E-1 1.8E-1 1.6E+0 6.9E+0 2.3E-1

Chloral hydrate 4.2E-1 9.7E+1 4.4E-3 5.2E+0 9.7E+2 5.4E-3

Chlorate ion 4.2E+1 4.8E+3 8.8E-3 5.2E+2 4.8E+3 1.1E-1

Chloropicrin 1.1E-3 2.5E-2 4.6E-2 2.0E-2 2.5E-2 8.2E-1

Dalapon 1.5E-2 1.1E+1 1.4E-3 1.8E-1 1.1E+2 1.7E-3

Dibromoacetic acid 3.7E+0 6.9E+3 5.4E-4 4.6E+1 6.9E+3 6.6E-3

Dibromoacetonitrile 5.1E-1 5.5E-2 9.2E+0 6.2E+0 5.5E-1 1.1E+1

Dibromochloroacetic acid

3.0E-1 3.0E+2 1.0E-3 3.7E+0 3.0E+2 1.2E-2

Dibromochloromethane 7.0E-1 6.3E+0 1.1E-1 1.3E+1 2.7E+2 4.8E-2

Dibromomethane 1.4E-3 4.5E+2 3.1E-6 2.7E-2 4.5E+2 5.9E-5

Dichloroacetic acid 8.3E-1 2.3E+1 3.6E-2 1.0E+1 2.3E+2 4.4E-2

Dichloroacetonitrile 6.0E-2 2.4E+1 2.5E-3 7.5E-1 2.4E+2 3.1E-3

Dichlorobromoacetic acid

3.2E-1 6.0E+1 5.4E-3 3.9E+0 1.0E+2 3.9E-2

Dichlorobromomethane 6.1E-1 7.8E+1 7.8E-3 1.2E+1 7.8E+1 1.6E-1

Dichloromethane 8.8E-4 1.2E+2 7.1E-6 2.0E-2 2.7E+2 7.5E-5

Formaldehyde 3.9E-1 5.8E+0 6.7E-2 4.8E+0 3.1E+1 1.6E-1

Monobromoacetic acid 7.8E-2 1.6E+1 4.9E-3 9.5E-1 1.6E+1 6.0E-2

Monobromoacetonitrile 3.3E-1 2.3E+1 1.5E-2 4.1E+0 2.3E+2 1.8E-2

Monochloramine 1.5E-1 9.8E-1 1.6E-1 4.1E+0 6.4E+0 6.3E-1

Monochloroacetic acid 7.8E-2 5.8E-1 1.3E-1 9.5E-1 5.8E-1 1.6E+0

Monochloroacetonitrile 1.6E-2 1.6E-1 1.0E-1 2.1E-1 1.6E+0 1.3E-1

Tribromoacetic acid 1.3E+0 1.4E+4 9.3E-5 1.6E+1 2.2E+4 7.2E-4

Tribromomethane 1.1E+1 9.6E+1 1.1E-1 1.9E+2 9.6E+1 2.0E+0

2,4,6-Tribromophenol 1.2E-3 2.0E+0 5.9E-4 1.5E-2 2.6E+0 5.6E-3

Trichloroacetic acid 5.8E-1 3.0E+2 1.9E-3 7.0E+0 3.0E+2 2.3E-2

Trichloroacetonitrile 1.0E-2 6.0E+0 1.7E-3 2.0E-1 6.0E+1 3.4E-3

Trichloroethene 1.9E-4 3.0E+0 6.3E-5 4.1E-3 2.2E+2 1.8E-5

Trichloromethane 6.2E-1 1.5E+2 4.2E-3 1.3E+1 1.5E+2 9.2E-2

1,2,3-Trichloropropane 1.2E-3 4.0E-1 2.9E-3 2.0E-2 2.7E+1 7.5E-4

Other Chemicals

Sodium thiosulphate 4.5E+1 8.1E+2 5.6E-2 5.5E+2 8.1E+2 6.8E-1

Page 55: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 51

I:\MEPC\75\MEPC 75-4-3.docx

10 CONCLUSIONS AND RECOMMENDATIONS 10.1 Risks to ship safety The assessment of risk to ship safety (section 6) indicates that increased corrosion is not expected as both measured and maximum calculated TRO based on applied current during operation is lower than 10 mg/L. The fire and explosion risks from H2 have been investigated both during full-scale testing and in risk assessments performed by the manufacturer. Both indicate that the H2 produced as by-product by the CB-OBS BWMS will not imply any safety concerns or risks for explosive environment. The H2 evacuation process via ballast tank venting pipes is fully sufficient even when applying high safety factors vs. the Lower Explosion Limit (LEL). 