Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

40
8a. edición VOLUMEN I BIOQUÍMICA MARY K. CAMPBELL SHAWN O. FARRELL

description

Bioquímica, vol I, 8a. ed., está dirigido a estudiantes de cualquier campo de las ciencias o de la ingeniería interesados en tomar un curso introductorio a la materia; la presenta de forma clara y aplicada a la vida real para familiarizarlos con sus aspectos más importantes. La meta principal de la obra es que los estudiantes de biología, química, física, geología, nutrición, deportes, fisiología y agricultura, reconozcan que la bioquímica influye considerablemente en sus campos de estudio, y el conocimiento que adquieran les resultará especialmente útil e importante a lo largo de su desarrollo profesional. Una de sus características principales es el impacto visual con el que cuenta la obra, se diseñó cuidadosamente para ayudar a los estudiantes a visualizar los procesos clave y a entender los temas fundamentales de forma más clara y efectiva, un aspecto esencial para los estudiantes que aprenden de manera visual.

Transcript of Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

Page 1: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

8a. edición

VOLUMEN IBIOQUÍMICA

MARY K. CAMPBELL

SHAWN O. FARRELL

Page 2: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell
Page 3: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

BIOQUÍMICA8 a . e d i c i ó n | Vo l u m e n I

Mary K. CampbellMount Holyoke College

Shawn O. Farrell

Australia Brasil Corea España Estados Unidos Japón México Reino Unido Singapur

Traducción

Dr. en Ciencias Bioquímicas Jesús Miguel Torres Flores

M. en C. Bioquímicas Marel Chenge Espinosa

Revisión técnica

Dr. en Ciencias Bioquímicas Jesús Miguel Torres Flores

Universidad Nacional Autónoma de México

Page 4: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

Impreso en México1 2 3 4 5 6 7 18 17 16 15

Bioquímica, 8a. edición. Volumen I.

Mary K. Campbell y Shawn O. Farrell

Presidente de Cengage Learning

Latinoamérica:

Fernando Valenzuela Migoya

Director Editorial, de Producción

y de Plataformas Digitales

para Latinoamérica:

Ricardo H. Rodríguez

Editora de Adquisiciones

para Latinoamérica:

Claudia C. Garay Castro

Gerente Editorial en Español

para Latinoamérica:

Pilar Hernández Santamarina

Gerente de Proyectos Especiales:

Luciana Rabuffetti

Coordinador de Manufactura:

Rafael Pérez González

Editora:

Abril Vega Orozco

Diseño de portada:

Lilia Palomino

RED Studio

Imágenes de portada:

© Lonely/Shutterstock

© Guru 3D/Shutterstock

© David S. Goodsell y la RCSB PDB

(Protein Data Bank). http://www.rcsb.org

Molécula del mes. Las ilustraciones están

disponibles bajo una licencia CC-BY-3.0.

http://creativecommons.org/licenses/

by/3.0/us/

Composición tipográfica:

Humberto Núñez Ramos

© D.R. 2016 por Cengage Learning Editores, S.A. de C.V.,

una Compañía de Cengage Learning, Inc.

Corporativo Santa Fe

Av. Santa Fe núm. 505, piso 12Col. Cruz Manca, Santa Fe

C.P. 05349, México, D.F.

Cengage Learning® es una marca registrada

usada bajo permiso.

DERECHOS RESERVADOS. Ninguna parte de

este trabajo amparado por la Ley Federal del

Derecho de Autor podrá ser reproducida,

trasmitida, almacenada o utilizada en

cualquier forma o por cualquier medio, ya sea

gráfico, electrónico o mecánico, incluyendo,

pero sin limitarse a lo siguiente: fotocopiado,

reproducción, escaneo, digitalización,

grabación en audio, distribución en internet,

distribución en redes de información o

almacenamiento y recopilación en sistemas

de información, a excepción de lo permitido

en el Capítulo III, Artículo 27 de la Ley Federal

del Derecho de Autor, sin el consentimiento

por escrito de la Editorial.

Traducido del libro Biochemistry, Eighth Edition.

Mary K. Campbell and Shawn O. Farrell.

Publicado en inglés por Cengage Learning ©2015.

ISBN: 978-1-285-42910-6

Datos para catalogación bibliográfica:

Campbell, Mary K. y Shawn O. Farrell.

Bioquímica, 8a. edición. Volumen I.

ISBN: 978-607-522-488-6

Visite nuestro sitio en:

http://latinoamerica.cengage.com

Page 5: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

1 La bioquímica y la organización de las células 1

1.1 Temas básicos 1

1.2 Fundamentos químicos de la bioquímica 3

1.3 Los comienzos de la biología: el origen de la vida 4

El planeta Tierra y su antigüedad 4

Biomoléculas 8

De las moléculas a las células 11

1.4 La más grande distinción biológica: los procariontes y los eucariontes 14

1.5 Células procarióticas 16

1.6 Células eucarióticas 17

1.7 Cómo se clasifican los procariontes y eucariontes 21

1.1 CONEXIONES BIOQUÍMICAS | Extremófilos: la joya de la industria 22

1.8 Energética bioquímica 24

1.9 La energía y el cambio 25

1.10 La espontaneidad en las reacciones bioquímicas 26

1.11 La vida y la termodinámica 26

1.2 CONEXIONES BIOQUÍMICAS | Predicción de reacciones 28

Resumen 28

Ejercicios de repaso 29

Bibliografía sugerida 31

2 Agua: el disolvente para las reacciones bioquímicas 33

2.1 El agua y la polaridad 33

Propiedades del agua como disolvente 34

Enlaces iónicos 34

Puentes salinos 34

Interacciones Ión–Dipolo 34

Fuerzas de van der Waals 34

Interacciones dipolo–dipolo 35

Interacciones dipolo–dipolo inducido 35

Interacciones dipolo inducido–dipolo inducido 36

2.2 El puente de hidrógeno 38

2.1 CONEXIONES BIOQUÍMICAS | De qué manera influye la química básica en la vida: la importancia del puente de hidrógeno 41

Otros puentes de hidrógeno importantes

en biología 41

2.3 Ácidos, bases y pH 41

2.4 Curvas de titulación 45

2.5 Amortiguadores 48

2.2 CONEXIONES BIOQUÍMICAS | Selección del amortiguador adecuado 52

2.3 CONEXIONES BIOQUÍMICAS | Algunas consecuencias fisiológicas del amortiguamiento químico de la sangre 54

2.4 CONEXIONES BIOQUÍMICAS | El ácido láctico: no siempre es el “malo de la película 55

Resumen 55

Ejercicios de repaso 56

Bibliografía sugerida 58

3 Aminoácidos y péptidos 59

3.1 Los aminoácidos existen en un mundo tridimensional 59

3.2 Aminoácidos individuales: su estructura y propiedades 60

Aminoácidos poco comunes 65

3.3 Los aminoácidos pueden actuar como ácidos y como bases 65

3.4 El enlace peptídico 69

3.5 Pequeños péptidos con actividad fisiológica 71

3.1 CONEXIONES BIOQUÍMICAS | Hormonas peptídicas—Moléculas pequeñas con grandes efectos 72

Contenido detallado

ix

Page 6: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

x C o n t e n i d o d e t a l l a d o

Resumen 72

Ejercicios de repaso 73

Bibliografía sugerida 74

4 La estructura tridimensional de las proteínas 75

4.1 La estructura de las proteínas y sus funciones 75

4.2 Estructura primaria de las proteínas 76

4.3 Estructura secundaria de las proteínas 76

Estructuras periódicas en los esqueletos de las

proteínas 77

Irregularidades de las estructuras regulares 79

Estructuras supersecundarias y dominios 80

La triple hélice del colágeno 82

Dos tipos de conformaciones de proteína:

la fibrosa y la globular 83

4.4 Estructura terciaria de las proteínas 83

Fuerzas implicadas en las estructuras terciarias 84

La mioglobina: un ejemplo de la estructura

proteica 87

Desnaturalización y renaturalización 89

4.5 Estructura cuaternaria de las proteínas 90

Hemoglobina 90

Cambios de conformación que acompañan a la función

de la hemoglobina 92

4.1 CONEXIONES BIOQUÍMICAS | La anemia de células falciformes 96

4.6 Dinámica del plegamiento de las proteínas 97

Interacciones hidrofóbicas: un estudio de caso

en termodinámica 98

La importancia de un plegamiento correcto 100

Chaperonas del plegamiento proteínico 101

4.2 CONEXIONES BIOQUÍMICAS | Enfermedades asociadas al plegamiento de proteínas 102

Resumen 104

Ejercicios de repaso 105

Bibliografía sugerida 106

5 La purificación de las proteínas y técnicas de caracterización 107

5.1 Extracción de proteínas puras de las células 107

5.2 Cromatografía en columna 110

5.3 Electroforesis 116

5.4 Determinación de la estructura primaria de una proteína 117

Digestión de la proteína en sus componentes

peptídicos 119

Secuenciación de péptidos: el método

de Edman 119

5.5 Técnicas de identificación de proteínas 124

5.1 CONEXIONES BIOQUÍMICAS | El poder de la espectrometría de masas 124

Ensayo por inmunoabsorción ligado a enzimas

(ELISA) 125

Western Blot 125

Chips de proteínas 128

5.6 Proteómica 128

Resumen 129

Ejercicios de repaso 130

Bibliografía sugerida 132

6 El comportamiento de las proteínas: las enzimas 133

6.1 Las enzimas son catalizadores biológicos efectivos 133

6.2 Cinética versus termodinámica 133

6.1 CONEXIONES BIOQUÍMICAS | Las enzimas como indicadores de enfermedades 136

6.3 Ecuaciones de cinética enzimática 137

6.4 Unión enzima-sustrato 138

6.5 El enfoque de Michaelis-Menten en la cinética enzimática 140

6.2 CONEXIONES BIOQUÍMICAS | Enzima que le permite disfrutar del champagne 147

6.3 CONEXIONES BIOQUÍMICAS | Información práctica a partir de datos cinéticos 147

6.6 Ejemplos de reacciones catalizadas por enzimas 148

6.7 Inhibición de las enzimas 149

6.4 CONEXIONES BIOQUÍMICAS | La inhibición enzimática en el tratamiento contra el sida 155

Resumen 155

Ejercicios de repaso 156

Bibliografía sugerida 158

7 El comportamiento de las proteínas: enzimas, mecanismos y control 159

7.1 El comportamiento de las enzimas alostéricas 159

7.2 Los modelos concertado y secuencial para las enzimas alostéricas 163

7.1 CONEXIONES BIOQUÍMICAS | Alosterismo: Compañías farmacéuticas explotan el concepto 167

7.3 Control de la actividad enzimática por medio de la fosforilación 168

Page 7: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

Co nte n i d o d et a l l a d o xi

7.2 CONEXIONES BIOQUÍMICAS | Una droga antigua funciona estimulando una proteín cinasa 170

7.4 Los zimógenos 171

7.5 La naturaleza del sitio activo 172

7.3 CONEXIONES BIOQUÍMICAS | Familias de enzimas: las proteasas 174

7.6 Reacciones químicas que intervienen en los mecanismos enzimáticos 178

7.7 El sitio activo y los estados de transición 181

7.4 CONEXIONES BIOQUÍMICAS | Anticuerpos catalíticos contra la cocaína 182

7.8 Las coenzimas 183

7.5 CONEXIONES BIOQUÍMICAS | Catalizadores para una química verde 185

Resumen 186

Ejercicios de repaso 187

Bibliografía sugerida 188

8 Asociación de lípidos y proteínas en las membranas biológicas 189

8.1 Definición de lípido 189

8.2 Naturaleza química de los diferentes tipos de lípidos 190

8.3 Membranas biológicas 195

8.1 CONEXIONES BIOQUÍMICAS | Mantequilla o margarina: ¿qué es más saludable? 200

8.2 CONEXIONES BIOQUÍMICAS | Las membranas y la administración de fármacos 201

8.4 Proteínas de la membrana 202

8.5 El modelo de mosaico fluido de la estructura de la membrana 204

8.6 Funciones de las membranas 205

8.3 CONEXIONES BIOQUÍMICAS | Las gotitas de lípido no son solo grandes bolas de grasa 209

8.7 Vitaminas solubles en lípidos y sus funciones 210

Vitamina A 211

8.4 CONEXIONES BIOQUÍMICAS | La química de la visión 211

Vitamina D 212

Vitamina E 215

Vitamina K 215

8.8 Prostaglandinas y leucotrienos 217

8.5 CONEXIONES BIOQUÍMICAS | ¿Por qué debemos comer más salmón? 218

Resumen 219

Ejercicios de repaso 220

Bibliografía sugerida 222

9 Ácidos nucleicos: cómo la estructura comunica información 223

9.1 Niveles de estructura en los ácidos nucleicos 223

9.2 La estructura covalente de los polinucleótidos 224

9.1 CONEXIONES BIOQUÍMICAS | ¿Quién es dueño de sus genes? 228

9.3 La estructura del ADN 229

9.2 CONEXIONES BIOQUÍMICAS | El Proyecto del Genoma Humano: ¿Tesoro o caja de Pandora? 236

9.4 Desnaturalización del ADN 238

9.5 Los principales tipos de ARN y sus estructuras 239

9.3 CONEXIONES BIOQUÍMICAS | ¿Por qué los gemelos idénticos no son idénticos? 244

9.4 CONEXIONES BIOQUÍMICAS | Genoma sintético creado 245

Resumen 246

Ejercicios de repaso 247

Bibliografía sugerida 248

10 Biosíntesis de ácidos nucleicos: replicación 249

10.1 Flujo de información genética en la célula 249

10.2 Replicación del ADN 250

Replicación semiconservativa 251

10.3 ADN polimerasa 253

Replicación semidiscontinua del ADN 253

ADN polimerasa de E. coli 255

10.4 Proteínas que se requieren para la replicación del ADN 257

Superenrollamiento y replicación 257

La reacción de la primasa 259

Síntesis y unión de nuevas cadenas de ADN 259

10.5 Corrección y reparación 261

10.1 CONEXIONES BIOQUÍMICAS | ¿Por qué el ADN contiene timina y no uracilo? 266

10.6 Recombinación del ADN 267

10.2 CONEXIONES BIOQUÍMICAS | La respuesta SOS en E. coli 269

10.7 Replicación del ADN en eucariontes 270

ADN polimerasas en eucariontes 271

La horquilla de replicación en eucariontes 272

10.3 CONEXIONES BIOQUÍMICAS | La telomerasa y el cáncer 274

10.4 CONEXIONES BIOQUÍMICAS | Los RNA autoreplicantes 275

Page 8: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

xii C o n t e n i d o d e t a l l a d o

Resumen 276

Ejercicios de repaso 277

Bibliografía sugerida 278

11 Transcripción del código genético: la biosíntesis del ARN 279

11.1 Generalidades de la transcripción 279

11.2 La transcripción en procariontes 280

La ARN polimerasa de Escherichia coli 280

Estructura del promotor 281

Iniciación de la cadena 283

Elongación de la cadena 284

Terminación de la cadena 285

11.3 Regulación de la transcripción en procariontes 287

Factores � alternativos 287

Potenciadores 287

Operones 288

Atenuación de la transcripción 293

11.1 CONEXIONES BIOQUÍMICAS | Los riboswitches: otra arma en contra de los agentes patógenos 294

11.4 Transcripción en eucariontes 295

Estructura del ARN polimerasa II 296

Promotores Pol II 297

Iniciación de la transcripción 298

Elongación y terminación 300

11.5 Regulación de la transcripción en eucariontes 301

El papel del mediador en la activación y represión

de la transcripción 301

Complejos remodeladores de cromatina 302

Modificación covalente de histonas 303

Elementos de respuesta 304

11.2 CONEXIONES BIOQUÍMICAS | La CREB: ¿La proteína más importante que se ha descubierto? 307

11.6 ARN no codificante 307

11.3 CONEXIONES BIOQUÍMICAS | Un micro ARN ayuda a regenerar la sinapsis nerviosa después de una lesión 310

11.7 Motivos estructurales en las proteínas de unión al ADN 310

Dominios de unión al ADN 310

Motivos hélice-giro-hélice 311

Dedos de zinc 311

Motivo de cierre de leucina de la región básica 312

Dominios de activación de la transcripción 312

11.8 Modificación postranscripcional del ARN 313

ARN de transferencia y ARN ribosomal 314

ARN mensajero 315

La reacción de corte y empalme: Lariats

y Snurps 316

Corte y empalme alternativo del ARN 318

11.9 Ribozimas 318

11.4 CONEXIONES BIOQUÍMICAS | La epigenética revisada: ¿Cómo están relacionados el cáncer y el envejecimiento con los estados epigenéticos? 320

Resumen 320

Ejercicios de repaso 322

Bibliografía sugerida 324

12 Síntesis de proteínas: traducción del mensaje genético 325

12.1 Traducción del mensaje genético 325

12.2 El código genético 326

Apareamiento codón-anticodón y “bamboleo”

(wobble) 328

12.1 CONEXIONES BIOQUÍMICAS | El virus de influenza A altera el marco de lectura para disminuir su morbilidad 331

12.3 Activación de aminoácidos 332

12.4 Traducción en procariontes 334

Arquitectura del ribosoma 334

Iniciación de la cadena 334

Elongación de la cadena 336

Terminación de la cadena 340

El aminoácido 21 340

El ribosoma es una ribozima 340

Polisomas 343

12.5 Traducción en eucariontes 344

Iniciación de la cadena 345

12.2 CONEXIONES BIOQUÍMICAS | La síntesis de proteínas crea memorias 347

Elongación de la cadena 348

Terminación de la cadena 348

¿Existe acoplamiento de la transcripción y la traducción

en los eucariontes? 348

Mas dogmas se quedan en el camino 348

12.6 Modificación postraduccional de las proteínas 349

12.3 CONEXIONES BIOQUÍMICAS | Las mutaciones silenciosas no siempre son silenciosas 350

12.4 CONEXIONES BIOQUÍMICAS | Chaperonas: previniendo asociaciones incorrectas 352

Los ribosomas están involucrados en el plegamiento

de proteínas 353

Page 9: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

Co nte n i d o d et a l l a d o xiii

12.7 Degradación de proteínas 353

12.5 CONEXIONES BIOQUÍMICAS | ¿Cómo nos adaptamos a una gran altitud? 354

Resumen 356

Ejercicios de repaso 356

Bibliografía sugerida 358

13 Técnicas de biotecnología de ácidos nucleicos 359

13.1 Purificación y detección de los ácidos nucleicos 359

Técnicas de separación 359

Métodos de detección 360

13.2 Endonucleasas de restricción 361

Muchas endonucleasas de restricción producen

“extremos cohesivos” 362

13.3 Clonación 364

Uso de los “extremos cohesivos” para construir ADN

recombinante 364

13.4 Ingeniería genética 370

La recombinación del ADN ocurre

en la naturaleza 371

13.1 CONEXIONES BIOQUÍMICAS | La ingeniería genética en la agricultura 372

Las bacterias como “fábricas de proteína” 373

Vectores de expresión de proteínas 373

13.2 CONEXIONES BIOQUÍMICAS | Proteínas humanas mediante técnicas de recombinación genética 375

Ingeniería genética en eucariontes 376

13.5 Bibliotecas de ADN 377

13.3 CONEXIONES BIOQUÍMICAS | Las proteínas de fusión y las purificaciones rápidas 378

Cómo encontrar una clona individual en una biblioteca

de ADN 379

13.6 La reacción en cadena de la polimerasa 380

El PCR cuantitativo permite una medición sensible

de muestras de ADN 382

13.7 Huellas digitales de ADN 383

Polimorfismo de la longitud de los fragmentos

de restricción: un método poderoso para el análisis

forense 383

13.4 CONEXIONES BIOQUÍMICAS | CSI: Bioquímica-Aplicaciones forenses de las pruebas de ADN 387

13.8 Secuenciación del ADN 387

13.9 Genómica y proteómica 389

La potencia de los microarreglos. La tecnología robótica

aplicada en bioquímica 391

Arreglo de proteínas 393

Resumen 393

Ejercicios de repaso 394

Bibliografía sugerida 396

Page 10: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell
Page 11: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

P re f a c i o xv

Prefacio

E ste texto está dirigido a los estudiantes de cualquier campo de la ciencia, o de la

ingeniería, que deseen tomar un curso de introducción a la bioquímica, de un se-

mestre, pero que no necesariamente pretendan especializarse en esta área. Nuestra

meta principal al escribir este libro es presentar a los estudiantes la bioquímica de una

forma tan clara y aplicada como sea posible, y familiarizarlos con sus aspectos más impor-

tantes. Los estudiantes de biología, química, física, geología, nutrición, deportes, fisiología

y agricultura, deberán reconocer que la bioquímica tiene un gran efecto en el contenido

de sus campos de estudio, especialmente en las áreas de medicina y biotecnología. Para

los ingenieros que pretendan más tarde orientar su carrera hacia la ingeniería biomédica

o alguna forma de biotecnología, resultará especialmente importante el estudio de la

bioquímica.

Se asume que los estudiantes que van a usar este texto se encuentran en un nivel in-

termedio en sus estudios y, por lo tanto, se requiere que hayan llevado cursos previos de

biología, química general y cuando menos un semestre de química orgánica.

Innovaciones de esta ediciónTodos los libros de texto evolucionan para satisfacer los intereses y necesidades de los estu-

diantes y profesores, y también para incluir la información más actualizada. Varios cambios

caracterizan a esta nueva edición.

Temas de actualidad en Bioquímica* Este inserto incluye artículos actualizados

acerca de nuevos descubrimientos y temas en el área de la bioquímica como las células

madre, la malaria, el gen asociado a cáncer de seno (BRCA), el envejecimiento, la

felicidad ¡y más!

Nueva e innovadora presentación de Conexiones bioquímicas. Además de mu-chos nuevos temas En respuesta a las peticiones de los consumidores para incluir

más cuadros de Conexiones bioquímicas, se han añadido varios de estos cuadros en todo

el libro. Vea una lista completa de los cuadros de Conexiones bioquímicas en la tabla

de contenidos. La sección de Conexiones bioquímicas abarca una gran variedad de

conceptos importantes y de investigaciones novedosas. Ahora fluyen con la narrativa

del texto y se colocan exactamente en el lugar en el que necesitan leerse para com-

prender el capítulo. Aunque tienen una presentación diferente al resto de la narrativa,

están pensados para leerse junto con el texto general y no deben saltarse. Son como

crescendos en la música clásica —las Conexiones bioquímicas cambian de tempo a

la narrativa usual con su presentación única para evitar que el nivel de interés de los

estudiantes decaiga— los estudiantes están siempre interesados.

Nuevo glosario al margen No hay necesidad de ir a la parte trasera del libro para

leer las definiciones completas de los términos clave, ahora están definidos en los

márgenes.

* Este material se encuentra disponible en línea, para consultarlo ingrese a www.cengage.com buscando el título por ISBN.

xv

Page 12: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

xvi P r e f a c i o

Cobertura actualizada Cada capítulo en el texto se ha actualizado utilizando los

descubrimientos científicos y desarrollos actuales en el campo de la bioquímica.

Nuevo diseño y mejoras en las etiquetas del arte Mejoras en las etiquetas de las

ilustraciones a lo largo del texto perfecciona la lectura, lo cual a su vez mejora la

habilidad de los estudiantes para comprender conceptos clave. Como corolario al

programa de arte mejorado del libro, el diseño y la paleta de colores también han

sido modernizadas.

Características probadas

Impacto visual Ideal para los que aprenden de manera visual, el arte de primera

calidad de este libro ayuda a los estudiantes a visualizar los procesos clave y a entender

los temas importantes.

Conexiones bioquímicas Los recuadros de conexiones bioquímicas resaltan los te-

mas de especial interés para el estudiante. Estos suelen tener implicaciones clínicas,

como el cáncer, el sida y la nutrición. Estos ensayos ayudarán a los estudiantes a hacer

la conexión entre la bioquímica y el mundo real.

Aplique sus conocimientos Los recuadros sobre “aplique sus conocimientos” se en-

cuentran entremezclados dentro de los capítulos y se han diseñado para proporcionar

a los estudiantes experiencia en la resolución de problemas. Los temas escogidos son

Capítulo 1 Material sobre los esquemas de clasificación en reinos y dominios revisado, un nuevo ejercicio al final del capítulo (EFC)

Capítulo 2 Sección sobre los tipos de fuerzas intermolecula-res extendida, ocho ejercicios EFC nuevos

Capítulo 3 Material sobre hormonas peptídicas revisado, ocho nuevos ejercicios EFC

Capítulo 4 Cuadro de Conexiones Bioquímicas sobre nu-trición eliminado, nueva caja de Conexiones bioquímicas sobre anemia de células falciformes agregada, seis nuevos ejercicios EFC

Capítulo 5 Nueva sección sobre técnicas de identificación de proteínas, nueva sección sobre proteómica basada en material del cuadro de Conexiones Bioquímicas de la edición anterior. Ocho ejercicios EFC nuevos

Capítulo 6 Inversión en el orden de las secciones 6.5 y 6.6, sección sobre la inhibición extendida para incluir inhibición no competitiva e inhibición mixta, cuadro de Conexiones bioquímicas sobre enzimas y memoria eliminado, sección sobre la derivación de Michaelis-Menten simplificada, sección sobre cinética con sustratos múltiples añadida, diez nue-vos ejercicios EFC añadidos

Capítulo 7 Nuevo cuadro de Conexiones bioquímicas sobre los efectos medicinales de un compuesto derivado del árbol de sauce, cuatro ejercicios EFC nuevos

Capítulo 8 Nuevo material sobre la composición lipídica de las membranas intracelulares, nuevo material sobre las membranas para entregar fármacos, dis-cusión sobre las tirosina cinasas como receptores de membrana relacionado al artículo de Temas de

actualidad en bioquímicas sobre receptores aco-plados a proteína G, cuatro ejercicios EFC nuevos

Capítulo 9 Cuadro de Conexiones bioquímicas sobre el árbol genealógico del ADN eliminado

Capítulo 10 Material extendido sobre el replisoma, material extendido sobre los rompimientos de doble ca-dena en la reparación del ADN, ocho ejercicios EFC nuevos

Capítulo 11 Material extendido sobre operones, material añadido sobre el papel del mediador en la trans-cripción eucariótica, material añadido sobre la remodelación de cromatina y las enzimas mo-dificadoras de histonas, cuadro de Conexiones bioquímicas sobre el TFIIH eliminado, material sobre los microARN y la interferencia de ARN agregado, nuevo cuadro de Conexiones bioquí-micas sobre epigenética, cuadro de Conexiones bioquímicas sobre corrección transcripcional eli-minado, diecinueve ejercicios EFC nuevos

Capítulo 12 Nuevo cuadro de Conexiones bioquímicas en virología sobre cómo puede la influenza alterar el marco de lectura de la traducción, material sobre selenocisteína eliminado de la caja de Conexiones bioquímicas e incluido en el capítulo principal, nuevo material sobre el codón de inicio en el sistema inmune añadido, material añadido sobre cómo el ribosoma está involucrado en el plega-miento de proteínas, ocho nuevos ejercicios EFC

Capítulo 13 Sección modificada sobre los tomates Flavr Savr en el cuadro de Conexiones bioquímicas, Cuadro de conexiones bioquímicas sobre interferencia de ARN eliminado

Tabla de cambios por capítulo

Page 13: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

P re f a c i o xvii

áreas de estudio donde los estudiantes comúnmente tienen las mayores dificultades.

Se incluyen soluciones y estrategias de resolución de problemas, dando ejemplos de cómo

enfocar la resolución de problemas para un material específico.

Inclusión inicial de termodinámica Un material selecto sobre termodinámica

aparece al inicio del texto. El capítulo 1 incluye secciones sobre la energía y el cambio, espontaneidad en las reacciones bioquímicas y una conexión entre la vida y la termodiná-mica. El capítulo 4 también incluye una extensa sección sobre la dinámica del plega-miento de las proteínas. Pensamos que es fundamental que los estudiantes entiendan

la fuerza impulsora de los procesos biológicos y que mucho de lo que sucede en

biología (como el plegado proteínico, las interacciones entre proteínas, la unión

de pequeñas moléculas, etc.) es dirigido por un desordenamiento favorable de las

moléculas de agua.

