“Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

39

Transcript of “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Page 1: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...
Page 2: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Volumen 12 No. 2, 2021

Número Especial, Memorias del Curso en línea: “Biorrefinerías utilizando Microalgas, Plantas y Aguas Residuales”

Page 3: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

ÍNDICE

֍ Prólogo/Editorial Eugenia J. Olguín---------------------------------------------------------------------29

֍ Photosynthesis Basic Principles to Optimize Growth of Microalgae

Cultures Outdoors Giuseppe Torzillo---------------------------------------------------------------------30

֍ Aspectos Genéticos de Microalgas

Vitalia Henríquez----------------------------------------------------------------------35

֍ Problemática de las Aguas Residuales

Oscar Monroy Hermosillo------------------------------------------------------------40

֍ General Aspects of Phytoremediation

Enrica Uggetti--------------------------------------------------------------------------45

֍ Procesos basados en Microalgas: Tratamiento de agua y obtención de biocombustibles gaseosos

Germán Buitrón-----------------------------------------------------------------------50

֍ Biorefineries of Energy Products Raúl Muñoz-----------------------------------------------------------------------------53

֍ Microalgae-Based Biorefineries Integrating Phytoremediation and

Wastewater Treatment Eugenia J. Olguín---------------------------------------------------------------------58

--------------------------------------------------------------------------------------------------------------- Open Access: All articles are distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. ©The Author(s) 2021. All articles are published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal.

Page 4: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Información Legal REVISTA LATINOAMERICANA DE BIOTECNOLOGÍA AMBIENTAL Y ALGAL, es una publicación semestral editada por la Sociedad Latinoamericana de Biotecnología Ambiental y Algal, A.C. Plazuela Juan Zilli No. 10, Fraccionamiento Las Ánimas, Xalapa de Enríquez, Veracruz, C.P.91190, México. Tel +52 (228) 842-1848. Editor responsable: Dra. Eugenia Judith Olguín Palacios. Reserva de Derechos al Uso exclusivo No. 04-2013-080711564000-203. ISSN: 2007-2570, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número: Ing. Ricardo Erik González Portela. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación sin previa autorización de la Sociedad Latinoamericana de Biotecnología Ambiental y Algal, A.C.

Page 5: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 29.

Prólogo Número Especial:

“Biorrefinerías utilizando Microalgas,

Plantas y Aguas Residuales”

Curso en línea

La Sociedad Latinoamericana de Bio-

tecnología Ambiental y Algal (SOLABIAA)

organizó de manera conjunta con el Instituto

de Ecología (INECOL) y la International

Society for Environmental Biotechnology

(ISEB) el Curso virtual “Biorrefinerías

Utilizando Microalgas, Plantas y Aguas

Residuales” del 28 de Junio al 1 de Julio de

este año.

Los profesores participantes son de amplio y

reconocido prestigio y representan

Instituciones de México (INECOL, UAM-I y

UNAM), de España (Universidad de Almería,

Universidad de Politécnica de Cataluña y

Universidad de Valladolid) y de Italia

(Universidad de Florencia y Consejo Nacional

de Investigación).

Este Número Especial de RELBAA (Vol. 12,

Núm. 2) compila varios artículos cortos que

resumen la parte medular de las

presentaciones de los Profesores invitados. El

propósito es proporcionar información de

fácil acceso y que puede ser citada, por todos

aquellos asistentes virtuales al curso.

Los organizadores del Curso están muy

satisfechos por el gran número de personas

registradas (578), las cuales provienen de

múltiples países de la Región Latino-

americana. Este tópico es de gran relevancia

actualmente, dado que representa una de las

opciones de mitigación del cambio climático

dentro del concepto de Bioeconomía Circular.

De esta forma, estamos contribuyendo a la

difusión del conocimiento entre el ambiente

académico, profesional, empresarial y

gubernamental de una manera amplia y

efectiva.

Special Issue Editorial:

“Biorefineries Using Microalgae,

Plants and Wastewater - Online

Training Course”

The Latin American Society of Environmental

and Algal Biotechnology (SOLABIAA), the

Institute of Ecology (INECOL-Mexico) and

the International Society for Environmental

Biotechnology (ISEB) have organized jointly

the Course online “Biorefineries using

microalgae, plants and wastewater” held from

June 28th to July 1st, 2021.

The invited Professors are well known in their

respective fields and represent multiple

academic organizations in Mexico (INECOL,

National Autonomous University of Mexico,

and Autonomous Metropolitan University),

Spain (University of Almeria, Polytechnic

University of Catalonia, and University of

Valladolid), and Italy (University of Florence

and National Research Council).

This Special Issue presents short

communications written by the invited

Professors in which a review of the core items

of their presentation in the course is

summarized. The purpose is to provide open

access information that can be formally cited

providing the proper credit to the information

online.

The Organizing Committee is very satisfied

with the outcome of the Course, not only due

to the large number of attendees (578), but also

due to the large diversity of countries of the

Latin American Region that participated. The

topic of the course is quite relevant currently

since it represents one of the options for global

warming mitigation within the Circular

Bioeconomy concept. In this way, we are

contributing in an effective and wide manner to

the dissemination of knowledge among the

academic, professional, entrepreneurial, and

governmental sectors.

Dra. Eugenia J. Olguín

=-~Editor en Jefe~-=

Revista Latinoamericana de Biotecnología Ambiental y Algal

29

Page 6: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 30-34.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Photosynthesis basic principles to optimize growth of

microalgae cultures outdoors

[Fotosíntesis: Principios básicos para la optimización del crecimiento en cultivos

de microalgas en condiciones exteriores]

Giuseppe Torzillo*ab

a CNR–Istituto per la Bioeconomia,

Via Madonna del Piano,10, 50019 Sesto Fiorentino, Firenze, Italia b CIMAR–Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica,

San Pedro, San José 2060, Costa Rica

(*Corresponding author: [email protected])

Abstract

Microalgae can play an important role in

modern bioeconomy since they can be

used as source of some important building

blocks such as amino acids, poly-

unsaturated fatty acids, pigments,

vitamins, and antioxidants. To date, the

number of species being cultured on a

large scale for commercial purposes is still

small, the most used being Arthrospira

platensis (Spirulina) and Chlorella spp.,

produced mainly for use as nutritional

supplements, and Dunaliella and

Haematococcus as source of carotenoids.

The production of sufficient amounts of

biomass is a prerequisite for meeting

large-scale demand and to reach economic

viability. To date, in industrial scale

microalgal production systems, light

conversion efficiency ranges between 1-

2% on solar basis, far short of the

theoretical maximum of about 10%, owing

to energy loss at all the stages of the

process. Table 1 shows a summary of the

expected energy losses of total incident

solar radiation during the biomass

production process.

Resumen

Las microalgas pueden desempeñar un papel

importante en la bioeconomía moderna, ya

que pueden utilizarse como fuente de

algunos componentes básicos importantes,

como aminoácidos, ácidos grasos

poliinsaturados, pigmentos, vitaminas y

antioxidantes. A la fecha, el número de

especies que se cultivan a gran escala con

fines comerciales es todavía pequeño, siendo

las más utilizadas Arthrospira platensis

(Spirulina) y Chlorella spp., producidas

principalmente para su uso como

suplementos nutricionales, y Dunaliella y

Haematococcus como fuente de

carotenoides.

La producción de cantidades suficientes de

biomasa es un requisito previo para satisfacer

la demanda a gran escala y alcanzar la

viabilidad económica. A la fecha, en los

sistemas de producción de microalgas a

escala industrial, la eficiencia de conversión

de la luz oscila entre el 1-2% en base solar,

muy lejos del máximo teórico de alrededor

del 10%, debido a la pérdida de energía en

todas las etapas del proceso. La Tabla 1

muestra un resumen de las pérdidas

energéticas previstas de la radiación solar

incidente total durante el proceso de

producción de biomasa.

30

Page 7: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 30-34.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Table 1. Summary of expected the energy losses of total incident solar radiation energy

in outdoor microalgal cultures.

Process Energy radiation

losses (%)

Remaining

energy (%)

Total solar radiation - 100

Reflection/scattering 10 90

Radiation outside PAR 55 41

Loss of useful absorbed PAR energy at

680 nm (PSII) and 700 nm (PSI) due to

non-photochemical processes

20 32.8

Conversion energy to biomass 71.3 9.4

Photosynthesis saturation and

photoinhibition 80 1.88

Cell maintenance in cultures

subjected to diurnal cycle 10 1.7

Actual light conversion efficiency under

solar light 1.7

It is estimated that about 10% of the

photosynthetically active radiation is

reflected by the cultures. Microalgae, when

grown under high light, also synthesize

some protective pigments (xanthophyll

cycle pigments, in green algae) that

dissipate excess light as heat (Masojidek et

al., 1999). This photosynthetically inactive

light absorption, to the extent it occurs,

further lowers photosynthetic conversion

efficiency.

Furthermore, photons above 700 nm and

below 400 nm are not utilized by microalgae

pigments (as well as by higher plants), and

thus about 55% of incident solar light is

unavailable to drive photosynthesis. The

sum of losses by reflection and more

importantly the amount of light out of the

photosynthetically active radiation (PAR)

range, reduces the available light for

photosynthesis to about 41%.

The energy required to drive a charge

separation event in PSII is approximately

176 KJ/mol (i.e., equal to the energy of a

680-nm wavelength photon), and 171

KJ/mol (i.e., the energy content of a photon

at 700 nm) for PSI. If we assume that the

mean energy content of photons in the 400-

700 nm range is about 218 KJ/mol, then the

loss of energy between absorption and

charge-separation in the two photosystems

will be approximately:

{[218-(171+176)/2]/218}x100;

this means that approximately 20.4% of the

incident solar energy is irretrievably lost as

heat in the process, because of the relaxation

of higher excited states of chlorophyll to the

first excited singlet state (Zhu et al., 2008).

