Celda galvánica

46
1) *Celda galvánica: La celda galvánica o celda voltaica, denominada en honor de Luigi Galvani y Alessandro Volta respectivamente, es una celda electroquímica que obtiene la energía eléctrica a partir de reacciones redox espontáneas que tienen lugar dentro de la misma. Por lo general, consta de dos metales diferentes conectados por un puente salino, o semi-celdas individuales separados por una membrana porosa. Volta fue el inventor de la pila voltaica, la primera pila eléctrica. En el uso común, la palabra pila es una celda galvánica única y una batería propiamente dicha consta de varias celdas, conectadas en serie o paralelo. Una celda galvánica consta de dos semipilas (denominadas también semiceldas o electrodos). En su forma más simple, cada semipila consta de un metal y una solución de una sal del metal. La solución de la sal contiene un catión del metal y un anión para equilibrar la carga del catión. En una pila galvánica un metal es capaz de reducir el catión del otro y por el contrario, el otro catión puede oxidar al primer metal. Las dos semipilas deben estar separadas físicamente de manera que las soluciones no se mezclen. Se utiliza un puente salino o una placa porosa para separar las dos soluciones. Esto no es toda la historia ya que los aniones también deben ser transferidos de una semicelda a la otra. Cuando un metal se oxida en una semipila, deben transferirse aniones a la semipila para equilibrar la carga eléctrica del catión producido. Los aniones son liberados de la otra semipila cuando un catión se reduce al estado metálico. Por lo tanto, el puente salino o la membrana porosa sirven tanto para mantener las soluciones separadas como para permitir el flujo de aniones en la dirección opuesta al flujo de electrones en el cable de conexión de los electrodos. El voltaje de la pila galvánica es la suma de los potenciales de las dos semipilas. Se mide conectando un voltímetro a los dos electrodos. El voltímetro tiene una resistencia muy alta, por lo que el flujo de corriente es realmente insignificante. Cuando un dispositivo como un motor eléctrico se conecta a los electrodos fluye una corriente eléctrica y las reacciones redox

description

Celda GalvanicaNernds pilas electroquimica

Transcript of Celda galvánica

Page 1: Celda galvánica

1)*Celda galvánica:

La celda galvánica o celda voltaica, denominada en honor de Luigi Galvani y Alessandro Volta respectivamente, es una celda electroquímica que obtiene la energía eléctrica a partir de reacciones redox espontáneas que tienen lugar dentro de la misma. Por lo general, consta de dos metales diferentes conectados por un puente salino, o semi-celdas individuales separados por una membrana porosa. Volta fue el inventor de la pila voltaica, la primera pila eléctrica.

En el uso común, la palabra pila es una celda galvánica única y una batería propiamente dicha consta de varias celdas, conectadas en serie o paralelo.

Una celda galvánica consta de dos semipilas (denominadas también semiceldas o electrodos). En su forma más simple, cada semipila consta de un metal y una solución de una sal del metal. La solución de la sal contiene un catión del metal y un anión para equilibrar la carga del catión.

En una pila galvánica un metal es capaz de reducir el catión del otro y por el contrario, el otro catión puede oxidar al primer metal. Las dos semipilas deben estar separadas físicamente de manera que las soluciones no se mezclen. Se utiliza un puente salino o una placa porosa para separar las dos soluciones.

Esto no es toda la historia ya que los aniones también deben ser transferidos de una semicelda a la otra. Cuando un metal se oxida en una semipila, deben transferirse aniones a la semipila para equilibrar la carga eléctrica del catión producido. Los aniones son liberados de la otra semipila cuando un catión se reduce al estado metálico. Por lo tanto, el puente salino o la membrana porosa sirven tanto para mantener las soluciones separadas como para permitir el flujo de aniones en la dirección opuesta al flujo de electrones en el cable de conexión de los electrodos.

El voltaje de la pila galvánica es la suma de los potenciales de las dos semipilas. Se mide conectando un voltímetro a los dos electrodos. El voltímetro tiene una resistencia muy alta, por lo que el flujo de corriente es realmente insignificante. Cuando un dispositivo como un motor eléctrico se conecta a los electrodos fluye una corriente eléctrica y las reacciones redox se producen en ambas semipilas. Esto continuará hasta que la concentración de los cationes que se reducen se aproxime a cero.

Para la pila Galvánica, representada en la figura, los dos metales son zinc y cobre y las dos sales son los sulfatos del metal correspondiente. El zinc es el metal más reductor de modo que cuando un dispositivo se conecta a ambos electrodos, la reacción electroquímica es

El electrodo de zinc se disuelve y el cobre se deposita en el electrodo de cobre. Por definición, el cátodo es el electrodo donde tiene lugar la reducción (ganancia de electrones), por lo que el electrodo de cobre es el cátodo. El anodo atrae cationes, que tienen una carga positiva., por lo que el ánodo es el electrodo negativo. En este caso el cobre es el cátodo y el zinc es el ánodo.

Page 2: Celda galvánica

Las celdas galvánicas se usan normalmente como fuente de energía eléctrica. Por su propia naturaleza producen corriente. Por ejemplo, una batería de plomo y ácido contiene un número de celdas galvánicas. Los dos electrodos son efectivamente plomo y óxido de plomo.

*Notación de celdas:

La celda galvánica, como la que se muestra en la figura, convencionalmente se describe utilizando la siguiente notación:

(ánodo) Zn(s) | ZnSO4(aq) || CuSO4(aq) | Cu(s) (cátodo)

Una notación alternativa para esta celda podría ser:

Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s)

Donde se aplica lo siguiente:

(s) denota sólido.

(aq) significa un medio o disolución acuosa.

La barra vertical, |, denota una interfaz.

La doble barra vertical, ||, denota una unión líquida para la que el potencial de unión es cero, tal como un puente salino.

**Tipos de celdas**

+Batería de limón:

La pila de limón es un experimento propuesto como proyecto en muchos libros de textos de ciencias. Consiste en insertar, en un limón, dos objetos hechos de metales diferentes, por ejemplo un clavo galvanizado de zinc (también denominado zincado) y una moneda o clavo de cobre. Estos dos objetos funcionan como electrodos, causando una reacción electroquímica mediada por el jugo de limón que genere una pequeña cantidad de corriente eléctrica.

El objetivo de este experimento es demostrar a los estudiantes cómo funcionan las baterías. Después de que la pila está ensamblada, se puede usar un multímetro para comprobar el voltaje generado, que usualmente no supera 1 V y una corriente de aproximadamente 0,1 mA como máximo.[1] El voltaje y corriente producido es insuficiente para encender un led estándar, para lo que se requeriría una batería hecha de varias pilas de limón. Se necesitan al menos dos pilas conectadas en serie para duplicar el voltaje y varias conectadas en paralelo para alcanzar corrientes del orden de 5 mA. De esta forma, se puede encender un diodo led de bajo voltaje (aproximadamente dos o tres voltios).

Page 3: Celda galvánica

Reacciones químicas :

Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo negativo o ánodo y el otro es el polo positivo o cátodo. La estructura fundamental de una pila consiste en dos electrodos, metálicos en muchos casos, introducidos en una disolución conductora de la electricidad o electrolito.[2]

Técnicamente ocurren la oxidación y la reducción.

En el ánodo, el cinc (zinc) es oxidado:

Zn → Zn2+ + 2 e-

En el cátodo, se reducen los iones hidrógeno presentes en el vinagre:

2 H++ 2 e- → H2

Para medir los voltajes e intensidades, conectamos la punta del polímetro que va al polo positivo (+) al cobre (punta roja) y el Zinc al otro. El electrodo de Zinc es una fuente de electrones.[4]

Los voltajes y corrientes alcanzados dependen críticamente de la acidez de los limones y del tamaño y metal de los objetos usados.

Metales:

Sección transversal de una pila de cobre/zinc.

Otras combinaciones de metales (como magnesio y cobre) son más eficientes, pero generalmente se emplean zinc y cobre porque son razonablemente seguros y fáciles de obtener.

Page 4: Celda galvánica

Usar una tira de magnesio en vez del zinc debe duplicar, aproximadamente, la corriente producida en la celda de limón (aproximadamente 240 µA con zinc y cerca de 400 µA con magnesio) y también aumenta levemente el voltaje (0,97 V con zinc y 1,6 V con magnesio).

Otras frutas y vegetales:

Batería de patata.

Una alternativa común a los limones son las patatas[5] o a veces manzanas. Cualquier fruta o vegetal que contenga ácido u otro electrolito puede ser usado, pero los limones se prefieren debido a su mayor acidez.

+Celda de concentración:

Una célula de concentración o pila de concentración es una celda electroquímica que tiene dos semiceldas equivalentes del mismo electrolito, que sólo difieren en las concentraciones.[1] Se puede calcular el potencial desarrollado por dicha pila usando la ecuación de Nernst. Una célula de concentración producirá una tensión o voltaje en su intento de alcanzar el equilibrio, que se produce cuando la concentración en las dos semipilas son iguales.[2]

Los métodos de análisis químicos mediante celdas de concentración comparan una disolución de concentración conocida con una desconocida, y determinan la concentración de la desconocida a través de la ecuación de Nernst o mediante tablas de comparación frente a un grupo de electrodos de referencia.

