BEHIND THE EFFICACY€¦ · se encuentran en la fase de evaluación clínica inicial y que, una vez...

80
1 THE QUALITY EFFICACY BEHIND THE

Transcript of BEHIND THE EFFICACY€¦ · se encuentran en la fase de evaluación clínica inicial y que, una vez...

1

THE QUALITYEFFICACY

BEHIND THE

Material de formación para uso interno

3

ÍNDICE ABREVIATURAS 5 INTRODUCCIÓN 8

ALLERGY THERAPEUTICS: Compromiso permanente con la mejoradel tratamiento de la alergia 9

1. DERMATITIS ATÓPICA 12

1.1 Manifestaciones clínicas 12

1.2 Distribución 14

1.3 Fisiopatología y papel de la barrera cutánea 14

1.4 Causas 16

1.5 Enfermedades asociadas 17

1.6 Repercusión en la calidad de vida 17

1.7 Tratamientos farmacológicos 18

2. EL MICROBIOMA INTESTINAL 20

2.1 Funciones del microbioma intestinal 21

2.2 Probióticos, prebióticos y simbióticos 22

2.3 Géneros, especies y cepas 24

2.4 Prebióticos 24

2.5 Simbióticos 26

2.6 Papel y mecanismo de acción de los probióticos 27

2.6.1 Estudios in vitro 32

2.6.2 Modelos animales 34

2.6.3 Estudios clínicos 36

2.7 Directrices 38

2.8 Identificación de la especie y de la cepa 40

2.9 Cantidad de microorganismos 40

2.10 Seguridad de los probióticos 40

3. KALLERGENTh® 43

4

3.1 Composición 43

3.2 Identificación de la especie y de la cepa 45 3.3 Formulación 48

3.4 FOS 48

3.5 La microencapsulación 49

3.6 Seguridad 51

3.7 Evaluación de la resistencia a los antibióticos 52

3.8 Características 53

3.8.1 Resistencia a las secreciones gástricas y biliares 53

3.9 Inmunomodulación 55

3.9.1 Especie, especificidad de la cepa: estudios in vitro 55

3.9.2 Especie, especificidad de la cepa: estudios en vivo 59

3.9.3 Especie, especificidad de la cepa: estudios clínicos 59

4. KALLERGENTh®: estudios clínicos 634.1 Probiotics as a Novel Adjuvant Approach to Atopic Dermatitis 63 Manzotti y cols. Journal of Contemporary Immunology (2014) Vol. 1 No. 2 pp. 57-66

4.2 Un caso di dermatite eczematosa 68 Fabio Maria Agostinis 2014

4.3 Use of probiotics in atopic dermatitis 71 Xavier Sierra

4.4 A propósito de un caso: terapia coadyuvante con simbióticos en dermatitis atópica severa 73 Manuel Rial Prado, Vanesa García Paz, Ángela Meijide Calderón, Olinda Pérez Quintero, Leticia Vila Sexto

BIBLIOGRAFÍA 75

ÍNDICE

5

ABREVIATURAS

ADN: Ácido desoxirribonucleico

APC: Célula presentadora de antígeno (del inglés Antigen-Presenting Cell)

ARIA: Allergic Rhinitis and its Impact on Asthma

ARNr: Ácido ribonucleico ribosómico

AT: Allergy Therapeutics

BPX: Buenas prácticas de «X», donde «X» es cualquier tipo de práctica, un término genérico para las guías y regulaciones de calidad Buena Práctica

CD: Grupo de diferenciación (del inglés Cluster of Differentiation)

CdV: Calidad de vida

CES: Corticoesteroides

CFU: Unidad formadora de colonias (del inglés Colony Forming Unit)

CMSP: Células mononucleares de la sangre periférica

DA: Dermatitis atópica

DC: Célula dendrítica (del inglés Dendritci Cell)

DCCP: Doble ciego controlado con placebo

EAV: Escala analógico-visual

EEM: Error estándar de la media

EFSA: European Food Safety Authority

FAO: Food and Agriculture Organization

FEEDAP: Grupo de aditivos y productos o sustancias usadas en la alimentación animal (del inglés Panel on Additives and Products or Substances used in Animal Feed)

FOS: Fructo-oligosacáridos

GALT: Tejido linfático asociado al intestino (del inglés Gut-Associated Lymphoid Tissue)

GOS: Galacto-oligosacáridos

GP: Grado de polimerización

GRAS: Reconocido generalmente como seguro (del inglés Generally Recognized as Safe)

HLA: Antígeno leucocítico humano (del inglés Human Leukocyte Antigen)

IC: Intervalo de confianza

IDA: International Depository Authority

IFN-: Interferón

6

IgA: Inmunoglobulina A

IgE: Inmunoglobulina E

IgG: Inmunoglobulina G

IL: Interleucina

LAB: Bacterias del ácido láctico (del inglés Lactic Acid Bacteria)

LGG: Lactobacillus rhamnosus

MHRA: Medicines and Healthcare products Regulatory Agency

MIC: Concentración inhibitoria mínima (del inglés Minimum Inhibitory Concentration)

MPL: Monofosforil lípido A (del inglés, Monophosphoryl Lipid A)

NDO: Oligosacáridos no digeribles (del inglés Non Digerible Oligosaccharides)

NF-B: Factor nuclear kappa beta (del inglés Nuclear Factor Kappa)

NK: Linfocito citolítico espontáneo (del inglés Natural Killer Cell)

OR: Odds Ratio

OVA: Ovoalbúmina

PCR: Reacción en cadena de la polimerasa (del inglés Polymerase Chain Reaction)

PFGE: Electroforesis en gel de campo pulsado (del inglés Pulse Field Gel Electrophoresis)

QPS: Presunción cualificada de seguridad (del inglés Qualified Presumption of Safety)

RA: Rinitis alérgica

SAO: Síndrome de alergia oral

SCORAD: Puntuación de la gravedad de la dermatitis atópica (del inglés Severity Scoring of Atopic Dermatitis)

SNP: Polimorfismo de un solo nucleótido (del inglés Single Nucleotide Polymorphism)

TGF-: Factor de crecimiento transformador (del inglés, Transforming Growth Factor )

Th: Linfocito T cooperador (del inglés T-helper cell)

TLR: Receptor del tipo toll (del inglés Toll-Like Receptor)

Treg: Linfocito T regulador

WAO: World Allergy Organization

ABREVIACIONES

7

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

8 INTRODUCCIÓN

Nuestro aparato digestivo contiene centenares de microorganismos vivos y en el tubo digestivo viven

más de 400 especies bacterianas, lo que constituye un ecosistema propio y auténtico: el microbioma. La

salud de la flora digestiva es esencial no solo para el buen funcionamiento del intestino, sino también para

reforzar las defensas naturales del organismo contra la invasión de bacterias y gérmenes patógenos. En

los últimos años los prebióticos, los probióticos y los simbióticos han adquirido popularidad como com-

plementos alimentarios por sus efectos beneficiosos sobre la salud humana. Estos productos mejoran la

microbiota del tubo digestivo y producen efectos positivos debido a su acción competitiva sobre los mi-

croorganismos patógenos y a la estimulación del sistema inmunitario. La dermatitis atópica es un trastorno

crónico recidivante, una expresión cutánea frecuente, que aparece sobre todo en los niños, incluso durante

los primeros meses de vida. Los síntomas se caracterizan por prurito intenso, con lesiones eccematosas que

aparecen en lugares característicos: en el lactante a nivel de las mejillas y posteriormente en las regiones

de flexión de las extremidades y la zona retroauricular. La predisposición génica constituye el elemento

central, mientras que algunos factores ambientales actúan como elementos desencadenantes, incluido

uno de importancia primordial, la presencia de alergia a los ácaros del polvo. Se trata de una enfermedad

crónica y es difícil encontrar un tratamiento resolutivo. En la práctica clínica se utilizan de modo específico

antinflamatorios o inmunodepresores, como la cortisona, o inhibidores tópicos de la calcineurina. Otros

tratamientos complementarios de los síntomas de la dermatitis atópica son los prebióticos y los simbióti-

cos, cuyos efectos, específicos de cada cepa, sobre el funcionamiento normal o patológico del organismo

humano se han demostrado bien usados solos o combinados con otros tratamientos. En la presente mo-

nografía se describe la investigación y el desarrollo clínico de un simbiótico con múltiples cepas Kaller-

genTh® que es el resultado de una línea de productos innovadora, apoyada en datos de eficacia y seguri-

dad. El desarrollo y la producción de KallergenTh® se basa en principios científicos rigurosos, cuyo desa-

rrollo, validación y comercialización tienen lugar en instalaciones acreditadas de acuerdo con las normas de

producción GXP. Allergy Therapeutics mantiene un compromiso constante para garantizar que la calidad

de sus productos cumple con los requisitos regulatorios actuales y futuros utilizando las últimas tecnolo-

gías. KallergenTh® es un simbiótico con actividad Th1 indicado como complemento en el tratamiento de

los síntomas de la atopia y de la dermatitis atópica. Debe recordarse que los datos relativos a la acción y las

características de las cepas de probióticos obtenidas con modelos in vitro, deben complementarse y con-

firmarse con estudios en vivo. Este proceso es esencial teniendo en cuenta que la Autoridad Europea para

la Seguridad Alimentaria (EFSA) no ha aceptado casi ninguna solicitud presentada por las compañías far-

macéuticas al considerar la necesidad de realizar más estudios en vivo. Actualmente parece que el uso de

cepas particulares de probióticos destinadas a controlar los síntomas de la dermatitis atópica exige también

estudios clínicos posteriores que confirmen la eficacia de un tratamiento exclusivo con estos productos.

9

Allergy Therapeutics (AT) es una compañía farmacéutica global cuyos negocios se concentran en el

área del diagnóstico y el tratamiento de la alergia. Operamos a escala global y nos sentimos orgullosos de

que nuestra actividad cumpla y respete los principios éticos. Nuestra reputación se ha construido sobre

los valores corporativos, que son el valor de nuestros empleados y el compromiso colectivo de trabajar de

forma ética en toda la estructura organizativa.

Descripción de la compañíaAllergy Therapeutics tiene una facturación aproximada de 56,5 millones de euros anuales, una ca-

pacidad de producción aprobada por la MHRA, ventas consolidadas e infraestructuras comerciales en

varios mercados europeos importantes. Además, la compañía cuenta con varios preparados nuevos que

se encuentran en la fase de evaluación clínica inicial y que, una vez registrados, podrían revolucionar el

tratamiento de la alergia.

• Una gama definida de productos para el diagnóstico y la inmunoterapia específica.

• Los derechos exclusivos para el uso del MPL®, un adyuvante inmunitario innovador en el campo de

la alergia, con licencia de Corixa Corporación.

• Una innovadora línea de productos, avalados por pruebas clínicas documentadas sobre su eficacia

y seguridad.

• Derechos de propiedad intelectual de cinco familias de patentes y otros derechos sobre el uso de

MPL® en nuevos preparados. La protección de las patentes para los nuevos productos se extiende

hasta los años 2018-2020.

• Un equipo científico y comercial muy cualificado.

• Un equipo de vendedores y de profesionales de la mercadotecnia en Alemania, Italia, España y Rei-

no Unido.

• Instalaciones muy cualificadas, incluida una planta de producción cGMP, capaz de aumentar la ca-

pacidad de producción.

Misión corporativaLa misión es desarrollar en Europa una actividad farmacéutica sostenible, rentable y de rápido creci-

miento centrada en el campo de las enfermedades alérgicas mediante el desarrollo de productos innova-

dores, patentados y registrados para el tratamiento y la prevención de la alergia.