For light conversion to biomass, considering

that 1 mol of hexose yields 2808 KJ mol-1

,

and that a minimum of 9.4 mol of quanta are

required to release 1 mole of O2,

(2808 KJ mol-1

/(173.5 KJ mol-1

x 6 (9.4 mol

quanta) x 100 = 28.7 %

(i.e. an energy loss of 71.3%),

then consequently the theoretical maximum

light conversion efficiency for biomass

production is about 9.4% of solar light. The

calculated value of the light conversion

efficiency can significantly change

according to the biomass composition.

31

Page 8: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 30-34.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

For example, biomass rich in carbohydrates

there is a good agreement between

theoretical and real quantum requirement,

while for biomass rich in lipids or in

proteins, the quantum requirement can

increase by a factor of 2 (up to 24

photons/CO2) (Wilhelm and Torsten, 2011).

On the other hand, the theoretical light

conversion efficiency (LCE) for H2

production, attainable by direct bio-

photolysis, is about 13.4% of incident solar

light. This theoretical maximum conversion

efficiency is significantly higher than the

theoretical limit for biomass or biodiesel

production, but lower than present

commercial single-junction (single

photosystem) silicon solar cell modules,

which is typically 18± 2% and photo-

electrochemical water-splitting devices

15% (Green et al, 2010).

These differences are only apparent and are

explained by the fact that the efficiency of

the process depends on the number of steps

necessary to produce a certain compound

(i.e., the more steps required in the biomass

case, the lower the efficiency of the

process). For example, the annual averaged

efficiency for solar water splitting by PV-

driven electrolysis can drop to 10–11%, if

the cascade of energy loss to produce H2 is

considered.

Measurements of the effective quantum

yield of PSII using chlorophyll

fluorescence, carried out at midday in

summer usually shows a strong reduction

indicating that up to 90% of the light energy

is lost via non photochemical process,

mainly heat. This drops the light conversion

efficiency usually attainable in large scale to

less than 2%. Finally, although at much

lower extent, the night biomass loss

occurring during the night must be

considered, involving dissipation of energy

through the respiration usually at the

expenses of carbohydrates (or other stored

products) synthesized during the light

period (Torzillo et al., 1991). Bearing this

information in mind, it is possible to

estimate the amount and of biomass

attainable in a precise location with known

light energy available, provided that neither

technological aspects (such as mixing, cell

concentration), nor environmental

constraints (such as temperature, pH, O2)

are limiting.

For example, with an average mean solar

energy of 18 MJ m-2 day-1, and a cultivation

period of 210 days, with a light conversion

efficiency of 1.7%, the energy content of

biomass being 20 KJ g-1, the corresponding

biomass yield will be about 32 t ha-1 year-1.

The corresponding mean yield per square

meter of reactor will be about 15 g m-2 day-

1 (mean over the cultivation period of 210

days). Yet, if the theoretical efficiency could

be reached, then the mean biomass per

square meter would raise to about 83 g m-2

day-1.

Unfortunately, neither with laboratory

cultures nor outdoor ones, an efficiency of

9.4% has ever been attained. Continuous

cultures of Synechocystis reached an

efficiency of 12.5% on PAR, corresponding

to 5.6% on solar basis (Touloupakis et al.,

2015). It must be pointed out that the first

calculations of photosynthetic efficiency

coming from laboratory experiments where

microalgae were usually exposed to light

irradiance within the PAR gave results that

must not be confused with those obtained in

sunlight (i.e., full light spectra) which are

55% lower.

As can be argued from Table 1, the greatest

energy losses are due to the conversion of

solar energy into biomass (about 71%) and

to light saturation of photosynthesis (80%).

Microalgae, like C4 plants, usually have a

well-functioning xanthophyll cycle which is

necessary for the development of the non-

photochemical quenching (NPQ)

mechanism and can efficiently dissipate

excess of light (Demmig-Adams, et al.,

32

Page 9: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 30-34.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

2014; Masojidek et al., 1999; Masojidek et

al., 2004).

Microalgae – unlike higher plants in which

the amplitude of NPQ is proportional to the

light intensity at which they are exposed,

strongly upregulate their ability to switch on

NPQ even under moderate light irradiance,

and this causes a remarkable reduction in

the light conversion efficiency (Bonente et

al., 2012), and in the ability to dissipate

photons absorbed by the light-harvesting

complexes under excess light. Obviously,

while little can be done to improve the light

conversion into biomass, a strong

enhancement of yield could be attained if

the problem of light saturation could be

reduced.

To attenuate the effects of this physical

constraint that actually acts as a strong

drawback in algal biotechnology, some

strategies have been proposed: 1) fast

mixing in order to induce rapid light/dark

cycles within the culture depth of dense

cultures; 2) use of an optimal concentration;

and more recently, 3) use of PBR designs in

which it is possible to dilute light over a

larger surface of the culture (Wijffels and

Barbosa, 2010); and 4) use of organisms

with small antenna size.

All these strategies aim at improving light

conversion efficiency by enhancing the

number of cells having access to light and

reducing as much as possible the time the

cells spend in the dark. Therefore, the

optimization of the reactor design cannot

exclude an appropriate fluid dynamics

study.

Conclusions

A better understand of the mechanisms that

regulate light utilization/dissipation may

shed light on the potential ways of

optimizing productivity and product quality.

However, these studies are made complicate

by the fact that outdoors very often

environmental factors act in synergism

between them. Therefore, pure laboratory

study, on commercial microalgal species,

although very important, must be

considered carefully and always confirmed

outdoors. On the other hand, in order to

better understand the physiological basis of

stress phenomena occurring outdoors, it is

necessary to return to the laboratory where

the effect of environmental factors can be

studied separately, under well definite

conditions. The critical factor which limits

the productivity of the cultures is the low

efficiency of light conversion. Indeed,

although photosynthesis has been optimized

over three billion years of evolution, it

remains inefficient at converting solar

energy into chemical energy and biomass.

Microalgae with truncated antenna size may

substantially increase the biomass

productivity. This approach represents a

synthetic variation of the natural photo

adaptive- mechanism of microalgae in

which pigments re-organize in response to

high light. Unfortunately, mutants generated

by random UV or chemical mutagenesis are

likely to induce multiple mutations, and

among them an increased respiration rate of

the cells, which reduces the benefit of the

reduced light absorption of the truncated

antenna size cells. Therefore, in these

studies, an important parameter that need to

be addressed, other than the lower

chlorophyll per cell and reduced PSII

antenna size, is the photosynthesis to

respiration ratio which should not

significantly affected.

The progress in algal biotechnology could

be strongly accelerated if basic research on

microalgae were carried out taking into

account the new necessities pointed out by

applied research, and vice versa: in other

words, biologists should understand more

about bioengineering and engineers should

understand more about biology.

33

Page 10: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 30-34.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

References

Bonente, G., Pippa, S., Castellano, S., Bassi,

R., Ballottari, M. 2012. Acclimation of

Chlamydomonas reinhardtii to

different growth irradiances. J. Biol.

Chem. 287: 5833-5847.

Demmig-Adams, B., Gyozo, G., Adams, W.

Govindjee. 2014. Non-photochemical

quenching and energy dissipation in

plants, algae and cyanobacteria.

Advances in Photosynthesis and

Respiration Book Series, Vol. 40.

Springer Science+Business Media.

Green, M.A., Emery, K., Hishikawa, Y.,

Warta, W. 2010. Solar cell efficiency

tables (version 35) Prog. Photovolt.

Res. Appl. 18: 144-150.

Masojídek , J., Kopecký, J., Koblížek, M.,

Torzillo, G. 2004. The xanthophyll

cycle in green algae (Chlorophyta): its

role in the photosynthetic apparatus,

Plant Biol. (Stuttg) 6: 342-349.

Masojídek, J., Torzillo, G., Koblížek, M.,

Kopecký, J., Bernardini, P., Sacchi, A.,

Komenda, J. 1999. Photoadaptation of

two members of the Chlorophyta

(Scenedesmus and Chlorella) in

laboratory and outdoor cultures:

Changes of chlorophyll fluorescence

quenching and the xanthophyll cycle.

Planta 209: 126-135.

Torzillo, G., Sacchi, A., Materassi, R.,

Richmond, A. 1991. Effect of

temperature on yield and night biomass

loss in Spirulina platensis grown

outdoors in tubular photobioreactors.

J. Appl. Phycol. 3: 103-109.

Touloupakis, E., Cicchi, B., Torzillo, G.

2015. A bioenergetic assessment of

photosynthetic growth of

Synechocystis sp. PCC 6803 in

continuous cultures. Biotechnol.

Biofuels 8: 133-144.

Wilhelm, C., Torsten J. 2011. From photons

to biomass and biofuels: Evaluation of

different strategies for the improvement

of algal biotechnology based on

comparative energy balances. Appl.

Microbiol. Biotechnol. 92: 909-919.

Wijffels, R. Barbosa, M.J. 2010. An outlook

on microalgal Biofuels. Science

329: 796-799.

Zhu X.G., Long, S.P., Ort, D.R. 2008. What is

the maximum efficiency with which

photosynthesis can convert energy into

biomass? Curr. Opinion Biotechnol. 19:

153-159.

34

Page 11: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 35-39.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Aspectos Genéticos de Microalgas

[Genetic Aspects of Microalgae]

Vitalia Henríquez*

Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias,

Pontificia Universidad Católica de Valparaíso. Valparaíso, Chile.