Resúmenes y preguntas Cada capítulo cierra con un resumen conciso, una amplia

selección de preguntas y la bibliografía. Como se enunció anteriormente, los resúme-

nes han sido completamente revisados para reflejar el marco de trabajo “Preguntas y

respuestas” intercalado en el texto. Estos ejercicios caen en cuatro categorías: memoria, reflexión y aplicación, matemáticas y conexiones bioquímicas. Las preguntas de memoria están

diseñadas para que los estudiantes evalúen rápidamente su dominio sobre el material,

mientras que las preguntas de reflexión y aplicación son para que los estudiantes se en-

frenten a cuestionamientos que los pongan a pensar. Las preguntas sobre Conexiones bioquímicas evalúan a los estudiantes sobre los ensayos acerca de estas en ese capítulo.

Las preguntas matemáticas completan la selección de ejercicios. Estas preguntas son de

naturaleza cuantitativa y sobre todo se enfocan en los cálculos.

OrganizaciónDebido a que la bioquímica es una ciencia multidisciplinaria, la primera tarea al presen-

tarla a los estudiantes de muy diversos antecedentes es ponerla en contexto. Los capítulos

1 y 2 aportan los fundamentos necesarios y conectan la bioquímica con las otras ciencias.

Los capítulos 3 a 8 se enfocan en la estructura y la dinámica de importantes componentes

celulares. La biología molecular se cubre en los capítulos 9 a 13.

Algunos temas se analizan varias veces, como el control del metabolismo de los car-

bohidratos. Las discusiones siguientes hacen uso y construcciones ulteriores sobre la

información que los estudiantes ya han aprendido. Es particularmente útil regresar a un

tema después de que los estudiantes han tenido tiempo de asimilarlo y de reflexionar

sobre él.

Los primeros dos capítulos del libro relacionan la bioquímica con otros campos de la

ciencia. El capítulo 1 trata algunas de las relaciones menos obvias, como las conexiones

entre la bioquímica y la física, la astronomía y la geología, sobre todo en el contexto del

origen de la vida. Los grupos funcionales de las moléculas orgánicas se discuten desde

el punto de vista de su papel en la bioquímica. El capítulo continúa con la cada vez más

evidente relación entre la bioquímica y la biología, especialmente con respecto a la dis-

tinción de procariontes y eucariontes, así como la función de los organelos en las células

eucarióticas. En el capítulo 2 se revisan aspectos básicos de química general, como los

“buffers” (amortiguadores químicos) y las propiedades del agua como solvente, pero enfa-

tizando el punto de vista bioquímico hacia tales fenómenos.

Los capítulos 3 a 8, que cubren la estructura de los componentes celulares, se enfocan

en la estructura y dinámica de las proteínas y de las membranas, además de dar una intro-

ducción a algunos aspectos de la biología molecular. Los capítulos 3, 4, 6 y 7 tratan sobre

los aminoácidos, los péptidos, y la estructura y acción de proteínas como en la catálisis

enzimática.

El capítulo 4 incluye más material sobre termodinámica, como las interacciones hi-

drofóbicas. La discusión sobre enzimas se divide en dos capítulos (6 y 7) para dar a los

estudiantes más tiempo de entender a fondo la cinética enzimática y los mecanismos

enzimáticos. El capítulo 8 trata de la estructura de las membranas y los lípidos que las

componen.

Page 14: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

xviii P r e f a c i o

Los capítulos 9 a 13 exploran los temas de biología molecular. El capítulo 9 introduce a

la estructura de los ácidos nucleicos. En el capítulo 10, se diserta sobre la duplicación del

ADN. El capítulo 11 se enfoca en la transcripción y en la regulación de los genes. El ma-

terial sobre la biosíntesis de ácidos nucleicos se divide en dos capítulos para brindar a los

estudiantes tiempo suficiente de apreciar el funcionamiento de estos procesos. El capítulo

12 termina el tema con la traducción del mensaje genético y la síntesis de proteínas y el

capítulo 13 se enfoca en las técnicas biotecnológicas.

Opciones alternativas de enseñanzaEl orden en que se cubren los capítulos individuales, puede cambiarse para adaptarse a las

necesidades de grupos específicos de estudiantes. Aunque preferimos una aplicación tem-

prana de la termodinámica, las partes de los capítulos 1 y 4 que tratan sobre esta pueden

estudiarse al iniciar el capítulo 15** sobre “La importancia de los cambios de energía y la

transferencia de electrones en el metabolismo”. Todos los capítulos sobre biología molecular

(del 9 al 14**) pueden preceder al tema de metabolismo o pueden seguir después, depen-

diendo de la preferencia del profesor. El orden en el cual se trate el material sobre biología

molecular, puede variarse de acuerdo también con la preferencia del profesor.

Material complementarioPor favor visite http://www.cengage.com/chemistry/campbell/biochemistry8e*** para más

información sobre los recursos para el estudiante y el profesor de este texto.

ReconocimientosLa ayuda de mucha gente hizo que este libro fuera una realidad. Un donativo de la Funda-

ción Dreyfus hizo posible el curso experimental introductorio que fue el origen de muchas

de las ideas de este texto. Edwin Weaver y Francis DeToma del Colegio Monte Holyoke

aportó mucho de su tiempo y energía para iniciar ese curso. Muchos otros en Monte Hol-

yoke fueron generosos en su apoyo, estímulo y buenas ideas, especialmente Anna Harrison,

Lilian Hsu, Dianne Baranowski, Sheila Browne, Janice Smith, Jeffrey Knight, Sue Ellen Fre-

derik Gruber, Peter Gruber, Marilyn Pryor, Craig Woodard, Diana Stein y Sue Rusiecki. Un

agradecimiento en especial para Sandy Ward, bibliotecaria de ciencias, y a Rosalia Tunga-

raza, estudiante de bioquímica en la clase de 2004. Tres estudiantes, Nam Ho, Ben Long y

Alejandra Pesquiera, en Ingeniería Química 443 (Diseño superior II) en la Universidad de

Arizona tomaron la conexión Biotecnología-bioquímica en el capítulo 8 y lo convirtieron

en un mecanismo de entrega de fármacos real. Su mentor fue Harry Patton, ingeniero y

emprendedor, y su instructor de curso fue la profesora Kimberly Ogden. El profesor Todd

Hoare del Departamento de Ingeniería Química en la Universidad McMaster y el profesor

Daniel Kohane de la Universidad de Medicina de Harvard señalaron puntos importantes

sobre cómo convertir sus publicaciones originales en el proceso final. Un especial agrade-

cimiento a Laurie Stargell, Marve Paule, y Steven McBryant en la Universidad Estatal de

Colorado por su ayuda y orientación editorial. Agradecemos a los numerosos estudiantes

de bioquímica que han usado y opinado sobre versiones anteriores de este texto.

Quisiéramos dar un reconocimiento a los colegas que contribuyeron con sus ideas y

críticas al manuscrito. Algunos revisores respondieron a cuestionamientos específicos con

respecto al texto mismo. Les agradecemos todos sus esfuerzos y sus útiles sugerencias.

Reconocimientos a los revisoresRevisores de la séptima ediciónPaul D. Adams, University of KansasDan Davis, University of Arkansas

**Los capítulos 14-24 se encuentran disponibles en Bioquímica, 8a. ed. Volumen II.***Este material se encuentra disponible en inglés.

Page 15: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

P re f a c i o xix

Nick Flynn, Angelo State UniversityDenise Greathouse, University of Arkansas James R. Paulson, University of Wisconsin–Oshkosh Kerry Smith, Clemson UniversityAlexandre G. Volkov, Oakwood University

Revisores de la octava edición

Kenneth Balazovich, Ph.D, University of MichiganLaurent Dejean, California State University at FresnoMarcy Hernick, Virginia TechHolly Huffman, Arizona State UniversityMark Kearley, Florida State UniversityJames Knopp, North Carolina State UniversityPaul Larsen, University of California–RiversideGerry Prody, Western Washington UniversitySandra Turchi, Millersville University

También quisiéramos agradecer al personal de Cengage Learning, que fue esencial en el

desarrollo de este libro: Alyssa White, editora de desarrollo, cuyas ideas creativas aporta-

ron mucho a esta nueva edición; Tanya Nigh, gerente senior de producción, quien dirigió

la producción e hizo más fácil lo que pudo haber sido una tarea tediosa; y Mary Finch,

Directora de Producción, que fue una fuente de motivación. Gracias a Tom McDonough,

nuestro especialista de adquisición de derechos en Cengage, el cual dio una excelente guía

y dirección a lo largo de la revisión. También agradecemos al Desarrollador Asociado de

Medios Elizabeth Woods, Gerente de Marketing Lindsay Lettre, Coordinador de Conteni-

dos Brendan Killion y Asistente de Producción Karolina Kiwak.

Matt Rosenquist de Graphic World Inc., nos ayudó de manera diligente como editor de

producción. A las investigadoras de fotos Susan Buschhorn y Christie Barros quienes hicie-

ron maravillas en las búsquedas que representaban un gran desafío. Extendemos nuestra

más sincera gratitud a aquellos que hemos listado aquí y a todos los demás a los que debe-

mos la oportunidad de hacer este libro. Indispensable en la dirección de este proyecto fue

el finado John Vondeling, quien fuera una leyenda en el campo de la publicación. Extra-

ñaremos por siempre su guía y amistad.

Una nota final de Mary CampbellAgradezco a mis familiares y amigos, cuyo apoyo moral ha significado mucho para mí en el

transcurso de mi trabajo. Cuando comencé este proyecto hace años, no me percaté de que

sería una parte importante de mi vida. Ha sido algo completamente satisfactorio.

Una nota final de Shawn FarrellNo encuentro las palabras para expresar cuán difícil hubiera sido este proyecto sin mi

maravillosa familia que tuvo que prescindir de un esposo y un padre que se convirtió en

un ermitaño en la oficina de su casa. Mi esposa, Courtney, conoce muy bien el reto que

representa vivir conmigo cuando trabajo durmiendo apenas cuatro horas por noche. No

es agradable, y pocos hubieran sido tan comprensivos. También quisiera agradecer a David

Hall, mi agente editorial, por iniciarme en estas rutas y a John Vondeling por darme una

oportunidad de expandirme en otro tipo de libros y proyectos.

Page 16: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell
Page 17: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

1 . 1 1

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

La bioquímica y la organización de las células

1

11.1 Temas básicos

◗ ¿Cómo describe la bioquímica los procesos de la vida?

Los organismos vivos, como los humanos, e incluso las células individuales de las que están

compuestos, son enormemente complejos y diversos. Sin embargo, hay ciertas caracterís-

ticas comunes que unifican a todos los seres vivos desde las bacterias más simples hasta el

ser humano. Todos ellos usan los mismos tipos de biomoléculas y consumen energía. Como

resultado, los organismos pueden estudiarse por medio de la química y la física. La creen-

cia en las “fuerzas vitales” (fuerzas que se pensaba que solo existían en los seres vivos) que

prevalecía entre los biólogos del siglo XIX, desde hace mucho tiempo dio paso a la con-

ciencia de una unidad que subyace a través del mundo natural.

Disciplinas que en apariencia no tienen relación con la bioquímica pueden aportar

respuestas a muchas preguntas bioquímicas importantes. Por ejemplo, los estudios por

medio de las Imágenes por Resonancia Magnética (MRI, por sus siglas en inglés) que des-

empeñan un importante papel en las ciencias de la salud, fueron creados por los físicos,

se convirtieron en una herramienta vital para los químicos, y actualmente tienen un papel

muy importante en la investigación biomédica. El campo de la bioquímica se apoya en

1.1 Temas básicos

1.2 Fundamentos químicos de la bioquímica

1.3 Los comienzos de la biología: el origen de la vida

1.4 La más grande distinción biológica: los procariontes y los eucariontes

1.5 Células procarióticas

1.6 Células eucarióticas

1.7 ¿Cómo se clasifican los procariontes y eucariontes?

1.1 CONEXIONES BIOQUÍMICAS

BIOTECNOLOGÍA |

S INOPS I S

(Continúa en la página siguiente)

Page 18: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

2 C A P Í T U L O 1 La bioquímica y la organización de las células

1.8 Energética bioquímica

1.9 La energía y el cambio

1.10 La espontaneidad en las reacciones bioquímicas

1.11 La vida y la termodinámica

1.2 CONEXIONES BIOQUÍMICAS

TERMODINÁMICA |

S i n o p s i s ( c o n t i n u a c i ó n )

muchas disciplinas, y su naturaleza multidisciplinaria le permite utilizar los resultados de

diferentes campos científicos para responder preguntas acerca de la naturaleza molecular de los procesos de la vida. En la actualidad se realizan importantes aplicaciones de este

tipo de conocimiento en los campos relacionados con la medicina; un mayor entendi-

miento de la salud y de la enfermedad desde un punto de vista molecular conduce a un

tratamiento más efectivo de muchos tipos de enfermedades.

Las actividades que se llevan a cabo dentro de una célula se asemejan a un sistema

de transporte en una gran ciudad. Los automóviles, camiones y taxis corresponden a las

moléculas implicadas en reacciones (o series de reacciones) dentro de una célula. Las

rutas seguidas por los vehículos, de igual modo pueden ser comparadas con las reacciones

que ocurren en la vida de la célula. Notemos en particular que muchos vehículos viajan a

través de más de una ruta, por ejemplo, los autos y taxis pueden ir casi por dondequiera,

mientras que otros medios más especializados de transporte, como los trenes subterrá-

neos, los ferrocarriles y los autobuses, están confinados a rutas únicas. De manera similar,

algunas moléculas ejercen múltiples funciones, mientras que otras toman parte solo en

series específicas de reacciones. Asimismo, las rutas operan de manera simultánea, al igual

que muchas de las reacciones dentro de una célula.

Continuando con la comparación, el sistema de transporte de una gran ciudad alberga

más tipos de transportación que una ciudad pequeña. Mientras que un pequeño pueblo

cuenta con automóviles, autobuses y taxis, una ciudad grande, además de estos, tiene tran-

vías y trenes subterráneos. De manera análoga, algunas reacciones operan en todas las

células, mientras que otras operan solo en ciertos tipos de células. También, las células de

los organismos de mayor tamaño y complejidad son estructuralmente más diversas que las

células más simples de organismos como las bacterias.