ALLERGY THERAPEUTICS:Compromiso permanente con la mejora del tratamiento de la alergia

10

EstrategiaLa estrategia de la empresa se fundamenta en el crecimiento, la diversificación y la gestión cuidadosa

de los costes. La intención de la compañía es centrarse en las siguientes directrices:

• Acelerar el crecimiento de la organización a través de la expansión y la financiación de las infraes-

tructuras que ya están en funcionamiento con el fin de acelerar la entrada de los productos en el

mercado actual y acceder a otros nuevos.

• Ampliar la cartera de productos existente mediante el desarrollo y la adquisición de nuevas licencias

o acuerdos de licencia adicionales.

• Aprovechar el potencial de crecimiento del mercado estadounidense para registrar y lanzar en ex-

clusiva Pollinex Quattro. (Distribuido en Italia con el nombre de Quattro+mpl® adjuvant 1,0 ml).

La compañía continuará desarrollando productos que sean más eficaces para el tratamiento de las en-

fermedades alérgicas con nuevos adyuvantes con el fin de optimizar los regímenes posológicos y mejorar

el cumplimiento del paciente, y para crear nuevas fórmulas con objeto de ampliar la cartera de productos

farmacéuticos registrados y protegidos por las patentes de la compañía.

El edificio Freeman realiza la función de sede de la empresa y de lugar de producción, control de ca-

lidad, garantía de calidad, asuntos reguladores y departamento de investigación y desarrollo. El edifico

Noon (Figura 1) alberga las instalaciones para la fabricación, el embalaje, el etiquetado, la inspección, el

almacenamiento y el envío. Allergy Therapeutics posee una planta de producción de 7.000 m2 en Reino

Unido. Además es titular de una autorización para fabricar productos estériles, una licencia para producir

«productos especiales» (medicamentos para uso compasivo y destinados a ensayos clínicos) y una licencia

para vender al por mayor en Reino Unido.

Figura 1 Freeman y Noon, los edificios de Allergy Therapeutics en Reino Unido.

11

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Competencias y personalTécnicos expertos en todos los sectores de producción, control de calidad, garantía de calidad, asuntos

reguladores e investigación y desarrollo llevan a cabo su labor en los departamentos de fabricación, emba-

laje, etiquetado, inspección, almacenamiento y envío. La mayoría del personal del equipo científico posee

titulación en las disciplinas pertinentes, incluidas, entre otras, bioquímica, inmunología, microbiología,

toxicología y química.

Allergy Therapeutics dispone de laboratorios modernos y bien equipados dotados de equipos y méto-

dos avanzados como: cromatografía, tecnología ELISA, purificación de proteínas, análisis de excipientes,

espectrometría de masas en tándem, Western Blot, programas informáticos exclusivos para el análisis del

perfil alergénico y métodos de identificación (fingerprint) para el análisis de los alérgenos.

KallergenTh® en el mundoEn los últimos 2 años se ha tratado con éxito a 4.000 pacientes con la mezcla de simbióticos de múlti-

ples cepas y especies KallergenTh® en varios países europeos, entre ellos Italia, España, Portugal, Alema-

nia y Austria, donde se comercializan normalmente.

En un futuro próximo está previsto lanzar también este simbiótico en otros países europeos y de Amé-

rica Latina, en particular en Argentina, Chile, Venezuela, Colombia y Perú.

Notas clave

• Trastorno sistémico inflamatorio complejo

• Evolución recidivante y muy pruriginosa

• Equilibrio inadecuado de la respuesta inmunitaria adaptativa, «hipótesis inmunológica»

• Deficiencia de la función de barrera normalmente crucial de la piel: «hipótesis de la barrera cutánea»

1.1 Manifestaciones clínicas

La dermatitis atópica (DA) es un trastorno inflamatorio de la piel que afecta en su mayor parte a los

niños pero que puede perdurar hasta la adolescencia y más allá; en un número menor de casos, la DA

comienza en la edad adulta.

Se caracteriza principalmente por la aparición de lesiones cutáneas con una distribución característica,

prurito intenso, un curso crónico recidivante y la presencia de antecedentes personales o familiares de

atopia (Holgate, 2006).

Figura 1.1 Dermatitis atópica que ha evolucionado a la liquenificación.

Los síntomas pruriginosos importantes, nocturnos y diurnos, repercuten en una reducción de la calidad

del sueño y, en consecuencia, en un menor rendimiento escolar o laboral del sujeto afectado (Abramovits,

2005).

DERMATITIS ATÓPICA

13

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

La localización de las lesiones varía típicamente en función de la edad del sujeto: en el lactante se afecta

de forma predominante la cara, especialmente las mejillas, en el niño se afectan las superficies flexoras de

los codos y las rodillas y en el adulto las lesiones se extienden hasta afectar a las manos, las muñecas, los

pies y los tobillos, y es frecuente la evolución a la liquenificación (Abramovits, 2005) (Figura 1.1).

Las personas con DA tienen un umbral para el prurito inferior a los controles, y tienden a rascarse como

resultado de la exposición a numerosos estímulos, tales como: el contacto con alérgenos o sustancias

irritantes (también en bajas concentraciones), las variaciones de la humedad ambiental y la sudoración

excesiva (Akdis y cols., 2006).

La evolución de la enfermedad se caracteriza por fases de relativo bienestar alternadas con fases de

exacerbación, más o menos intensas.

Desde el punto de vista clínico, la DA se clasifica en 3 estadios -leve, moderada o grave- en función de

la puntuación de la enfermedad calculada mediante el método SCORAD (Severity SC Oring of Atopic Der-

matitis) (Darsow y cols., 2005) (Figura 1.2). Este instrumento, útil para evaluar la extensión y la gravedad

de la DA, ha sido elaborado especialmente por un grupo de trabajo de la European Academy of Allergy

and Clinical Immunology y se publicó en 1993. El médico debe indicar la extensión de las lesiones cutáneas

y a continuación introducir los datos relativos a la intensidad de los síntomas cutáneos y del trastorno del

sueño. De esta manera se puede calcular la SCORAD, que es útil para guiar las decisiones de tratamientos

sucesivos.

Figura 1.2 Esquema de evaluación SCORAD.

14

Tipo inmunitario génico(TSLP, IL-4/IL-13, TLR-2, IgE/FcRI)

Tipo de barrera génico(filagrina, Spink/LEKTI,

hornerita)

Tipo inmunitario no génico(sensibilización alérgica)

Tipo barrera no génico(sequedad, rascado,

microbiano, tóxico, fototóxico)

En los últimos años se ha tomado conciencia de la existencia de un número elevado de pacientes afec-

tados y de la considerable repercusión en la calidad de vida (CdV), lo que ha suscitado un mayor interés de

los profesionales sanitarios y de la comunidad científica en este trastorno.

1.2 Distribución

En los últimos 30 años la prevalencia de la DA se ha duplicado o triplicado llegando a afectar al 10-20%

de la población pediátrica y al 1-3% de los adultos (Leung y cols., 2003). Tales datos convierten además a

la DA en un trastorno cutáneo frecuente (Darsow y cols., 2005).

El 45% de los casos de DA aparecen en los primeros 6 meses de vida, el 60% en el primer año y el

85% en los primeros 5 años (Bieber, 2008); en el resto de los casos la enfermedad puede surgir desde la

pubertad hasta la edad adulta. Afortunadamente, en más del 70% de los casos que empiezan en la edad

pediátrica presentan una remisión espontánea antes de la adolescencia. Desde el punto de vista geográ-

fico, la DA es un trastorno difundido a escala mundial, aunque hay una mayor incidencia en las regiones

templadas que en las de clima más frío, y en aquellas con clima seco respecto a las zonas más húmedas o

caracterizadas por un clima tropical. También se ha comprobado que la incidencia de DA es mayor en las

zonas urbanas que en las rurales (Abramovits, 2005).

1.3 Fisiopatología y papel de la barrera cutánea

La etiología de la DA es multifactorial, ya que está determinada por factores génicos (predisponentes)

y por factores ambientales (desencadenantes). El mecanismo fisiopatológico del trastorno es doble: por

un lado un defecto en la barrera del estrato córneo, con la consiguiente alteración de la permeabilidad que

comporta un aumento de la pérdida de agua y que se acompaña de sequedad cutánea y descamación,

con el riesgo de un aumento de la penetración de sustancias exógenas; por otro lado se asiste a un des-

equilibrio inmunitario. El riesgo aumenta si hay antecedentes familiares de atopia; la DA también precede

en un alto porcentaje de casos a otras manifestaciones de la atopia como la rinoconjuntivitis y el asma

(la considerada «marcha alérgica»). El tratamiento raramente se basa en el consejo dietético porque los

alimentos, excepto en casos seleccionados y sobre todo en la primera infancia, pocas veces participan en

la etiología de la DA (Figura 1.3).

Figura 1.3 Heterogeneidad de la dermatitis atópica (esquema de Eyerich, 2013).

1. DERMATITIS ATÓPICA

15

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Se han formulado dos hipótesis principales para explicar la aparición de lesiones cutáneas de tipo

inflamatorio en los sujetos con DA. La «hipótesis inmunológica» identifica como causa del trastorno un

equilibrio inadecuado en la respuesta inmunitaria adaptativa; sin embargo, la «hipótesis de la barrera

cutánea» identifica como factor predisponente una deficiencia en la función de barrera que la piel realiza

normalmente. Estas dos hipótesis no son mutuamente excluyentes, y es probable que puedan intervenir

simultáneamente en la génesis de la enfermedad.

Hipótesis inmunológica

Según esta hipótesis, la DA se debe a un desequilibrio de la respuesta inmunitaria mediada por los lin-

focitos T, y en particular por los linfocitos Th1, Th2, Th17, Th22 y T reguladores (Eyerich y cols., 2013). Esto

causaría un incremento de la producción de citocinas del tipo Th2 (principalmente IL-4, IL-5 e IL-13), que

favorecen una respuesta mediada por IgE y a la vez inhiben la polarización de la respuesta en el sentido Th1

(Eyerich y cols., 2013), sobre todo en la fase aguda de la enfermedad.

Hipótesis de la barrera cutánea

En el sujeto sano, la piel actúa como una barrera fisicoquímica contra las sustancias externas, prote-

giendo al organismo de diversos ataques y limitando la pérdida de líquido, lo que provocaría una deshi-

dratación corporal rápida.

En el paciente afectado de DA se ve muy deteriorada la función de barrera típica de la piel; esto es

consecuencia de un estado de xerosis cutánea persistente, debido a la pérdida transepidérmica de agua.

Del mismo modo, facilita la infección de la piel por microorganismos patógenos, principalmente Staphylo-

coccus aureus y Malassezia furfur (Figura1.4).

Figura 1.4 Ataque por parte de microorganismos y sustancias externas.

Piel sana

Piel atópica

Molécula de agua

Grasas ceramidas

Bacterias

Hongos

Ácaros

Heces del ácaro

Bacterias, alérgenos y hongos Ingreso de bacterias, alérgenos y hongos y pérdida de agua

Ambiente externo

Ambiente interno

16

La colonización e infección por los microorganismos patógenos, y la consiguiente liberación de toxinas

microbianas, inducen un proceso inflamatorio crónico con exacerbaciones del prurito, evolución de las

lesiones hacia la liquenificación y reducción de la respuesta al tratamiento (Figura 1.5).

Figura 1.5 Evolución de las lesiones.