(*Corresponding author: [email protected])

Resumen

Desde hace décadas las microalgas son foco

de estudio en todo el mundo, aunque en los

últimos años han cobrado un gran interés, en

particular para diversas aplicaciones bajo una

perspectiva bio-tecnológica. Como conse-

cuencia de su gran dispersión filogenética,

ofrecen bio-productos complementarios a los

de las plantas terrestres, además de contar con

una mayor facilidad de manipulación

genética. Sin embargo, son muchas las

especies aún desconocidas. En la actualidad,

se observa un interés cada vez mayor por la

explotación de las microalgas ya sean de agua

dulce o marinas como plataformas de

expresión emergentes para la producción de

proteínas terapéuticas recombinantes

(humanas y animales) y de enzimas

industriales, así como para modificar vías

metabólicas, por ejemplo, biosíntesis de

hidrocarburos para la generación de

biocombustibles, pigmentos antioxidantes y

ácidos grasos poliinsaturados. Por esta razón,

las herramientas de genética molecular para la

manipulación de las microalgas ha despertado

un interés mundial. La biología sintética

parece ser una buena estrategia para convertir

las microalgas en verdaderas biofábricas para

generar productos de gran valor. Más aún, con

el uso de la ingeniería genética en microalgas

podría hacer frente a la malnutrición e incluso

incidir en el cambio climático.

Abstract

Microalgae have been studied worldwide

for decades, although during the last couple

of years they have gathered great interest

under a biotechnological perspective. As a

consequence of their large phylogenetic

spread, they offer complementary

bioproducts compared to land plants,

together with greater ease of genetic

manipulation. Nevertheless, many species

are still unknown. Nowadays, an ever-

increasing interest in the exploitation of

either freshwater or marine microalgae are

being considered as emerging expression

platforms for recombinant therapeutic

proteins (human and animal) and industrial

enzymes production, as well as for

modifying hydrocarbons biosynthesis for

biofuels applications, antioxidant pigments,

and polyunsaturated fatty acids. Hence,

molecular genetic tools for microalgae

manipulation have attracted global interest.

Synthetic biology appears to be a good

strategy to turn microalgae into real bio-

factories for generating high-valuable

products. Furthermore, microalgae genetic

engineering could be useful in addressing

malnutrition and even have an impact on

climate change.

35

Page 12: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 35-39.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

En este curso se revisarán los avances

realizados en cuanto a las herramientas

genéticas moleculares para la ingeniería

genética del genoma de las microalgas con el

fin de utilizarlas como potenciales sistemas

de expresión. La investigación en ingeniería

genética de microalgas comenzó en 1988 con

la transformación del cloroplasto de

Chlamydomonas reinhardtii. No obstante, el

gran número de especies de microalgas

conocidas, la ingeniería genética se ha

limitado sólo a algunas de ellas,

principalmente a los organismos modelo y a

las microalgas que tienen importancia

comercial. Cabe destacar que este escenario

ha cambiado en los últimos años con la

disponibilidad de genomas y transcriptomas

de calidad junto a proteomas y metabolomas

que han permitido la identificación de

potenciales blancos para la manipulación

biotecnológica de un número cada vez mayor

de microalgas.

Los métodos de rutina para la manipulación

genética de las microalgas son bien

conocidos. Las microalgas ofrecen dos

grandes alternativas de transformación, la

nuclear y la cloroplastídica. La

transformación del cloroplasto tiene

características únicas por sobre la trans-

formación nuclear, la más importante de ellas

se debe a que los transgenes se integran

específicamente en los genomas del plastoma

mediante recombinación homóloga recíproca

dirigida a secuencias no codificantes.

Teniendo en cuenta que los promotores y las

regiones reguladoras (UTR, sigla del inglés

untranslated regions) son fundamentales

para conducir altos niveles de transcripción

de los transgenes, mediando a su vez la

estabilidad y la acumulación de los ARNm.

Cabe considerar además, que las microalgas

presentan un fuerte sesgo de codones,

definido por la redundancia inherente al

código genético, lo que es también crucial

para el logro de un alto nivel de expresión de

proteínas heterólogas.

This course will review the progress

regarding the generation of molecular

genetic tools for genetic engineering the

microalgal genome as potential expression

systems. The timeline of microalgae

genetic engineering research began in 1988

with the Chlamydomonas reinhardtii

chloroplast transformation. Nonetheless,

the great number of known microalgae

species, genetic engineering has been

limited only to a handful of them mainly to

model organisms and to microalgae that

have commercial significance. It is worth

noting that this scenario has changed over

the last years with the availability of high-

quality genomes and transcriptomes along

with proteomes and metabolomes which

will allow the identification of potential

targets for the biotechnological

manipulation of an increasing number of

microalgae

Routine methods for genetic manipulation

of microalgae are well known. Microalgae

offer two major transformation alternatives,

nuclear and chloroplast transformation.

Chloroplast transformation has unique

features over nuclear transformation, the

most important of which is that transgenes

are specifically integrated into the plastome

genomes through homologous

recombination targeting non-coding

sequences. Taking into consideration that

promoters and regulatory regions

(Untranslated regions, UTRs) are pivotal to

drive high-level transcription of transgenes

mediating mRNA stability and

accumulation. In addition, microalgae

exhibit strong codon bias, defined by the

inherent redundancy of the genetic code

which is also quite crucial for achieving

high-level heterologous protein expression.

36

Page 13: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 35-39.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figura 1. Aspectos a considerar para el estudio genético en microalgas.

Figura 2. Modificación genética en microalgas:

Transformación Nuclear v/s Transformación Cloroplastídica.

37

Page 14: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 35-39.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figura 3. Modalidades de diseño para vectores de expresión en microalgas.

En este contexto, los retos a los que nos

enfrentamos hoy en día son avanzar en

nuestra comprensión de la biología de las

microalgas junto a la adaptación y mejora

de las herramientas genéticas y los métodos

de transformación existentes para ser

usados exitosamente en la ingeniería

genética microalgal con diversos fines

biotecnológicos.

En conclusión, las herramientas de

ingeniería genética para la modificación

genética y metabólica de las microalgas, ya

sea para producir proteínas recombinantes

o para aumentar la producción de

compuestos de alto valor como los ácidos

grasos poliinsaturados, los pigmentos y los

antioxidantes, darían entonces lugar a

bioproductos asequibles y de alta calidad

que ayudarían a reducir los costos de

dichos productos.

In this context, the challenges we face

today are to advance our understanding of

microalgae biology and to adapt and

improve genetic tools and existing

transformation methods for microalgal

genetic engineering for diverse

biotechnological purposes.

In conclusion, the genetic and metabolic

engineering tools for the modification of

algal genome, either to produce

recombinant proteins or to increase the

production of valuable compounds such as

polyunsaturated fatty acids, pigments, and

antioxidants, would result in affordable and

high-quality bioproducts that would help

reduce the cost of such products.

38

Page 15: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 35-39.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

Referencias

Kumar, G., Shekh, A., Jakhu, S., Sharma, Y.,

Kapoor, R., Sharma, T.R. 2020.

Bioengineering of microalgae: Recent

advances, perspectives, and regulatory

challenges for industrial application.

Front. Bioeng. Biotechnol. 8; Article

№ 914.

Naduthodi, M.I.S., Claassens, N. J.,

D’Adamo, S., van der Oost, J.,

Barbosa, M.J. 2021. Synthetic biology

approaches to enhance microalgal

productivity. Trend. Biotechnol.

Article in press.

Feb 2021. DOI:

https://doi.org/10.1016/j.tibtech.2020.1

2.010

Sproles, A.E., Fields, J.F., Smalley, T.N., Le,

C.H., Badary, A., Mayfield, S.P. 2021.

Recent advancements in the genetic

engineering of microalgae. Algal Res.

53; Article № 102158.

39

Page 16: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 40-44.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Problemática de las Aguas Residuales

[Wastewater: General Aspects of its Problematic Issues]

Oscar Monroy Hermosillo*

Departamento de Biotecnología, Universidad Autónoma Metropolitana,

Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, CDMX, México.

(*Autor de Correspondencia: [email protected])

Resumen

La biorrefinería de algas y plantas es un

proceso de economía circular sustentable

para producir biocombustibles y productos

químicos de valor agregado por lo que se

abordan los problemas y oportunidades de

utilizar aguas residuales como insumo pues

sus componentes son importantes y

recuperables. El objetivo es provechar los

componentes para cultivar algas y plantas

junto con la producción de agua de mejor

calidad y no el de exclusivamente producir

agua tratada eliminando sus contaminantes.

Se revisan las características de las aguas

residuales y las operaciones unitarias

necesarias para un aprovechamiento de los

componentes para producir combustibles y

sustancias químicas con la ayuda de algas y

plantas. Se introducen los conceptos de

descentralización y segregación de los

efluentes para su procesamiento e

integración a una economía circular

sustentable y se repasan los distintos usos

del agua tratada.

Abstract

A biorefinery of algae and plants is a

sustainable process of circular economy to

produce biofuels and value-added chemical

products, thus the problems and

opportunities of using wastewater as an

input is addressed. as the wastewater

components are important and recoverable.

The objective is to take advantage of the

components to grow algae and plants

together with producing better quality water

and not to exclusively to produce treated

water by eliminating its pollutants.

The wastewater characteristics and the

necessary unit operations to prepare it for

the production of fuels and chemical

substances with the help of algae and plants

are reviewed. The concepts of

decentralization and segregation of effluents

for their processing and integration into a

sustainable circular economy are introduced

and the different uses of treated water are

reviewed.

Introducción

Hay dos conceptos y, por lo tanto, procesos

diferentes: si las aguas residuales se tratan

con un proceso al final del tubo para

producir agua más limpia para usos

específicos o si se procesan para obtener

subproductos como energía, alimentos,

productos químicos finos utilizando

procesos basados en la naturaleza. En el

manejo de la economía que es el manejo de

los bienes que tenemos en el planeta es

conveniente aplicar los conceptos de

sustentabilidad y economía circular.