La corrosión galvánica por celdas de concentración ocurre cuando hay dos o más áreas de una superficie de metal que están en contacto con diferentes concentraciones de la misma disolución. Hay tres tipos generales de corrosión por celdas de concentración:

Celdas de concentración de iones metálicos:

En presencia de agua, una alta concentración de iones de metal existirán en las superficies de contacto, y una baja concentración de iones de metal existirán junto a la grieta creada por las superficies de contacto. Un potencial eléctrico existirá entre los dos puntos. El área del metal en contacto con la alta concentración de iones metálicos será catódica y será protegida de la corrosión, y el área de metal en contacto con la baja concentración de iones metálicos será anódica y será corroída.

Células de concentración de oxígeno o pilas de aireación diferencial:

El agua en contacto con la superficie del metal normalmente contiene oxígeno disuelto. Una celda de oxígeno se puede desarrollar en cualquier punto donde no se permite que el oxígeno del aire difunda de forma uniforme en la disolución, creando así una diferencia en la concentración de oxígeno entre dos puntos. La corrosión se producirá en el área de baja concentración de oxígeno que será anódica.

Page 5: Celda galvánica

Células activo-pasivo :

Es una celda de concentración donde el ánodo es un metal en estado activo, y el cátodo es ese mismo metal en estado pasivo.[3] Para los metales cuya protección contra la corrosión dependen de que una capa pasiva esté adherida fuertemente (normalmente un óxido) a la superficie, la sal que se deposita sobre la superficie del metal en presencia de agua, en zonas donde se rompe la capa pasiva, el metal activo que hay debajo de la película será expuesto al ataque corrosivo. Un potencial eléctrico se desarrollará entre el área grande del cátodo (capa pasiva) y el área pequeña del metal del ánodo (activo). El resultado será la rápida picadura del metal activo.

+Celda Electrolitica:

Se denomina celda electrolítica al dispositivo utilizado para la descomposición mediante corriente eléctrica de sustancias ionizadas denominadas electrolitos.

Los electrolitos pueden ser ácidos, bases o sales.

Al proceso de disociación o descomposición realizado en la celda electrolítica se le llama electrólisis.

En la electrólisis se pueden distinguir tres fases:

Ionización - Es una fase previa antes de la aplicación de la corriente y para efectuar la sustancia a descomponer ha de estar ionizada, lo que se consigue disolviéndola o fundiéndola.

Orientación - En esta fase, una vez aplicada la corriente los iones se dirigen, según su carga eléctrica, hacia los polos (+) ó (-) correspondiente

Descarga - Los iones negativos o aniones ceden electrones al ánodo (-) y los iones positivos o cationes toman electrones del cátodo (+).

Para que los iones tengan bastante movilidad, la electrólisis se suele llevar a cabo en disolución o en sales. Salvo en casos como la síntesis directa del hipoclorito sódico los electrodos se separan por un diafragma para evitar la reacción de los productos formados.

Page 6: Celda galvánica

Para la síntesis de la sosa también se ha empleado un cátodo de mercurio. Este disuelve el sodio metal en forma de amalgama y es separado así.

+Celda electroquímica:

Un diagrama de celda electroquímica de configuración semejante a la pila Daniell. Las dos semiceldas están unidas por un puente salino que permite a los iones moverse entre ambos. Los electrones fluyen por el circuito externo.

Una celda electroquímica es un dispositivo capaz de obtener energía eléctrica a partir de reacciones químicas (o bien, de producir reacciones químicas a través de la introducción de energía eléctrica, cuando se esté cargando la celda). Un ejemplo común de celda electroquímica es la pila (por ejemplo, la estándar de 1,5 voltios o la recargable de 1,2), que es una celda galvánica simple, mientras una batería eléctrica consta de varias celdas conectadas en serie o paralelo.

Tipos de celdas electro-químicas:

Celda electrolítica, mostrando los electrodos y la fuente de alimentación que genera la corriente eléctrica.

Hay dos tipos fundamentales de celdas y en ambas tiene lugar una reacción redox, y la conversión o transformación de un tipo de energía en otra:

La celda galvánica o celda voltaica transforma una reacción química espontánea en una corriente eléctrica, como las pilas y baterías. Son muy empleadas por lo que la mayoría de los ejemplos e imágenes de este artículo están referidos a ellas.

La celda electrolítica transforma una corriente eléctrica en una reacción química de oxidación-reducción que no tiene lugar de modo espontáneo. En muchas de estas reacciones se descompone una sustancia química por lo que dicho proceso recibe el nombre de electrolisis. También se la conoce como cuba electrolítica. A diferencia de la celda voltaica, en la celda electrolítica, los dos electrodos no necesitan estar separados, por lo que hay un sólo recipiente en el que tienen lugar las dos semirreacciones.

Reacción de equilibrio:

Cada semicelda tiene una tensión característica llamada potencial de semicelda o potencial de reducción. Las diferentes sustancias que pueden ser escogidas para cada semicelda dan lugar a distintas diferencias de potencial de la celda completa, que es el parámetro que puede ser medido. No se puede medir el potencial de cada semicelda, sino la diferencia entres los potenciales de ambas. Cada reacción está experimentando una reacción de equilibrio entre los diferentes estados de oxidación de los iones; cuando se alcanza el equilibrio, la célula no puede proporcionar más tensión. En la semicelda que está sufriendo la oxidación, cuanto más cerca del equilibrio se encuentra el ion/átomo con el estado de

Page 7: Celda galvánica

oxidación más positivo, tanto más potencial va a dar esta reacción. Del mismo modo, en la reacción de reducción, cuanto más lejos del equilibrio se encuentra el ion/átomo con el estado de oxidación más negativo, más alto es el potencial.

Potenciales de electrodo y fuerza electromotriz de una pila:

El potencial o fuerza electromotriz de una pila se puede predecir a través de la utilización de los potenciales de electrodo, las tensiones de cada semicelda. (Ver tabla de potenciales de electrodo estándar). La diferencia de voltaje entre los potenciales de reducción de cada electrodo da una predicción para el potencial medido de la pila.

Los potenciales de pila tienen un rango posible desde 0 hasta 6 voltios. Las pilas que usan electrolitos disueltos en agua generalmente tienen potenciales de celda menores de 2,5 voltios, ya que los oxidantes y reductores muy potentes, que se requerirían para producir un mayor potencial, tienden a reaccionar con el agua.

Tipos de celdas galvánicas :

Principales tipos:

Las celdas o células galvánicas se clasifican en dos grandes categorías:

Las células primarias transforman la energía química en energía eléctrica, de manera irreversible (dentro de los límites de la práctica). Cuando se agota la cantidad inicial de reactivos presentes en la pila, la energía no puede ser fácilmente restaurada o devuelta a la celda electroquímica por medios eléctricos

Las células secundarias pueden ser recargadas, es decir, que pueden revertir sus reacciones químicas mediante el suministro de energía eléctrica a la celda, hasta el restablecimiento de su composición original.[3]

Celdas galvánicas primarias Editar

Artículo principal: Celda primaria

Batería de ácido-plomo, de un automóvil.

Las celdas galvánicas primarias pueden producir corriente inmediatamente después de su conexión. Las pilas desechables están destinadas a ser utilizadas una sola vez y son desechadas posteriormente. Las pilas desechables no pueden ser recargadas de forma fiable, ya que las reacciones químicas no son fácilmente reversibles y los materiales activos no pueden volver a su forma original.

Generalmente, tienen densidades de energía más altas que las pilas recargables,[4] pero las células desechables no van bien en aplicaciones de alto drenaje con cargas menores de 75 ohmios (75 Ω).[5]

Celdas galvánicas secundarias:

Page 8: Celda galvánica

Artículo principal: Batería recargable

Batería de ácido-plomo, regulada por válvula de sellado, libre de mantenimiento.

Las celdas galvánicas secundarias debe ser cargadas antes de su uso; por lo general son ensambladas con materiales y objetos activos en el estado de baja energía (descarga). Las celdas galvánicas recargables o pilas galvánicas secundarias se pueden regenerar (coloquialmente, recargar) mediante la aplicación de una corriente eléctrica, que invierte la reacciones químicas que se producen durante su uso. Los dispositivos para el suministro adecuado de tales corrientes que regeneran las sustancias activas que contienen la pila o batería se llaman, de modo inapropiado, cargadores o recargadores.

La forma más antigua de pila recargable es la batería de plomo-ácido. Esta celda electroquímica es notable, ya que contiene un líquido ácido en un recipiente sellado, lo cual requiere que la celda se mantenga en posición vertical y la zona de estar bien ventilada para garantizar la seguridad de la dispersión del gas hidrógeno producido por estas células durante la sobrecarga. La celda de plomo-ácido es también muy pesada para la cantidad de energía eléctrica que puede suministrar. A pesar de ello, su bajo costo de fabricación y sus niveles de corriente de gran aumento hacen que su utilización sea común cuando se requiere una gran capacidad (más de 10A·h) o cuando no importan el peso y la escasa facilidad de manejo.

Batería de ácido-plomo con celdas de fieltro de vidrio absorbente, mostrando aparte los dos electrodos y, en medio, el material de vidrio absorbente que evita derrames del ácido.