Los sujetos con mutaciones del gen que codifica la filagrina, una importante proteína implicada en la

homeostasis epidérmica y en la retención hídrica, tienen sobre todo riesgo de sufrir DA u otros trastornos

alérgicos localizados a nivel de la piel o la mucosa (Kubo y cols., 2012).

1.4 Causas

Las causas de este trastorno están en la interacción entre los factores génicos y los ambientales que,

combinados, conducen a una disfunción de la barrera cutánea y a una alteración de la regulación de la

respuesta inmunitaria (Peng y cols., 2014).

A nivel génico, además de las mutaciones mencionadas del gen de la filagrina, es importante hacer

hincapié en la importancia de la predisposición alérgica.

Se calcula que la DA se asocia a una sensibilización frente a alérgenos ambientales o alimentarios en

el 80% de los casos (DA «extrínseca»), mientras que el 20% restante de los casos no se correlaciona con

ninguna sensibilización alérgica (DA «intrínseca») (Holgate, 2006).

Entre los alérgenos ambientales, los ácaros del polvo representan un papel muy importante: se encuen-

tra una sensibilización a Dermatophagoides pteronissynus en el 5% de la población general occidental,

mientras que se haya en el 90% de los sujetos con DA.

En cuanto a la correlación entre la DA y la alergia a los alimentos, un elemento que apoya la asociación

1. DERMATITIS ATÓPICA

17

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

es la coincidencia entre las edades de mayor incidencia de alergia alimentaria y de DA en la infancia. Con la

prueba de provocación oral fue posible observar manifestaciones de hipersensibilidad inmediata y tardía

(p. ej., el empeoramiento del prurito y de las lesiones eccematosas) al cabo de 8-24 horas (Holgate, 2006).

En cuanto a la asociación a la dermatitis de contacto, además del factor predisponente que consiste en

una barrera cutánea que no impide la penetración de haptenos ni sustancias irritantes, los sujetos con DA

utilizan de forma continua productos tópicos, con el consiguiente riesgo de sensibilización por contacto a

las moléculas del principio activo y de los excipientes.

Además de esto, también los factores desencadenantes de tipo ambiental y climático pueden desem-

peñar algún papel en la exacerbación de la enfermedad: muchos pacientes presentan exacerbaciones

de las lesiones en el período otoñal e invernal, mientras que los sujetos con sensibilización a los pólenes

tienen tendencia a sufrir exacerbaciones en el período primaveral. También las variaciones repentinas de

la temperatura y de la humedad pueden ejercer un efecto negativo. En este sentido, en los sujetos que no

manifiestan los efectos negativos de la fotosensibilización, a menudo es aconsejable que se mantengan

en zonas de costa donde el clima es suave y templado.

1.5 Enfermedades asociadas

Alrededor del 80% de los niños con DA presentan en el curso de su vida asma o rinitis alérgica. Este

dato induce a pensar en la presencia de un fondo común en el desarrollo de estas enfermedades alérgicas,

representado probablemente por el desequilibrio de la respuesta inmunitaria adaptativa en sentido Th2

(Leung y cols., 2003). La localización del trastorno en la piel, en lugar de en la mucosa respiratoria u otro

aparato, podría estar relacionada con la presencia de otros factores predisponentes, como una deficiencia

en la barrera cutánea. Además de eso podría suponerse que las sensibilizaciones a los aeroalérgenos po-

drían producirse también por vía transcutánea en los sujetos con DA (Leung y cols., 2003).

1.6 Repercusión en la calidad de vida

El prurito es seguramente el síntoma que más influye en la calidad de vida del paciente con DA, ya sea

niño o adulto. El prurito puede causar fácilmente trastornos en el sueño y –también debido a ello– una

reducción del rendimiento escolar o laboral, por lo que la DA sigue siendo una fuente continua de frustra-

ción para el paciente.

La presencia de lesiones eccematosa visibles en el cuerpo, especialmente si se localiza a nivel de la cara o

de las manos, tiene una fuerte repercusión en la vida del niño, que puede convertirse en objeto de comen-

tarios embarazosos y de fenómenos de intimidación que pueden conducirle a un completo aislamiento

social , al igual que en el adulto, al punto de poder condicionar las decisiones vitales y las posibilidades de

una carrera profesional.

Los niños afectados de DA tienen a veces trastornos de la conducta, como una mayor dependencia de

los progenitores, manifestaciones de ansiedad o fobias, participación limitada en las actividades depor-

18

tivas (lo que a su vez repercute en la vida social) y trastornos del sueño que pueden causar somnolencia

diurna y dificultades en la escuela (Sánchez-Pérez y cols., 2013).

Los trastornos del sueño afectan también a las familias de los pacientes, sobre todo en la edad pediá-

trica, porque el llanto nocturno interfiere con el resto de los miembros de la familia.

1.7 Tratamientos farmacológicosDisponemos de diversos tipos de tratamientos para este trastorno que pueden ser de aplicación tópica

o sistémica (Akdis y cols., 2006).

Ya desde la primera fase de la enfermedad es importante usar emolientes tópicos para contrarrestar la

pérdida continua de agua en la piel.

Para limitar el prurito y el rascado se aconseja a menudo el uso de antihistamínicos. Se pueden utilizar

antihistamínicos de las generaciones IIa o IIIa, caracterizados por un efecto sedativo bajo o nulo, especial-

mente si el fármaco se toma durante el día; en caso de prurito nocturno puede ser útil suministrar por

la noche un antihistamínico con un mayor efecto sedativo –por ejemplo hidroxizina– para favorecer el

descanso.

Los corticoesteroides (CES) para uso tópico, constituyen el tratamiento principal de la DA, ya que

reducen la inflamación y el prurito y son eficaces tanto en la fase aguda como en la crónica. En Europa se

clasifican en 4 clases: generalmente se utiliza un CES del grado I en la cara (hidrocortisona o prednisolona)

y uno del grado II (triamcinolona, butirato de hidrocortisona) en el resto del cuerpo. La cara es particular-

mente sensible a los efectos adversos de este tratamiento, con adelgazamiento de la piel o incluso atrofia

cutánea, hipopigmentación, telangiectasias, acné, infecciones secundarias y estrías rojas.

Los inhibidores de la calcineurina para uso tópico (tacrolimús y pimecrolimús) son eficaces y carecen de

los efectos adversos del tratamiento tópico con CES, por lo que son especialmente adecuados en las regio-

nes sensibles. Sin embargo, los efectos inmunodepresores limitan la posibilidad de un uso prolongado; se

consideran fármacos de segunda elección y no se recomiendan en niños menores de 2 años.

La administración sistémica de corticoesteroides o inhibidores de la calcineurina (ciclosporina A) se

utiliza bajo una estricta supervisión médica en los casos de DA muy grave o refractaria a los tratamientos

tópicos.

En el caso de nuevas infecciones, en su mayoría bacterianas (S. aureus) o víricas (herpes simple), pueden

emplearse antibióticos o antivíricos de acción tópica o a veces también sistémica.

Recientemente se ha señalado la posibilidad de prevenir la DA o de tratar sus manifestaciones clínicas

mediante la administración de probióticos.

La prevalencia en el mundo de enfermedades alérgicas como la DA, el asma y la rinoconjuntivitis alérgi-

ca es significativa, y ha aumentado en los últimos años. La «hipótesis de la higiene» formulada como una

probable explicación de este aumento, indica que la mejora de las condiciones higiénicas, la reducción

1. DERMATITIS ATÓPICA

19

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

de los núcleos familiares y la reducción de las infecciones contraídas en la edad pediátrica han reducido la

exposición a los microbios, que desempeñan una función crucial en la maduración del sistema inmunitario

en los primeros años de la vida. La flora microbiana intestinal, o microbioma, puede contribuir a la pato-

genia de las enfermedades alérgicas gracias a su efecto significativo sobre la inmunidad de la mucosa. La

exposición temprana a la flora microbiana normal permite un cambio en la relación entre los linfocitos T

cooperadores 1 (Th1)/T cooperadores 2 (Th2) a favor de la respuesta celular Th1. En las enfermedades ató-

picas, por el contrario, prevalece la respuesta del tipo Th2 a los alérgenos y esto podría deberse a la falta de

un microbioma intestinal normal que produzca un cambio en la relación Th1/Th2 hacia una respuesta del

tipo Th2, con la consiguiente activación de las citocinas Th2 (IL-4, IL-5, IL-13) y un aumento de la producción

de inmunoglobulina E (IgE) (Ring y cols., 2012). Los probióticos, cuando se administran en una cantidad

significativa, podrían modular la respuesta inmunitaria al estimular la producción de citocinas Th1 que

pueden suprimir la respuesta Th2 (Winkler y cols., 2007).

En particular, en el contexto de la DA, la administración del probiótico puede influir en el equilibrio Th1/

Th2 de la respuesta inmunitaria adaptativa favoreciendo una repolarización en el sentido Th1 (Isolauri y

cols., 2001).

Un estudio a doble ciego, con asignación aleatoria y controlado con placebo (DCCP) dirigido por Ka-

lliomaki de una población de 159 mujeres embarazadas demostró un efecto protector de Lactobacillus

rhamnosus (administrado 2-4 semanas antes del parto y durante los 6 primeros meses de vida del niño)

frente a la aparición de trastornos alérgicos, incluida la DA (Kalliomaki y cols., 2001).

En un ensayo con Lactobacillus rhamnosus o Bifidobacterium lactis se demostró el efecto protector solo

con la administración de la primera, si se administraba en los 2 primeros años de vida del niño (Wickens y

cols., 2008).

Recientemente un estudio observacional sobre el uso de simbióticos a base de Lactobacillus rham-

nosus LR05 y Bifidobacterium lactis BS01 junto al prebiótico fructo-oligosacárido (FOS) en un preparado

microencapsulado (KallergenTh®, Allergy Therapeutics Italia, Milán) mostró pruebas de una mejora de

la SCORAD en los sujetos tratados, junto a una menor necesidad de otros tratamientos farmacológicos

(antihistamínicos y corticoesteroides orales, inhibidores de la calcineurina tópicos).

Notas clave

• Los microorganismos intestinales desempeñan una función importante en la regulación del siste-

ma inmunitario y de las funciones intestinales.

• Las diferencias en la composición del microbioma intestinal entre los sujetos alérgicos y los que no

lo son han llevado a plantear la hipótesis de que determinadas cepas bacterianas podrían contribuir

a proteger frente a la aparición de la alergia.

La microflora intestinal está constituida por aproximadamente 100.000 miles de millones de bacterias

con más de 400 especies presentes, muchas de las cuales se adquieren en el momento del nacimiento

(Borchers y cols., 2009). El número total de bacterias intestinales es aproximadamente 10 veces mayor

que el de las células que constituyen el organismo. Cerca del 99% de los microorganismos intestinales

consta de especies bacterianas pertenecientes a 4 tipos principales: Firmicutes, Bacterioidetes, Proteo-

bacteria y Actinobacteria. Las especies predominantes en la porción proximal del intestino delgado son

las bacterias aeróbicas y grampositivas. En la porción distal del intestino delgado el número de bacterias

gramnegativas supera, sin embargo, al de grampositivas. Finalmente, a partir de la válvula ileocecal, la

concentración bacteriana aumenta notablemente y la región del tubo digestivo que presenta el número

más alto de bacterias es el colon, con más de 1012 bacterias por gramo de contenido intestinal (Tabla 2.1) y

una población constituida principalmente de Bacterioides, Bifidobacteria, Fusobacteria, Clostridia y Pep-

tostreptococci. La mayor parte de las bacterias intestinales pertenecen a los tipos Bacterioides (64% de

las especies presentes en el colon) o Firmicutes (23% de las especies no patógenas). Las enterobacterias

(Enterobacteriaceae) como Escherichia coli son componentes menores de la división Proteobacteria (8%

de todas las bacterias) (Orel y cols., 2014).