40

Page 17: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 40-44.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Sustentabilidad o sostenibilidad viene de

la palabra francesa soutenir que significa

sostener o apoyar. Se habla de un acuífero

sustentable o sostenible cuando no se le

extrae más agua de la que recarga, o en

silvicultura cuando no se cosecha más

madera que la que se produce por el

crecimiento de los árboles. En general, es

respetar en la naturaleza la capacidad de

auto-regenerarse o, no explotarla más rápido

de lo que se puede regenerar.

La sustentabilidad depende de la población,

del uso de los recursos y de las tecnologías,

pero es un concepto tan importante que

también incluye a la democracia, la justicia

y la libertad.

Economía circular. Siendo la tierra un

sistema cerrado se desprende que la

economía y el medio ambiente deben estar

en equilibrio. Entonces la economía circular

se puede conceptualizar como una

economía para describir estrategias

industriales para la prevención de residuos,

la creación de empleos locales, eficiencia en

el uso de recursos y desmaterialización de la

economía industrial (no vender la propiedad

sino el uso de los productos) de tal manera

que los beneficios o las utilidades

industriales no dependieran de externalizar

costos y riesgos (al ambiente o a la sociedad

incluidos los trabajadores). Es en resumen

una economía industrial intencionalmente

diseñada para ser regeneradora. Sistema

regenerativo en el que la entrada de recursos

y el desperdicio, las emisiones y las fugas de

energía se minimizan al reducir la

velocidad, cerrar y estrechar los circuitos de

material y energía (Geissdoerfer et al.,

2017).

El manejo de agua en una economía circular

implica tener una gran cantidad de agua en

procesos de tratamiento y recirculación para

solamente extraer el agua necesaria para

compensar las pérdidas. Este manejo

circular permitiría la recuperación de las

sustancias contaminantes del agua como

insumos de otros procesos como la

biorrefinería de algas y plantas que es un

proceso de economía circular sustentable

para producir biocombustibles y productos

químicos de valor agregado (Olguín, 2012).

El agua residual que requiere como materia

prima y su tratamiento debe ser estudiada

para diseñar el proceso, los productos y el

destino del agua.

Esto es clave porque las aguas residuales en

flujo y composición son muy variables a lo

largo del día, de la semana, de una estación

y del año. Esto aplica tanto para las aguas

industriales como para las domésticas y

urbanas por lo que pone en riesgo la

operación estable de una refinería. Por eso

es importante caracterizar el agua residual

(Cuadro 1) que se va a usar en la

biorrefinería.

Cuadro 1. Características de las aguas residuales (AR)

• Clasificación

• AR domésticas (cantidad generada por habitante, variaciones diarias , estacionales)

• AR industriales (variaciones del flujo por actividad, por campaña de producción9

• Escurrimientos agrícolas (contaminación difusa, drenes,)

• AR urbanas (combinación de ARd, ARi, escurrimientos urbanos)

• Necesidad y oportunidades de segregación de efluentes

41

Page 18: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 40-44.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

• Industriales

• Domésticos

• Características físicas

• Sólidos suspendidos, microorganismos, estética, sedimentos

• Sólidos disueltos, Conductividad (sales),

• Temperatura, pH

• Color, Olor

• Características químicas

• Composición

• Sustancias orgánicas medición por DQO

• Degradables (medición por DBO)

• No biodegradables (DBO/DQO)

• Minerales: metales, nutrientes (P, N)

• pH, alcalinidad

• Relaciones C/N/P

Estas características las podemos relacionar

para calcular la cantidad de un componente

particular que se quiere eliminar o usar para

una transformación.

Así una concentración (Ci) que es la

cantidad de un soluto (o material suspendido

por unidad de volumen) al multiplicarla por

el flujo (F) nos da la velocidad másica o

carga de ese componente: (mi = F x Ci)

en donde el subíndice i nos indica el

componente. Existen estimaciones de la

cantidad de agua residual que puede generar

la población y los distintos tipos de industria

(concentración, flujo, carga orgánica,

población, equivalentes de población) con

lo que se puede predecir la cantidad de agua

que se puede producir y la que se puede

transformar en productos útiles (von

Sperling, 2007).

El tren de tratamiento de aguas residuales en

economía circular (Fig. 1) para mantener la

mayor cantidad de agua en reutilización

permitiendo ahorrar y almacenar agua

limpia para consumo humano.

Figura 1. Tren de tratamiento de aguas residuales en economía circular.

TRATAMIENTO

PRELIMINAR

TRATAMIENTO

PRIMARIO

TRATAMIENTO

ANAEROBIO

TRATAMIENTO

AEROBIO

TRATAMIENTO

TERCIARIO

REUSO DEL

AGUA

AGUA DE

COMPENSACIÓN

TRATAMIENTO

AVANZADO

42

Page 19: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 40-44.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Para hacer más homogéneas las aguas que

se van a tratar lo mejor es segregarlas. En la

industria se hace; el agua de proceso tiene

un tren de diferente al agua de enfriamiento

y diferentes ambos al agua de vapor y al

agua de los sanitarios. Lo mismo puede

hacerse con las aguas domésticas que se

pueden segregar en aguas amarillas de alto

contenido de urea, aguas grises y aguas

cafés con baja y alta concentración de

materia orgánica, respectivamente. Usando

muebles ahorradores de agua la primera

corresponde a 1.5 L/hab.d , las segundas son

alrededor de 80 L/hab.d y la últimas 1.5

L/hab.d. (Fig. 2).

La urbanización contemporánea que se

realiza en unidades habitacionales verticales

u horizontales permite este tipo de

tratamiento descentralizado y segregado de

las aguas residuales pero también puede ser

utilizado en comunidades donde se dificulte

la construcción de drenajes.

Además de obtener energía y productos

químicos el tratamiento descentralizado de

aguas segregadas permite:

• Usar el agua residual in situ.

• Reducir longitud y diámetro de

drenajes.

• Mayor control del flujo y crecimiento

de la PTAR.

Figura 2. Segregación de efluentes domésticos en conjuntos habitacionales.

Usos del agua

Dependiendo del grado de tratamiento y

almacenamiento, los usos del agua son

varios (Cuadro 2). Dentro de una economía

circular siempre se debe tener al agua en

constante recirculación y tratamiento para

poder almacenar agua para el consumo

humano.

2

43

Page 20: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 40-44.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Cuadro 2. Usos del agua con diferentes grados de tratamiento

• Doméstica e Industrial (para alimentos, medicamentos)

• Industrial en contacto con producto

• Industrial para servicios

• Irrigación (hortícolas y otro tipo (árboles o granos)

• Pecuaria

• Vida acuática

• Acuicultura (animal, planta)

• Recreación (con contacto humano, sin contacto humano)

• Generación de energía (vapor o hidroeléctricas)

• Transportación

Conclusión

El tratamiento y reuso de aguas residuales es

una práctica de la economía circular

sustentable. En una biorrefinería el agua

residual es un importante insumo por lo que

debe caracterizarse bien para saber cómo

aprovechar sus componentes y darl el uso

adecuado al agua obtenida.

Es importante usar aguas segregadas para

mantener una uniformidad en la materia

prima, tener un mejor control de los

componentes y procesos sustentables de

manejo de agua.

.

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

Referencias

Geissdoerfer, M., Savaget P., Bocken N.M.P.,

Hultink. E.J. 2017. The Circular

Economy – A New Sustainability

Paradigm? J. Cleaner Prod. 143: 757-

768.

Monroy, O. 2013. Manejo sustentable del agua

en México. Revista Digital Universitaria

[en línea] 14(10); Artículo electrónico.

URL:

http://www.revista.unam.mx/vol.14/num

10/art37/index.html

Olguín, E. 2012. Dual purpose microalgae–

bacteria-based systems that treat

wastewater and produce biodiesel and

chemical products within a Biorefinery.

Biotechnol. Adv. 30(5): 1031-1046.

von Sperling, M. 2007. Wastewater

characteristics, treatment and disposal.

Biological Wastewater Treatment Series

Vol. 1. IWA Publishing. 292 Pp. ISBN:

1843391619.

44

Page 21: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 45-49.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

General Aspects of Phytoremediation

[Aspectos Generales de la Fitorremediación]

Enrica Uggetti *

GEMMA – Group of Environmental Engineering and Microbiology, Department of Civil

and Environmental Engineering,

Universitat Politècnica de Catalunya·BarcelonaTech,

c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain

(*Corresponding author: [email protected])

Abstract

Phytoremediation is a set of viable

technologies that uses selected plants and

their microorganisms to degrade, extract,

contain, or immobilize contaminants from

soil and water. It is based on natural

processes that can be effective at a variety

of sites and on numerous contaminants.

Processes are carried out by selected plant

species that possess the genetic potential to

remove, degrade, metabolize, or immobilize

a wide range of contaminants.

Resumen

La fitorremediación es un conjunto de

tecnologías viables que utilizan plantas

seleccionadas y sus microorganismos para

degradar, extraer, contener o inmovilizar

contaminantes del suelo y el agua. Se basa

en procesos naturales que pueden ser

eficaces en una variedad de sitios y en

numerosos contaminantes. Los procesos son

llevados a cabo por especies vegetales

seleccionadas que poseen el potencial

genético para eliminar, degradar,

metabolizar o inmovilizar una amplia gama

de contaminantes.

Constructed Wetlands

Among other phytoremediation processes,

constructed wetlands (CWs) are a

consolidated eco-friendly, nature-based

technology that has gained popularity for

decentralized wastewater treatment in small

communities and rural areas of both

industrialized and less developed countries

(Álvarez et al., 2017, Machado et al., 2017).