10.2 Risks to the crew and the general public The crew and port State worker risk assessment, as presented in sections 7 and 8, is based on the highest concentrations of chemicals detected in treated ballast water either before or after neutralization (depending on the risk-scenario) measured in full-scale type approval tests of the CB-OBS BWMS in three water qualities, across three holding times (24h, 48h and 120h). By using the calculation tool in the Database, exposure concentrations were compared to the applicable Derived No Effect Level (DNEL) in addition to the Derived Minimal Effect Level (DMEL) for the most important scenarios (defined in section 7) for risk to crew from performing normal work operation in relation to the BWMS. Most of the Risk Characterization Ratios (RCRs) indicated acceptable risk to crew. When the most conservative exposure scenarios were assessed, all RCRs were <1. The assessment indicates no unacceptable risk to workers performing periodic ballast water tank cleaning when the CB-OBS BWMS has been used. Human health risks were assessed using the chemical concentrations, as described for the worker risk assessment, as input to the Database for generating the RCRs relevant for swimming and seafood consumption. The assessment indicates no unacceptable risk to the public for the RCR Tier 1 assessment or for Tier 1 for the CMR substances. 10.3 Risks to the environment For the environmental risk assessment, results from WET-testing show low toxicity in all tested salinities and indicates no environmental risk from discharged ballast water treated with the CB-OBS BWMS. The environmental risk assessment based on measured concentrations of substances in treated ballast water is based on exposure modelling. By using the calculation tool in the Database, the highest DBP concentration detected for each substance after neutralization and the general PEC as well as near ship PEC values were used to calculate PEC/PNEC ratios. This resulted in ratios <1 for all substances except dibromoacetonitrile in the harbour scenario, and ratios <1 for all substances except dibromoacetonitrile, monochloroacetic acid and tribromomethane in the near ship scenario (Table 31). The potential environmental risk from sodium hypochlorite in both harbour and the near ship scenario is not commented further, as it is considered covered by the TRO measurements on treated discharge water showing values well below MADC. Dibromoacetonitrile was detected in all water qualities, but the highest values were detected in marine and brackish water, resulting in PEC/PNEC in the harbour scenario = 9.2. The PNEC value for this substance is conservative due to limited available ecotoxicology data as reported in the Basic Dataset for this substance in the GESAMP-BWWG Database.