Un tipo mejorado de la celda de electrolito líquido es la celda de plomo-ácido regulada por válvula de sellado (VRLA,por sus siglas en inglés), popular en la industria del automóvil como un sustituto para la celda húmeda de plomo-ácido, porque no necesita mantenimiento. La celda VRLA utiliza ácido sulfúrico inmovilizado como electrolito, reduciendo la posibilidad de fugas y ampliando la vida útil. Se ha conseguido inmovilizar el electrolito, generalmente por alguna de estas dos formas:

Celdas de gel que contienen un electrolito semi-sólido para evitar derrames.

Celdas de fieltro de fibra de vidrio absorbente, que absorben el electrolito en un material absorbente realizado con fibra de vidrio especial.

Otras células portátiles recargables son (en orden de densidad de potencia y, por tanto, de coste cada vez mayores): celda de níquel-cadmio (Ni-Cd), celda de níquel metal hidruro (NiMH) y celda de iones de litio (Li-ion).[8] Por el momento, las celdas de ion litio tienen la mayor cuota de mercado entre las pilas secas recargables.[9] Mientras tanto, las pilas de NiMH han sustituido a las de Ni-Cd en la mayoría de las aplicaciones debido a su mayor capacidad, pero las de NiCd siguen usándose en herramientas eléctricas, radios de dos vías, y equipos médicos

+Corrosión galvánica:

Esquema de actividad de la corrosión galvánica entre tornillo acero inoxidable y chapa de acero galvanizado.

Page 9: Celda galvánica

Corrosión galvánica de una chapa de acero galvanizado en contacto con acero inoxidable (0,7V-ver tabla).

La corrosión galvánica es un proceso electroquímico en el que un metal se corroe preferentemente cuando está en contacto eléctrico con un tipo diferente de metal (más noble) y ambos metales se encuentran inmersos en un electrolito o medio húmedo.[1] Por el contrario, una reacción galvánica se aprovecha en baterías y pilas para generar una corriente eléctrica de cierto voltaje. Un ejemplo común es la pila de carbono-zinc donde el zinc se corroe preferentemente para producir una corriente. La batería de limón es otro ejemplo sencillo de cómo los metales diferentes reaccionan para producir una corriente eléctrica.

Cuando dos o más diferentes tipos de metal entran en contacto en presencia de un electrolito, se forma una celda galvánica porque metales diferentes tienen diferentes potenciales de electrodo o de reducción. El electrolito suministra el medio que hace posible la migración de iones por lo cual los iones metálicos en disolución pueden moverse desde el ánodo al cátodo. Esto lleva a la corrosión del metal anódico (el que tienen menor potencial de reducción) más rápidamente que de otro modo; a la vez, la corrosión del metal catódico (el que tiene mayor potencial de reducción) se retrasa hasta el punto de detenerse. La presencia de electrolitos y un camino conductor entre los dos metales puede causar una corrosión en un metal que, de forma aislada, no se habría oxidado.

Incluso un solo tipo de metal puede corroerse galvánicamente si el electrolito varía en su composición, formando una celda de concentración.

Un ejemplo común de corrosión galvánica es la oxidación de las láminas de acero corrugado, que se generaliza cuando el recubrimiento de zinc de protección se rompe y el acero subyacente es atacado. El zinc es atacado preferentemente porque es menos noble, pero cuando se consume, se produce la oxidación en serio del acero. Con una lata recubierta de estaño, como las de conservas, ocurre lo contrario porque el estaño es más noble que el acero subyacente, por lo que cuando se rompe la capa, el acero es atacado preferentemente.

Un ejemplo bastante más espectacular ocurrió en la Estatua de la Libertad, cuando el mantenimiento periódico en la década de 1980 demostró que la corrosión galvánica había tenido lugar entre el recubrimiento exterior de cobre y la estructura de soporte, de hierro forjado. Aunque el problema se había previsto cuando la estructura fue construida por

Los metales (incluidas las aleaciones) pueden ser ordenados en una serie galvánica que representa el potencial que desarrollan en un electrolito dado frente a un electrodo patrón de referencia. La posición relativa de los dos metales en esta serie da una buena indicación de qué metal de la pareja es más probable que sufra corrosión con mayor rapidez. Sin embargo, otros factores como la aireación y el caudal de agua pueden influir considerablemente en el proceso.

Corrosión de tornillo en la unión con otro metal, expuestos ambos a la humedad ambiental.

Page 10: Celda galvánica

La corrosión galvánica es de gran interés para la industria marina. Son muy comunes la tablas con series galvánicas de metales en agua de mar, debido a la amplia utilización del metal en la construcción naval. Es posible que la corrosión de la soldadura de plata en una tubería de agua salada pudo haber causado un fallo que condujo al hundimiento del buque USS Thresher y la muerte de todos sus tripulantes.

La técnica común de la limpieza de la plata por inmersión de la plata y un trozo de papel aluminio en un baño de agua con sal (generalmente bicarbonato de sodio) es otro ejemplo de corrosión galvánica. Se debe tener cuidado, pues usando esta técnica limpiará el óxido de plata que podría estar allí como decoración. Tampoco es aconsejable limpiar así objetos de plata bañada en oro pues se puede introducir la corrosión galvánica no deseada en el metal base.

Prevención de la corrosión galvánica:

Hay varias maneras de reducir y prevenir este tipo de corrosión.

Una manera es aislar eléctricamente los dos metales entre sí. A menos que estén en contacto eléctrico, no puede haber una celda galvánica establecida. Esto se puede hacer usando plástico u otro aislante para separar las tuberías de acero para conducir agua de los accesorios metálicos a base de cobre, o mediante el uso de una capa de grasa para separar los elementos de aluminio y acero. El uso de juntas de material absorbente, que puedan retener líquidos, es a menudo contraproducente. Las tuberías pueden aislarse con un recubrimiento para tuberías fabricado con materiales plásticos, o hechas de material metálico recubierto o revestido internamente. Es importante que el recubrimiento tenga una longitud mínima de unos 500 mm para que sea eficaz.

Corrosión por deterioro del revestimiento.

Otra forma es mantener a los metales secos y / o protegidos de los compuestos iónicos (sales, ácidos, bases), por ejemplo, pintando o recubriendo al metal protegido bajo plástico o resinas epoxi, y permitiendo que se sequen.

Revestir los dos materiales y, si no es posible cubrir ambos, el revestimiento se aplicará al más noble, el material con mayor potencial de reducción. Esto es necesario porque si el revestimiento se aplica sólo en el material más activo (menos noble), en caso de deterioro de la cubierta, habrá un área de cátodo grande y un área de ánodo muy pequeña, y el efecto en la zona será grande pues la velocidad de corrosión será muy elevada.

También es posible elegir dos metales que tengan potenciales similares. Cuanto más próximos entre sí estén los potenciales de los dos metales, menor será la diferencia de potencial y por lo tanto menor será la corriente galvánica. Utilizar el mismo metal para toda la construcción es la forma más precisa de igualar los potenciales y prevenir la corrosión.

Ánodos de sacrificio (aluminio) montados al vuelo en una estructura metálica de acero para prevenir la corrosión.

Page 11: Celda galvánica

Las técnicas de galvanoplastia o recubrimiento electrolítico con otro metal (chapado) también puede ser una solución. Se tiende a usar los metales más nobles porque mejor resisten la corrosión: cromo, níquel, plata y oro son muy usados.

La protección catódica mediante ánodos de sacrificio: Se conecta el metal que queremos proteger con una barra de otro metal más activo, que se oxidará preferentemente, protegiendo al primer metal.[2] Se utilizan uno o más ánodos de sacrificio de un metal que sea más fácilmente oxidable que el metal protegido. Los metales que comúnmente se utilizan para ánodos de sacrificio son el zinc, el magnesio y el aluminio.

Esto es habitual en los calentadores de agua y tanques de agua caliente de las calderas. La falta de regularidad al reemplazar los ánodos de sacrificio en los calentadores de agua disminuye severamente la vida útil del tanque. Las sustancias para corregir la dureza del agua (ablandadores) de agua tienden a degradar los ánodos de sacrificio y los tanques más rápidamente.

Factores que influyen en la corrosión galvánica.

El uso de una capa protectora entre metales diferentes evitará la reacción de los dos metales.

Tamaño relativo de ánodo y cátodo: Esto se conoce como "efecto de la zona". Como es el ánodo el que se corroe más rápido, cuanto más grande sea el ánodo en relación con el cátodo, menor será la corrosión. Por el contrario, un ánodo pequeño y un cátodo grande hará que el ánodo se dañe fácilmente. La pintura y el revestimiento pueden alterar las zonas expuestas.

La aireación del agua de mar. El agua pobremente aireada puede afectar a los aceros inoxidables, moviéndolos más hacia el final de una escala anódica galvánica.

Grado de contacto eléctrico - Cuanto mayor es el contacto eléctrico, más fácil será el flujo de corriente galvánica.