They are low-cost treatment systems, in

terms of maintenance and operation, and

have proven to efficiently remove organic

matter, nitrogen (N) and pathogenic

microorganisms from wastewater (Wu et

al., 2016, Castillo-Valenzuela et al., 2017,

Ilyas and Masih, 2017). During the last

decades, this technology has greatly been

developed, using, and evaluating different

CW designs and operational modes. CWs

have been successfully used for the

treatment of various types of wastewaters

such as textile waste, dairy waste, industrial

waste, piggery waste, tannery waste,

petrochemical waste, municipal waste

(Parde et al., 2021).

45

Page 22: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 45-49.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Constructed wetlands can be classified into

free water surface flow constructed wetland

(FW) CW and sub-surface flow constructed

wetland (SSF) CW. Subsurface flow is

divided, according to the flow direction, into

vertical flow (VF) CW, horizontal flow

(HF) CW, hybrid systems combining VF

and HF CW are also used (Vymazal and

Kröpfelová, 2008).

In constructed wetlands, several pollutants

removal mechanisms act together, including

physical, chemical, and biological

processes. The physical process involves

sedimentation of the suspended particles

present in the wastewater, which leads to the

removal of pollutants.

Sedimentation process not only reduce the

organic matter but also eliminates the

coliform bacteria (Dotro et al., 2015). On

the one hand, constructed wetland media is

helpful for the accumulation of organic

matter, phosphorus, sulphate, arsenate and

removal of pathogens (Stanković, 2017). On

the other hand, macrophytes used in the

wetland provide huge surface area for the

microbial growth, which helps in stabilizing

the organic matter (Brix, 1994). It is

important to take into account that

constructed wetland performance depends

upon the various factors like temperature,

applied hydraulic load, vegetation, media,

etc (Tilak et al., 2016).

Sludge treatment wetlands, also known as

sludge drying reed beds, are rather new

sludge treatment (ST) systems based on

constructed wetlands. Sludge treatment

wetlands have been used in Europe for

sludge dewatering and stabilisation since

the late 1980s. The largest experience

comes from Denmark, where there are over

140 full-scale systems currently in operation

(Nielsen, 2008).

Other systems implemented in northern

Europe are located in Poland, Belgium, and

the United Kingdom. In the Mediterranean

region, full-scale systems are operating in

Italy, France, and Spain (Uggetti et al.,

2010). Sludges from different sources have

been treated in wetlands, including

anaerobic digesters, aerobic digesters,

conventional activated sludge systems,

extended aeration systems, septic tanks, and

Imhoff tanks.

Sludge is directly spread into the basins

from the aerations tanks or is previously

homogenised in a buffer tank before its

discharge into the wetlands. From this tank,

the sludge is diverted into one of the beds,

following a semi-continuous regime. The

number of beds may vary, according to the

treatment capacity of the facility, between 3

and 18, which correspond to 400 and

123,000 population equivalent (PE),

respectively. The result of sludge

dewatering and stabilisation processes is a

final product that is suitable for land

application, either directly or after

additional composting.

46

Page 23: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 45-49.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figure 1. Scheme of a Constructed Wetland.

Figure 2. Aspect of a Vertical Flow Constructed Wetland located in Toulouse (France).

47

Page 24: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 45-49.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figure 3. Constructed Wetland for ecosystem restoration located in Granoller, Barcelona (Spain).

Figure 4. Scheme of Constructed Wetlands for sludge treatment.

48

Page 25: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 45-49.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

References

Álvarez, J.A., Ávila, C., Otter, P., Kilian, R.,

Istenič, D., Rolletschek, M., Molle, P.,

Khalil, N., Ameršek, I., Mishra, V.K.,

Jorgensen, C., Garfi, A., Carvalho, P.

Brix, H., Arias, C.A. 2017. Constructed

wetlands and solar-driven disinfection

technologies for sustainable wastewater

treatment and reclamation in rural

India: SWINGS project. Water Sci.

Technol. 76: 1474-1489.

Brix, H. 1994. Functions of macrophytes in

constructed wetlands. Water Sci.

Technol. 29(4): 71-78.

Castillo-Valenzuela, J., Martinez-Guerra, E.,

Gude, V.G. 2017. Wetlands for

wastewater treatment Water Environ.

Res. 89: 1163-1205.

Dotro, G., Fort, R.P., Barak, J., Jones, M.,

Vale, P., Jefferson, B. 2015. Long-term

performance of constructed wetlands

with chemical dosing for phosphorus

removal. In: Vymazal, J. (Ed.) “The

role of natural and constructed

wetlands in nutrient cycling and

retention on the landscape”. Springer.

Pp. 273-292.

Ilyas, H., Masih, I. 2017. The performance of

the intensified constructed wetlands for

organic matter and nitrogen removal: A

review. J. Environ. Manage. 198: 372-

383.

Machado, A.I., Beretta, M., Fragoso, R.,

Duarte, E. 2017. Overview of the state

of the art of constructed wetlands for

decentralized wastewater manage-ment

in Brazil. J. Environ. Manage. 187:

560-570.

Nielsen, S. 2008. Sludge treatment and drying

reed bed systems 20 years of

experience. In: Proceedings of the

European Conference on Sludge

Management, Liège, Belgium.

Parde, D., Patwa, A., Shukla, A., Vijay, R.,

Killedar, D.J., Kumar, R. 2021. A

review of constructed wetland on type,

treatment and technology of

wastewater. Environ. Technol. Innov.

21; Article № 101261.

Stanković, D. 2017. Constructed wetlands for

wastewater treatment. Gradevinar,

69(08): 639-652.

Uggetti, E., Ferrer, I., Llorens, E., García, J.

2010. Sludge treatment wetlands: A

review on the state of the art. Biores.

Technol. 101(9): 2905-2912.

Tilak, A.S., Wani, S.P., Patil, M.D., Datta, A.

2016. Evaluating wastewater treatment

efficiency of two field scale subsurface

flow constructed wetlands. Current

Sci. 110(9): 1764-1772.

Vymazal, J., Kröpfelová, L. 2008.

Wastewater treatment in constructed

wetlands with horizontal sub-surface

flow. Vol. 14. Springer Science +

Business Media, 566 Pp.

Wu, S., Carvalho, P.N., Müller, J.A., Manoj,

V.R., Dong, R. 2016. Sanitation in

constructed wetlands: A review on the

removal of human pathogens and fecal

indicators. Sci. Total Environ. 541: 8-

22.

49

Page 26: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 50-52.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Procesos basados en microalgas: Tratamiento de agua y

obtención de biocombustibles gaseosos

[Microalgae-based processes: Water treatment and

obtention of gaseous biofuels]

Germán Buitrón *

Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica

Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230.

(*Autor de Correspondencia: [email protected])

El tratamiento aerobio de aguas residuales

mediante lodos activados es costoso debido

a los requerimientos asociados con el

suministro de oxígeno mediante aireación,

además de las grandes cantidades de lodo

generadas en el tratamiento y los problemas

que requiere su disposición. En este

contexto, el tratamiento mediante un

sistema microalga-bacteria apunta a ser un

proceso más sustentable en términos de

gasto energético y recuperación de

nutrientes, teniendo en cuenta que el único

requerimiento energético asociado es el

mezclado y las múltiples ventajas de su

biomasa por su alto contenido energético en

forma de lípidos, proteínas y carbohidratos

(Van Den Hende et al., 2014; Muñoz y

González-Fernandez, 2017). Para que lo

anterior sea posible, se requieren métodos

de fácil separación de la biomasa del reactor

biológico (Quijano et al., 2107).

El crecimiento de microalgas se puede

llevar a cabo en lagunas algales de alta tasa

o HRAP (High Rate Algal Ponds, por sus

siglas en inglés; Fig. 1).

En estos sistemas se establece una relación

mutualista en donde las microalgas generan

oxígeno fotosintéticamente. El oxígeno

generado es entonces utilizado por las

bacterias para degradar la materia orgánica

y producir bióxido de carbono. A su vez, las

microalgas utilizan el bióxido de carbono

para reproducirse. De esta manera, la

materia orgánica, el nitrógeno y el fósforo,

son removidos del agua residual y

acumulados por las microalgas que los

utilizan para su crecimiento.

Por sí solas, las microalgas crecen de forma

muy dispersa por lo que son difícilmente

sedimentables y causarán problemas para su

separación del agua tratada. La formación

de agregados de microalgas-bacterias son

una alternativa para evitar los problemas de

baja sedimentabilidad (Arcila y Buitrón,

2016; Quijano et al., 2017). Para inducir la

formación de agregados microalga-bacteria

y alcanzar alta sedimentabilidad se han

evaluado diferentes factores como tiempo

de retención hidráulico y tiempo de

retención de sólidos.

50

Page 27: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 50-52.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Por otro lado, se han generado de estructuras

granulares en sistemas operados en sistemas

en lote, que es otra estrategia para promover

una alta recuperación de biomasa. Sin

embargo, se ha observado que la irradiación

solar tiene un impacto negativo en la

estabilidad granular puesto que tienden a

decrecer los exopolímeros y la remoción de

nutrientes (Arcila y Buitrón, 2017).

Se ha observado que el tiempo de retención

hidráulica influye en la morfología de los

agregados obtenidos y aparentemente en las

especies de algas presentes en los agregados

(Arcila y Buitrón, 2016). También se

observó que la producción de sustancias

poliméricas extracelulares ligadas juega un

papel muy importante en la formación de las

estructuras granulares. La irradiancia solar

tiene un efecto significativo en el

desempeño del reactor y el desarrollo de

agregados compuestos principalmente por

microalgas verdes, diatomeas,

cianobacterias filamentosas y hongos

(Arcila y Buitrón, 2017).

La pared celular de algunas especies de

microalgas es bastante resistente, lo que

dificulta el proceso de digestión pues la

materia orgánica retenida en el citoplasma

no se encuentra disponible a los

microorganismos anaerobios para la

producción de biocombustibles gaseosos

(Carrillo Reyes et al., 2016a). De modo que

para incrementar la digestibilidad de la

microalga por los microorganismos es

necesario llevar a cabo un pretratamiento, el

cual puede ser termoquímico (Passos et al.,

2013), mecánico (Cadeña et al., 2017) o

biológico (Barragán-Trinidad et al., 2017).