Una consecuencia inevitable de esta complejidad es la gran cantidad de terminología

que se necesita para describirla; es esencial el aprendizaje de una considerable cantidad

de vocabulario nuevo como parte del estudio de la bioquímica. También encontraremos

abundantes referencias cruzadas a lo largo del libro, las cuales reflejan la gran cantidad de

conexiones entre los procesos que tienen lugar en la célula.

◗ ¿Cómo se originaron los seres vivos?

La similitud fundamental de todos los tipos de células hace que la especulación sobre el

origen de la vida sea una pregunta valiosísima. ¿Cómo llegaron a existir los componen-

tes de nuestro organismo y cómo llegaron a efectuar las operaciones que llevan a cabo?

¿Cuáles son las moléculas de la vida? Aun las estructuras de las biomoléculas relativamente

pequeñas constan de diversas partes. Las grandes biomoléculas o macromoléculas, como

las proteínas y los ácidos nucleicos, tienen estructuras complejas y las células vivas son

infinitamente más complejas. Aún así, al final tanto las moléculas como las células deben haber surgido a partir de moléculas muy simples, como el agua, metano, dióxido de carbono, amo-

niaco, nitrógeno e hidrógeno (figura 1.1). A su vez, estas moléculas simples deben haber

surgido a partir de átomos. La manera en la que tanto el Universo mismo como los átomos

que lo componen llegaron a existir, se ha convertido en un tema de gran interés tanto

para los astrofísicos como para otros científicos. Las moléculas simples se formaron por

la combinación de átomos, y la incorporación de las moléculas simples dio por resultado

moléculas más complejas. Las moléculas que desempeñan una función en las células vivas

actuales, son las mismas que se encuentran en la química orgánica, simplemente operan

en un contexto diferente.

Page 19: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

1 . 2 Fu n d a m e nto s qu í m i c o s d e l a b i o qu í m i c a 3

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

1.2 Fundamentos químicos de la bioquímicaLa química orgánica es la rama de la química que estudia los compuestos de carbono e hi-

drógeno y sus derivados. Debido a que todas las células de los organismos vivos están cons-

tituidas por compuestos de carbono, las biomoléculas son parte de los temas abordados

por la química orgánica. Además, muchos compuestos de carbono no se encuentran en

ningún organismo y muchos temas de importancia para la química orgánica tienen poca

conexión con los seres vivos. Por lo tanto, nos concentraremos en los aspectos de química

orgánica que necesitamos para comprender lo que sucede en las células vivas.

Tejido

Tejido óseo

Átomos

Hidrógenoy oxígeno

Macromoléculas

Proteína

Moléculas

AguaH H

O

Organelos

Mitocondria

Núcleo

Aparatode Golgi

Hueso

Órgano

Sistema corporal del organismo

Células

Célula óseaMembranaplasmática

Núcleo

Figura 1.1 Niveles de organización estructural en el cuerpo humano. Note que la jerarquía va de simple a compleja.

química orgánica rama de la quí-

mica que estudia de los com puestos

de carbono, especialmente de

aquellos formados por carbono e

hidrógeno y sus derivados

Page 20: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

4 C A P Í T U L O 1 La bioquímica y la organización de las células

◗ ¿Puede un químico sintetizar en el laboratorio las moléculas de la vida?

Hasta la primera mitad del siglo XIX, existía la creencia generalizada de la existencia de

“fuerzas vitales”, las cuales presumiblemente eran exclusivas de los seres vivos. Esta creen-

cia incluía la idea de que era imposible que los compuestos que se encontraban en los

organismos vivos se sintetizaran en un laboratorio. En 1828, el químico alemán Friedrich

Wöhler realizó los experimentos críticos que echaron por tierra esta creencia. Wöhler

sintetizó urea (un producto de desecho del metabolismo animal bastante conocido) par-

tiendo del cianato de amonio, un compuesto obtenido de fuentes minerales (en otras

palabras, no vivas).

NH4OCN → H

2NCONH

2

Cianato Urea

de amonio

Después de este descubrimiento, se ha demostrado que cualquier compuesto presente

en un organismo vivo puede ser sintetizado en el laboratorio, aunque en muchos ca-

sos la síntesis representa un reto considerable hasta para los químicos orgánicos más

experimentados.

Las reacciones de las biomoléculas pueden ser descritas mediante los métodos de la

química orgánica, la cual clasifica los compuestos según sus grupos funcionales. Las reac-ciones de las moléculas se basan en las reacciones de sus respectivos grupos funcionales.

◗ ¿Qué hace tan especiales a las biomoléculas?

La tabla 1.1 enlista una serie de grupos funcionales biológicamente importantes. Obsér-

vese que la mayoría de esos grupos funcionales contienen oxígeno y nitrógeno, los cua-

les se encuentran entre los elementos más electronegativos. Como resultado, muchos de

esos grupos funcionales son polares y su naturaleza polar desempeña un papel crucial

en su reactividad. No se incluyen en esta tabla algunos grupos que son de vital importan-

cia para los químicos orgánicos, como los haluros de alquilo y los cloruros de acilo, que

no tienen ninguna aplicación particular en bioquímica. Inversamente los derivados del

ácido fosfórico que contienen carbono se mencionan con poca frecuencia en los cursos

introductorios de química orgánica, pero sus ésteres y anhídridos (figura 1.2) son de vital

importancia en bioquímica. El trifosfato de adenosina o adenosín trifosfato (ATP, por sus

siglas en inglés), una molécula considerada la moneda energética de la célula, contiene

los dos tipos de enlace que involucran al ácido fosfórico, éster y anhídrido.

Las clases importantes de biomoléculas tienen grupos funcionales característicos que

son los que determinan su reactividad. Explicaremos las reacciones de los grupos funcio-

nales cuando estudiemos los compuestos en los que ocurren.

1.3 Los comienzos de la biología: el origen de la vida

El planeta Tierra y su antigüedadHasta la fecha, solo conocemos un planeta que sin lugar a dudas posee vida: el nuestro.

Es de todos sabido que la Tierra y su contenido de agua son la fuente y la base de la vida

tal como la conocemos. Una primera pregunta que surge naturalmente es ¿cómo llegó a

existir la Tierra, junto con el Universo del cual es parte?

◗ ¿Cómo y cuándo comenzó a existir la Tierra?

En la actualidad, la teoría cosmológica más aceptada acerca del origen del Universo es la

del big bang, una explosión cataclísmica. Según la cosmología basada en esta teoría, toda

la materia del Universo estaba originalmente confinada a un volumen de espacio compa-

rativamente pequeño. Como resultado de una tremenda explosión, esta “bola de fuego

primordial” comenzó a expandirse con gran fuerza. Inmediatamente después del big

bang, el Universo estaba extremadamente caliente, en el orden de 15 000 millones

(15 3 109) de K. [Nótese que las temperaturas en grados Kelvin o absolutas se escriben sin

el signo indicativo de grados (º)]. La temperatura promedio del Universo ha venido dismi-

nuyendo desde entonces como resultado de la expansión, y estas temperaturas más bajas

han permitido la formación de estrellas y planetas. En sus etapas iniciales, el Universo

grupos funcionales grupos

de átomos que dan origen a las

reacciones características de los

compuestos orgánicos

Page 21: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

1 . 3 L o s c o m i e n z o s d e l a b i o l o g í a : e l o r i g e n d e l a v i d a 5

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

tenía una composición bastante simple y únicamente estaban presentes el hidrógeno, el

helio y un poco de litio (los tres elementos más pequeños y más simples de la tabla pe-

riódica), que se formaron durante el big-bang. Se piensa que el resto de los elementos

químicos se formó de tres maneras: 1) por reacciones termonucleares que normalmente

tienen lugar en las estrellas, 2) por explosiones de estrellas y 3) por la acción de los rayos

cósmicos en el exterior de las estrellas desde la formación de las galaxias. El proceso por

el cual los elementos se forman en las estrellas es un tema de interés para los químicos,

así como para los astrofísicos. Para nuestros fines, debemos notar que los isótopos más

abundantes de importancia biológica como el carbono, el oxígeno, el nitrógeno, el fós-

foro y el azufre tienen núcleos particularmente estables. Estos elementos fueron creados por

Tabla 1.1 Grupos funcionales con importancia bioquímica

Clase de compuesto Estructura general

Grupo funcional característico

Nombre del grupo funcional Ejemplo

Alquenos

Alcoholes

Éteres

Aminas

Tioles

Aldehidos

Doble enlace

Grupo hidroxilo

Grupo éter

Grupo amino

Grupo sulfhidrilo

Grupo carbonilo

Grupo Carbonilo

Grupo carboxilo

Grupo éster

Grupo amida

Grupo éster

fosfórico

Grupo anhídrido

fosfórico

CH3CH2OH

CH3OCH3

CH3NH2

CH3SH

CC

RCH CH2

RCH CHR

R2C CHR

R2C CR2

ROH OH

ROR

RNH2

R2NH

R3N

RSH

CH3CH

O

CH3CCH3

O

CH3COH

O

CH3COCH3

O

CH3CN(CH3)2

O

O

C

O

C OH

O

C OR

O

R C H

O

R C R

O

R C OH

R C OR

O

R C NR2

O

O

R C NHR

O

R C NH2

O

O P OHR

OH

O

O P OHCH3

OH

O

P OHO

OH

O

P OH

OH

O

OH

O P OR

O

OH

P OH

O

OH

O P OH

O

OH

P O

O

OH

P

O

C

SH

N

O

C N

O

CH2 CH2

Anhídridos de

ácido fosfórico

Amidas

Ésteres de ácido

fosfórico

Ésteres

Ácidos

carboxílicos

Cetonas

Page 22: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

6 C A P Í T U L O 1 La bioquímica y la organización de las células

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

reacciones nucleares en las estrellas de primera generación, que son las estrellas originales

producidas después del inicio del Universo (tabla 1.2). Muchas estrellas de primera gene-

ración fueron destruidas en explosiones llamadas supernovas y sus cenizas estelares fueron

recicladas para formar estrellas de segunda generación, como nuestro Sol, junto con nues-

tro sistema solar. La datación radiactiva, que se basa en los tiempos de decaimiento de los

núcleos radiactivamente inestables, indica que la antigüedad de la Tierra (y del resto del

sistema solar) es de 4 000 a 5 000 millones de años (4 a 5 3 109). La atmósfera de la Tierra

primitiva era muy diferente de la actual, y probablemente pasó por varias etapas antes de

llegar a su composición presente. La diferencia más importante, según la mayoría de las

teorías del origen de la Tierra, es que había muy poco o nada de oxígeno libre (O2) en

las primeras etapas (véase la figura 1.3). La Tierra primitiva estaba constantemente irra-

diada por luz ultravioleta proveniente del Sol debido a que no había capa de ozono en la

atmósfera para bloquearla. En esas condiciones se produjeron las reacciones químicas que

generaron biomoléculas simples.

Se postula comúnmente que los gases presentes en la atmósfera de la Tierra primi-

tiva constaban de NH3, H

2S, CO, CO

2, N

2, H

2 y H

2O en sus estados líquido y gaseoso.

Sin embargo, no hay un consenso en cuanto a las cantidades relativas de estos com-

ponentes, a partir de los cuales se formaron las primeras biomoléculas. Muchas de las

teorías tempranas del origen de la vida, sostienen que el metano (CH4) fue la fuente

Ácido fosfórico

ATP

Ester

Anhídrido

Anhídrido de ácido fosfórico

Alcohol

+

O

C

C C

C

P

O

OH

NH2

H2OOH

HO RHO

+P

O

OH

OH

HO P

H

H H

O

OH

OH

HO P

O

O

OH

HO P

O

OH

OH

P

O

O

OH

HO P

O

OH

O

H

P

O

O

OH

OH OH

CH2

P

O

O R

OH

HO

N

HC

NC

C

CN

CHN

H2O

Éster de ácido fosfórico

R

Reacción de dos moléculas de ácido fosfórico para formar un anhídrido, que contiene un enlace P-O-P. En la figura se muestra un modelo de espacio lleno del anhídrido fosfórico.

2

Reacción del ácido fosfórico con un grupo hidroxilo para formar un éster, que contiene un enlace P-O-R. En esta figura, el ácido fosfórico se muestra en su forma no ionizada. En la imagen se muestran modelos de espacio lleno del ácido fosfórico y su éster de metilo. Las esferas rojas representan al oxígeno; las blancas al hidrógeno; las verdes al carbono; y las naranjas al fósforo.

Estructura del ATP (trifosfato de adenosina), en la cual se observan dos enlaces anhídrido y un enlace éster.

3

1

Figura 1.2 El ATP y las reacciones para su formación.

Page 23: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

1 . 3 L o s c o m i e n z o s d e l a b i o l o g í a : e l o r i g e n d e l a v i d a 7

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

del carbono, pero estudios más recientes han demostrado que deben haber existido

apreciables cantidades de CO2 en la atmósfera desde hace al menos 3 800 millones de

años (3.8 3 109).

Esta conclusión tiene su base en evidencias geológicas: las rocas más antiguas tienen

3 800 millones de años de antigüedad y son carbonatos, los cuales se producen a partir de

CO2. Cualquier cantidad de NH

3 presente debe haberse disuelto en los océanos, dejando N

2

Tabla 1.2 Abundancia de elementos importantes con respecto al carbono*

Elemento Abundancia en organismos Abundancia en el Universo

Hidrógeno 80–250 10 000 000

Carbono 1 000 1 000

Nitrógeno 60–300 1 600

Oxígeno 500–800 5 000

Sodio 10–20 12

Magnesio 2–8 200

Fósforo 8–50 3

Azufre 4–20 80

Potasio 6–40 0.6

Calcio 25–50 10

Manganeso 0.25–0.8 1.6

Hierro 0.25–0.8 100

Zinc 0.1–0.4 0.12

*Cada abundancia representa el número de átomos relativo a mil átomos de carbono.