Resistividad eléctrica del electrolito - Al aumentar la resistividad del electrolito disminuye la corriente, y la corrosión se hace más lenta.[5]

Rango de diferencia de potencial individual entre los dos metales: Es posible que los distintos metales podrían solaparse en su gama de diferencias de potencial individual. Esto significa que cualquiera de los metales podría actuar como ánodo o cátodo dependiendo de las condiciones que afectan a los potenciales individuales.

Cubierta del metal con organismos biológicos: Los limos que se acumulan en los metales pueden afectar a las zonas expuestas, así como la limitación de caudal de agua circulante, de la aireación, y la modificación del pH.

Óxidos: Algunos metales pueden ser cubiertos por una fina capa de óxido que es menos reactivo que el metal desnudo. Limpiar el metal puede retirar esta capa de óxido y aumentar así la reactividad.

Humedad: Puede afectar a la resistencia electrolítica y al transporte de iones.

Page 12: Celda galvánica

Temperatura: La temperatura puede afectar a la tasa de resistencia de los metales a otros productos químicos. Por ejemplo, las temperaturas más altas tienden a hacer que los aceros sean menos resistentes a los cloruros.

Tipo de electrolito - La exposición de una pieza de metal a dos electrolitos diferentes (ya sean diferentes productos químicos o diferentes concentraciones del mismo producto) pueden causar que una corriente galvánica fluya por el interior del metal.

Batería de Lasaña.

Una "batería de lasaña" o "pila de lasaña" se produce accidentalmente cuando los alimentos salados, como la lasaña, se almacenan en un recipiente para hornear de acero y se cubre con papel de aluminio. Después de unas horas se desarrollan en el papel unos pequeños agujeros en los puntos de contacto con la lasaña, y la superficie del alimento se cubre de pequeños puntos compuestos de aluminio corroído (óxido).

Esta corrosión metálica se debe a que cada vez que dos hojas de diferentes metales se ponen en contacto con un electrolito, los dos metales actúan como electrodos, y se forma una celda electroquímica, pila o batería. En este caso, los dos terminales de la batería están conectados entre sí. Debido a que la lámina de aluminio toca el acero, esta batería está en cortocircuito, aparece una corriente eléctrica importante, y unas reacciones químicas rápidas tienen lugar en la superficie del metal en contacto con el electrolito. Así, en esta pila de acero/sal/aluminio, como el aluminio está más alto en la serie electroquímica (mayor potencial), el aluminio sólido se oxida y se va disolviendo formando iones disueltos, y el metal experimenta corrosión galvánica.

Compatibilidad galvánica.

La compatibilidad de dos metales distintos puede predecirse por medio del "índice anódico". Este parámetro mide el voltaje electroquímico que se desarrolla entre el metal y el oro, tomado como electrodo de referencia. Para tener el voltaje relativo entre dos metales, basta con hacer la diferencia de sus índices anódicos.

Para ambientes normales, tales como almacenes u otros ambientes interiores sin control de temperatura y humedad, la diferencia de los índices anódicos no debería ser superior a 0,25 V. En ambientes interiores con temperatura y humedad controladas, puede tolerarse hasta 0,50 V. Para ambientes más duros, tales como intempererie, alta humedad, y ambientes salinos, la diferencia no debería superar 0,15 V. Así, por ejemplo, los índices del oro y la plata difieren en 0,15 V, y por tanto serían compatibles para este tipo de ambientes.

A menudo, cuando el diseño requiere que metales diferentes estén en contacto, se gestiona la compatibilidad galvánica entre ellos mediante los acabados y el revestimiento. El acabado y el recubrimiento seleccionado facilitan que los materiales disímiles estén en contacto y protegen así a los materiales de base de la corrosión

Compatibilidad entre acero galvanizado y aluminio Editar

Page 13: Celda galvánica

¿Se pueden poner en contacto el acero galvanizado y el aluminio o están sujetos a la corrosión galvánica?. Por teoría, experimentos y práctica, estos dos materiales son definitivamente compatibles.

1. La teoría predice que el aluminio y el acero galvanizado son compatibles. El zinc (recubrimiento del acero) y el aluminio están adyacentes el uno junto al otro en la escala de galvanizado.[9] La presencia del aluminio acoplado con el acero galvanizado incrementa la densidad actual (rango de corrosión) del zinc solo del 0.1% al 1% (el aluminio es el cátodo, o el lado protegido del par)[10] Este incremento en el rango de corrosión del zinc es insignificante, y por lo tanto, el contacto entre el aluminio y el acero galvanizado no acelera significativamente la corrosión de ninguno de los dos materiales.

2. Las pruebas experimentales confirman la teoría. Por ejemplo, Doyle y Wright[11] muestran que el grado de corrosión del aluminio no se incrementa al estar en contacto con el acero galvanizado. Por ello concluyen que el zinc es muy compatible con el aluminio en todos los ambientes, y en varios casos incluso mostrando que el aluminio estaba siendo protegido catódicamente por el zinc.

3. La normativa ha incorporado estos resultados. Por ejemplo, la Asociación del Aluminio, en su código estructural, establece que no hay necesidad de separar o pintar las superficies de acero galvanizado que estén en contacto con el aluminio.[12]

4. Muchas estructuras y componentes en el último medio siglo atestiguan lo anterior. El revestimiento de aluminio es frecuentemente fijado a estructuras de acero galvanizado y muy a menudo se utilizan tornillos con recubrimiento de zinc. La mayoría de las estructuras exteriores de tribunas de estadios en Norte América están hechas de una estructura galvanizada en la que se fijan pisos o asientos de aluminio. Y también un número incontable de conectores de sistemas de conexión en servicio en todo el mundo han sido fabricados uniendo tubos de acero galvanizado exitosa y permanentemente.

¿Como afecta este tipo de corrosión al acero galvanizado?

Este soporte de batería de contadores de agua, ha tenido que sustituir al original a los 4 años de uso, por estar conectado a una tubería de cobre del edificio (0,85 V de diferencia de potencial, ver el punto de corrosión abajo a la izquierda), poniendo una batería de PVC, la duración es ilimitada.

Generalmente el acero galvanizado se comporta bien en contacto con los metales más habituales en la construcción cuando se encuentran expuestos a la atmósfera, siempre que la relación superficial entre el acero galvanizado y el otro metal sea alta. Por el contrario, en condiciones de inmersión el riesgo de ataque por corrosión bimetálica se incrementa de forma significativa, por lo que normalmente es necesario utilizar algún tipo de aislamiento entre ambos metales.

Page 14: Celda galvánica

Los recubrimientos galvanizados son más resistentes a la corrosión atmosférica y a la corrosión provocada por el agua, porque los productos de corrosión del zinc que se forman en tales medios, normalmente carbonatos básicos de zinc hidratados, son insolubles, adherentes y poco porosos, y constituyen una capa de pasivación que aísla eficazmente el recubrimiento galvanizado del contacto con el medio ambiente agresivo

Comportamiento del acero galvanizado en contacto con

Cobre. Dada la gran diferencia de potencial entre el acero galvanizado y el cobre o las aleaciones de este metal, se recomienda siempre el aislamiento eléctrico de los dos metales, incluso en condiciones de exposición a la atmósfera. Donde sea posible, el diseño debe además evitar que el agua o las condensaciones de humedad escurran desde el cobre sobre los artículos galvanizados, ya que el cobre disuelto en forma iónica podría depositarse sobre las superficies galvanizadas y provocar la corrosión del zinc.

Por este mismo motivo, en las conducciones de agua no deben mezclarse tramos de tuberías de cobre y de acero galvanizado (aunque se utilicen elementos de aislamiento eléctrico en las uniones de ambos tipos de tuberías), especialmente si los tramos de cobre se colocan delante de los de acero galvanizado y, por tanto, el flujo de agua pasa principalmente por las tuberías de cobre.

Aluminio. El riesgo de corrosión bimetálica debida al contacto entre el acero galvanizado y el aluminio en la atmósfera es relativamente bajo.

Conviene recordar que una aplicación frecuente en la que se usan conjuntamente estos dos metales son los revestimientos con paneles de aluminio montados sobre una subestructura de perfiles de acero galvanizado. En estos casos es aconsejable aunque no imprescindible, aislar ambos metales, debido a la gran superficie de los paneles de aluminio en relación con la de los perfiles en contacto.

Plomo. La posibilidad de corrosión bimetálica con el plomo es baja en una exposición a la atmósfera. No se han detectado problemas en aplicaciones tales como el uso de tapajuntas de plomo con productos o recubrimientos de zinc, o en la utilización de plomo para fijar postes o elementos estructurales galvanizados.

Acero inoxidable. El uso más habitual del acero inoxidable en contacto con acero galvanizado es en forma de tornillos y tuercas en condiciones de exposición a la atmósfera (Fig. 4). Este tipo de uniones no suelen ser muy problemáticas, debido al bajo par galvánico que se establece entre ambos metales y a la elevada relación superficial entre el metal anódico (acero galvanizado) y el catódico (acero inoxidable). No obstante, en medios de elevada conductividad (humedad elevada o inmersión en agua) es recomendable disponer un aislamiento entre las superficies en contacto de ambos metales (p.e. arandelas de plástico o neopreno y casquillos o cintas aislantes).

https://es.m.wikipedia.org/wiki/Celda_galv%C3%A1nica#Tipos_de_celdas

Page 15: Celda galvánica

2)Fuerza electromotriz:La fuerza electromotriz (FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor \xi \, cuya circulación, \int_S\xi ds \,, define la fuerza electromotriz del generador.

Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.

Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).

La FEM se mide en voltios, al igual que el potencial eléctrico.

Por lo que queda que:

P = \frac {R}{A} \,\!

Se relaciona con la diferencia de potencial V \,\! entre los bornes y la resistencia interna r \,\! del generador mediante la fórmula E = V + I r \,\! (el producto Ir \,\! es la caída de potencial que se produce en el interior del generador a causa de la resistencia óhmica que ofrece al paso de la corriente). La FEM de un generador coincide con la diferencia de potencial en circuito abierto.

La fuerza electromotriz de inducción (o inducida) en un circuito cerrado es igual a la variación del flujo de inducción \phi \, del campo magnético que lo atraviesa en la unidad de tiempo, lo que se expresa por la fórmula \xi = - \frac {\Delta \Phi}{\Delta t} \,\! (ley de Faraday). El signo - (ley de Lenz) indica que el sentido de la FEM inducida es tal que se opone al descrito por la ley de Faraday ( \xi = \frac {\Delta \Phi}{\Delta t} \,\!).

Page 16: Celda galvánica

3)*Ecuación de Nernst:

La ecuación de Nernst se utiliza para calcular el potencial de reducción de un electrodo fuera de las condiciones estándar (concentración 1 M, presión de 1 atm, temperatura de 298 K ó 25 ºC). Se llama así en honor al científico alemán Walther Nernst, que fue quien la formuló en 1889.

Corrocion:Objetivo General: Identificar los distintos procesos corrosivos que afectan los materiales y los métodos que son utilizados para prevenirlos.

Objetivos Específicos:

Conocer los tipos de corrosión.

Distinguir entre los diferentes tipos de celdas electrolíticas de corrosión.

Calcular potenciales normales de electrodos de una celda galvánica a partir de los potenciales de celda.

Usar la ecuación de Nernst para calcular los potenciales de celda.

Distinguir entre polarización por activación y por concentración.

Estudiar los sistemas corrosivos metal-medio acuoso utilizando los diagramas de Pourbaix E vs pH.

Determinar los factores que afectan la velocidad de corrosión.

Identificar los diferentes sistemas de protección contra la corrosión: protección catódica y anódica, recubrimientos e inhibidores.

Conocer los ensayos no destructivos: Inspección visual, líquidos penetrantes, partículas magnéticas, electromagnetismo, radiografía, ultrasonido, emisión acústica, infrarrojo, y determinar su aplicación en la inspección de equipos.

https://es.m.wikipedia.org/wiki/Fuerza_electromotriz

Page 17: Celda galvánica

4) Electrolisis de los compuestos fundidos :La electrólisis consiste en la descomposición química de una sustancia por medio de la electricidad (electro = electricidad y lisis = destrucción).

El paso de la corriente eléctrica as través de un electrólito (en disolución o fundido), por ejemplo, NaCl fundido, nos demuestra que en el cátodo o polo negativo el catión sodio (Na+) se reduce a Na0 por ganancia, en cambio en el ánodo o polo positivo los aniones cloruro (Cl-) entregan sus electrones oxidándose a Cl2 (gaseoso).

En resumen, el proceso de electrólisis se caracteriza porque:

a) Es un fenómeno redox no espontáneo producido por una corriente eléctrica

b) La reducción se lleva a efecto en el polo negativo o cátodo y la oxidación en el ánodo o polo positivo.

El proceso electrolítico se realiza debido a que, la corriente eléctrica circula desde el cátodo hacia el ánodo, siempre que entre ellos esté presente una sustancia conductora (electrólito)

En algunas electrólisis, si el valor de la diferencia de potencial aplicada están sólo ligeramente mayor que el calculado teóricamente, la reacción es lenta o no se produce, por lo que resulta necesario aumentar el potencial aplicado. Este fenómeno se da, sobre todo, cuando en algunos e los electrodos se produce algún desprendimiento gaseoso. El potencial añadido en exceso en estos casos recibe el nombre de sobretensión.

La cantidad de producto que se forma durante una electrólisis depende de los 2 factores siguientes:

a) De la cantidad de electricidad que circula a través de la pila electrolítica.

b) De la masa equivalente de la sustancia que forma el electrólito.

La cantidad de electricidad que circula por una cuba electrolítica puede determinarse hallando el producto de la intensidad de la corriente, expresada en amperios por el tiempo transcurrido, expresado en segundos. Es decir, Q (culombios) = I · t.

Tras efectuar múltiples determinaciones, Faraday enunció las 2 leyes que rigen la electrólisis y que son las siguientes:

a) Primera Ley de Faraday: La cantidad de sustancias que se depositan (o altera su número de oxidación) en un electrodo, es proporcional a la cantidad de electricidad que pasa por el sistema.

Lo anterior significa que a mayor Faraday mayor cantidad de sustancia depositada. Así, por ejemplo, para libera 96 gramos de oxígeno se necesitan 12 Faraday de electricidad.

Page 18: Celda galvánica

Se denomina equivalente electroquímico de una sustancia a la masa en gramos de dicha sustancia depositada por el paso de un culombio.

De a cuerdo con esta definición podemos escribir la expresión:

m =___PIt___

n · 96500

Donde:

m : masa en gramos que se ha depositado

P : peso atómico del elemento

n : número de electrones intercambiados

I : intensidad de la corriente expresada en amperios

t : tiempo en segundos

96500 : factor de equivalencia entre el Faraday y el culombio, ya que 1F = 96500C.

b) Segunda Ley de Faraday: La cantidad de diferentes sustancias depositadas o disueltas por una misma cantidad de electricidad, son directamente proporcionales a sus respectivos pesos equivalentes.

Por ejemplo, si la corriente eléctrica se hace pasar por una serie de celdas electrolíticas que contienen distintas sustancias, la cantidad de electricidad que circula a través de cada electrodo es la misma y las cantidades de elementos liberados son proporcionales a sus respectivos pesos equivalentes.

Como la cantidad de electricidad en Coulomb es igual al producto de la intensidad de la corriente I en ampere por el tiempo t en segundos que ha pasado la corriente, combinando las dos leyes resulta que la masa m de material depositado o disuelto en cada electrodo será igual a lo siguiente:

m =___ItA___

Fn

Donde:

I: ampere.

t: tiempo en segundos.

A: peso atómico.

F: Faraday.

n: valencia.

Page 19: Celda galvánica

http://quimicaredox.blogspot.com/2007/11/procesos-electrolticos.html

5)Proceso de Obtención del aluminio:

El aluminio ocupa el tercer lugar en cuando a abundancia en la corteza terrestre se refiere. Posee grandes aplicaciones comerciales, industriales, etc., superado solamente por el hierro, y aún siendo tan usado, el aluminio no fue preparado como lo conocemos hoy en día, hasta el pasado siglo.

El aluminio, a pesar de ser tan abundante en la corteza terrestre, presente en los aluminosilicatos, no es muy práctico extraerlo de la mayor parte de las rocas o minerales que lo poseen, así que, éste viene preparado industrialmente, partiendo de la alúmina (Al2O3), un óxido de aluminio que viene extraído de las menas de alúmina previamente hidratada, cuya fórmula es Al2O3 . x H2O, la cual es una roca sedimentaria que recibe el nombre de bauxita.

Al contrario de la obtención del hierro, la preparación del aluminio no se puede realizar de manera industrial por reducción química, por lo que se hace necesaria la reducción de la alúmina a través de corriente eléctrica.

La alúmina es una material de tipo refractario que posee un alto punto de fusión, por lo que es conveniente realizar previamente la disolución en criolita, Na3AlF6, el cual tiene un punto de fusión que ronda los 1000ºC, pero aún así es bastante inferior al punto de fusión de la alúmina, el cual es de 2015ºC.

La alúmina en criolita, a modo de baño fundido, es un conductor de la corriente eléctrica, siendo la reducción del aluminio realizada de manera electrolítica. El proceso global presenta la siguiente fórmula:

Al2O3 → 2 Al (cátodo) + 3/2 O2 (ánodo)

El oxígeno que se produce reacciona con el ánodo de carbono, consiguiendo consumirlo y formar CO2.

Se obtiene así, el aluminio fundido, siendo más denso que el baño fundido, por lo cual se suele acumular en el fondo, de donde se extrae directamente para poder pasar a solidificarlo en lingotes. La obtención de aluminio consume grandes cantidades de energía.

El aluminio, al igual que el hierro, reacciona con el oxígeno, dando lugar a la formación de los óxidos respectivos. Pero sin embargo, mientras el aluminio forma una cubierta transparente y bastante resistente frente al Al2O3, el cual ejerce una acción de protección impidiendo que se produzca la oxidación que pueda producirse en continuación, mientras que el hierro suele formar una capa rugosa la cual se desprende de la superficie fácilmente, caso en el cual el producto final se conoce como herrumbre, siendo un óxido hidratado de hierro III.