Los pretratamientos biológicos han

despertado gran interés debido a que se

pueden realizar en condiciones suaves de

reacción, no hay formación de compuestos

inhibitorios y baja demanda energética

(factor crucial para el escalamiento). En este

sentido se ha evaluado la hidrólisis

utilizando microrganismos ruminales para

la producción de hidrógeno y metano

(Carrillo Reyes et al., 2016b; Cea-Barcia et

al., 2018; Barragán-Trinidad et al., 2020)

Figura 1. Laguna algal de alta tasa (HRAP) utilizada para el tratamiento de aguas residuales.

51

Page 28: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 50-52.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

Referencias

Arcila, J.S., Buitrón, G. 2016. Microalgae-

bacteria aggregates: effect of the

hydraulic retention time on the

municipal wastewater treatment,

biomass settleability and methane

potential. J. Chem. Technol.

Biotechnol. 91: 2862-2870.

Arcila, J. S., Buitrón, G. 2017. Influence of

solar irradiance levels on the formation

of microalgae-bacteria aggregates for

municipal wastewater treatment. Algal

Res. 27: 190-197.

Barragán-Trinidad, M., Carrillo-Reyes, J.,

Buitrón, G. 2017. Hydrolysis of

microalgal biomass using ruminal

microorganisms as a pretreatment to

increase methane recovery. Bioresour.

Technol. 244: 100-107.

Barragán-Trinidad, M., Buitrón, G. 2020.

Hydrogen and methane production

from microalgal biomass hydrolyzed in

a discontinuous reactor inoculated with

ruminal microorganisms. Biomass

Bioenergy. 143; Article № 105825.

Cardeña, R., Moreno, G., Bakonyi, P.,

Buitrón, G. 2017. Enhancement of

methane production from various

microalgae cultures via novel ozonation

pretreatment. Chem. Eng. J. 307(1):

948-954.

Carrillo-Reyes, J., Barragán-Trinidad, M.,

Buitrón, G. (2016a). Biological

pretreatments of microalgal biomass for

gaseous biofuel production and the

potential use of rumen microorganisms:

A review. Algal Res. 18: 341-351.

Carrillo-Reyes, J., Buitrón, G. 2016b.

Biohydrogen and methane production

via a two-step process using an acid

pretreated native microalgae

consortium. Bioresour. Technol. 221:

324-330.

Cea-Barcia, G., Pérez, J., Buitrón, G. (2018)

Co-digestion of microalga-bacteria

biomass with papaya waste for methane

production. Water Sci. Technol. 78 (1):

125-131.

Muñoz, R., Gonzalez-Fernandez, C. (Eds.)

2017. “Microalgae-based biofuels and

bioproducts - From feedstock cultiva-

tion to end-products”. Woodhead

Publishing Series in Energy. 560 Pp.

Passos, F., Solé, M., García, J., Ferrer, I.,

2013. Biogas production from

microalgae grown in wastewater: Effect

of microwave pretreatment. Appl.

Energy. 108: 168-175.

Quijano, G., Arcila, J. S., Buitrón, G. 2017.

Microalgal-bacterial aggregates: Appli-

cations and perspectives for wastewater

treatment. Biotechnol. Adv. 35(6): 772-

781.

Van Den Hende, S., Carre, E., Cocaud, E.,

Beelen, V., Boon, N., Vervaeren, H.

2014. Treatment of industrial

wastewaters by microalgal bacterial

flocs in sequencing batch reactors.

Bioresour. Technol. 161: 245-254.

52

Page 29: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 53-57.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Biorefineries of energy products

[Biorrefinerías de productos energéticos]

María del Rosario Rodero Lara-Mendez, Bibiana Comesaña, Silvia García,

Raquel Herrero, Raquel Lebrero, Raúl Muñoz*, Octavio García Depraect

Instituto de Procesos Sostenibles, Universidad de Valladolid,

Dr. Mergelina S/N, Valladolid 47011, Spain

(*Corresponding author: [email protected])

Abstract

Algal biotechnology represents a very

versatile platform for environmental

applications, contributing to heavy metal

removal, organic matter stabilization and

nutrient valorization from wastewaters,

carbon dioxide capture and sustainable

biofuel production. Biodiesel, biohydrogen,

biogas and bioethanol constitute the main

energy vectors obtained from microalgae.

This short communication reviews the

potential of microalgae for biofuel

production.

Resumen

La biotecnología de las algas representa una

plataforma muy versátil para las aplicaciones

medioambientales, contribuyendo a la

eliminación de metales pesados, la

estabilización de la materia orgánica y la

valorización de los nutrientes de las aguas

residuales, la captura de dióxido de carbono

y la producción sostenible de bio-

combustibles. El biodiésel, el biohidrógeno,

el biogás y el bioetanol constituyen los

principales vectores energéticos obtenidos a

partir de las microalgas. Esta breve

comunicación revisa el potencial de las

microalgas para la producción de

biocombustibles.

Microalgal Biorefineries

Under nutrient starvation and excess of CO2

and light, some microalgae can store lipids

(10- 80% on a dry weight basis) as energy

source, which represents a valuable

feedstock for the production of biodiesel

(with an average calorific value of 35.8 Kg g-

1). Microalgal triglycerides need to be

extracted from the cell to be further trans-

esterified catalytically using methanol, with

the concomitant production of biodiesel and

glycerol (as a byproduct). The interest in

microalgae biodiesel boomed in 2007 in a

global context of rising oil prices and

concern about climate change.

Unfortunately, the high cost of microalgae

cultivation (4-10 € kg-1) jeopardized the

widespread production of algal biodiesel

(Peng et al., 2020).

Biohydrogen is the gaseous fuel with the

highest calorific value (138 KJ g-1) and the

lowest CO2 footprint, although entails

technical problems during storage, high

explosion risks and low production rates in

microalgal photobioreactors. Biohydrogen

can be produced via direct biophotolysis or

indirect biophotolysis, but the maximum

reported production rates are typically lower

(0.07-0.36 mmol H2 L-1 h-1) than those

achieved during dark fermentation of organic

substrates (64-76 mmol H2 L-1 h-1) (Buitrón

et al., 2017).

53

Page 30: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 53-57.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Microalgae can be used as a feedstock for the

production of methane via anaerobic

digestion (55 KJ g CH4-1), with the first

studies dating back to 1950s in California

using the algal biomass generated from

domestic wastewater treatment (Golueke et

al., 1957). The methane productivity yields

of microalgae typically range from 0.09 to

0.45 LCH4 g VS-1, and depend on the

microalgal species and growth conditions,

which ultimately determine the Redox state

and biodegradability of the carbon present in

the biomass. The generation of biogas from

residual algal biomass is conducted in

anaerobic digesters engineered with internal

gas or liquid recirculation, or mechanical

agitation, in order to provide the required

mixing between the algal substrate and the

anaerobic microbial community. Substrates

to inoculum ratios of 0.5 were shown optimal

for the determination of the biochemical

methane potential in batch tests, with ratios

over 3 inducing inhibition of the anaerobic

community (Alzate et al., 2012).

The development of algal biorefineries for

bioenergy production can entail an initial

extraction of the algal lipid for biodiesel

production, and the further digestion of the

lipid-exhausted biomass. This lipid-free

biomass supports similar methane yields but

significantly faster kinetics due to the partial

disruption of cell integrity during lipid

extraction (Alzate et al., 2014). On the other

hand, the presence in the algal cell wall of

recalcitrant compounds has been shown to

typically hinder microalgae biodegradability,

which requires the implementation of

biomass pretreatments such as chemical,

thermal, steam explosion, microwave,

ultrasound, and enzymatic pretreatments.

Table 1 shows the main algal pretreatments

along with their key operational parameters,

enhancement potential and their pro and

cons. Among the pretreatments reported in

literature, thermal and steam explosion

pretreatments have shown the largest

microalgal biodegradability enhancements,

while ultrasound pretreatments typically

require more energy than the chemical

energy contained in the target biomass.

This biogas can be upgraded to biomethane

in order to be used as a substitute of natural

gas in natural gas grids or as a gas fuel in

vehicles. Membrane-based separation is

currently the commercial technology with

the largest increases in market share in the

past 10 years (WBA, 2019). Hence,

membrane technology, which consists of the

selective permeation of biogas pollutants

such as CO2 and H2S through membranes, is

a competitive and attractive alternative to

conventional upgrading technologies due to

its decreasing energy consumption (brought

about by the rapid advances in material

science), simple and compact engineered

modules and small footprint. Although the

number of commercially operated plants is

still limited, membrane technology is

currently undergoing rapid development

thanks to the use of new polymer materials

with promising properties and enhanced

performance and is set to play an

increasingly important role in reducing

environmental impact and cost of industrial

biogas upgrading (Awe et al., 2017).

Among biological biogas upgrading

technologies, photosynthetic biogas

purification with microalgae represents the

only biotechnology capable of

simultaneously removing CO2 and H2S from

biogas, while fixing the nutrients present in

the digestate in the form of biomass.

Photosynthetic biogas upgrading is based on

the combined action of alkaliphilic

microalgae and bacteria prior transfer of the

main contaminants of biogas into the

cultivation broth (CO2, H2S, NH3).

54

Page 31: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 53-57.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Table 1. Pre-treatments enhancing the anaerobic biodegradability of microalgae.