Tabla 2.1 Concentración de bacterias intestinales.

EL MICROBIOMA INTESTINAL

2.

Estómago y duodeno

Yeyuno e íleon

Intestino grueso

• Constituyen el hogar de un número muy bajo de microorganismos: <103 células bacterianas por gramo de contenido

• Fundamentalmente lactobacilos y estreptococos

• El ácido, la bilis y las secreciones pancreáticas suprimen la mayoría de los microbios ingeridos

• La actividad motriz fásica propulsiva impide la colonización estable de la luz

• El número de bacterias aumenta progresivamente desde alrededor de 104 células en el yeyuno a 107 células por gramo de contenido en la porción distal del íleon

• Densamente poblado de anaerobios: 1012 células por gramo de contenido de la luz

21

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

2.1 Funciones del microbioma intestinal

El microbioma desempeña un papel fundamental en el mantenimiento del bienestar de la mucosa

intestinal; los microorganismos intestinales, al establecer una relación simbiótica con el organismo (Figura

2.1), contribuyen a la digestión de los alimentos, inhiben el crecimiento de cepas potencialmente patóge-

nas, convierten compuestos dañinos en sustancias menos tóxicas y producen moléculas bioactivas que

intervienen en la fisiología del organismo (Patterson y cols., 2013).

Figura 2.1 Intestino y microbioma.

La colonización microbiana del intestino desempeña una función esencial en el mantenimiento y la

regulación de la función de la barrera intestinal (Huang y cols., 2013). En ese sentido, muchos estudios

indican que el proceso de colonización bacteriana podría ser crucial para el desarrollo posnatal de la barre-

ra intestinal (Kansagra y cols., 2003). Se sabe además que algunas bacterias comensales son capaces de

aumentar la supervivencia de las células epiteliales intestinales por medio de la inhibición de la apoptosis

(Ohland y cols., 2010) o bien aumentar la proliferación de estas células así como su integridad, facilitando

la expresión y translocación de proteínas necesarias para la formación de la unión celular hermética en-

tre las células epiteliales (Ashida y cols., 2012). La interacción normal entre las bacterias intestinales y su

anfitrión es una relación simbiótica. La presencia en el intestino delgado de un gran número de placas de

Peyer (estructura linfática organizada) ha indicado una influencia importante de las bacterias del intestino

superior sobre la función inmunitaria. El epitelio está especializado en la absorción y en el transporte de los

antígenos a los centros germinales linfáticos para la inducción de una respuesta inmunitaria adaptativa. En

el colon, los microorganismos pueden proliferar con la fermentación de los sustratos disponibles derivados

de la alimentación o de las secreciones endógenas.

El intestino es un órgano muy importante en el ámbito de la función inmunitaria: cerca del 60% de las

células inmunitarias del cuerpo están en la mucosa intestinal.

22

El sistema inmunitario controla la respuesta inmunitaria contra:

• Proteínas alimentarias

- Prevención de la alergia a los alimentos

• Microorganismos patógenos

- Virus (rotavirus, poliovirus)

- Bacterias (Salmonella, Listeria, Clostridium, etc.)

- Parásitos (Toxoplasma)

La colonización microbiana del intestino también es importante para la activación de la respuesta

inmunitaria innata (Huang y cols., 2013). La mayor parte de la información conocida sobre la influencia de

los microorganismos intestinales sobre el sistema inmunitario del organismo anfitrión procede de estudios

efectuados en animales sin gérmenes (animales nacidos y mantenidos sin exponerse a los microorganis-

mos, de modo que la respuesta inmunitaria no esté influenciada por la interacción con moléculas de los

microorganismos comensales ni patógenos). Los animales sin gérmenes presentan defectos, ya sea en el

desarrollo del sistema inmunitario o en la respuesta inmunitaria. Uno de los primeros defectos inmunitarios

que se observan en estos animales es la acentuada reducción de anticuerpos producidos en el intestino.

Además, estos animales presentan defectos en el desarrollo del tejido linfático asociado al intestino (GALT)

y una reducción del número y tamaño de las placas de Peyer y de los ganglios linfáticos mesentéricos, en

comparación con los animales mantenidos sin la presencia de sus especies patógenas (animales sin mi-

croorganismos patógenos).

Las células epiteliales intestinales realizan muchas funciones inmunitarias: secretan y son sensibles a

varias citocinas, moléculas que permiten la interacción con los linfocitos, y forman una barrera física entre

el contenido de la luz intestinal y las células del sistema inmunitario. Se ha demostrado que los ratones

libres de gérmenes tienen un número reducido de células epiteliales intestinales, con una alteración de su

función y una disminución de su recambio. Finalmente, los animales que no tienen microflora intestinal

son más proclives a las infecciones y esto se debe a que el sistema inmunitario no está bien desarrollado

(Patterson y cols., 2013).

Se ha demostrado ampliamente que las alteraciones en la simbiosis entre el microbioma y el orga-

nismo (un proceso conocido como disbiosis) pueden asociarse o contribuir al desarrollo de alteraciones

patológicas, como la obesidad, la diabetes, las enfermedades inflamatorias intestinales y los trastornos

inflamatorios, incluida la rinitis (Kramer y cols., 2014).

2.2 Probióticos, prebióticos y simbióticosEl término «probiótico» fue acuñado en 1965 por Lilly y Stillwell que describieron por primera vez

algunas sustancias producidas por un microorganismo capaces de estimular el crecimiento de otras bac-

terias y lo llamaron «probiótico» en oposición al término antibiótico, y para el que en 2010 la Organización

Mundial de la Salud (2OMS) y la Food and Agriculture Organization (FAO) han establecido directrices pre-

cisas. La OMS define los probióticos como «microorganismos vivos que cuando se toman en cantidades

2. EL MICROBIOMA INTESTINAL

23

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

adecuadas confieren un beneficio al organismo». Para que un microorganismo pueda llamarse probiótico

debe satisfacer criterios específicos (Borchers y cols., 2009; Directrices del Ministerio de la Salud).

En primer lugar debe estar claramente identificado a nivel de género, especie y cepa, y la cepa especí-

fica debe estar registrada y disponible en un banco de datos internacional (International Culture Collec-

tion). Además, dado que los efectos del probiótico dependen principalmente de su vitalidad, el probiótico

debe estar estable durante el proceso productivo y el tránsito gastroentérico, y debe estarlo de modo

que se adhiera a la mucosa intestinal y la colonice. Por último, la característica fundamental que hace a un

microorganismo probiótico es la demostración de su participación en la prevención o el tratamiento de

un determinado trastorno (Orel y cols., 2014, Borchers y cols., 2009). Debe demostrarse también su uso

seguro. Además, los microorganismos probióticos deben ser reconocidos por el organismo anfitrión, que

debería estar constituido normalmente por los constituyentes de la flora del intestino sano, y estar libres

de los efectos colaterales de los pacientes inmunodeprimidos.

La mayor parte de los probióticos son cepas de las especies Bifidobacterium o Lactobacillus (Boyle y

cols., 2006) (Tabla 2.2).

Tabla 2.2 Lactobacilos y bifidobacterias.

Especies de Lactobacillus

Lactobacillus acidophilus complex (johnsonii) LC1

Lactobacillus gasseri

Lactobacillus crispatus

Lactobacillus amylovorus

Lactobacillus gallinarum

Lactobacillus johnsonii

Lactobacillus casei complex

Lactobacillus paracasei

Lactobacillus rhamnosus

Lactobacillus reuteri

Lactobacillus salivarius

Lactobacillus plantarum

Lactobacillus delbrueckii subsp. bulgaricus

Streptococcus thermophilus

Especies de Bifidobacterium

Bifidobacterium longum

Bifidobacterium bifidum

Bifidobacterium breve

Bifidobacterium infantis

Bifidobacterium animaless

Bifidobacterium lactis

Otros

Enterococcus faecium

Especies de Propionibacterium

Saccharomyces boulardi

24

2.3 Géneros, especies y cepasLas investigaciones acerca de los probióticos indican una serie de posibles efectos beneficiosos para

la salud. Sin embargo, los efectos descritos pueden atribuirse solo a la cepa o las cepas probadas, y no a la

especie ni a todo el grupo de las bacterias del ácido láctico (LAB) ni a otros probióticos.

La especificidad de los efectos de cada cepa tiene las siguientes implicaciones: hay que demostrar los

efectos sobre la salud de cada cepa presente en el producto en venta.

Los resultados y la revisión de los estudios realizados en cepas específicas no pueden utilizarse como

prueba para apoyar los efectos biológicos de cepas no probadas. Los que han demostrado la eficacia de

cepas específicas en una dosis determinada, no son suficientes para demostrar los efectos de una dosis

menor.

Un cepa de probióticos se clasifica en función del género, la especie y un código alfanumérico. En la

comunidad científica existe una nomenclatura reconocida para los microorganismos –por ejemplo, Lac-

tobacillus casei DN-114 001 o Lactobacillus rhamnosus GG (Tabla 2.3).

Tabla 2.3 Nomenclatura

No existe ningún reglamento para el nombre comercial ni para la marca, por lo que los productores

pueden llamar a sus productos como deseen.

2.4 PrebióticosLa primera aparición del término prebiótico data de 1995, cuando Gibson y Roberfroid (Gibson y

cols., 1995) acuñaron esta palabra para identificar «un ingrediente alimentario no digerible que afecta al

anfitrión al dirigirse de forma selectiva al crecimiento o actividad de una bacteria o un número limitado de

ellas en el colon».

Los prebióticos son oligosacáridos capaces de resistir la digestión de las enzimas digestivas (de hecho

también se les denomina NDO, del inglés Non Digerible Oligosaccharides, u oligosacáridos no digeribles)

y llegan sin cambios al colon, donde algunos grupos de bacterias los utilizan como sustratos nutrientes.

La configuración particular de los prebióticos comporta su escisión en monómeros solo a nivel intestinal

por glucosidasas bacterianas específicas, intracelulares o extracelulares, producidas por algunos grupos de

bacterias y que puede inducir la exposición continua al sustrato. Por ejemplo, las especies Bifidobacterium

y Ruminococcus producen glucosidasas muy activas, mientras que las especies de Bacterioides, E. coli y E.

faecalis no las producen. Esta característica puede explicar el crecimiento selectivo de una determinada

especie que opera sobre un sustrato respecto a otra: de hecho, las bacterias dotadas de glucosidasas

Género

Lactobacillus

Lactobacillus

Especie

rhamnosus

casei

Identificación de la cepa

GG

DN-114 001

2. EL MICROBIOMA INTESTINAL

25

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

aprovechan la ventaja de la presencia de los prebióticos en el colon.

Las sustancias con acción estimuladora demostrada de grupos seleccionados son decenas (Hartemink,

1999), pero solo algunas de ellas disponen de estudios científicos de apoyo y buenas pruebas de su efica-

cia. El grupo más estudiado es el formado por la inulina, los fructo-oligosacáridos (FOS) y los galacto-oligo-

sacáridos (GOS), todos polisacáridos complejos que constituyen la fibra alimentaria. Se trata de sustancias

presentes de forma natural en muchos alimentos, especialmente en los de origen vegetal, clasificados de

acuerdo con el número de unidades de sacáridos que determinan su longitud, identificada por el grado de

polimerización (GP) (Thomas y cols., 2010; Orel y cols., 2014).