Page 20: Celda galvánica

En resumen podemos decir, que el mineral del cual se obtiene o extrae del aluminio, prácticamente en exclusiva es la bauxita, la cual posee entorno a un 30% de aluminio. También puede extraerse de otros tipos de menas, como por ejemplo, los silicatos de aluminio, como la arcilla u otros, pero además de ser más bien pobres en contenido alumínico, su producción es bastante poco rentable hoy en día, por lo cual se utiliza, como ya habíamos dicho, la obtención de aluminio a través de la producción electrolítica.

Lee todo en: Obtención del aluminio | La Guía de Química http://quimica.laguia2000.com/quimica-inorganica/obtencion-del-aluminio#ixzz3z1sQGMkU

6)BaLanceo de ecuaciones .Metodos :Una reacción química es la manifestación de un cambio en la materia y la isla de un fenómeno químico. A su expresión gráfica se le da el nombre de ecuación química, en la cual, se expresan en la primera parte los reactivos y en la segunda los productos de la reacción.

A + B C + D

Reactivos Productos

Para equilibrar o balancear ecuaciones químicas, existen diversos métodos. En todos el objetivo que se persigue es que la ecuación química cumpla con la ley de la conservación de la materia.

Balanceo de ecuaciones por el método de Tanteo:

El método de tanteo consiste en observar que cada miembro de la ecuación se tengan los átomos en la misma cantidad, recordando que en

H2SO4 hay 2 Hidrogenos 1 Azufre y 4 Oxigenos

5H2SO4 hay 10 Hidrógenos 5 azufres y 20 Oxígenos

Para equilibrar ecuaciones, solo se agregan coeficientes a las formulas que lo necesiten, pero no se cambian los subíndices.

Ejemplo: Balancear la siguiente ecuación

H2O + N2O5 NHO3

Page 21: Celda galvánica

Aquí apreciamos que existen 2 Hidrógenos en el primer miembro (H2O). Para ello, con solo agregar un 2 al NHO3 queda balanceado el Hidrogeno.

H2O + N2O5 2 NHO3

Para el Nitrógeno, también queda equilibrado, pues tenemos dos Nitrógenos en el primer miembro (N2O5) y dos Nitrógenos en el segundo miembro (2 NHO3)

Para el Oxigeno en el agua (H2O) y 5 Oxígenos en el anhídrido nítrico (N2O5) nos dan un total de seis Oxígenos. Igual que (2 NHO3)

Otros ejemplos

HCl + Zn ZnCl2 H2

2HCl + Zn ZnCl2 H2

KClO3 KCl + O2

2 KClO3 2KCl + 3O2

Balanceo de ecuaciones por el método de Redox ( Oxidoreduccion )

En una reacción si un elemento se oxida, también debe existir un elemento que se reduce. Recordar que una reacción de oxido reducción no es otra cosa que una perdida y ganancia de electrones, es decir, desprendimiento o absorción de energía (presencia de luz, calor, electricidad, etc.)

Para balancear una reacción por este método , se deben considerar los siguiente pasos

1)Determinar los números de oxidación de los diferentes compuestos que existen en la ecuación.

Para determinar los números de oxidación de una sustancia, se tendrá en cuenta lo siguiente:

En una formula siempre existen en la misma cantidad los números de oxidación positivos y negativos

El Hidrogeno casi siempre trabaja con +1, a ecepcion los hidruros de los hidruros donde trabaja con -1

El Oxigeno casi siempre trabaja con -2

Todo elemento que se encuentre solo, no unido a otro, tiene numero de oxidación 0

2) Una vez determinados los números de oxidación , se analiza elemento por elemento, comparando el primer miembro de la ecuación con el segundo, para ver que elemento químico cambia sus números de oxidación

0 0 +3 -2

Fe + O2 Fe2O3

Page 22: Celda galvánica

Los elementos que cambian su numero de oxidación son el Fierro y el Oxigeno, ya que el Oxigeno pasa de 0 a -2 Y el Fierro de 0 a +3

3) se comparan los números de los elementos que variaron, en la escala de Oxido-reducción

0 0 +3 -2

Fe + O2 Fe2O3

El fierro oxida en 3 y el Oxigeno reduce en 2

4) Si el elemento que se oxida o se reduce tiene numero de oxidación 0 , se multiplican los números oxidados o reducidos por el subíndice del elemento que tenga numero de oxidación 0

Fierro se oxida en 3 x 1 = 3

Oxigeno se reduce en 2 x 2 = 4

5) Los números que resultaron se cruzan, es decir el numero del elemento que se oxido se pone al que se reduce y viceversa

4Fe + 3O2 2Fe2O3

Los números obtenidos finalmente se ponen como coeficientes en el miembro de la ecuación que tenga mas términos y de ahí se continua balanceando la ecuación por el método de tanteo

Otros ejemplos

KClO3 KCl + O2

+1 +5 -2 +1 -1 0

KClO3 KCl + O2

Cl reduce en 6 x 1 = 6

O Oxida en 2 x 1 = 2

2KClO3 2KCl + 6O2

Cu + HNO3 NO2 + H2O + Cu(NO3)2

0 +1 +5 -2 +4 -2 +2 -2 +2 +5 -2

Cu + HNO3 NO2 + H2O + Cu(NO3)2

Cu oxida en 2 x 1 = 2

N reduce en 1 x 1 = 1

Page 23: Celda galvánica

Cu + HNO3 2NO2 + H2O + Cu(NO3)2

Cu + 4HNO3 2NO2 + 2H2O + Cu(NO3)2

Balanceo de ecuaciones por el método algebraico

Este método esta basado en la aplicación del álgebra. Para balancear ecuaciones se deben considerar los siguientes puntos

1) A cada formula de la ecuación se le asigna una literal y a la flecha de reacción el signo de igual. Ejemplo:

Fe + O2 Fe2O3

A B C

2) Para cada elemento químico de la ecuación, se plantea una ecuación algebraica

Para el Fierro A = 2C

Para el Oxigeno 2B = 3C

3) Este método permite asignarle un valor (el que uno desee) a la letra que aparece en la mayoría de las ecuaciones algebraicas, en este caso la C

Por lo tanto si C = 2

Si resolvemos la primera ecuación algebraica, tendremos:

2B = 3C

2B = 3(2)

B = 6/2

B = 3

Los resultados obtenidos por este método algebraico son

A = 4

B = 3

C = 2

Estos valores los escribimos como coeficientes en las formulas que les corresponden a cada literal de la ecuación química, quedando balanceada la ecuación

Page 24: Celda galvánica

4Fe + 3O2 2 Fe2O3

Otros ejemplos

HCl + KmNO4 KCl + MnCl2 + H2O + Cl2

A B C D E F

A = 2E

Cl) A = C + 2D + 2F

B = C

Mn) B = D

O) 4B = E

Si B = 2

4B = E

4(2) = E

E = 8

B = C

C = 2

b = D

D = 2

A = 2E

A = 2 (8)

A = 16

A = C + 2D + 2F

16 = 2 + 2(2) + 2F

F = 10/2

F = 5

http://html.rincondelvago.com/balanceo-de-ecuaciones-quimicas.html

Page 25: Celda galvánica

7)Hormigones conductores :Es ampliamente conocido que la principal función del hormigón es su función estructural. Por otra parte el hormigón es un material dieléctrico, es decir, es un material mal conductor. Ahora bien, la adición de material carbonoso conductor como puede ser la fibra de carbón o el polvo de grafito lo transforma en un material conductor, estableciéndose así la posibilidad de realizar más funciones aparte de la estrictamente estructural, es decir transformarse en un material multifuncional. Entre las funciones que puede desarrollar un material cementicio conductor se pueden enumerar las siguientes:

Función de percepción de la deformación de una estructura al estar sometida a un esfuerzo, sin llevar ningún sensor adherido o embebido en el mismo.

Función de percepción del daño estructural. La detección en tiempo real permite diferenciar entre daños estacionarios, evolutivos, permanentes o reversibles.

Función de apantallamiento EMI. Esta función se basa en el apantallamiento que una estructura conductora ejerce sobre el campo electromagnético que la atraviesa.

Funciones dieléctricas. Sus aplicaciones incluyen el aislamiento eléctrico, los condensadores (para el almacenamiento de energía eléctrica), sustratos microelectrónicos, la piezoelectricidad y la piroelectricidad.

Funciones de ingeniería térmica. Esta función se aplica al uso de materiales estructurales como dispositivos que permiten realizar tareas tales como: termómetros para la medición de temperatura, objetos de elevada masa térmica para la retención de calor, resistencias embebidas o tubería de agua caliente para calefacción, etc.

Función de amortiguamiento. Se aplica al desarrollo de materiales para amortiguamiento acústico y de vibraciones.

Función de ánodo para extracción electroquímica de cloruros y protección catódica. Esta función se basa en la utilización de una pasta de cemento conductora que actúe como ánodo para la aplicación de la técnica de extracción electroquímica de cloruros y la protección catódica.

http://www.editorial-club-universitario.es/libro.asp?ref=4156

8) Aplicacion de Redox en la ing.civil :

1. La corrosión.- La corrosión es una reacción química(oxidorreducción) en la que intervienen tres factores: la pieza manufacturada, el ambiente y el agua, o por medio de una reacción electroquímica. Los factores másconocidos son las alteraciones químicas de los metales a causa del aire, como la

Page 26: Celda galvánica

herrumbredel hierro y el acero o la formación de pátina verde en el cobre y sus aleaciones(bronce, latón).