Figura 1.3 Formación de biomoléculas en la Tierra primitiva. Las condiciones en la Tierra primitiva deben haber sido inhóspitas para la mayor parte de la vida de hoy día. Existía muy poco o nada de oxígeno (O

2). Los volcanes hacían erupción, expelían gases tóxicos y violentas tormentas producían lluvias torren-

ciales que cubrían la Tierra. La flecha verde indica la secuencia seguida en la formación de las biomoléculas desde los precursores más sencillos.

Page 24: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

8 C A P Í T U L O 1 La bioquímica y la organización de las células

en la atmósfera como fuente de nitrógeno, necesaria para la formación de las proteínas y

los ácidos nucleicos.

Biomoléculas

◗ ¿Cómo se formaron probablemente las biomoléculas en la Tierra primitiva?

Se han llevado a cabo experimentos en los cuales se permitió que compuestos simples de

la atmósfera temprana reaccionaran bajo los diversos tipos de condiciones que pudieron

haber existido en la Tierra primitiva. Los resultados de tales experimentos indican que es-

tos compuestos simples reaccionan abióticamente, o como lo indica la palabra: en ausencia

de vida (a, “sin” y bios, “vida”), para dar origen a importantes compuestos biológicos como

los componentes de las proteínas y los ácidos nucleicos. De interés histórico es el bien

conocido experimento de Miller-Urey. En cada ensayo, una descarga eléctrica, simulando

un rayo atmosférico, se pasa a través de un sistema cerrado que contiene H2, CH

4 y NH

3,

además de H2O. Como productos típicos de tales reacciones encontramos moléculas or-

gánicas simples como el formaldehído (HCHO) y el ácido cianhídrico (HCN), así como

aminoácidos, los componentes básicos de las proteínas. Según una teoría, reacciones

como estas ocurrieron en los océanos primigenios de la Tierra; otros investigadores pos-

tulan que tales reacciones sucedieron en la superficie de partículas de arcilla que estaban

presentes sobre la Tierra primitiva. Sabemos con toda certeza que sustancias minerales

similares a la arcilla pueden servir como catalizadores en muchos tipos de reacciones. Am-

bas teorías tienen sus defensores, pero se necesita investigar mucho más para responder a

las abundantes preguntas que quedan en el aire. Sin embargo, las teorías recientes del ori-

gen de la vida proponen al ARN y no a las proteínas, como la primera molécula genética

que se creó. Se piensa que las proteínas se formaron posteriormente durante la evolución

de las primeras células. Este punto no resta importancia al primer experimento de síntesis

abiótica de biomoléculas.

Experimentos recientes han demostrado que es posible sintetizar nucleótidos a partir

de moléculas simples, por medio de una vía que incluye precursores que no son ni azúca-

res ni nucleobases. Esta vía involucra un fragmento que químicamente está formado por

un azúcar y una porción de base. Este fragmento, el 2-aminooxazol, es altamente volátil

y se puede vaporizar y condensar para dar origen a acúmulos del material puro en canti-

dades relativamente grandes. En consecuencia, los fosfatos liberados mediante la acción

volcánica pueden reaccionar con el 2-aminooxazol para producir nucleótidos (figura 1.4).

Los productos de dicha reacción incluyen nucleótidos que no forman parte del ARN que

se conoce en la actualidad, sin embargo la luz ultravioleta intensa, como la que estaba

presente en la Tierra primitiva, destruyó esos nucleótidos, produciendo aquellos que se

encuentran en el ARN hoy en día.

Las células vivas de la actualidad son ensamblajes que incluyen moléculas muy gran-

des, como proteínas, ácidos nucleicos y polisacáridos. Estas moléculas son más grandes

por varias potencias de 10 respecto a aquellas moléculas más pequeñas con las que están

construidas. Cientos o miles de esas diminutas moléculas, o monómeros, pueden ser enla-

zados para producir macromoléculas, las cuales también se conocen como polímeros. La

versatilidad del carbono es importante aquí, debido a que es tetravalente y es capaz de for-

mar enlaces con otros átomos de carbono idénticos, así como también con muchos otros

elementos, dando lugar a diferentes tipos de monómeros, como aminoácidos, nucleótidos

y monosacáridos (monómeros de azúcares).

Las proteínas y los ácidos nucleicos juegan un papel muy importante en los procesos vitales. En

las células actuales, los aminoácidos (monómeros) se combinan por polimerización para

formar proteínas. Los nucleótidos (también monómeros) se combinan para generar áci-

dos nucleicos, y la polimerización de monómeros de azúcares produce polisacáridos. Los

experimentos de polimerización con aminoácidos llevados a cabo en condiciones de “Tie-

rra primitiva”, han llegado a producir polímeros de tipo proteico. Se han realizado ex-

perimentos similares sobre la polimerización abiótica de nucleótidos y azúcares, lo cual

sucede con menor facilidad que la polimerización de aminoácidos. Mucha de esta dis-

cusión es especulativa, sin embargo es una buena manera para comenzar a pensar en las

biomoléculas.

monómeros moléculas pequeñas

que se pueden unir entre sí para

formar un polímero

polímeros macromoléculas formadas

por el enlace de varias unidades más

pequeñas

proteínas macromoléculas formadas

mediante la polimerización de

aminoácidos

ácidos nucleicos macromoléculas

formadas mediante la polimerización

de nucleótidos

Page 25: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 1 L o s a m i n o á c i d o s e x i s t e n e n u n m u n d o t r i d i m e n s i o n a l 59

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

Aminoácidos y péptidos

59

33.1 Los aminoácidos existen en un mundo tridimensional

◗ ¿Por qué es importante especifi car la estructura tridimensional de los aminoácidos?

De todos los aminoácidos posibles, únicamente 20 se encuentran comúnmente en las pro-

teínas. La estructura general de los aminoácidos incluye un grupo amino y un grupo car-

boxilo, los cuales están enlazados al carbono a (el que está junto al grupo carboxilo). El

carbono a también está enlazado a un hidrógeno y a una cadena lateral que representare-

mos con la letra R. El grupo R determina la identidad del aminoácido en cuestión (figura

3.1). La fórmula bidimensional ilustrada aquí solo puede mostrar parcialmente la estruc-

tura común de los aminoácidos debido a una de las más importantes propiedades de estos

compuestos que es su forma tridimensional o estereoquímica.

Cualquier objeto tiene una imagen en el espejo, es decir una imagen especular. Mu-

chos pares de objetos que son imágenes especulares pueden sobreponerse el uno en el

otro; dos pocillos para café idénticos y de color sólido son un ejemplo. En otros casos los

objetos que son imágenes especulares no pueden ser superpuestos entre sí, pero están re-

lacionados como la mano derecha lo está con la izquierda. Las imágenes especulares que

no pueden ser superpuestas entre sí se denominan quirales (del griego cheir, “mano”);

muchas biomoléculas importantes son quirales. Un centro quiral encontrado frecuen-

temente en las biomoléculas es un átomo de carbono con cuatro grupos diferentes

enlazados a él (figura 3.1). Un centro así aparece en todos los aminoácidos excepto en la

3.1 Los aminoácidos existen en un mundo tridimensional

3.2 Aminoácidos individuales: su estructura y propiedades

3.3 Los aminoácidos pueden actuar como ácidos y como bases

3.4 El enlace peptídico

3.5 Pequeños péptidos con actividad fisiológica

3.1 CONEXIONES BIOQUÍMICAS

|

S INOPS I S

grupo amino grupo funcional

–NH2

grupo carboxilo grupo funcional

—COOH que se disocia para

producir el anión carboxilato,

—COO–, y un ión hidrógeno

cadena lateral porción de un

aminoácido que determina su

identidad

estereoquímica rama de la

química que se encarga de

estudiar la forma tridimensional

de las moléculas

quiral se refiere a un objeto que

no es superponible en su imagen

especular

Page 26: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

60 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

glicina. La glicina tiene dos átomos de hidrógeno enlazados al carbono-a; en otras

palabras, la cadena lateral (grupo R) de la glicina es un hidrógeno. La glicina no es

quiral (o, dicho de otro modo es aquiral) debido a esta simetría. En todos los demás

aminoácidos existentes, en general, el carbono-a tiene cuatro grupos diferentes en-

lazados a el, dando lugar a dos formas de imágenes especulares no superponibles. La

figura 3.2 nos muestra dibujos en perspectiva de estas dos posibilidades, o estereoisó-

meros, para la alanina, en la que el grupo R es un —CH3. En las figuras bidimensiona-

les de la izquierda los enlaces punteados en forma de cuña representan enlaces que se

alejan del observador y los enlaces mostrados como cuñas sólidas representan enlaces

que van dirigidos hacia afuera del plano del papel en dirección del observador.

Los dos posibles estereoisómeros de otro compuesto quiral, el L- y el D-gliceralde-

hído, se muestran para compararlos con las formas correspondientes de la alanina.

Estas dos formas del gliceraldehído son la base de la clasificación de los aminoácidos

en las formas L y D. La terminología viene del latín laevus que significa “izquierdo”

y dexter que significa “derecho”. Esta nomenclatura proviene de la capacidad de los

compuestos ópticamente activos de hacer rotar la luz polarizada hacia la derecha o a

la izquierda (levógiros). Los dos estereoisómeros de cada aminoácido son designados

como L- y D-aminoácidos con base en su similitud con el estándar del gliceraldehído.

Al dibujarlos en cierta orientación, la forma L del gliceraldehído tiene el grupo hi-

droxilo en el lado izquierdo de la molécula y la forma D la tiene en el lado derecho,

como se muestra en perspectiva en la figura 3.2 (una proyección Fischer). Para de-

terminar la designación L o D para un aminoácido, se dibuja como se muestra en la

figura. La posición del grupo amino a la derecha o a la izquierda del carbono-a de-

termina su designación como D o L. Los aminoácidos que aparecen en las proteínas

de los seres vivos son todos de la forma L. Aunque hay algunos aminoácidos D en la

naturaleza, sobre todo en las paredes celulares bacterianas y en algunos antibióticos,

no se encuentran en las proteínas normales.

3.2 Aminoácidos individuales: su estructura y propiedades

◗ ¿Por qué las cadenas laterales de los aminoácidos son tan importantes?

Los grupos R, y por lo tanto los aminoácidos individuales, se clasifican de acuerdo a diver-

sos criterios, dos de los cuales son particularmente importantes. El primero de estos es la

naturaleza polar o no polar de la cadena lateral. El segundo depende de la presencia de

un grupo ácido o alcalino en esta cadena lateral. Otros criterios útiles son la presencia

de grupos funcionales diferentes de los grupos ácidos o alcalinos en las cadenas laterales y

la naturaleza de esos grupos.

Como ya se mencionó, la cadena lateral del aminoácido más simple, la glicina, es un átomo

de hidrógeno, y en este único caso dos átomos de hidrógeno están unidos al carbono-a. En

todos los demás aminoácidos, la cadena lateral es más larga y más compleja (figura 3.3).

Modelo debarras y esferas

Los aminoácidostienen estructura

tetrahédrica

Grupoamino

Grupocarboxilo

RH

H3N+ COO–

CαCarbono-α

Cadenalateral

Figura 3.1 Fórmula general de los aminoácidos, mostrando las formas iónicas que predominan a pH 7.

aquiral se refiere a un objeto que es

superponible en su imagen especular

estereoisómeros moléculas

que difieren entre sí únicamente

en su configuración (estructura

tridimensional); también llamados

isómeros ópticos

aminoácidos L- y D- aminoácidos

cuya estereoquímica es la misma

que la estereoquímica de las formas

estándar L- y D- del gliceraldehído,

respectivamente

Figura 3.2 Estereoquímica de la alanina y la glicina. Los aminoácidos encontrados en las proteínas tie-nen la misma quiralidad que el L-gliceraldehído, la cual es opuesta a la del D-gliceraldehído.

CHO

CH2OH

HHO

L-Gliceraldehído

CHO

CH2OH

OHH

D-Gliceraldehído

COOH

CH3

H

L-Alanina

H3N+

COOH

CH3

H

D-Alanina

NH3

+

NH3

C

R R

C

HH

COO– COO–

+NH3

+

Page 27: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 2 A m i n o á c i d o s i n d i v i d u a l e s : s u e st r u c tu r a y p ro p i e d a d e s 61

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

C

COOH

H

CH2

CH2

H2C

H2N

CH3

H3N+

COOH

C H

CH3

CH

H3N+

COOH

C H

CH3

+

H3N+

COOH

C H

CH2

CH2

S

CH3

H3N+

COOH

C H

CH2

C

NH

H3N+

COOH

C H

CH2

H3C

CH3

C H

CH

H3C CH3

CH

H3N+

COOH

C H

CH2

H3N+

COOH

C H

CH2

H3N+

COOH

C H

H

Glicina (Gly, G)

Metionina (Met, M)

Modelo de barrasy esferas

Fórmulaestructural

ESTRUCTURA DE LOS 20 AMINOÁCIDOS ENCONTRADOS COMÚNMENTE EN LAS PROTEÍNAS

Modeloespacial

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

Fenilalanina (Phe, F) Alanina (Ala, A)

Triptofano (Trp, W)

Isoleucina (Ile, I)

Prolina (Pro, P)

Valina (Val, V)

Leucina (Leu, L)

A NO POLAR (HIDROFÓBICO)

1

2

3

4

5

6

7

8

9

Figura 3.3 Estructuras de los aminoácidos encontrados con más frecuencia en las proteínas. Los 20 aminoácidos que son las unidades básicas que constituyen las proteínas se clasifican en: a) no polares (hidrofóbicos), b) polares, c) ácidos y o d) básicos. Los códigos de una sola letra y el de tres letras son los que suelen usarse para denominarlos. Para cada aminoácido, el modelo de “barras y esferas” (izquierda) y el de “modelo espacial” (derecha) nos muestran únicamente la cadena lateral.