- Fructo-oligosacáridos de cadena media-larga, con GP entre 10 y 60 y GP medio de 12. Producto de

referencia: inulina.

- Fruto-oligosacáridos de cadena corta, con GP entre 2 y 10 y GP medio de 5.

Producto de referencia: FOS de cadena corta.

La inulina (Figura 2.2) es un polisacárido presente en numerosos vegetales formada principalmente por

moléculas de fructosa, en número de 2 a 60, dependiendo de las condiciones de recogida del producto

de partida. Se extrae de la raíz de la achicoria mediante agua hirviendo y puede degradarse por la acción

enzimática, en productos con un GP menor, con una fórmula general Glu-(Fru)n. Los productos de degra-

dación enzimática se identifican en el ámbito comercial como «oligofructosa».

Figura 2.2 Inulina.

Los FOS de cadena corta, que constan de 1 a 3 moléculas de fructosa unidas por una molécula de saca-

rosa (glucosa + fructosa), se caracterizan por las siglas GF2, GF3 y GF4, es decir 1-cestosio (GF2), nistosio

(GF3) y 1-fructosil-nistosio (GF4). Se producen de dos formas diferentes: por hidrólisis enzimática de la

inulina (extraído de la achicoria o de la remolacha) o por síntesis enzimática a partir de la sacarosa, utili-

zando la actividad enzimática (-fructosil-transferasas) del hongo Aspergillus niger. En este caso se crea,

a través de una reacción de trans-fructosilación, un enlace entre la fructosa de la sacarosa y la molécula de

fructosa siguiente.

26

La inulina y los FOS de cadena corta, una vez ingeridos, no son absorbidos en el intestino delgado

debido a los enlaces glucosídicos que hay entre las unidades de fructosa y llegan al colon sin digerir ni

absorber. De hecho, la inulina es un polímero caracterizado por enlaces (2-1) entre la fructosa y para este

tipo de enlace no existe la posibilidad de hidrólisis por parte de las enzimas digestivas.

Algunos grupos de bacterias residentes en el colon tienen fructosidasas, enzimas capaces de hidrolizar

el enlace (2-1) entre los residuos de fructosa. Solo a este nivel se produce la hidrólisis de las cadenas de

polímeros en la unidad monomérica y por ello la flora bacteriana puede utilizarlas.

2.5 SimbióticosOtra estrategia, dirigida a modificar la microbiota intestinal, está representada por la «creación» de

los simbióticos (Gibson y cols., 1995), en los cuales se utilizan combinados probióticos y prebióticos para

explotar los efectos beneficiosos derivados de las dos clases (Figura 2.3). Los simbióticos tienen como

objetivo mejorar la supervivencia del microorganismo probiótico, debido a la combinación, dado que el

microorganismo dispone de inmediato del sustrato necesario para crecer. Las posibles combinaciones que

pueden obtenerse entre las diferentes especies bacterianas de probióticos disponibles y los diversos tipos

de prebióticos, son numerosas, pero todavía hay pocos estudios científicos que demuestren la posible

actividad o sinergia de la combinación. En apoyo de esto se realizó un estudio en ratas dirigido a evaluar

las propiedades anticancerosas de algunos simbióticos. Se observó que la combinación de bifidobacteria

y oligofructosa poseía un efecto aditivo en la reducción de tumores en el colon, mientras que otros oli-

gosacáridos no producían ningún resultado (Gallaher y cols., 1999). Esto denota la necesidad de realizar

más investigaciones destinadas a evaluar de forma experimental y clínica combinaciones específicas de

simbióticos.

Figura 2.3 Simbiótico.

PROBIÓTICO

+

PREBIÓTICO

=SIMBIÓTICO

2. EL MICROBIOMA INTESTINAL

27

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

2.6 Papel y mecanismo de acción de los probióticosLos prebióticos actúan sobre las bacterias intestinales incrementando el número de bacterias anaero-

bias beneficiosas y reduciendo la población de microorganismos potencialmente patógenos. Los probió-

ticos actúan sobre el ecosistema intestinal estimulando los mecanismos inmunitarios de la mucosa y los no

inmunitarios al entrar en competición con los posibles patógenos (Tabla 2.4).

Tabla 2.4 Mecanismos de interacción entre el probiótico y el anfitrión. La simbiosis entre la microbiota y el anfitrión puede optimizarse con intervenciones farmacológicas o nutricionales sobre el sistema de microorganismos intestinales por medio del uso de probióticos y prebióticos.

El aumento de la alergia en las últimas décadas se ha atribuido principalmente a cambios en los fac-

tores ambientales. Los estudios epidemiológicos han demostrado que el estilo de vida occidental, como

la reducción del consumo de alimentos fermentados, la utilización de antibióticos y otros fármacos y el

aumento de la higiene, están asociados al aumento de los problemas alérgicos. La llamada «hipótesis de la

higiene», propuesta por primera vez por Strachan en 1989 (Strachan y cols., 1989), define la alergia como

una consecuencia de una «falta de regulación» de la compleja interacción existente entre el ambiente

microbiológico y el sistema inmunitario innato sobre todo en la primera infancia. El grupo de estudio PAR-

SIFAL (Schram-Bijkerk y cols., 2005) ha observado que las concentraciones de endotoxina son más altas

en las casas de los campesinos, con una correlación inversamente proporcional entre las concentraciones

de endotoxina y el desarrollo de enfermedades alérgicas en los niños que no viven en un ambiente rural.

Esto indica que la falta de exposición a los estímulos microbianos durante la infancia, con el consiguiente

desequilibrio entre las respuestas inmunitarias de los tipos Th1/Th2 y el desarrollo de la alergia mediada

por la IgE, es uno de los principales factores que interviene en esta tendencia (Pan y cols., 2010; Kalliomaki

y cols., 2010). Posteriormente, Ege (Ege y cols., 2001) demostró que la exposición microbiana es inversa-

mente proporcional a la probabilidad de sufrir asma (Figura 2.4).

Probióticos

Beneficios inmunitarios • Activación de los macrófagos para aumentar la presentación del antígeno a los linfocitos B o para incrementar la producción local y sistémica de inmunoglobulina A (IgA) secretora

• Modular los perfiles de las citocinas

• Inducir una respuesta a los antígenos alimentarios

Beneficios no inmunitarios • Digerir los alimentos y competir por los nutrientes con los microorganismos patógenos

• Alterar el pH local para crear un ambiente desfavorable para los microorganismos patógenos

• Producir bacteriocinas para inhibir a los microorganismos patógenos

• Eliminar los radicales superóxido

• Estimular la producción de mucina epitelial

• Intensificar la función de la barrera intestinal

• Competir por la adhesión con los microorganismos patógenos

• Modificar las toxinas derivadas de los microorganismos patógenos

Prebióticos • Efectos metabólicos: producción de ácidos grasos de cadena corta, metabolismo de grasas, absorción de iones (Ca, Fe, Mg)

• Reforzar la inmunidad del anfitrión (producción de IgA, modulación de citocinas, etc.)

28

Figura 2.4 Desarrollo del asma en un ambiente rural.

Por consiguiente, el microbioma intestinal desempeña un papel importante en el desarrollo del sistema

inmunitario y la alergia. Se ha observado que los niños con concentraciones altas de bacterias potencial-

mente patógenas en el tubo digestivo (S. aureus y C. difficile) tienen un mayor riesgo de sufrir alergia. Por

el contrario, la población microbiana intestinal de los niños no alérgicos está constituida principalmente

por bacterias del género Lactobacillus y otras bacterias que pertenecen al género Bifidobacterium, lo que

indica que la presencia de estas bacterias podría estar correlacionada con la protección frente a la alergia

(Forno y cols., 2008; Ozdemir, 2010).

Estos datos epidemiológicos apoyan la hipótesis que está detrás del uso de los probióticos en el tra-

tamiento y la prevención de la alergia. Los datos que tratan de aclarar el papel de los probióticos en los

procesos alérgicos proceden de estudios preclínicos y clínicos, pero el mecanismo de acción aún no se ha

aclarado del todo (Figura 2.5).

A Bacterias (PARSIFAL) B. Hongos (GABRIELA)

Pro

bab

ilid

ad

Pro

bab

ilid

ad

N.º de bandas detectables N.º de taxones

Viviendo en una granja

Viviendo en una granja

Asma Asma

2. EL MICROBIOMA INTESTINAL

29

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Figura 2.5 Mecanismo de acción de los probióticos (dibujo de Iacono y cols., 2011).

En general se ha observado que los probióticos actúan:

1) Sobre la inmunidad humoral mediante la estimulación de la respuesta inmunitaria del tipo Th1 y la

inhibición de la respuesta Th2, estimulando a los linfocitos T reguladores (Treg) y aumentando la produc-

ción local de IgA que influye en las defensas de la mucosa.

2) Sobre la inmunidad innata (efecto adyuvante), mediante la estimulación de receptor del tipo Toll

2 (TLR2) y la modulación de la maduración de las células dendríticas y su patrón de citocinas (Kramer y

cols., 2014). Los probióticos afectan el ecosistema intestinal mediante la estimulación de los mecanismos

inmunitarios de la mucosa y mecanismos no inmunitarios al competir con posibles microorganismos pa-

tógenos. Se cree que estos fenómenos tienen efectos beneficiosos, como la reducción de la incidencia y la

gravedad de la diarrea, que constituye uno de los trastornos para los que se recomienda la administración

de probióticos. Los probióticos reducen el riesgo de cáncer de colon en modelos animales, probablemente

debido a que inhiben la actividad de ciertas enzimas bacterianas que pueden aumentar la concentración

de sustancias pro-cancerígenas, pero esto todavía no se ha demostrado en seres humanos. Se necesitan

más estudios con asignación aleatoria y bien diseñados para definir el papel de los probióticos como sus-

tancias terapéuticas en las enfermedades inflamatorias intestinales.

Equilibrio de la respuesta celular: modulación de CD y Treg

Th1, Th2

Modulaciónde la respuesta humoral: IgA IgE

Mecanismos específicos Mecanismos inespecíficos

Microorganismo patógeno

Probiótico

Exclusión competitiva de bacterias a lo largo del epitelio

Modificación del microambiente local: péptidos antimicro-bianos, SCFA, pH

Mejora de la integridad de la barrera uniones herméticas, mucinas

Polisacáridos

mono-sacáridos

Reducción de inflamación intestinal: activación NF-B producción de citocinasROS

fagocitosisCambio a IgACélula plasmática

CD inmadura

IgA

SCFA

moco

CD

30

Varias observaciones recientes han permitido aclarar mejor los mecanismos de la respuesta inmunitaria

que tiene lugar en el intestino.

En la lámina propia del intestino los linfocitos B se diferencian en células plasmáticas y segregan anti-

cuerpos IgA diméricos que, en la superficie basolateral de las células epiteliales intestinales, se unen a un

receptor específico que los transporta a la superficie apical, donde son liberados en la luz intestinal. Las

IgA secretorias son elementos importantes de la inmunidad de la mucosa, y participan en la protección

del anfitrión frente a una amplia variedad de antígenos de la dieta, bacterianos, víricos y micóticos. La

posibilidad de que los probióticos pueden influir en estos procesos, modificando parámetros inmunitarios

específicos y, en un análisis final, desempeñando así un efecto beneficioso sobre las enfermedades huma-

nas, constituye un campo de gran vigencia. En efecto:

1. Los probióticos modulan y estabilizan la composición de la microbiota, por lo que pueden inducir

efectos inmunomoduladores.