En la ingeniería civil este fenómeno actúa en la corrosión del concreto, por ejemplo, este se ha convertido en el principal problema de las construccionesciviles, poniendo en duda la efectividad de las herramientas de diseño que se han venido utilizando y provocando que muchas estructuras diseñadas para la vida útil del 50 a100 años presenten graves daños luego de 10 a 30 años de servicio.

2. El galvanizado.- El galvanizado o galvanización es el proceso electroquímico por el cual se puedecubrir un metal con otro.

En la ingeniería civil este fenómeno actúa en la galvanización del acero, por ejemplo, este se da cuando cubrimos al acero con zinc.

3. Elcromado.- La corrosión se define como el deterioro de una superficie, evitarlo es imposible, pero llevándolo a un proceso de recubrimiento electrolítico, al menos se puedelograr con toda seguridad la inhibición del efecto corrosivo, retardando su velocidad. La corrosión causada por los agentes corrosivos: humedad (aire húmedo), agua,rozamiento o fricciones, altas temperaturas, etc.

En la ingeniería civil este fenómeno actúa en el cromado del acero, por ejemplo, esto viene a ser el deterioro del acero.

http://www.buenastareas.com/ensayos/Aplicaciones-De-Redox-En-Ing-Civil/30814247.html

9)Entalpia:es una magnitud termodinámica, simbolizada con la letra H mayúscula, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, es decir, la cantidad de energía que un sistema intercambia con su entorno.

En la historia de la termodinámica se han utilizado distintos términos para denotar lo que hoy conocemos como «entalpía». Originalmente se pensó que esta palabra fue creada por Émile Clapeyron y Rudolf Clausius a través de la publicación de la relación de Clausius-Clapeyron en The Mollier Steam Tables and Diagrams de 1827, pero el primero que definió y utilizó el término «entalpía» fue el holandés Heike Kamerlingh Onnes, a principios del siglo XX.[1]

En palabras más concretas, es una función de estado de la termodinámica donde la variación permite expresar la cantidad de calor puesto en juego durante una transformación isobárica, es decir, a presión constante en un sistema termodinámico, teniendo en cuenta que todo objeto conocido se puede entender como un sistema termodinámico. Se trata de una transformación en el curso de la cual se puede recibir o aportar energía (por ejemplo la utilizada para un trabajo mecánico). En este sentido la entalpía es numéricamente igual al calor intercambiado con el ambiente exterior al sistema en cuestión.

Page 27: Celda galvánica

Dentro del Sistema Internacional de Unidades, la entalpía se mide habitualmente en joules que, en principio, se introdujo como unidad de trabajo.

El caso más típico de entalpía es la llamada entalpía termodinámica. De ésta cabe distinguir la función de Gibbs, que se corresponde con la entalpía libre, mientras que la entalpía molar es aquella que representa un mol de la sustancia constituyente del sistema.

https://es.m.wikipedia.org/wiki/Entalp%C3%ADa

10)Entropia :es una magnitud física que para un sistema termodinámico en equilibrio mide el número de microestados compatibles con el macroestado de equilibrio, también se puede decir que mide el grado de organización del sistema, o que es la razón incremental entre un incremento de energía interna frente a un incremento de temperatura del sistema.

La entropía es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850;[1] [2] y Ludwig Boltzmann, quien encontró en 1877 la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.

https://es.m.wikipedia.org/wiki/Entrop%C3%ADa

11)Ley de Hess:transferencia de calor en dichos procesos

Cuando se busca saber qué tanto calor como una forma de la energía absorbida o desprendida está presente en una reacción, es porque la misma juega un papel muy importante de los cambios químicos, la pregunta obvia en este caso resulta; ¿A qué se debe esa importancia? Se debe a que en todo cambio químico hay ruptura y formación de nuevos enlaces químicos y para que haya esa ruptura, se requiere energía y algunas veces en la formación de los nuevos enlaces se requiere de menor energía para su formación y por tanto se desprende la energía sobrante, razón por la cual, el estudio del calor y de su relación con los cambios químicos resulta tan importante. Además de lo anterior es necesario también conocer si el proceso depende no solo de si el cambio se efectúa a volumen o presión constante, sino también de las cantidades de sustancia considerada, su estado físico, temperatura y presión.

En virtud de que la cantidad de calor obtenida en una reacción depende de la cantidad de sustancia que intervino en ella, si escribimos que dos gramos de hidrógeno se queman en oxígeno para producir agua líquida, y se desprenden 68,320 calorías, entonces cuando incrementamos a cuatro gramos, el calor desprendido es doble y así sucesivamente.

Page 28: Celda galvánica

https://es.m.wikipedia.org/wiki/Ley_de_Hess

12) 1 y 2da ley de la termodinamica :es la rama de la física que describe los estados de equilibrio a nivel macroscópico.[3] El Diccionario de la lengua española de la Real Academia Española, por su parte, define a la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.[4] Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.[5] Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,[6] o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.

La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio,[8] definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas».[6] Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica –todas las leyes y variables termodinámicas– se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden describirse consistentemente empleando la teoría termodinámica.[6] Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro;[9] comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.

Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.[10] El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que solo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía, que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.[12] Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado

Page 29: Celda galvánica

dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información.[13] En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Estas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros.

https://es.m.wikipedia.org/wiki/Termodin%C3%A1mica

13)Recipiente diabatico :En un recipiente adiabático que contiene 550 g de agua a 22ºC, se echan 300 g de plomo fundido (líquido) a 327ºC. Puede despreciarse la capacidad calorífica del recipiente. Consulte los datos que necesite en la tabla adjunta y determine:

a) La temperatura del agua cuando finaliza la solidificación del plomo.

b) La temperatura de equilibrio del sistema agua-plomo.

En termodinámica se designa como proceso adiabático a aquel en el cual el sistema termodinámico (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina proceso isotérmico.

El término adiabático hace referencia a volúmenes que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático. Otro ejemplo es la temperatura adiabática de llama, que es la temperatura que podría alcanzar una llama si no hubiera pérdida de calor hacia el entorno. En climatización los procesos de humectación (aporte de vapor de agua) son adiabáticos, puesto que no hay transferencia de calor, a pesar que se consiga variar la temperatura del aire y su humedad relativa.

Page 30: Celda galvánica

El calentamiento y enfriamiento adiabático son procesos que comúnmente ocurren debido al cambio en la presión de un gas. Esto puede ser cuantificado usando la ley de los gases ideales.

En otras palabras se considera proceso adiabático a un sistema especial en el cual no se pierde ni tampoco se gana energía calorífica. Esto viene definido según la primera ley de termodinámica describiendo que Q=0

Si se relaciona el tema del proceso adiabático con las ondas, se debe tener en cuenta que el proceso o carácter adiabático solo se produce en las ondas longitudinales.

https://es.m.wikipedia.org/wiki/Proceso_adiab%C3%A1tico

http://ricuti.com.ar/No_me_salen/TERMO/ter09.html

14)Recipiente diatermico:Un recipiente diatermo deja pasar el calor facilmente a través de sus paredes.

Parece que sería más adecuado decir diatérmico, antes que diatermo.

Diatermancia.- Propiedad que presentan los cuerpos de transmitir las radiaciones calóricas, similar a la transparencia con respecto a la luz. También se puede decir "diatermanidad".

https://es.answers.yahoo.com/question/index?qid=20100502092605AA35QNR

15)CALORIMETRO :es un instrumento que sirve para medir las cantidades de calor suministradas o recibidas por los cuerpos. Es decir, sirve para determinar el calor específico de un cuerpo, así como para medir las cantidades de calor que liberan o absorben los cuerpos.

El tipo de calorímetro de uso más extendido consiste en un envase cerrado y perfectamente aislado con agua, un dispositivo para agitar y un termómetro. Se coloca una fuente de calor en el calorímetro, se agita el agua hasta lograr el equilibrio, y el aumento de temperatura se comprueba con el termómetro. Si se conoce la capacidad calorífica del calorímetro (que también puede medirse utilizando una fuente corriente de calor), la cantidad de energía liberada puede calcularse fácilmente. Cuando la fuente de calor es un objeto caliente de temperatura conocida, el calor específico y el calor latente pueden ir midiéndose según se va enfriando el objeto. El calor latente, que no está relacionado con un cambio de temperatura, es la energía térmica desprendida o absorbida por una sustancia al cambiar de un estado a otro, como en el caso de líquido a sólido o viceversa. Cuando la fuente de calor es una reacción química, como sucede al quemar un combustible, las sustancias reactivas se colocan en un envase de acero pesado llamado bomba. Esta bomba se introduce en el calorímetro y la reacción se provoca por ignición, con ayuda de una chispa eléctrica.

Page 31: Celda galvánica

Los calorímetros suelen incluir su equivalente, para facilitar cálculos. El equivalente en agua del calorímetro es la masa de agua que se comportaría igual que el calorímetro y que perdería igual calor en las mismas circunstancias. De esta forma, solo hay que sumar al agua la cantidad de equivalentes.

https://es.m.wikipedia.org/wiki/Calor%C3%ADmetro

16)Aplicaciones de la termoquimica en la ing.civil: en la construcción de

edificaciones, en especial de las estructuras metálicas se tiene que tomar en cuenta sus propiedades al dilatarse o contraerse con los cambios de temperatura del ambiente.