Pre-treatment Operational

parameters

Anaerobic

biodegradability

Enhancement

Advantages Disadvantages

Thermal

hydrolysis

Temperature;

HRT ++

Lower energy

demand;

Easy

scalability

High HRT

Steam

explosion

Temperature;

Pressure

HRT

+++

Short HRT

Easy

scalability

High energy

demand;

High investment

cost

Microwave Power; HRT ++

Less risk of

byproduct

formation

High electricity

demand; Easy

scalability

Ultrasound Energy input;

HRT +

Easy

scalability

High electricity

demand

Chemical

(Acid/Alkaline)

Reagent dose;

HRT +

Low energy

demand

Chemical

contamination;

Risk of

formation of

inhibitors; High

operating cost

Enzymatic

Enzyme dose;

HRT pH,

temperature

+ Low energy

demand

High operating

cost, Need for

sterile

conditions

HRT- Hydraulic Retention Time.

Solar energy drives the photosynthetic

assimilation of the CO2 present in biogas

into algal biomass, with the concomitant

production of O2 (~1.5-1.9 g O2 g CO2fixed-

1). This oxygen is used in-situ by

chemolithotrophic bacteria to oxidize H2S

to SO42-, and NH3 to NO3

- (Figure 1). The

process is typically carried out at high pH

(Rodero et al., 2020) in order to improve the

mass transfer of the main biogas pollutants

(i.e, CO2 and H2S). The nutrients and water

required to support the growth of

microalgae and bacteria can be obtained

from the digestate produced in the anaerobic

digester, which partially mitigates the

eutrophication potential of these high-

strength effluents. Methane concentrations

over 95 % with CO2 concentrations below

2% and a complete depletion of H2S have

been recorded in pilot and demo scale

photobioreactors using this technology

(Marín et al., 2021).

55

Page 32: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 53-57.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figure 1. Fundamentals of photosynthetic biogas upgrading.

Bioethanol, with a calorific value of 30 KJ

g-1, can be obtained via fermentation of the

sugars contained in microalgae. The

carbohydrate content of microalgae, which

can reach levels ranging from 16.4% to

60%, is extracted via cell disruption using

enzymatic, chemical, thermal or

supercritical extraction, and further

fermented using fungi or yeast such as

Saccharomyces cerevisiae, Kluyveromyces

fragilis, Torulaspora and Zymomonas mobilis

(Chen et al., 2013). Ethanol concentrations

of 12-15 gL-1 can be achieved when

processing microalgae concentrations of 50

g L-1.

Finally, it should be highlighted that the

high costs of microalgae production, which

directly impacts on the cost of biofuels, can

be mitigated by using residual CO2 sources

(such as industrial emissions) and

wastewaters.

Acknowledgments

The financial support from the Regional

Government of Castilla y León, the EU-

FEDER Programme (CLU 2017-09 and

UIC 071) and the Spanish Ministry of

Science and Innovation (IJC2018-037219-I

and FJC2018-038402-I) are gratefully

acknowledged.

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

56

Page 33: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 53-57.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

References

Alzate, M.E, Muñoz, R., Rogalla, F., Fdz-

Polanco, F., Pérez-Elvira, S.I. 2012.

Biochemical methane potential of

microalgae: Influence of substrate to

inoculum ratio, biomass concentration

and pretreatment. Bioresour. Technol.

123: 488-494.

Alzate, M.E, Muñoz, R., Rogalla, F., Fdz-

Polanco, F., Perez-Elvira, S.I. 2014.

Biochemical methane potential of

microalgae after lipid extraction. Chem.

Eng. J. 243: 405-410

Awe, O.W., Zhao, Y., Nzihou, A., Minh, D.P.,

Lyczko, N. 2017. A review of biogas

utilisation, purification and upgrading

technologies. Waste Biomass Valor.

8(2): 267-283.

Buitrón, G., Carrillo-Reyes, J., Morales, M.,

Faraloni, C., Torzillo, G. 2017.

Biohydrogen production from

microalgae. In: Muñoz, R. Gonzalez-

Fernandez, C. (Eds.) “Microalgae-

based biofuels and bioproducts - From

feedstock cultivation to end-products”.

Woodhead Publishing Series in Energy.

Pp. 209-234

Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H.,

Cheng, C.H., Lee, D.J., Bai, F.W.,

Chang, J.S. 2013. Microalgae-based

carbohydrates for biofuel production.

Biochem. Eng. J. 78: 1-10.

Golueke, C., Oswald, W., Gotass, H. 1957.

Anaerobic digestion of algae. Appl.

Microbiol. 5(1): 47-55.

Marin, D., Carmona-Martinez, A.A., Blanco,

S., Lebrero, R., Muñoz, R. 2021.

Innovative operational strategies in

photosynthetic biogas upgrading in an

outdoors pilot scale algal-bacterial

photobioreactor. Chemosphere 264(1);

Article № 128470.

Passos, F., Mota, C., Donoso-Bravo, A.,

Astal, D., Jeison, D., Muñoz, R. 2018.

Biofuels from microalgae –

Biomethane. In: Jacob-Lopes, E.,

Queiroz-Zepka, L., Queiroz M.I. (Eds.)

“Energy from Microalgae” Springer-

Nature. Pp. 247-270.

Peng, L., Fu, D., Chu, H., Wang, Z., Qi, H.

2020. Biofuel production from

microalgae: A review. Environ. Chem.

Lett. 18(2): 285-297.

Rodero, M.R., Severi, C.A., Rocher-Rivas,

R., Quijano, G., Muñoz, R. 2020. Long-

term influence of high alkalinity on the

performance of photosynthetic biogas

upgrading. Fuel 281; Article №

118804.

World Biogas Association, “Global Potential

of Biogas,” June 2019. [Online].

Available at URL:

http://www.worldbiogasassociation.org

/wp-content/uploads/2019/09/WBA-

globalreport-56ppa4_digital-Sept-

2019.pdf [Accessed June 2021].

57

Page 34: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 58-62.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Short communication

Microalgae-Based Biorefineries Integrating Phytoremediation and

Wastewater Treatment

[Biorrefinerías integrando Microalgas con Fitorremediación y

Tratamiento de Aguas Residuales]

Eugenia J. Olguín*, Ricardo E. González-Portela

Environmental Biotechnology Group, Biotechnological Management of Resources Network,

Institute of Ecology. Carretera Antigua a Coatepec #351. Xalapa, Veracruz, 91073 Mexico.

(*Corresponding author: [email protected])

Abstract

Biorefineries are currently recognized as a

sound and environmentally friendly

strategy to mitigate the global climate

threat. Furthermore, they are now

widening their capacity and high added

value products are also produced from

various types of biomasses. Microalgae-

based biorefineries are now recognized as

the most promising alternative compared

to first and second generation

biorefineries. Furthermore, there is a

current trend for including the treatment of

wastewater as a means of increasing their

economic feasibility. On the other hand,

the use of aquatic plants for

phytoremediation and production of

biofuels is also an active research field.

However, there is scanty information

about the integration of the biomass of

microalgae, aquatic plants, and the use of

wastewater within a biorefinery. In this

short article, a review of the design and

implementation of a biorefinery

integrating microalgae, aquatic plants, and

wastewater to produce biofuels and high-

added value products is presented.

Resumen

Las biorrefinerías están reconocidas

actualmente como una estrategia

ambientalmente amigable para mitigar la

amenaza del cambio climático.

Actualmente, el concepto incluye también

la generación de productos de alto valor

agregado a partir de varios tipos de

biomasas. Las biorrefinerías basadas en

microalgas se reconocen como la

alternativa más prometedora en

comparación con las biorrefinerías de

primera y segunda generación. Además,

existe una tendencia actual a incluir el

tratamiento de las aguas residuales como

medio para aumentar su viabilidad

económica. Por otro lado, el uso de plantas

acuáticas para la fitorremediación y la

producción de biocombustibles es también

un campo de investigación activo. Sin

embargo, hay poca información sobre la

integración de la biomasa de microalgas,

plantas acuáticas y el uso de aguas

residuales dentro de una biorrefinería. En

este breve artículo se presenta una revisión

del diseño e implementación de una

biorrefinería que integra microalgas,

plantas acuáticas y aguas residuales para la

producción de biocombustibles y

productos de alto valor agregado.

58

Page 35: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 58-62.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Introduction

The most widely used “Biorefinery”

definition is the one launched by the IEA

(International Energy Agency) Bioenergy

Task 42: “Biorefinery is the sustainable

processing of biomass into a spectrum of

marketable products (food, feed, materials,

chemicals) and energy (fuels, power,

heat)” (IEA, 2014).

The feedstock for biorefineries can be

classified into three main groups

(Moncada et al., 2014): the first generation

uses crops; the second generation uses

residues and non-edible crops while algae

are considered as the third-generation

feedstock. Furthermore, algae and

especially wastewater-grown microalgae

appears as the appropriate feedstock for

feasible integrated double purpose systems

for production of biodiesel and treatment

of the wastewater within a biorefinery

(Olguín, 2012).

However, it is clear currently that

numerous technological and economic

barriers must be overcome to increase the

economic feasibility of microalgae-based

biorefineries. The key issues to tackle have

been identified by different research

groups. For example, improvements in the

harvesting system, algae farm

construction, algae yield, and integrative

end-life of the co-products, have been

highlighted as key issues (Flesch et al.,

2013). Moreover, various reports have

stressed the need to enlarge the number of

value-added products from both, the

microalgae and the oil-extracted

microalgae biomass in order to increase

the economic feasibility of the microalgae-

based biodiesel (Brownbridge et al.,

2014). These authors have also stressed

that the production costs depend mainly on

factors in the following order: algae oil

content > algae annual productivity > plant

production capacity > carbon price

increase rate > photobioreactor unit capital

expenditure.

Microalgae-based biorefinery

design at INECOL

In this section, a brief description of the

design and performance of a pilot-scale

microalgae-based biorefinery integrating

phytotechnologies and other wastewater

treatment technologies to produce biofuels

and high added value products within the

circular economy concept is discussed.