2. Algunos probióticos son capaces de inhibir la respuesta inflamatoria del sistema inmunitario intes-

tinal gracias a la inhibición de la activación del factor de transcripción del gen para la cadena ligera k de la

inmunoglobulina (NFkB) o en combinación con una acción antiapoptósica en las células epiteliales intes-

tinales (Tien y cols., 2006;.. Yan y cols., 2002).

3. Algunos probióticos son capaces de aumentar la actividad de los linfocitos citolíticos espontáneos

(NK, del inglés natural killer) (Takeda y cols., 2006, 2007), como una primera línea crucial de defensa del

organismo, ya que pueden llevar a cabo una actividad citotóxica independientemente de una sensibiliza-

ción previa al antígeno.

4. Algunos probióticos aumentan la secreción de moco (Caballero-Franco y cols., 2007).

5. Algunos probióticos tienen una acción inmunomoduladora directa: después de ser capturados en

las placas de Peyer, pueden inducir la secreción de citocinas y la expresión de moléculas coestimuladoras

por las APC (Niers y cols., 2007).

6. Algunas cepas de lactobacilos inducen la maduración de las células dendríticas (DC) (Smits y cols.,

2005). Las DC son capaces, por medio de su citoestructura particular, de cruzar la capa de células epitelia-

les y capturar directamente antígenos de la luz. Esta característica de las DC, combinada con su capacidad

para orquestar la respuesta de los linfocitos T y por lo tanto de estimular la secreción de IL-10 e IL-12, se

centra en primer término en el papel de puente entre la microbiota, la inmunidad innata y la inmunidad

adaptativa.

Usando cepas de probióticos específicas puede inducirse un tipo de respuesta inmunitaria tanto en

el componente de los linfocitos B (aumento de la inmunidad humoral) y de los linfocitos T (aumento la

inmunidad celular), como en el componente fagocítico, en particular, sobre las células polimorfonucleares

(Iliev y cols., 2005; 2008) (Tabla 2.5.).

2. EL MICROBIOMA INTESTINAL

31

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Tabla 2.5 Efectos de diversas cepas de probióticos en los mecanismos de las enfermedades alérgicas (modificado de Delcenserie y cols., 2008).

Los factores responsables del aumento de las enfermedades alérgicas y autoinmunitarias en los últimos

años son probablemente los problemas de maduración de la función inmunitaria en los primeros meses de

vida, lo que comporta un menor cambio Th2 /Th1 por un contacto reducido o nulo con microorganismos

infecciosos (hipótesis de la higiene), y la alteración de la flora microbiana, lo que favorece la persistencia

de citocinas Th2 (IL-4, IL-5, IL-13), que prevalecen al nacer y no permiten el reequilibrio en favor de una

respuesta Th1 predominante, con la producción de IL-12 e IFN- (Figura 2.6).

Efecto sobre el sistema

inmunitario

Probiótico Bibliografía

Aumento de la capacidad

de fagocitosis

L. acidophilus (johnsonii) La1

L. casei

B. lactis Bb12

B. lactis HN019

L. rhamnosus GG

L. rhamnosus HN001

(Arunachalam y cols., 2000; Don-

net-Hughes y cols., 1999; Pelto y cols.,

1998; Perdigon y cols., 1988; Schiffrin,

1994; Schiffrin y cols., 1997)

Aumento de la actividad

de los linfocitos NK

L. rhamnosus HN001

B. lactis HN109

L. casei subsp. casei + dextrano

(Gill y cols., 2001a; Ogawa y cols., 2006;

Sheih y cols., 2001)

Estimulación de la

producción de IgA

B. bifidum

L. acidophilus (johnsonii) La1

L. casei GG

B. lactis Bb12

L. rhamnosus GG

(Fukushima y cols., 1998; Ibnou-Zekri y

cols., 2003; Isolauri y cols., 1995; Kaila

y cols., 1995; Link-Amster y cols., 1994;

Majamaa y cols., 1995; Park y cols.,

2002)

Supresión de la proliferación

de linfocitos Inducción

de la apoptosis

L. rhamnosus GG

L. casei GG

B. lactis

L. acidophilus

L. delbrueckii subsp. bulgaricus

S. thermophilus

L. paracasei

E. coli Nissle 1917

(Carol y cols., 2006; Pessi y cols., 1999;

Sturm y cols., 2005; von der Weid y cols.,

2001)

Aumento de la inmunidad celular L. casei Shirota (de Waard y cols., 2003)

32

Figura 2.6 Manejo de las citocinas en las enfermedades alérgicas.

Esta última hipótesis se apoya en la observación en varios estudios de alteraciones en la flora intestinal

en los niños atópicos, donde hay una prevalencia de clostridios (Bjorksten y cols., 1999; Watanabe y cols.,

2003). En el desarrollo de vacunas para el tratamiento de la alergia, la función de los adyuvantes no es solo

contribuir conjuntamente a una inmunización más rápida y duradera reduciendo los efectos indeseables.

El papel de los adyuvantes es muy importante en la modulación de la respuesta inmune por el hecho de

que los pacientes desarrollan una respuesta Th2. Entre los diferentes tipos de adyuvantes existentes, los

probióticos se clasifican como inmunoestimuladores en el sentido de que pueden fortalecer la respuesta

de los linfocitos Th1 y Treg (Moingeon, 2012).

2.6.1 Estudios in vitro

Los estudios in vitro han demostrado que las bacterias probióticas son capaces de modular la relación

entre los linfocitos Th al dirigir la respuesta inmunitaria frente al antígeno/alérgeno de una respuesta

alérgica del tipo Th2 a una del tipo Th1. Tanto en experimentos realizados en esplenocitos múridos incu-

bados con Streptococcus thermophilus o cepas de Lactobacillus casei como en DC mielocíticas (hmDC)

incubadas con Lactobacillus gasseri, Lactobacillus reuteri y Lactobacillus johnsonii se observaron concen-

El linfocito Th1 produce INF-, IL-2, TNF- IL-12, y promueve la inmunidad celular y con-trola a los microorganismos patógenos

En cambio, el linfocito Th2, con la producción de IL-4, IL-5, IL-6 e IL-13, garantiza la inmu-nidad humoral (inmunoglobulina) y la lucha contra los parásitos

Los sujetos atópicos tienen un sistema inmu-nitario polarizado en sentido Th2 que favo-rece la alergia por medio de la producción de IgE, eosinofilia y mastocitos

2. EL MICROBIOMA INTESTINAL

33

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

traciones altas de citocinas típicas de la respuesta inflamatoria Th1 tales como IFN- e IL-12 (de Azervedo

y cols., 2013 Ongol y cols., 2008, Mohamadzadeh y cols., 2005). El efecto que tienen los probióticos en la

polarización de la respuesta inmunitaria también se observó en experimentos que usaron CD incubadas

con Bifidobacterium bifidum W23. Esta cepa bacteriana induce a los linfocitos T a diferenciarse en el tipo

Th1, con la consiguiente secreción de IFN- e IL-10 (Niers y cols., 2007).

Un enfoque interesante del tipo ex vivo ofrece la incubación de células mononucleares de la sangre

periférica (CMSP) aisladas de pacientes alérgicos con diferentes cepas de Lactobacillus o Bifidobacterium.

Estos probióticos inhiben la liberación de citocinas del tipo Th2 y estimulan el aumento de la citocina típica

de la respuesta Th1 (Ghadimi y cols., 2008;.. Pan y cols., 2010).

Meijerink y cols. han demostrado que el perfil de expresión de citocinas inducida por diferentes cepas

de probióticos incubadas con CMSP es muy variable. Estos datos demuestran que los probióticos tienen

diferente capacidad inmunomoduladora y que pueden por tanto inducir diferentes tipos de respuestas

(Pan y cols., 2010) (Tabla 2.6).

Tabla 2.6 Influencia de los probióticos en diversas enfermedades alérgicas (modificado da Ozdemir y cols., 2010).

Bibliografía Cepa de probiótico Tipo de enfermedad alérgicax Resultado

Dermatitis atópica (eccema)

Sistek y cols. [31] Lctbs rhamnosus + Bfdbm lactis Niños atópicos sensibilizados a alimentos

Kalliomäki y cols. [45] Lactobacillus GG Dermatitis atópica

Kopp y cols. [46] Lactobacillus GG Dermatitis atópica ,

Wickens y cols. [47] Lctbs rhamnosus Eccema asociado a IgE

Viljanen y cols. [41,48] LCG Síndrome de eccema/dermatitis atópica

Rosenfeldt y cols. [49] Lctbs rhamnosus + Lctbs reuteri Dermatitis atópica

Kuitunen y cols. [50] Lctbs + Bfdbm + propionibacteria Alergia asociada a IgE

Boyle y cols. [54] Varios Eccema

Lee y cols. [55] Varios Dermatitis atópica

Soh y cols. [63] Bfdbm longum + Lctbcs rhamnosus Eccema y sensibilización atópica

Alergia alimentaria y anafilaxia

Kim y cols. [27] Lctbs acidophilus + Bfdbm lactis Síntomas alérgicos inducidos por OVA

Isolauri y cols. [56] Bfdbm o Lctbs Alergia alimentaria

Majamaa y cols. [57] LGC Eccema con sensibilización a alimentos

Shida y cols. [60] VSL#3 + Lctbs casei cepa Shirota Anafilaxia con alergia alimentaria

Hol y cols. [61] Lctbs casei + Bfdbm Bb-12 Alergia a la leche de vaca

Taylor y cols. [62] LGG o Lctbs acidophilus Alergia a la leche de vaca ,

Rinitis alérgica

Di Felice y cols. [59] VSL#3 Rinitis alérgica

Giovannini y cols. [67] Lctbs casei Rinitis alérgica

Morita y cols. [69] LGG + Lctbs gasseri Rinitis alérgica

Xiao y cols. [71] Bfdbm longum Rinitis alérgica; polen cedro japonés

Tamura y cols. [72] Lctbs casei cepa Shirota Rinitis alérgica; polen cedro japonés

34

2.6.2 Modelos animalesAunque las informaciones obtenidas como resultado de los estudios in vitro son importantes para

definir y aclarar el mecanismo de acción de los probióticos, el uso de modelos animales es un apoyo fun-

damental para desarrollar la investigación en el campo de la alergia. Se están utilizando muchos modelos

animales y protocolos de sensibilización a varios tipos de alérgenos para investigar y aclarar las interaccio-

nes entre los microorganismos, para definir el mecanismo por el que los probióticos previenen o protegen

contra la alergia (estudios mecanicistas), para comparar nuevas cepas, para llevar a cabo estudios de dosis

y respuesta, para definir varias formas de intervención y para identificar los compuestos activos de las

diferentes cepas.

Las informaciones procedentes de modelos animales tienen una importancia fundamental para com-

prender y predecir los procesos fisiopatológicos que se producen en los seres humanos ya que las células

y los mediadores involucrados en el desarrollo de la alergia son similares a lo que se observan en la contra-

partida animal. Las informaciones obtenidas del estudio de modelos animales también son cruciales para

poner en marcha ensayos clínicos apropiados que cumplan los criterios éticos (Kalliomaki y cols., 2010).

Muchos estudios se llevan a cabo utilizando el modelo de alergia inducida por la ovoalbúmina (OVA).

Cuando a estos animales se les trata con diferentes probióticos, como L. acidophilus y B. lactis AD031

AD01, se observa una disminución significativa en las concentraciones séricas de IgE, IgG1 e IgA. Estos dos

probióticos también estimulan la producción de IFN- e IL-10, citocinas típicas del tipo Th1, e inhiben a la

IL-4, una citocina Th2 típica (Kim y cols., 2008).