(Continúa)

Page 28: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

62 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

H3N+

COOH

C H

CH2

OH

H3N+

COOH

H3N+

COOH

C H

C H

CH3

CH2

SH

H C OH

CH2

CH3N+

COOH

H

O

C

NH2

CH2

H3N+

COOH

C H

CH2

OH

O

C

NH2

CH2

CH3N+

COOH

H

10

11

12

13

14

15

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

Tirosina (Tyr, Y)

Treonina (Thr, T)

Cisteína (Cys, C)

Glutamina (Gln, Q)

Serina (Ser, S)

Asparagina (Asn, N)

B POLARES, SIN CARGA

16 17

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

H3N+

COOH H3N+

COOH

Ácido glutámico (Glu, E)Ácido aspártico (Asp, D)

C H

C H

CH2

COOH

CH2

COOH

CH2

C ÁCIDOS

Figura 3.3 Continuación

Page 29: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 2 A m i n o á c i d o s i n d i v i d u a l e s : s u e st r u c tu r a y p ro p i e d a d e s 63

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

Los átomos de la cadena lateral son designados con letras del alfabeto griego, contando

a partir del carbono-a . Estos átomos de carbono son, a su vez, los carbonos beta, gamma,

delta y épsilon (b, g, d, e)(véase la lisina en la figura 3.3); un átomo de carbono terminal

se denomina como carbono-v por la última letra del alfabeto griego (omega). Acostum-

bramos hacer referencia a los aminoácidos por medio de abreviaturas de tres letras o de

una letra, donde la designación de una letra se hace cada día más común. La tabla 3.1

enlista todas estas abreviaciones.

◗ ¿Qué aminoácidos tienen cadenas laterales no polares? (Grupo 1)

Uno de los grupos de aminoácidos tiene cadenas laterales no polares. Este grupo incluye

la glicina, la alanina, la valina, la leucina, la isoleucina, la prolina, la fenilalanina, el trip-

tófano y la metionina. En varios miembros de este grupo —es decir la alanina, la valina, la

leucina y la isoleucina— la cada cadena lateral es un hidrocarburo alifático. (En química

orgánica, el término alifático se refiere a la ausencia de un anillo bencénico o alguna es-

tructura similar.) La prolina tiene una estructura alifática cíclica y el nitrógeno está unido

a dos átomos de carbono. En la terminología de química orgánica, el grupo amino de

la prolina es una amina secundaria y por ello, la prolina con frecuencia es llamada un

iminoácido. Contrariamente, los grupos amino de todos los demás aminoácidos comunes

son aminas primarias. En la fenilalanina, el grupo hidrocarburo es aromático (contiene

un grupo cíclico similar a un anillo bencénico) en vez de ser alifático. En el triptófano, la

cadena lateral contiene un anillo de indol, el cual es también aromático. En la metionina,

la cadena lateral contiene un átomo de azufre además de los grupos de hidrocarburos

alifáticos (ver figura 3.3).

18 19

20

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

Modelo de barrasy esferas

Fórmulaestructural

Modeloespacial

H3N+

COOH

Histidina (His, H)

C H

C

CH2

H3N+

COOH

ArgininA (Arg, R)

Lisina (Lys, K)

C H

CH2

HC

NHH+N

CH

CH2

CH2

CH2

NH3+

H3N+

COOH

C

CH2

CH2

CH2

NH

C

H

NH2H2+N

D BÁSICO

b

g

d

e

Figura 3.3 Continuación

Page 30: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

64 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

◗ ¿Qué aminoácidos tienen cadenas laterales polares eléctricamente neutras? (Grupo 2)

Otro grupo de aminoácidos tiene cadenas laterales polares que son eléctricamente neu-

tras (sin carga eléctrica neta) a pH neutro. Este grupo incluye la serina, la treonina, la

tirosina, la cisteína, la glutamina y la asparagina. Por conveniencia, a veces aquí también se

incluye la glicina pues carece de una cadena lateral no polar.

En la serina y la treonina, el grupo polar es un hidroxilo (—OH) unido a grupos de

hidrocarburos alifáticos. El grupo hidroxilo en la tirosina está unido a un grupo aromá-

tico, que al final pierde un protón a pH más altos. (El grupo hidroxilo en la tirosina es un

fenol, el cual es un ácido más fuerte que un alcohol alifático. Como resultado de ello, la

cadena lateral de la tirosina puede perder un protón en una titulación, mientras que los

de la serina y la treonina requieren un pH tan alto que los valores de pKa no son enlistados

para estas cadenas laterales.) En la cisteína, la cadena polar lateral consiste de un grupo

tiol (—SH), el cual puede reaccionar con un grupo tiol de otra cisteína para formar un

puente disulfuro (—S—S—) en las proteínas, a través de una reacción de oxidación (sec-

ción 1.9). El grupo tiol también puede perder un protón. Los aminoácidos glutamina y

asparagina tienen grupos amida en sus cadenas laterales, que derivan de grupos carboxí-

licos. Los enlaces amida no se ionizan en el rango de pH comúnmente encontrados en la

bioquímica. La glutamina y la asparagina pueden ser considerados como los derivados de

los ácidos glutámico y aspártico, respectivamente, en el Grupo 3 de aminoácidos; estos dos

aminoácidos tienen grupos carboxílicos en sus cadenas laterales.

◗ ¿Qué aminoácidos tienen grupos carboxilo en sus cadenas laterales? (Grupo 3)

Dos aminoácidos, el glutámico y el aspártico, poseen grupos carboxilo en sus cadenas

laterales además del que está presente en todos los aminoácidos. Un grupo carboxilo

puede perder un protón, formando el correspondiente anión carboxilato (sección 2.5):

glutamato y aspartato, respectivamente en el caso de estos dos aminoácidos. Debido a la

Tabla 3.1 Nombres y abreviaturas de los aminoácidos comunes

Aminoácido Abreviatura de tres letras Abreviatura de una letra

Alanina Ala A

Arginina Arg R

Asparagina Asn N

Ácido aspártico Asp D

Cisteína Cys C

Ácido glutámico Glu E

Glutamina Gln Q

Glicina Gly G

Histidina His H

Isoleucina Ile I

Leucina Leu L

Lisina Lys K

Metionina Met M

Fenilalanina Phe F

Prolina Pro P

Serina Ser S

Treonina Thr T

Triptófano Trp W

Tirosina Tyr Y

Valina Val V

Nota: Las abreviaturas de una letra empiezan con la misma letra del nombre del aminoácido siempre que es posible. Cuando los nombres de varios aminoácidos inician con la misma letra, se aplica la fonética más que la escritura (ocasionalmente los de tipo gracioso) son los que se usan como Rginina, asparDic, Fenilalanina, tWiptofano. Cuando dos o más aminoácidos comienzan con la misma letra, tiene preferencia la letra más pequeña cuya abreviatura de una letra coincide con su letra inicial.

Page 31: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 3 L o s a m i n o á c i d o s p u e d e n a c tu a r c o m o á c i d o s y c o m o b a s e s 65

presencia del carboxilato, la cadena lateral de cada uno de estos dos aminoácidos está

cargado negativamente a pH neutro.

◗ ¿Qué aminoácidos cuentan con cadenas laterales alcalinas? (Grupo 4)

Tres aminoácidos —la histidina, la lisina y la arginina— poseen cadenas laterales básicas

(alcalinas), y la cadena lateral en las tres está cargada positivamente en o cerca del pH

neutro. En la lisina, el grupo amino de la cadena lateral, está unido a una cola de hidro-

carburo alifático. En la arginina, el grupo básico de la cadena lateral, el grupo guanidinio,

es más complejo en su estructura que el grupo amino, pero también está unido a una cola

de hidrocarburo alifático. En la histidina libre en solución, el pKa del grupo imidazol de la

cadena lateral es 6.0, el cual no está muy lejos del pH fisiológico. Los valores de pKa para

varios aminoácidos dependen del medio en que se encuentran y pueden cambiar significa-

tivamente dentro de los confines de una proteína. La histidina puede ser encontrada en la

forma protonada y no protonada en las proteínas, y las propiedades de muchas proteínas

dependen de si los residuos de histidina individuales están o no eléctricamente cargados.

Pruebe sus conocimientos en los ejercicios de la sección Aplique sus conocimientos 3.1.

Aminoácidos poco comunes

◗ ¿Qué aminoácidos suelen ser menos comunes en las proteínas?

Se sabe que existen otros aminoácidos, además de los enlistados aquí. Estos aparecen en

algunas proteínas, pero no en todas, por lo que se conocen como aminoácidos raros. En la

figura 3.4 hay ejemplos de estas posibilidades. Los aminoácidos raros son derivados de los

aminoácidos comunes y se generan por modificación del aminoácido original, después de

que la proteína ha sido sintetizada por el organismo, en un proceso llamado modificación

postraduccional. La hidroxiprolina y la hidroxilisina difieren de sus aminoácidos origina-

les en que tienen grupos hidroxilo en sus cadenas laterales; son encontrados en algunas

proteínas del tejido conectivo, tal como el colágeno. La tiroxina difiere de la tirosina en

que tiene un grupo aromático con un yodo adicional en la cadena lateral; es producida

solamente en la glándula tiroides, y es formada por una modificación postraduccional de

residuos de tirosina de la proteína tiroglobulina. Inmediatamente después, la tiroxina es

secretada como una hormona por proteólisis de la tiroglobulina.

3.3 Los aminoácidos pueden actuar como ácidos y como bases

En un aminoácido libre el grupo carboxilo y el grupo amino de la estructura general están

cargados a pH neutro —la porción carboxilato se carga negativamente y el grupo amino,

. Aplique sus conocimientos

Aminoácidos, sus estructuras y propiedades1. En el siguiente grupo, identifique los aminoácidos con cadenas laterales no polares

y aquellos con cadenas laterales alcalinas: alanina, serina, arginina, lisina, leucina y fenilalanina.

2. El pKa del grupo imidazol, cadena lateral de la histidina es 6.0. ¿Cuál es la relación de

cadenas cargadas a no cargadas a pH 7.0?

SoluciónNote que en la primera parte de este ejercicio para aplicar sus conocimientos, se pide

hacer una verificación de hechos sobre el material de este capítulo, y en la segunda

parte se pregunta que recuerde y aplique conceptos de un capítulo anterior.

1. Observe la figura 3.3. No polares: alanina, leucina y fenilalanina; alcalinos: arginina y lisina. La serina no está en ninguna de estas categorías ya que tiene una cadena lateral polar.

2. La relación es 10:1 debido a que el pH es una unidad mayor que el pKa.

Page 32: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

66 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

positivamente—. Los aminoácidos sin grupos cargados en sus cadenas laterales existen en

una solución neutra como zwitteriones sin carga neta. Un zwitterión tiene ambos tipos de

cargas, positivas y negativas, pero en solución es eléctricamente neutro.

Los aminoácidos neutros existen en la forma NH2—CHR—COOH (esto es, sin grupos

cargados).

◗ ¿Qué sucede cuando titulamos un aminoácido?

Cuando se titula un aminoácido, su curva de titulación indica la reacción de cada grupo

funcional con el ión hidrógeno. En la alanina, el carboxilo y los grupos amino son los

grupos titulables. En pH extremadamente bajos, la alanina tiene un grupo carboxílico

protonado (y por tanto sin carga) y un grupo amino cargado positivamente que también

está protonado. Bajo esas condiciones, ahora la alanina tiene una carga neta positiva de 1.

Conforme se añade una base, el grupo carboxilo pierde su protón para así convertirse en

un grupo carboxilato cargado (figura 3.5a), y el pH de la solución aumenta. La alanina

ahora no tiene carga neta. Conforme el pH aumenta con la adición de más álcali, el grupo

amino protonado (ácido débil) pierde su protón y la molécula de alanina ahora tiene una

carga negativa de 1. La curva de titulación de la alanina es la misma que la de un ácido

diprótico (figura 3.6).

En la histidina, la cadena lateral de imidazol también aporta un grupo titulable. En

valores de pH muy bajos, la molécula de histidina tiene una carga neta positiva de 2

debido a que tanto el imidazol y los grupos amino tienen cargas positivas. Conforme se

añade base y el pH aumenta, el grupo carboxilo pierde un protón para convertirse en

carboxilato como antes, y la histidina ahora tiene una carga positiva de 1 (figura 3.5b).

Conforme se añade más solución alcalina, el grupo cargado imidazol pierde su protón,

este es el punto en el cual la histidina no tiene carga neta. En mayores valores de pH,

el grupo amino pierde su protón, como sucedió en el caso de la alanina, y la molécula

Prolina

Lisina

CH2

OH

OH

OH

N

C

CH2 CH2

H2C

H

O

O–

O–

H H

H

C

C

O

C

+

+

+

Hidroxiprolina

N

C

H

O

O–

H

HO

H

C

+

CH2

H3N

CH2

CH2

NH3

Hidroxilisina

CH2

O–

H

H

C

C

C

O

+

+

CH2

H3N

CH2

NH3

Tirosina

CH2

O–

H

C

C

O

+H3N

Tiroxina

CH2

O–

H

C

C

O

+H3N

O

I I

I I

CH CH2

H2C

Figura 3.4 Estructuras de la hidroxiprolina, la hidroxilisina y la tiroxina. Se muestran en secuencia las estructuras de los aminoácidos originales —prolina para la hidroxi-prolina, lisina para la hidroxilisina y tirosina para la tiroxina— para su comparación. Todos los aminoácidos se muestran en sus formas predomi-nantes a pH 7.

Page 33: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 3 L o s a m i n o á c i d o s p u e d e n a c tu a r c o m o á c i d o s y c o m o b a s e s 67

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

de histidina ahora tiene una carga negativa de 1. La curva de titulación de la histidina es

equivalente a la de un ácido triprótico (figura 3.7).

Al igual que los ácidos que estudiamos en el capítulo 2, los grupos titulables de cada

uno de los aminoácidos tienen valores característicos de pKa. Los valores de pK

a de los

grupos a-carboxilo son bastante bajos, alrededor de dos. Los valores de pKa de los

grupos amino son mucho más altos, con valores que van de 9 a 10.5. Los valores

de pKa de las cadenas laterales, incluyendo los grupos amino y carboxilo de la ca-

dena lateral, dependen de la naturaleza química de los grupos. La tabla 3.2 lista los

valores de pKa de los grupos titulables de los aminoácidos. La clasificación de un

aminoácido como ácido o alcalino depende del pKa de la cadena lateral así como

de la naturaleza química del grupo. La histidina, la lisina y la arginina son conside-

rados aminoácidos alcalinos debido a que cada una de sus cadenas laterales tiene

un grupo con nitrógeno que puede existir en su forma protonada o desprotonada.