This biorefinery has been designed and

built in the grounds of the Institute of

Ecology (INECOL), located in the city of

Xalapa, Veracruz, Mexico.

To increase the environmental feasibility,

the critical resources such as water and

nutrients for microalgae cultivation must

be integrated into a 3-R policy (Reuse,

Recover, and Recycle). Bearing this

objective in mind, the use of

phytofiltration to treat the water from an

urban river polluted with domestic

wastewater has been demonstrated as a

feasible option (Robles-Pliego et al., 2015)

to recycle water and to recover nutrients to

produce plant biomass. Furthermore, a

13,000 L phytofiltration lagoon using

Pistia stratiotes for the treatment of a

polluted river has been evaluated

throughout various seasons (Fig. 1) and it

has been demonstrated that with a short

hydraulic retention time (7-14 days), the

quality of the water improved significantly

(Olguín et al., 2017).

59

Page 36: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 58-62.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figure 1. A phytofiltration lagoon (13,000 L) with P. stratiotes is the first module

at INECOL’s biorefinery.

The biomass of P. stratiotes needs to be

harvested frequently and it is digested

anaerobically for biogas production. A

two-phase digestor has been used and it

was demonstrated that a good productivity

of volatile fatty acids (VFA) was obtained

within the range of 1867-2207 mgCOD/L

during the first stage (Hernández-García et

al., 2015).

Biohydrogen has been produced at a good

yield using P. stratiotes. The biomass was

first hydrolyzed with ruminal fluid, then it

was subjected to a nitrogen-stripping

process. Finally, photofermentation with

Rhodospeudomonas palustris 42OL

yielded a Biochemical Hydrogen Potential

of 1224 mL/L (Cornelli et al., 2017).

The treated water in the phytofiltration

lagoon has been used for cultivation of

various species of microalgae. A strategy

of inducing lipid accumulation by nitrogen

deficiency resulted in a very high lipid

accumulation of 27.4 % d.w. by

Neochloris oleoabundans, cultivated using

pig waste digestate (Olguín et al., 2015a)

and 38.5 % d.w. when it was cultivated

using stillage’s digestate (Olguín et al.,

2015b).

On the other hand, a strain of

Chlorococcum sp. was isolated from a

wastewater treatment plant and cultivated

with pig waste digestates under

uncontrolled conditions. In this case, the

nitrogen deficiency resulted in

accumulation of total carbohydrates in a

high percentage (45% d.w.) after 24 days,

showing the high potential of this strain for

production of bioethanol (Montero et al.,

2018).

To increase the economic viability of the

biorefinery at INECOL, production of

phycocyanin (PC) from Arthrospira

maxima in a two-phase process, using

2000 L raceways (Fig. 2), has been shown

to release PC of high purity (3.7) in the

category of reactive grade (García-López

et al., 2020).

60

Page 37: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 58-62.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

Figure 2. Raceways with A. maxima.

Conclusions

The integration of a microalgae-based

biorefinery with a phytofiltration lagoon as

a first module to treat polluted water from

a river and to provide treated water for

cultivation of microalgae using

agricultural wastes (stillage and pig waste)

digestates as source of nutrients has been

shown to be a feasibly and novel design.

Furthermore, the economic feasibility

increased while producing also

phycocyanin (reactive grade) from A.

maxima.

Open Access: This article is distributed

under the terms of the Creative Commons

Attribution License (CC-BY 4.0) which

permits any use, distribution, and

reproduction in any medium, provided the

original author(s) and the source are

credited.

References

Brownbridge, G., Azadi, P., Smallbone, A.,

Bhave, A., Taylor, B., Kraft, M. 2014.

The future viability of algae-derived

biodiesel under economic and

technical uncertainties. Bioresour.

Technol. 151: 166-173.

Corneli, E., Adessi, A., Olguín, E.J.,

Ragaglini, G., García-López, D.A.,

De Philippis, R. 2017.

Biotransformation of water lettuce

(Pistia stratiotes) to biohydrogen by

Rhodopseudomonas palustris. J. Appl.

Microbiol. 123(6): 1438-1446.

Flesch, A., Beer, T., Campbell, P.K., Batten,

D., Grant, T. 2013. Greenhouse gas

balance and algae-based biodiesel. In:

Borowitzka, M.A., Moheimani, N.R.

(Eds.) “Algae for Biofuels and

Energy- Developments in Applied

Phycology”. Vol. 5. Springer. Pp.

233-254.

61

Page 38: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Revista Latinoamericana de Biotecnología Ambiental y Algal

Vol. 12 No. 2 p. 58-62.

©The Author(s) 2021. This article is published with open access by Sociedad Latinoamericana de Biotecnología Ambiental y Algal

García-López, D.A., Olguín, E.J., González-

Portela, R.E., Sánchez-Galván, G, De

Philippis, R., Lovitt, R.W., Llewellyn,

C.A., Fuentes-Grünewald, C., Parra,

R. 2020. A novel two-phase

bioprocess for the production of

Arthrospira (Spirulina) maxima

LJGR1 at pilot plant scale during

different seasons and for phycocyanin

induction under controlled conditions.

Bioresour. Technol. 298; Article №

122548.

Hernández-García, H., Olguín, E.J.,

Sánchez-Galván G., Monroy-

Hermosillo O. 2015. Production of

volatile fatty acids during the

hydrolysis and acidogenesis of Pistia

stratiotes using ruminal fluid. Water

Air Soil Pollut. 226(9); Article № 317.

International Energy Agency (IEA). 2014.

IEA BIOENERGY Task42

BIOREFINING, In: van Ree, R. and

van Zeeland, A., (Eds.) “Sustainable

and Synergetic Processing of Biomass

into Marketable Food & Feed

Ingredients, Chemicals, Materials

and Energy”. IEA, Wageningen, The

Netherlands. Available from URL:

http://www.ieabioenergy.com/wp-

content/uploads/2014/09/IEA-

Bioenergy-Task42-Biorefining-

Brochure-SEP2014_LR.pdf

Moncada, J., Tamayo, J.A., Cardona, C.A.

2014. Integrating first, second, and

third generation biorefineries:

Incorporating microalgae into the

sugarcane biorefinery. Chem. Eng.

Sci. 118: 126-140.

Montero, E., Olguín, E.J., De Philippis, R.,

Reverchon, F. 2018. Mixotrophic

cultivation of Chlorococcum sp. under

non-controlled conditions using a

digestate from pig manure within a

biorefinery. J. Appl. Phycol. 30(5):

2847-2857.

Olguín, E.J. 2012. Dual purpose

microalgae–bacteria-based systems

that treat wastewater and produce

biodiesel and chemical products

within a biorefinery. Biotechnol. Adv.

30: 1031-1046.

Olguín, E.J., Dorantes, E., Castillo, O.,

Hernández-Landa, V.J. 2015a.

Anaerobic digestates from vinasse

promote growth and lipid enrichment

in Neochloris oleoabundans cultures.

J. Appl. Phycol. 27(5): 1813-1822.

Olguín, E.J., Castillo, O.S., Mendoza, A.,

Tapia, K., González-Portela, R.E.,

Hernández, V.J. 2015b. Dual purpose

system that treats anaerobic effluents

from pig waste and produce

Neochloris oleoabundans as lipid rich

biomass. New Biotechnol. 32(3):387-

395.

Olguín, E.J., García-López, D.A., González-

Portela, R.E., Sánchez-Galván, G.

2017. Year-round phytofiltration

lagoon assessment using Pistia

stratiotes within a pilot-plant scale

biorefinery. Sci Total Environ. 592:

326-333.

Robles-Pliego, M., Olguín, E.J., Hernández-

Landa J., González-Portela, R.E.,

Sánchez-Galván, G., Cuervo-López

F.M. 2015. Dual purpose system for

the treatment of water from a polluted

river and the production of Pistia

stratiotes biomass within a

biorefinery. Clean Soil Air Water

43(11): 1445-1558.

62

Page 39: “Biorrefinerías utilizando Microalgas, Plantas y Aguas ...

Nota: Las horas son en tiempo de la Ciudad de México; revise la diferencia de horas

en su localidad en: https://time.is/es/Mexico_City. Retransmisión en vivo vía

Facebook Live: https://www.facebook.com/Solabiaa-101486878828902

Lunes, 28 de Junio 10:00-10:15

Bienvenida al Curso por la Dra. Eugenia J. Olguín, Dra. Luddy Patricia Nieto y el Dr. Gabriel Acién

Hora Profesor Tópico

10:15-11:15 Giuseppe Torzillo Photosynthesis basic principles to optimize growth of microalgae culture outdoors

11:15-12:15 Vitalia Henriquez Aspectos genéticos de microalgas

12:15-13:15 Silvia Bolado Ingeniería de Biorrefinerías / Fraccionamiento de biomasa algal

Martes, 29 de Junio

10:00-11:00 Oscar Monroy Problemática de las Aguas Residuales

11:00-12:00 Enrica Uggeti Aspectos generales de Fitorremediación

12:00-13:00 Germán Buitrón Procesos basados en Microalgas

Miércoles, 30 de Junio

10:00-11:00 Gabriel Acién Biorrefinerías de Productos Agrícolas

11:00-12:00 Raúl Muñoz Biorrefinerías de Productos Energéticos

12:00-13:00 Roberto De Philippis Productos de Alto Valor Agregado

Jueves, 1 de Julio

10:00-11:00 Eugenia J. Olguín Biorrefinería con microalgas, plantas acuáticas y aguas residuales

11:00-13:00 Moderador:

Prof. Roberto De Philippis

Mesa Redonda: “Major bottlenecks limiting the development of plant/algae based biorefineries”

CURSO Online:

“BIORREFINERÍAS a partir de

MICROALGAS y PLANTAS” SOLABIAA-INECOL 2021

28 Junio – 1 Julio