Los probióticos estimulan el aumento de IFN- e IL-10 al activar a los linfocitos Treg. En modelos de

asma inducida por OVA, el tratamiento con L. reuteri ATCC 23272, L. rhamnosus G o B. lactis BB-12 parece

reducir la hipersensibilidad de las células respiratorias y de las células inflamatorias presentes en el líquido

broncoalveolar y aumentar el número de linfocitos Treg en los pulmones (Feleszko y cols., 2007).

En un modelo animal de alergia inducida por el polen de abedul y de las gramíneas se observó que

el tratamiento con Bifidobacterium longum NCC 3001 y Lactobacillus paracasei prevenía la inflamación

pulmonar, uno de los órganos que está involucrado principalmente en la alergia. Los ratones tratados con

estos probióticos también mostraron un aumento de las concentraciones de IgA en el líquido broncoal-

veolar y una supresión de la respuesta de los linfocitos T Por otra parte, la expresión de IL-10 es elevada en

el grupo tratado (Schabussova y cols., 2011).

Muchos estudios realizados en animales han demostrado los efectos positivos de los probióticos en la

prevención y la mejora de la alergia, aunque a menudo es difícil determinar exactamente el efecto de una

cepa bacteriana determinada debido a la complejidad de los procesos alérgicos y de los modelos en vivo.

Deberán realizarse estudios para aclarar el mecanismo inmunitario por el que los probióticos actúan, así

como para evaluar los resultados del efecto sinérgico entre los probióticos y los prebióticos (Kim y cols.,

2012) (Tabla 2.7).

2. EL MICROBIOMA INTESTINAL

35

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Tabla 2.7 Resumen esquemático de los estudios in vitro y en vivo realizados con algunas cepas de probióticos y de algunos estudios clínicos relevantes (modificado de Azervedo y cols., 2013).

Cepa(s)

Lactobacillus gasseri (ATCC n.º 19992), Lactobacillus johnsónii (ATCC n.º 33200) y Lactobacillus reuteru (ATCC n.º 23272)

Bifidobacterium bifidum W23

Lactobacillus rhamnosus GH, Lact. Gasseri PA, Bif. Bifidum MF, Bifidobacterium longum SP y L.gb.bB.I (una mezcla de Lact. Gasseri, Bif. Bifidum y Bif. Longum)

Streptococcus thermophilus 21072 y Lactobacillus casei subgrup. 027

Lactobacillus acidophilus NCDC14, Lact. casei NCDC19 y Lactococcus lactis biovar diacetylactis NCDC-60

Lactobacillus paracasei, Lactobacillus fermentum y Lact. Acidophilus

Lact. paracasei NCC 2461 y Bif. longum NCC 3001

Lactobacillus plantarum WCFS1, Lact. plantarum NCIMB8826, Lactobacillus salivarius HMI001, Lact. casei Shirota, 28 cepas diferentes de 12 especies de probióticos

Probiótico VSL#3 (Lact. acidophilus, L. delbrueckii subesp. bulgaricus, Lact. casei, Lact. plantarum, Bif. longum, Bif. Infantis, Bifidobacterium breve, Streptococcus salivarius subes. Thermophilus

Modelo/enfermedad experimental

Células dendríticas mielocíticas humanas

Células dendríticas (derivadas de sangre de cordón umbilical de niños sanos); linfocitos T CD4+ autógenas; líneas celulares de ovario de hámster chino (CHO)

CMSP de sujetos sanos o alérgicos

Ratones C57BL/6 y BALB/c

Alergia inducida por ovoalbúmina (OVA) en ratones

Modelo de alergia en ratón inducido por OVA

Modelo múrido de polisensibilización

CMSP humanas (CMSPh); modelo de sensibilización múrido a extracto de cacahuete (EC)

Modelo múrido de sensibilización a tropomiosina

Observaciones inmunológicas

Inducción de IL-12, IL-18 e IFN- bioactivos y proliferación de linfocitos T; aumento de TLR-2 en las células

Las DC neonatales cultivadas in vitro dirigieron respuestas Th1; secreción alta de IFN- e IL-10 y secreción menor de IL-4; activación por bacterias probióticas

Modulación de respuesta Th1/Th2 frente a alérgenos

Producción de IFN- de esplenocitos, IL-12p70, IL-10 de células de exudado peritoneal y expresión de moléculas coestimuladoras en células dendríticas por estimulación de bacterias de ácido láctico

IgE específica frente a OVA en suero de ratones; mayores cantidades de IFN- e IL-12; cantidades inferiores de IL-4 e IL-6 en esplenocitos cultivados

Reducción de inflamación y apoptosis en miocardiocitos

Supresión de respuestas Th2, aumento de IL-10, TLR2 o TLR4 en ganglios linfáticos de drenaje

Inducción de IL-10, IL-12 e IFN- en CMSPh; modulación de respuestas de anticuerpos específicas a EC por tratamiento con lactobacilos; respuesta de citocinas ex vivo (cantidades aumentadas de IL-4, IL-5 e IL-10)

Protección de ratones frente a reacciones anafilácticas; supresión de respuestas Th2 establecidas y generación de poblaciones de linfocitos T reguladores

Referencias bibliográficas

Mohamadzadeh y cols. (2005)

Niers y cols. (2007)

Ghadimi y cols. (2008)

Ongol y cols. (2008)

Jain y cols. (2010)

Wang y cols. (2012)

Schabussöva y cols. (2011)

Meijrink y cols. (2012)

Schiavi y cols. (2011)

Estudios in vitro/en vivo con probióticos

Efectos probióticos en modelos animales de enfermedad alérgica

36

2.6.3 Estudios clínicosIncluida la primera publicación de 1997, se han llevado a cabo más de 25 estudios clínicos DCCP para

estudiar los efectos de diversos probióticos en el tratamiento y la prevención de las enfermedades alér-

gicas. Se han realizado estudios con preparados de una sola cepa, múltiples cepas o varias especies. Los

probióticos con múltiples especies combinan géneros, especies y propiedades específicas de cepas que

complementan el efecto de las otras cepas a través de sinergia o simbiosis. Además, de la combinación de las

diversas propiedades de múltiples especies, se ha demostrado que los probióticos tienen una funcionalidad

y eficacia avanzadas (Timmerman y cols., 2004). Este tema se ha ilustrado ampliamente en dos revisiones

y un metanálisis reciente (Stsepetova y cols., 2007; Prescott y cols., 2007; Caramia y cols., 2008). Aunque

estas revisiones difieren en parte en sus conclusiones, todos están de acuerdo en que hay más pruebas

de la prevención de la enfermedad atópica que del tratamiento del eccema atópico y que merece la pena

estudiar más el abordaje probiótico. En el caso de la alergia a los alimentos, es definitivamente necesario

encontrar soluciones alternativas a la dieta libre de alérgenos actualmente recomendada. Por otra parte,

se ha publicado recientemente una revisión sistemática de los protocolos de tratamiento de la rinitis y del

asma alérgicas (Vliagoftis y cols., 2008).

Hasta la fecha, los ensayos clínicos con asignación aleatoria realizados con probióticos en las enfermedades

alérgicas se concentran en niños con eccema y eccema atópico. Las cepas y las dosis de los probióticos varían

considerablemente entre los estudios, y la más estudiada es la cepa de LGG. Los primeros estudios han se-

ñalado su efecto terapéutico en el eccema y en la DA (Majamaa y cols., 1997; Isolauri y cols., 2000), mientras

que los estudios más recientes muestran un efecto solo en los pacientes que sufren eccema atópico (Viljanen

y cols., 2005) o ningún efecto (Brouwer y cols., 2006; Gruber y cols., 2007). La mayoría de los estudios se han

llevado a cabo en un pequeño número de pacientes y los resultados varían considerablemente, incluso con la

misma cepa. Esto puede depender de las diferencias en la construcción de los ensayos clínicos (poblaciones

diana, zonas, esquemas posológicos y tratamientos complementarios diferentes), pero también en el uso de

diferentes preparados o formulaciones de probióticos. En ese momento no puede recomendarse ninguna

cepa de probióticos específica para el tratamiento general de eccema o del eccema atópico. Sería ideal que los

probióticos pudieran utilizarse en la prevención de la marcha alérgica. Por lo tanto, no es sorprendente que se

estén realizando varios ensayos preventivos que se completarán en el curso de los próximos años (Prescott y

cols., 2007). Hasta la fecha se han publicado los resultados de algunos estudios prospectivos preventivos con

diversas cepas de Lactobacillus y Bifidobacterium (individuales o mezcladas) en niños con un riesgo elevado

de sufrir enfermedades alérgicas (Kalliomaki y cols., 2001; Kalliomaki y cols., 2007; Taylor 2007; Soh y cols.,

2008.) También se ha realizado un estudio con una mezcla de cuatro cepas de probióticos y prebióticos galac-

to-oligosacáridos (Kukkonen y cols., 2007; Kuitunen y cols., 2009). La administración de LGG durante 1 mes

antes del nacimiento y 6 meses después se asocia a una reducción significativa de la incidencia acumulada

de eccema durante los primeros 7 años de vida (Kalliomaki y cols., 2001; Kalliomaki y cols., 2007). No hubo

ningún efecto preventivo sobre la sensibilización atópica ni sobre la aparición de enfermedades respiratorias

alérgicas. El análisis de subgrupos considera que la administración de probióticos a la madre, durante el emba-

razo y la lactancia, aumentó el potencial inmunoprotector de la leche materna, aumentó la cantidad de factor

de crecimiento transformador (TGF-2) en la leche y disminuyó el riesgo de sufrir eccema atópico durante

2. EL MICROBIOMA INTESTINAL

37

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

los 2 primeros años de vida. Un estudio finlandés realizado con una mezcla de 4 probióticos y prebióticos

informó de un efecto preventivo similar, aunque no tan pronunciado, sobre el eccema y el eccema atópico

(Kukkonen y cols., 2007.). Este efecto, sin embargo, duró sólo hasta la edad de 5 años en los niños nacidos

por cesárea (Kuitunen y cols., 2009). Sin embargo, en un estudio alemán reciente, la administración de LGG

no se ha asociado a ningún riesgo reducido de eccema, pero sí a un menor riesgo de episodios recurrentes de

bronquitis asmática (≥ 5) durante los 2 primeros años de vida (Kopp y cols., 2008).

El uso de Lactobacillus reuteri ATCC55730 durante 1 mes antes del nacimiento y 12 meses después se

ha asociado a un menor riesgo de presentar eccema atópico durante el segundo año de vida. Esta cepa de

probiótico también redujo la sensibilización atópica en los niños nacidos de madres alérgicas (Abrahamsson

y cols., 2007).

Por el contrario, la administración de Lactobacillus acidophilus LAVRI-A1 durante los primeros 6 meses

de vida no redujo el riesgo de eccema atópico ni redujo el riesgo de sensibilización atópica en los niños de

alto riesgo (Taylor y cols., 2007).

En un estudio preventivo de recién nacidos de alto riesgo, se compararon dos probióticos diferentes

y resultó que la administración de Lactobacillus rhamnosus HN001, pero no de Bifidobacterium lactis

subespecie animalis HN019, reducía significativamente la prevalencia acumulada de eccema durante 2

años (Wickens y cols., 2008).