Sin embargo, la histidina tiene un pKa en el rango ácido. El ácido aspártico y el glu-

támico son considerados ácidos debido a que cada uno tiene un ácido carboxílico

como cadena lateral con un bajo valor de pKa. Estos grupos aún pueden ser titula-

dos después de que el aminoácido ha sido incorporado en un péptido o en una pro-

teína, pero el pKa de un grupo titulable de la cadena lateral no necesariamente es

el mismo en una proteína como lo es en un aminoácido libre. De hecho, puede ser

muy diferente. Por ejemplo, se ha reportado un pKa de 9 para una cadena lateral de

aspartato en la proteína tioredoxina.

El hecho de que los aminoácidos, péptidos y proteínas tengan valores diferentes de pKa,

da lugar a la posibilidad de que tengan diferentes cargas a cualquier pH dado. La alanina e

Las formas iónicas de los aminoácidos, son mostradas sin considerar ninguna ionización sobre las cadenas laterales. La forma catiónica es la forma de bajo pH, y la titulación de las especies catiónicas con un álcali producen los zwitteriones y finalmente la forma aniónica.

La ionización de la histidina (un aminoácido con una cadena lateral titulable).

carga neta +1 carga neta 0 carga neta –1

forma catiónica neutro

pKa = 2.34 pKa = 9.69

forma iónica

Zwitterion isoeléctrico

C

COOH H+

H

R

H3N+

C

COO– H+

H

R

H3N+

C

COO–

H

R

H2N

carga neta +2 carga neta +1 carga neta 0

CH2

H

H

COOH

C+

H3N

Zwitterion isoeléctrico

NH

N+

CH2

H

H

COO–

C+

H3N

NH

N+

carga neta –1

CH2

H

COO–

CH2N

NH

pKa = 1.82 pKa = 9.17pKa = 6.0

CH2

H

COO–

C+

H3N

NH

N N

A

B

Figura 3.5 Ionización de los aminoácidos.

4

0 1.0 2.0

pI

moles de OH– por mol de aminoácido

pH

pK1 = 2.34

pK2 = 9.69

pH = 6.026

2

0

8

10

12

H3NCHRCOOH+

H3NCHRCOOH+

H3NCHRCOO–+

H3NCHRCOO–+

H3NCHRCOO–+

H2NCHRCOO–

H2NCHRCOO–

Figura 3.6 Curva de titulación de la alanina.

Page 34: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

68 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

histidina, por ejemplo, tienen ambas cargas netas de –1 en valores de pH mayores, arriba

de 10; el único grupo cargado es el anión carboxilato. A pH más bajo, alrededor de 5, la

alanina es un zwitterión sin carga neta, pero la histidina tiene una carga neta de 1 a este

pH, debido a que el grupo imidazol está protonado. Esta propiedad es útil en la electro-

foresis, la cual es un método común para separar las moléculas en un campo eléctrico.

Este método es extremadamente útil para determinar la propiedades importantes de las

proteínas y los ácidos nucléicos. Veremos las aplicaciones a las proteínas en el capítulo 5 y

a los ácidos nucléicos en el capítulo 13. El pH al cual una molécula no presenta ninguna

carga neta se le llama el pH isoeléctrico, o punto isoeléctrico (con el símbolo pI). En su

pH isoeléctrico, una molécula no migrará en un campo eléctrico. Esta propiedad puede

Figura 3.7 Curva de titulación de la histidina. El pH isoeléctrico (pI) es el valor al cual las cargas positivas y negativas son las mismas. La molécula entonces no tiene carga neta

0

pI

moles de OH– por mol de aminoácido.

pH

pK1 = 1.82

pK2 = 6.0

pK3 = 9.2

4

2

0

6

8

10

12

14

1.0 2.0 3.0 4.0

CH2

N

C COO–

NH2

HNH

N NH

CH2 CH COO–

NH3+

HN NH+

CH2 C COO–

NH3+

H

NHHN+

CH2 C COOH

NH3+

H

electroforesis método para separar

moléculas con base en la relación

carga/tamaño

pH isoeléctrico (PI) pH al cual

una molécula no tiene carga neta;

también conocido como punto isoeléctrico

Tabla 3.2 Valores de pKa de los aminoácidos comunes

Acid a-COOH a-NH31 RH o RH+

Gly 2.34 9.60

Ala 2.34 9.69

Val 2.32 9.62

Leu 2.36 9.68

Ile 2.36 9.68

Ser 2.21 9.15

Thr 2.63 10.43

Met 2.28 9.21

Phe 1.83 9.13

Trp 2.38 9.39

Asn 2.02 8.80

Gln 2.17 9.13

Pro 1.99 10.6

Asp 2.09 9.82 3.86*

Glu 2.19 9.67 4.25*

His 1.82 9.17 6.0*

Cys 1.71 10.78 8.33*

Tyr 2.20 9.11 10.07

Lys 2.18 8.95 10.53

Arg 2.17 9.04 12.48

*Para estos aminoácidos, la ionización del grupo R ocurre antes que la ionización del a-NH3+.

Page 35: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 4 E l e n l a c e p e p t í d i c o 69

ser usada en los métodos de separación. El pI de un aminoácido puede ser calculado por

la siguiente ecuación:

pIpKa1 1 pKa2

2

La mayor parte de los aminoácidos tienen solamente dos valores de pKa, de modo que

esta ecuación es muy fácil de usar para calcular el pI. Para los aminoácidos ácidos y alca-

linos, sin embargo, debemos asegurarnos de promediar los valores correctos de pKa. El

pKa1

es para el grupo funcional que se ha disociado en su punto isoeléctrico. Si los dos

grupos están disociados en el pH isoeléctrico, entonces el pKa1

es más alto que el pKa de

los dos. Por tanto, pKa2

es para el grupo que no se ha disociado a pH isoeléctrico. Si hay

dos grupos que no estén disociados, el que tenga el pKa más bajo es el que se usa. Vea el

siguiente ejercicio de Aplique sus conocimientos 3.2 para averiguar qué tan bien utiliza los

conocimientos adquiridos.

. Aplique sus conocimientos

Titulación de aminoácidos1. ¿Cuáles de los siguientes aminoácidos tiene una carga neta de +2 a pH bajo? ¿Cuál

tiene una carga neta de –2 a pH alto? El ácido aspártico, la alanina, la arginina, el ácido glutámico, la leucina o la lisina.

2. ¿Cuál es el pI para la histidina?

SoluciónObserve que la primera parte de este ejercicio trata únicamente de la descripción

cualitativa de la pérdida sucesiva de protones por los grupos titulables en los aminoá-

cidos individuales. En la segunda parte, hay que referirse a la curva de titulación así

como hacer cálculos numéricos de los valores de pH.

1. La arginina y la lisina tienen cargas netas de +2 a pH bajo debido a sus cadenas laterales alcalinas; el ácido aspártico y el glutámico tienen cargas netas de –2 a pH alto debido a sus cadenas laterales de ácido carboxílico. La alanina y la leucina no caen en ninguna de estas categorías debido a que no tienen cadenas laterales titulables.

2. Dibuje o ilustre la histidina a pH muy bajo. Use la fórmula mostrada en la figura 3.5b que está del lado izquierdo. Esta forma tiene una carga neta de +2. Para llegar al punto isoeléctrico, debemos añadir parte de la carga negativa o eliminar algo de carga posi-tiva. Esto sucederá en solución con el objetivo de aumentar el pK

a. Por tanto, comen-

zamos por eliminar el hidrógeno del grupo hidroxilo ya que tiene el pKa más bajo

(1.82). Esto nos deja con la segunda forma de la izquierda mostrada en la figura 3.5b. Esta forma tiene una carga de +1, de modo que aún debemos eliminar otro hidrógeno para llegar a la forma isoeléctrica. Este hidrógeno provendría de la cadena lateral del imidazol debido a que tiene el siguiente pK

a más alto (6.0); esta es la forma isoeléctrica

(segunda de la derecha). Ahora promediamos el pKa del grupo más alto de pK

a que ha

perdido un hidrógeno con el del grupo que tiene el más bajo pKa que aún conserva su

hidrógeno. En el caso de la histidina, las cantidades numéricas que hay que sustituir en la ecuación para el pI son 6.0 [pK

a1] y 9.17 [pK

a2], lo cual da un pI de 7.58.

3.4 El enlace peptídico

◗ ¿Qué grupos de aminoácidos reaccionan para formar un enlace peptídico?

Los aminoácidos individuales pueden unirse formando enlaces covalentes. Este enlace se

forma entre el grupo a-carboxilo de un aminoácido y el grupo a-amino del siguiente. Se

elimina agua en el proceso y los residuos de aminoácidos quedan enlazados después de

que el agua ha sido eliminada (figura 3.8). Un enlace construido de esta forma se identi-

fica como enlace peptídico. Los péptidos son compuestos formados por la unión de unos

cuantos aminoácidos, cuyo número va de dos a varias docenas. En una proteína, muchos

aminoácidos (comúnmente más de 100) se unen mediante enlaces peptídicos para formar

residuos porciones de unidades

monoméricas que forman parte de

un polímero después de eliminar

una molécula de agua entre los

monómeros unidos

enlace peptídico enlace amida entre

los aminoácidos en una proteína

péptidos moléculas formadas al

enlazar dos o varias docenas de

aminoácidos mediante enlaces amida

Page 36: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

70 C A P Í T U L O 3 Aminoácidos y péptidos

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

una cadena polipeptídica (figura 3.9). Otro nombre que se le da a un compuesto formado

por la reacción entre un grupo amino y un grupo carboxilo es una amida.

El enlace carbono-nitrógeno formado cuando dos aminoácidos son unidos a través

de un enlace peptídico normalmente se representa como una sola ligadura, con un

par de electrones compartidos entre los dos átomos. Con un simple cambio en la posi-

ción de un par de electrones, sería posible escribir este enlace como una doble ligadura.

Este intercambio de electrones es bien conocido en química orgánica y da por resultado

estructuras resonantes, mismas que difieren unas de otras únicamente por el posiciona-

miento de los electrones. Las posiciones de ligadura doble y sencilla en una estructura

resonante son diferentes de sus posiciones en otra estructura resonante del mismo com-

puesto. No hay una sola estructura resonante que en la realidad represente la manera

en la que está enlazado un compuesto; más bien todas las estructuras resonantes contri-

buyen al enlace.

El enlace peptídico puede ser escrito como un híbrido de resonancia de dos estructu-

ras (figura 3.10), una con un solo enlace entre el carbono y el nitrógeno y la otra con un

Eliminación de unamolécula de agua…

…Formación deun enlace CO-NH

Enlace peptídico

Dos aminoácidos

H2O

��

� �

Figura 3.8 Formación del enlace peptídico (de GARRET/GRISHAM, Bioquímica, 4E. © Cengage Learning.)

cadena polipeptídica esqueleto

de una proteína; está formada por

la unión de aminoácidos mediante

enlaces peptídicos (amida)

estructuras resonantes fórmulas

estructurales que difieren unas de

otras únicamente en la posición de

sus electrones

COO–

R1

C NC

H

+H3N

H H

N

R2

C

H

O

Dirección de la cadena peptídicaResiduo N-terminal

Enlacespeptídicos

O

C

R3

C NC

H

H H

N

R4

C

H

O

O

C

R5

C NC

H

H R6

C

H

O

Residuo C-terminalFigura 3.9 Un pequeño péptido mostrando la dirección de la cadena peptídica (N-terminal a C-terminal).

Page 37: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

3 . 5 Pe qu e ñ o s p é p t i d o s c o n a c t i v i d a d f i s i o l ó g i c a 71

A menos que se indique lo contrario, todo el contenido en esta página es propiedad de ©Cengage Learning.

doble enlace entre el carbono y el nitrógeno. El enlace peptídico tiene un carácter parcial

de doble enlace. Como resultado de ello, el grupo peptídico que forma el enlace entre los

dos aminoácidos es plano. El enlace peptídico es también más fuerte que un enlace senci-

llo ordinario debido a la estabilización que le da la resonancia.

La característica estructural tiene importantes implicaciones para las conformaciones

de los péptidos y las proteínas. Hay rotación libre alrededor de los enlaces entre el car-

bono-a de un residuo aminoácido dado y entre el nitrógeno amínico y el carbono carbo-

nílico de ese residuo, pero no hay rotación significativa alrededor del enlace peptídico.

Esta restricción estereoquímica juega un papel importante para determinar cómo puede

plegarse el esqueleto de la proteína.

3.5 Pequeños péptidos con actividad fisiológica

◗ ¿Cuáles son algunas de las funciones biológicas de los péptidos pequeños?

Se va a dedicar el capítulo 4 completo para describir la estructura de las proteínas,

y los capítulos 6 y 7 para discutir su papel como enzimas. Sin embargo, las proteínas y

los péptidos tienen un gran número de papeles bioquímicos. Una de las funciones

más importantes de los péptidos es su actividad como hormonas, a lo largo de esta

obra se mostrarán muchos ejemplos de control hormonal a medida que se estudien

sus reacciones bioquímicas en capítulos posteriores. Por supuesto, otras clases de

compuestos, en particular los esteroides, pueden actuar como hormonas. La no-

toriedad de las hormonas esteroideas se ha incrementado por los escándalos de

dopaje en los deportes y puede opacar el hecho de que los péptidos pueden ser

hormonas. Daremos un vistazo breve a las hormonas peptídicas en este momento

con el fin de preparar discusiones posteriores sobre las mismas.

Algunas hormonas peptídicas importantes tienen estructuras cíclicas. Dos

ejemplos bien conocidos con muchas características estructurales en común son el

de la oxitocina y la vasopresina (figura 3.11). En cada una, hay un enlace —S—S—

responsable de la estructura cíclica. Cada uno de estos péptidos contiene nueve

residuos de aminoácidos, cada cual tiene un grupo amida (en lugar de un grupo

carboxilo libre) en el extremo C-terminal, y cada uno tiene un puente disulfuro

entre los residuos de cisteína en las posiciones 1 y 6. La diferencia entre estos dos

péptidos es que la oxitocina tiene un residuo de isoleucina en la posición 3 y un

residuo de leucina en la posición 8, y la vasopresina tiene un residuo de fenilala-

nina en la posición 3 y un residuo de arginina en la posición 8. Ambos pépti-

dos tienen importancia fisiológica considerable como hormonas (ver Conexiones

bioquímicas 3.1).