Page 56: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 52

I:\MEPC\75\MEPC 75-4-3.docx

Monochloroacetic acid and tribromomethane were identified with PEC/PNEC ratios slightly above 1 for the near ship scenario. Monochloroacetic acid was only detected in fresh water, with the highest levels measured after 48 hours (before neutralization), resulting in a PEC/PNEC ration = 1.6. Tribromomethane concentrations in treated water increase with increasing salinity, and the highest values were measured in marine water after 48 hours, but values were quite similar at other timepoints. PEC/PNEC value for tribromomethane = 2.0 in the most conservative modelling scenario (near sea). The land-based testing has been performed in water fulfilling IMO inlet requirement of using aromatic DOC constituents to ensure relevant properties of the augmented water. The nature of DOC is critical for the formation of the Relevant Chemicals included in the assessment (Delacroix, Vogelsang, Tobiesen, & Litvedt, 2013). DHIs test water have been prepared and validated to represent challenging test conditions in terms of both TRO decay and DBP production. Sampling has been performed to minimize the loss of volatile compounds to ensure that occurrence of volatile compounds like tribromomethane. Test water preparations and sampling conditions can be mentioned as conservative aspects of this assessment. The fact that the WET-results from testing the same water as was used for chemical identification show low toxicity is also supporting this rationale. The GESAMP-BWWG Methodology requires 18 sample situations per Relevant Chemical. The sample situations include three water qualities at three time points (24, 48 and 120 hours) before and after neutralization. RWO has in addition collected data from a control tank after 120 hours as reference. 10.4 Recommendation The RWO Veolia’s CB-OBS BWMS is using the principles of filtration and main-stream electrochlorination for ballast water treatment. The system represents a second generation BWMS technology compared to the RWO Veolia’s IMO type approved "CleanBallast" ballast water management system. The CB-OBS BWMS has undergone full scale land-based testing to generate data for this application to obtain IMO Final Approval under Procedure (G9). The risk assessments presented in the application follow the current Procedure (G9) (MEPC 57/21, resolution MEPC.169(57)) and the Methodology (BWM.2/Circ.13/Rev.4). Presented data were generated based on analyses of treated water from land-based testing of the CB-OBS BWMS, performed by DHI Denmark as a third-party laboratory. The test reports for chemical analysis and WET testing, including quality control data, are included in Appendices 4, 5 and 6, respectively. As the Active Substance applied by the CB-OBS BWMS can be defined as TRO, the selection of Relevant Chemicals to be included in the assessment and their risk assessments is based on the GESAMP-BWWG Database and associated calculation tool where applicable. The evaluations of risks to ship safety, crew, port State workers and the environment presented in this assessment indicate no unacceptable risk from work, operations or discharges of treated ballast water from the CB-OBS BWMS. 11 REFERENCES Delacroix, S., Vogelsang, C., Tobiesen, A., & Litvedt, H. (2013). Disinfection by-products and ecotoxicity of ballast water after oxidant treatment - Results and experiences from seven years of full-scale testing of ballast water management systems. Mar Pollut Bull , ss. 24-36. International Maritime Organization. (2009). Harmful Aquatic Organismsm in Ballast Water. Report of the eight meeting of the GESAMP- Ballast Water Working Group. MEPC 59/2/16.

Page 57: COMITÉ DE PROTECCIÓN DEL MEDIO MARINO Original: INGLÉS · I:\MEPC\75\MEPC 75-4-3.docx .3 antes de la descarga, el sistema inyecta tiosulfato de sodio en la tubería para neutralizar

MEPC 75/4/3 Annex, page 53

I:\MEPC\75\MEPC 75-4-3.docx

International Maritime Organization. (2010). Framework for determining when a Basic Approval granted to one ballast water management system may be applied to another system that uses the same Active Substance or Preparation. BWM.2/Circ.27, 5 October 2010. International Maritime Organization. (2016). Harmful Aquatic Organsims in Ballast Water. Report of the Intersessional Working Group on the Review of Guidelines (G8). MEPC 70/WP.5. International Maritime Organization. (2017). International Convention For the Control and Mangement of Ships' Ballast Water and Sediments, 2004. BWM.2/Circ.12/Rev.4. International Maritime Organization. (2018). Application for Basic Approval of the CleanBallast® -Ocean Barrier System. MEPC 74/4/1. International Maritime Organization. (2018). Harmful Aquatic Organisms in Ballast Water. Report of the thirty-seventh meeting of the GESAMP-Ballast Water Working Group. MEPC 74/4/6. International Maritime Organization. (2019). Report of the Marine Cnvironment Protection Commitee on its seventy-fourth session. MEPC 74/18. Moon, C., Kim, H. D., Kim, C,K. (2019). Secondary flow mixing of neutralizing reagent induced by U-bent de-ballast pipes. Journal of Mechanical Science and Technology 33 (5). U.S. Coast Guard. (2012). Title 33 part 151 and Title 46 part 162 of Code of Federal Regulations (CFR). U.S. Environmental Protection Agency , Environmental Technology Verification Program. (September 2010). Generic Protocol for the Verification of Ballast Water Treatment Technology ( ETV Protocol). EPA/600/R-10/146.

___________