* en el estudio de los cambios de fase de las diferentes sustancias.

* en la construcción de máquinas térmicas, por ejemplo: motores que funcionan con combustible, refrigeradoras ...

el estudio del rendimiento de reacciones energéticas.

el estudio de la viabilidad de reacciones químicas.

el estudio de las propiedades térmicas de los sistemas (dilataciones, contracciones y cambios de fase).

establece rangos delimitados de los procesos posibles en función de leyes negativas.

http://mecanicadefluidos2011.bligoo.com.co/content/view/1470376/Aplicaciones-de-la-termodinamica.html#.VrDyEYx7zbU

17)Influencia de la temperatura en las entalpias de una reaccion : Muchas reacciones no ocurren a 298 K, por lo que debe analizarse como adaptar los datos tabulados a otras condiciones. Supongamos que hemos determinado un cierto calor de reacción a la temperatura T1 y queremos conocer su valor a la temperatura T2. Para determinar cómo varía la entalpía de reacción con la temperatura, manteniendo la P constante, se deriva con respecto a T la expresión que nos da la entalpía de reacción:

Para poder integrar la ecuación debemos conocer la dependencia de las capacidades caloríficas de productos y reactivos con la temperatura. Cuando el rango de temperaturas es pequeño se suele

Page 32: Celda galvánica

despreciar esta dependencia y podemos sacar fuera de la integral la variación de Cpo cuando no es así hay que integrar dicha variación con respecto a T

http://joule.qfa.uam.es/beta-2.0/temario/tema6/tema6.php

1)esquema de las celdas galvanicas

Conclusión

En síntesis se puede decir que quizás desde el siglo V antes de Cristo el hombre estuvo relacionado en cierta forma con las pilas, mediante unas vasijas. Lo que quizas explicaría que desde ese tiempo fueron ocupadas ciertas formas para producir una corriente eléctrica; no se manejaba el concepto de pila como en la modernidad y estudios analíticos existentes en la actualidad, sin embargo se puede decir que el descubrimiento de esas vasijas y la asimilación al funcionamiento de las pilas son en cierta forma iguales. La electroanalítica abarca un grupo de métodos analíticos cuantitativos que se basa e las propiedades eléctricas de una disolución de analito cuando forma parte de una celda electroquímica. Las celdas electroquímicas son dispositivos que producen electricidad por medio de una reacción química, estas celdas las podemos clasificar de acuerdo a las que producen energía eléctrica (celdas galvánicas) y las que consumen energía (celdas electroquímicas). Podemos ver en forma diaria la utilización de las celdas en al ver pilas de distintos tipos, las que empleamos para diferentes fines; como escuchar walkman en el recreo o encender una linterna, o las pilas de combustible en los automóviles. Sin el uso de esas pilas la vida hoy en día seria muy diferente ya que no habría un método tan factible de transformar energía eléctrica en química y viceversa.

Tipos de celdas galvánicas Editar

Principales tipos Editar

Las celdas o células galvánicas se clasifican en dos grandes categorías:

Las células primarias transforman la energía química en energía eléctrica, de manera irreversible (dentro de los límites de la práctica). Cuando se agota la cantidad inicial de reactivos presentes en la pila, la energía no puede ser fácilmente restaurada o devuelta a la celda electroquímica por medios eléctricos.[2]

Page 33: Celda galvánica

Las células secundarias pueden ser recargadas, es decir, que pueden revertir sus reacciones químicas mediante el suministro de energía eléctrica a la celda, hasta el restablecimiento de su composición original.[3]

Celdas galvánicas primarias Editar

Artículo principal: Celda primaria

Batería de ácido-plomo, de un automóvil.

Las celdas galvánicas primarias pueden producir corriente inmediatamente después de su conexión. Las pilas desechables están destinadas a ser utilizadas una sola vez y son desechadas posteriormente. Las pilas desechables no pueden ser recargadas de forma fiable, ya que las reacciones químicas no son fácilmente reversibles y los materiales activos no pueden volver a su forma original.

Generalmente, tienen densidades de energía más altas que las pilas recargables,[4] pero las células desechables no van bien en aplicaciones de alto drenaje con cargas menores de 75 ohmios (75 Ω).[5]

Celdas galvánicas secundarias Editar

Artículo principal: Batería recargable

Batería de ácido-plomo, regulada por válvula de sellado, libre de mantenimiento.

Las celdas galvánicas secundarias debe ser cargadas antes de su uso; por lo general son ensambladas con materiales y objetos activos en el estado de baja energía (descarga). Las celdas galvánicas recargables o pilas galvánicas secundarias se pueden regenerar (coloquialmente, recargar) mediante la aplicación de una corriente eléctrica, que invierte la reacciones químicas que se producen durante su uso. Los dispositivos para el suministro adecuado de tales corrientes que regeneran las sustancias activas que contienen la pila o batería se llaman, de modo inapropiado, cargadores o recargadores.

La forma más antigua de pila recargable es la batería de plomo-ácido.[6] Esta celda electroquímica es notable, ya que contiene un líquido ácido en un recipiente sellado, lo cual requiere que la celda se mantenga en posición vertical y la zona de estar bien ventilada para garantizar la seguridad de la dispersión del gas hidrógeno producido por estas células durante la sobrecarga. La celda de plomo-ácido es también muy pesada para la cantidad de energía eléctrica que puede suministrar. A pesar de ello, su bajo costo de fabricación y sus niveles de corriente de gran aumento hacen que su utilización sea común

Page 34: Celda galvánica

cuando se requiere una gran capacidad (más de 10A·h) o cuando no importan el peso y la escasa facilidad de manejo.

Batería de ácido-plomo con celdas de fieltro de vidrio absorbente, mostrando aparte los dos electrodos y, en medio, el material de vidrio absorbente que evita derrames del ácido.

Un tipo mejorado de la celda de electrolito líquido es la celda de plomo-ácido regulada por válvula de sellado (VRLA,por sus siglas en inglés), popular en la industria del automóvil como un sustituto para la celda húmeda de plomo-ácido, porque no necesita mantenimiento. La celda VRLA utiliza ácido sulfúrico inmovilizado como electrolito, reduciendo la posibilidad de fugas y ampliando la vida útil.[7] Se ha conseguido inmovilizar el electrolito, generalmente por alguna de estas dos formas:

Celdas de gel que contienen un electrolito semi-sólido para evitar derrames.

Celdas de fieltro de fibra de vidrio absorbente, que absorben el electrolito en un material absorbente realizado con fibra de vidrio especial.

Otras células portátiles recargables son (en orden de densidad de potencia y, por tanto, de coste cada vez mayores): celda de níquel-cadmio (Ni-Cd), celda de níquel metal hidruro (NiMH) y celda de iones de litio (Li-ion).[8] Por el momento, las celdas de ion litio tienen la mayor cuota de mercado entre las pilas secas recargables.[9] Mientras tanto, las pilas de NiMH han sustituido a las de Ni-Cd en la mayoría de las aplicaciones debido a su mayor capacidad, pero las de NiCd siguen usándose en herramientas eléctricas, radios de dos vías, y equipos médicos.[9]

Batería de Níquel-Cadmio (Ni-Cd) Batería de Níquel metal hidruro (NiMH) Batería de ion litio (Li-ion)

Ni-Cd gum-type batteries.jpg

NiMH various.jpg

Lithium Ion.JPG

Usada en cámaras de vídeo... Usada en cámaras fotográficas

y en pequeños dispositivos electrónicos Usada en teléfonos móviles

Algunos tipos de celdas galvánicas Editar

Celda de concentración

Page 35: Celda galvánica

Celda electrolítica

Pila galvánica

Batería de Lasagna

[[Batería de

Fuerza electromotriz

La fuerza electromotriz (FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor \xi \, cuya circulación, \int_S\xi ds \,, define la fuerza electromotriz del generador.

Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.

Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).

La FEM se mide en voltios, al igual que el potencial eléctrico.

Por lo que queda que:

P = \frac {R}{A} \,\!

Se relaciona con la diferencia de potencial V \,\! entre los bornes y la resistencia interna r \,\! del generador mediante la fórmula E = V + I r \,\! (el producto Ir \,\! es la caída de potencial que se produce en el interior del generador a causa de la resistencia óhmica que ofrece al paso de la corriente). La FEM de un generador coincide con la diferencia de potencial en circuito abierto.

Page 36: Celda galvánica

La fuerza electromotriz de inducción (o inducida) en un circuito cerrado es igual a la variación del flujo de inducción \phi \, del campo magnético que lo atraviesa en la unidad de tiempo, lo que se expresa por la fórmula \xi = - \frac {\Delta \Phi}{\Delta t} \,\! (ley de Faraday). El signo - (ley de Lenz) indica que el sentido de la FEM inducida es tal que se opone al descrito por la ley de Faraday ( \xi = \frac {\Delta \Phi}{\Delta t} \,\!).