O

C N

C

C

CH

C

H

O

C N

+

Plano delenlace amida

O

N

C Cα

C

Enlacepeptídico

Grupo peptídico

Estructura planar del grupopeptídico.

Estructuras de resonancia del grupo peptídico

A B

Figura 3.10 Las estructuras resonantes del enlace peptídico dan por resultado un grupo planar). (Ilustración por Irving Geis. Derechos del Instituto Médico Howard Hughes. Prohibida su reproducción sin la debida autorización).

Oxitocina

Puentedisulfuro

H3N

NH2

+Cys Tyr

Cys

S

1 2

6

7 8 9

3

4

5

S

Ile

Gln

Asn

Pro Leu Gly

O

C

Puentedisulfuro

Vasopresina

H3N

NH2

+Cys Tyr

Cys

S

1 2

6

7 8 9

3

4

5

S

Phe

Gln

Asn

Pro Arg Gly

O

C

Figura 3.11 Estructuras de la oxi-tocina y la vasopresina.

Page 38: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

72 C A P Í T U L O 3 Aminoácidos y péptidos

. Conexiones bioquímicas | FisiologíaHormonas peptídicas-Moléculas pequeñas con grandes efectos

Tanto la oxitocina como la vasopresina son hormonas peptídi-cas. La oxitocina induce la labor de parto en las mujeres em-

barazadas y controla la contracción del músculo uterino. Durante el embarazo, el número de receptores para la oxitocina en la pared uterina aumenta. Al término del embarazo, el número de recep-tores para la oxitocina es lo suficientemente alto como para cau-sar la contracción de los músculos lisos del útero en presencia de pequeñas cantidades de oxitocina producidas en el cuerpo hacia el final del embarazo. El feto se mueve hacia el cérvix del útero debido a la fuerza y frecuencia de las contracciones uterinas. El cér-vix se estira, enviando impulsos nerviosos al hipotálamo. Cuando los impulsos alcanzan esta parte del cerebro, hay una retroali-mentación positiva que lleva a una mayor secreción de oxitocina por parte de la glándula pituitaria posterior. La presencia de más oxitocina provoca contracciones más fuertes del útero, de tal modo que el feto es empujado a través del cérvix para que nazca el bebé. La oxitocina también tiene un papel en la estimulación del flujo de leche en una madre que lactante. La acción de succión en el ama-mantamiento envía señales nerviosas al hipotálamo del cerebro de la madre. Se libera oxitocina y esta es transportada por la sangre ha-cia las glándulas mamarias. La presencia de oxitocina provoca que el músculo liso en las glándulas mamarias se contraiga, forzando a la leche que está en ellas hacia afuera. Conforme la succión du-rante el amamantamiento continúa, se libera más hormona, pro-duciendo aún más leche.

La vasopresina desempeña un papel en el control de la presión sanguínea al regular las contracciones del músculo liso. Como la oxitocina, la vasopresina es liberada por la acción del hipotálamo sobre la pituitaria posterior y es transportada por la sangre a recep-tores específicos. La vasopresina estimula la reabsorción de agua por los riñones, por lo que tiene un efecto antidiurético. Se retiene más agua, y la presión arterial se incrementa. ◗

El amamantamiento estimula la liberación de oxitocina, produciendo de este modo, más leche.

© S

vetla

na F

edos

eyev

a/Sh

utte

rsto

ck.c

om

R e s u m e n

Por qué es importante especificar la estructura tridimensional de los aminoácidos? Los aminoácidos, que son las unidades

monoméricas de las proteínas, tienen una estructura común en

general, con un grupo amino y un grupo carboxilo unidos al

mismo átomo de carbono. La naturaleza de las cadenas latera-

les, a las que se les denomina grupos R, son la base de las dife-

rencias entre los aminoácidos. Con excepción de la glicina, los

aminoácidos pueden existir en dos formas, designadas L y D.

Estos dos estereoisómeros son imágenes especulares no super-

ponibles. Los aminoácidos que se encuentran en las proteínas

de los seres vivos en general son del tipo L, aunque algunos

D-aminácidos aparecen de vez en cuando en la naturaleza.

¿Por qué las cadenas laterales de los aminoácidos son tan importantes? Un esquema de clasificación para los ami-

noácidos puede basarse en las propiedades de sus cadenas

laterales. Dos criterios particularmente importantes son la

naturaleza polar o no polar de la cadena lateral y la presencia

de un grupo ácido o alcalino en la cadena lateral.

¿Qué aminoácidos tienen cadenas no polares? (Grupo 1) Un

grupo de aminoácidos tiene cadenas laterales no polares.

Estas son principalmente hidrocarburos alifáticos, aromáti-

cos o sus derivados.

¿Qué aminoácidos tienen cadenas laterales polares eléctrica-mente neutras? (Grupo 2) Un segundo grupo de aminoáci-

dos tiene cadenas que contienen átomos electronegativos

tales como el oxígeno, el nitrógeno y el azufre.

¿Qué aminoácidos tienen grupos carboxilo en sus cadenas la-terales? (Grupo 3) Dos aminoácidos, el ácido glutámico y el

aspártico tienen grupos carboxilos en sus cadenas laterales.

¿Qué aminoácidos cuentan con cadenas laterales alcalinas? (Grupo 4) Tres aminoácidos —la histidina, la lisina y la argi-

nina— tienen cadenas laterales básicas (alcalinas).

¿Qué aminoácidos suelen ser menos comunes en las proteínas? Algunos aminoácidos solo se encuentran en algunas pro teínas.

Son elaborados a partir de otros aminoácidos comunes des-

pués de que la proteína ha sido sintetizada en la célula.

¿Qué sucede cuando titulamos un aminoácido? En los ami-

noácidos libres a pH neutro, el grupo carboxilo está cargado

Page 39: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

E j e rc i c i o s d e re p a s o 73

negativamente (ácido) y el grupo amino positivamente (bá-

sico). Los aminoácidos sin grupos cargados en sus cadenas

laterales existen en solución neutra como zwitteriones, sin

carga neta. Las curvas de titulación de los aminoácidos indi-

can los rangos de pH en los cuales los grupos titulables ganan

o pierden un protón. Las cadenas laterales de aminoácidos

también pueden contribuir con grupos titulables; la carga (si

acaso la hay) sobre la cadena lateral, debe ser tomada en con-

sideración para determinar la carga neta del aminoácido.

¿Qué grupos de aminoácidos reaccionan para formar un en-lace peptídico? Los péptidos están formados por la unión del

grupo carboxilo de un aminoácido al grupo amino de otro

en un enlace covalente. Las proteínas constan de cadenas po-

lipeptídicas (el número de aminoácidos en una proteína es

usualmente de 100 o más). El grupo peptídico es plano: esta

estéreo-limitación química desempeña un papel importante

en la determinación de las estructuras tridimensionales de

los péptidos y de las proteínas.

¿Cuáles son algunas de las funciones biológicas de los péptidos pequeños? Algunos péptidos pequeños que contienen de

dos a varias docenas de residuos aminoácidos pueden tener

marcados efectos fisiológicos en los organismos.

E j e r c i c i o s d e r e p a s o

3.1 Los aminoácidos existen en un mundo tridimensional 1. MEMORIA ¿Cómo difieren los aminóacidos D de los L? Qué funciones

biológicas desempeñan los péptidos que contienen aminoácidos D?

3.2 Aminoácidos individuales: su estructura y propiedades

2. MEMORIA ¿Qué aminoácidos no son técnicamente aminoácidos?

¿Qué aminoácido no contiene átomos quirales?

3. MEMORIA Para cada uno de los siguientes componentes, enuncie un

aminoácido que lo contenga en su grupo R: un grupo hidroxilo,

un átomo de azufre, un segundo átomo de carbono quiral, un grupo

amino, un grupo amida, un grupo ácido, un anillo aromático y una

cadena ramificada.

4. MEMORIA Identifique los aminoácidos polares, los aromáticos y los

que contienen azufre, en el péptido con la secuencia aminoácida

siguiente:

Val—Met—Ser—Ile—Phe—Arg—Cys—Tyr—Leu

5. MEMORIA Identifique los aminoácidos no polares y los aminoácidos

ácidos en el siguiente péptido:

Glu—Thr—Val—Asp—Ile—Ser—Ala

6. MEMORIA ¿Hay otros aminoácidos además de los 20 usuales que se

encuentren en las proteínas? Si es así, ¿cómo se incorporan estos en

las proteínas? Dé un ejemplo de un aminoácido de este tipo y de una

proteína en la que esté presente.

3.3 Los aminoácidos pueden actuar como ácidos y como bases

7. MATEMÁTICAS Prediga las formas ionizadas predominantes de los

siguientes aminoácidos a pH 7: ácido glutámico, leucina, treonina,

histidina y arginina.

8. MATEMÁTICAS Dibuje las estructuras de los siguientes aminoácidos

indicando la forma cargada que existe a pH 4: histidina, asparagina,

triptófano, prolina y tirosina.

9. MATEMÁTICAS Prediga las formas predominantes de los aminoáci-

dos de la pregunta 8 a pH 10.

10. MATEMÁTICAS Calcule el punto isoeléctrico de cada uno de los si-

guientes aminoácidos: ácido glutámico, serina, histidina, lisina, tiro-

sina y arginina.

11. MATEMÁTICAS Dibuje una curva de titulación para el aminoácido

cisteína e indique los valores de pKa para todos los grupos titulables.

También indique el pH en el que este aminoácido ya no tendría

carga neta.

12. MATEMÁTICAS Dibuje una curva de titulación para el aminoácido

lisina, e indique los valores de pKa para todos los grupos titulables.

También indique el pH al que el aminoácido ya no tiene carga neta.

13. MATEMÁTICAS Un químico orgánico generalmente está satisfecho

con un rendimiento de 95%. Si usted sintetizó un polipéptido y lo-

gró un rendimiento de 95% con cada residuo aminoácido agregado,

cuál sería su rendimiento general después de añadir 10 residuos (al

primer aminoácido)?; ¿después de añadir 50? ¿Y después de añadir

100? ¿Serían bioquímicamente “satisfactorios” esos rendimientos tan

bajos?

14. MATEMÁTICAS Dibuje una curva de titulación para el ácido aspárti-

co e indique los valores de pKa de todos los grupos titulables. Tam-

bién indique el rango de pH en el cual el par ácido-base conjugado

+1 Asp y 0 Asp actuarán como un amortiguador.

15. REFLEXIÓN Y APLICACIÓN Sugiera una razón de por qué los aminoá-

cidos comúnmente son más solubles a pH extremo que a pH neutro.

(Advierta que esto no significa que sean insolubles a pH neutros.)

16. REFLEXIÓN Y APLICACIÓN Escriba ecuaciones que muestren las re-

acciones de disociación iónica de los siguientes aminoácidos: ácido

aspártico, valina, histidina, serina y lisina.

17. REFLEXIÓN Y APLICACIÓN Basándonos en la información de la tabla

3.2, ¿hay algún aminoácido que pudiera servir como amortiguador

a pH 8? Si es así, ¿cuál?

18. REFLEXIÓN Y APLICACIÓN Si usted pudiera tener un aminoácido mí-

tico basado en el ácido glutámico, pero en el cual el hidrógeno que

está unido al carbono-g, fuera reemplazado por otro grupo amino,

¿Cuál sería la forma predominante de este aminoácido a pH 4, 7 y

10, si el valor del pKa fuera 10 para el único grupo amino?

19. REFLEXIÓN Y APLICACIÓN ¿Cuál sería el pI para el aminoácido míti-

co descrito en la pregunta 18?

20. REFLEXIÓN Y APLICACIÓN Identifique los grupos cargados en el pép-

tido mostrado en la pregunta 4 a pH 1 y a pH 7. ¿Cuál es la carga

neta de este péptido a estos dos valores de pH?

21. REFLEXIÓN Y APLICACIÓN Considere los siguientes dos péptidos:

Phe—Glu—Ser—Met y Val—Trp—Cys—Leu. ¿Tienen diferentes car-

gas netas a pH 1? ¿A pH 7? Indique las cargas a ambos valores de pH.

22. REFLEXIÓN Y APLICACIÓN De cada uno de los siguientes dos grupos

de aminoácidos, ¿cuál de ellos sería el más fácil de distinguir de los

otros dos en el grupo, basado en una titulación?

(a) gly, leu, lys

(b) glu, asp, ser

23. REFLEXIÓN Y APLICACIÓN Podría servir el aminoácido glicina como

la base de un sistema amortiguador? Si es así, ¿en qué rango de pH

sería útil?

3.4 El enlace peptídico 24. MEMORIA Dibuje estructuras de resonancia para el grupo peptídico.

25. MEMORIA ¿Cómo contribuyen las estructuras de resonancia del gru-

po peptídico al arreglo planar de este grupo de átomos?

Page 40: Bioquímica Volumen I. 8 Ed. Mary K. Campbell yShawn O. Farrell

Visite nuestro sitio en http://latinoamerica.cengage.com

,VOLUMEN I, 8a. ed., está dirigido a estudiantes de cualquier campo de las ciencias o de la ingeniería interesados en tomar un curso introductorio a la materia; la presenta de forma clara y aplicada a la vida real para familiarizarlos con sus aspectos más importantes.

La meta principal de la obra es que los estudiantes de biología, química, física, geología, nutrición, deportes, fisiología y agricultura, reconozcan que la bioquímica influye considerablemente en sus campos de estudio, y el conocimiento que adquieran les resultará especialmente útil e importante a lo largo de su desarrollo profesional.

Una de sus características principales es el impacto visual con el que cuenta la obra, se diseñó cuidadosamente para ayudar a los estudiantes a visualizar los procesos clave y a entender los temas fundamentales de forma más clara y efectiva, un aspecto esencial para los estudiantes que aprenden de manera visual.

BIOQUÍMICA

ISBN-13: 978-607-522-488-6ISBN-10: 607-522-488-2

9 7 8 6 0 7 5 2 2 4 8 8 6