Niers (Niers y cols., 2009) utilizó una mezcla de tres cepas de probióticos, Bifidobacterium bifidum W23,

Bifidobacterium lactis W52 y Lactococcus lactis W58 seleccionados in vitro para la prevención primaria de

las enfermedades alérgicas. Los probióticos se administraron 6 semanas antes del nacimiento a madres

de niños de alto riesgo y luego a los niños durante el primer año de vida. Aunque la incidencia acumulada

de eccema atópico y las concentraciones de IgE fueron similares en ambos grupos (tratados y placebo), el

eccema observado por los padres fue significativamente menor durante los primeros 3 meses de vida en

los niños tratados con probióticos. El efecto preventivo sobre la incidencia del eccema persistió 2 años, y

pareció consolidarse en los primeros 3 meses de vida.

Un estudio sueco reciente ha demostrado que la administración de Lactobacillus casei F19 durante el des-

tete reduce significativamente la incidencia de eccema, lo que indica que el período correcto para la adminis-

tración de probióticos es un factor crítico (West y cols., 2009). Este estudio también apoya la idea de que hay

más de una sola oportunidad para tratar las enfermedades alérgicas. En 2007 se publicó el primer estudio

que planteaba una hipótesis sobre el papel preventivo de un probiótico en la recurrencia de los síntomas de

la alergia respiratoria en los niños. El objetivo de este estudio era evaluar si el consumo diario a largo plazo (12

meses) de una leche fermentada que contenía el probiótico Lactobacillus casei DN-114 001 (un probiótico con

actividad inmunomoduladora) podría mejorar el estado de salud y cambiar el perfil inmunitario de los niños

en edad preescolar con síntomas de alergia a aeroalérgenos (Giovannini y cols., 2007). Fue un estudio multi-

céntrico, prospectivo, con asignación aleatoria y a doble ciego en el que participaron 187 pacientes (119 con

asma y 131 con rinitis, de los cuales 63 tenían los dos síntomas), de ambos sexos y con edades comprendidas

entre los 2 y los 5 años realizado en 8 hospitales de Milán y provincia. El estudio mostró que la complementa-

ción con probióticos reducía en un 33% la recurrencia anual de episodios de rinitis, con una media (IIC) de

2 episodios (1-5) frente a 3 (0-8); la incidencia de rinitis alérgica fue dos veces menor en los niños tratados

38

en el segundo trimestre de la complementación [OR (IC del 95%)] de 0,39 (0,19 hasta 0,82, p <0,01). En

un subgrupo de 45 pacientes se llevó a cabo un análisis genético de la composición de la flora microbiana

intestinal, que demostró una prevalencia elevada de flora probiótica en el intestino y en particular la pre-

sencia de numerosas colonias de Lactobacillus casei DN-114001 en los pacientes tratados comparados

con los controles: la colonización del intestino por el probiótico persistió a los 6 y 12 meses de seguimien-

to en casi todos los sujetos. Numerosos estudios han mostrado resultados prometedores sobre la eficacia

de los probióticos en la reducción de la incidencia de las manifestaciones alérgicas (Abrahamsson y cols.,

2007; Taylor y cols., 2007; Kukkonen y cols., 2007; Valsecchi y cols., 2008). Lamentablemente, la enorme

heterogeneidad de los estudios existentes en la literatura médica, las cepas utilizadas, la duración del tra-

tamiento y las dosis no permite realizar una interpretación inequívoca. De la revisión más reciente (Johan-

nsen y cols., 2009; Yao y cols., 2010) no surge ninguna indicación clara sobre la eficacia de los probióticos

en el tratamiento o la prevención de los principales trastornos alérgicos.

Los datos más prometedores se refieren exclusivamente a la prevención del eccema atópico, aunque

no todos los estudios están de acuerdo en los resultados. Al igual que los estudios in vitro y en vivo, los

ensayos clínicos son muy heterogéneos en cuanto a las cepas utilizadas, la duración del tratamiento, etc.

Para establecer una correlación exacta entre ciertas cepas de probióticos y su efecto inmunomodu-

lador es importante caracterizar a nivel genómico, proteómico y metabolómico la cepa de interés, ya que

cada cepa tiene características diferentes y puede tener efectos distintos. Tenga en cuenta que al tratarse

de microorganismos vivos, los factores ambientales (p. ej., la acidez del tubo digestivo) tienen una gran

importancia a la hora de garantizar la eficacia del probiótico.

2.7 Directrices

Las directrices relativas a la utilización de microorganismos probióticos en los alimentos y los comple-

mentos se basan en la normativa europea (Informe del Comité Científico de la Alimentación sobre la revi-

sión de los Requisitos Esenciales de las fórmulas infantiles y Seguimiento de las fórmulas, abril de 2003) y las

directrices emitidas por el Ministerio de Salud. Estas directrices nacionales y europeas definen y regulan las

características específicas de los probióticos, la identificación de la cepa, la cantidad de microorganismos

y su seguridad.

Características de los microorganismos

Los microorganismos que pueden utilizarse en los alimentos y los complementos alimenticios deben

cumplir con los siguientes requisitos:

a) Usarse tradicionalmente como complemento de la microflora (microbioma) intestinal humana.

b) Considerarse seguros para su uso en seres humanos. Con este fin, una referencia útil está represen-

tada en los criterios establecidos por la EFSA sobre el estado de Presunción Cualificada de Seguridad (QPS,

del inglés Qualified Presumption of Safety). Los microorganismos utilizados para producir alimentos no

deben ser portadores de resistencias adquiridas ni transmisibles a los antibióticos.

2. EL MICROBIOMA INTESTINAL

39

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

c) Ser activos en el intestino en una cantidad que les permita multiplicarse en él

Estado QPS

El «QPS» es un sistema instituido por la EFSA, similar en el concepto y en la finalidad al de Generally

Recognized As Safe (GRAS) utilizado en Estados Unidos, pero modificado teniendo en cuenta la práctica

diferente de la reglamentación en Europa.

El QPS es un proceso de armonización de los criterios para evaluar la inocuidad de los microorganismos

utilizados en la producción de piensos y alimentos y garantiza un mejor uso de los medios de evaluación,

centrándose en los microorganismos que presentan los mayores riesgos o incertidumbres.

La Tabla 2.8 enumera el QPS de especies bacterianas.

Tabla 2.8 Lista de especies bacterianas identificadas como seguras por la EFSA (EFSA Journal, 2013).

Bacterias grampositivas no esporuladoras

Especies Cualificaciones*Bifidobacterium adolescentis Bifidobacterium bifidum Bifidobacterium longumBifidobacterium animalis Bifidobacterium breve

Corynebacterium glutamicum** (solo para producción de aminoácidos)

Latobacillus acidophilus Lactobacillus farciminis Lactobacillus paracaseiLatobacillus amylolyticus Lactobacillus fermentum Lactibacillus paraplantarumLactobacillus amylovorus Lactobacillus gallinarum Lactobacillus pentosusLatobacillus alimentarius Lactobacillus gassesi Lactobacillus plantarumLatobacillus aviaries Lactobacillus helveticus Lactobacillus pontisLatobacillus brevis Lactobacillus hilgardii Lactobacillus reuteriLatobacillus buchneri Lactobacillus jhonsonii Lactobacillus hramnosusLatobacillus casei*** Lactobacillus kefiranofacines Lactobacillus sakeiLatobacillus cellobiosus Lactobacillus kefiri Lactobacillus salivariusLatobacillus coryniformis Lactobacillus mucosae Lactobacillus sanfranciscensisLatobacillus crispatus Lactobacillus panisLatobacillus curvatus Lactobacillus collinoidesLatobacillus delbrueckii

Lactobacillus lactis

Leuconostoc citreum Leuconoctoc lactis Leuconostoc mesenteroidesLeuconostoc pseudomesenteroides Oenococcus oeni

Pediococcus acidilactici Pediococcus dextrinicus Pediococcus pentosaceus

Propionibacterium freudenreichii Propiobacterium acidipropionici

Sreptococcus thermophilus

Bacilos

Especies Cualificaciones*Bacillus amyloliquefacines Bacillus lentus Bacillus pumilus Sin actividadBacillus atrophaereus Bacillus licheniformis Bacillus subtilis toxígenaBacillus clausii Bacillus megaterium Bacillus vallismortis Bacillus coagulans Bacillus mojavensis Geobacillus stearothermophilusBacillus fusiformis

*Cualificación genérica de todas las unidades bacterianas QPS: las cepas no deben albergar ningún gen de resistencia antimicrobiana adquirida frente a antibióticos con relevancia clínica**Brevibacterium lactofermentum es un sinónimo de Corynebacterium glutamicum***La especie descrita antes Lactobacillus zeae se ha incluido en la especie Lactobacillus casei.

40

2.8 Identificación de la especie y de la cepa

La evaluación de la posición taxonómica tiene por objeto garantizar la seguridad del microorganismo

utilizado porque permite reconocer la especie bacteriana con una larga historia de consumo seguro.

La identificación de las especies se puede hacer por:

• secuenciación del ADN codificador por ARNr de 16S;

• hibridación de los ácidos nucleicos.

La tipificación de la cepa bacteriana se puede hacer por:

- PFGE.

Para nombrar la especie debe utilizarse la nomenclatura taxonómica reconocida por la International

Union of Microbiological Societies. También se recomienda la presentación de las cepas en la Internatio-

nal Depository Authority (IDA), como lo exige el Tratado de Budapest, junto al reglamento de actuación

relativo.

2.9 Cantidad de microorganismos

Sobre la base de las pruebas científicas disponibles, la cantidad mínima suficiente para obtener una

colonización temporal del intestino por una cepa de fermento láctico es de al menos 109 células vivas por

cepa y por día. La porción del producto recomendada para el consumo diario debe contener, por tanto,

una cantidad igual a 109 células vivas por al menos una de las cepas presentes en el producto.

El uso de diferentes cantidades solo puede admitirse si se razona la justificación de esta elección y se

apoya en estudios científicos adecuados. Debe comunicarse en la etiqueta la cantidad de células vivas de

cada cepa presentes en el producto y debe garantizarse y aconsejarse el modo de conservación hasta la

fecha de caducidad con una incertidumbre de log 0,5.

2.10 Seguridad de los probióticos

El uso de una cepa microbiana nueva, aunque pertenezca a una especie que ya se utiliza, requiere una

nueva evaluación de su seguridad y eficacia. En lo que respecta a la seguridad está la necesidad de realizar

una identificación taxonómica a nivel de especie y cepa, con las técnicas anteriormente indicadas, así como

la evaluación del perfil de resistencia a los antibióticos (antibacterianos o antimicóticos según el caso). El

perfil de la resistencia a los antibióticos debe determinarse en cada cepa microbiana, con el fin de excluir

la presencia de aquellas adquiridas y potencialmente transmisibles. Para distinguir las cepas resistentes de

las cepas sensibles, el grupo Panel of Additives and Products or Substances used in Animal Feed (FEEDAP)

ha definido los valores microbiológicos de corte. Para evaluar las bacterias añadidas a los alimentos (y los

piensos), las cepas pueden clasificarse en sensibles o resistentes a los antibióticos:

2. EL MICROBIOMA INTESTINAL

41

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

• Sensibles (S): un cepa bacteriana se define como sensible cuando su crecimiento se inhibe a la con-

centración de un antimicrobiano específico igual o inferior a los valores de corte establecidos (S ≤ x

mg/l).

• Resistente (R): un cepa bacteriana se define como resistente cuando su crecimiento no se inhibe a la

concentración de un antimicrobiano específico superior a los valores de corte establecidos (R>x mg/l).

Estos valores de corte (valores críticos) se han definido para grupos específicos de probióticos de la

EFSA y se muestran en la Tabla 2.9.

Tabla 2.9 Valores críticos microbiológicos que caracterizan a las bacterias como resistentes (mg/l). Las cepas con MIC mayores a los valores críticos se consideran resistentes (EFSA Journal, 2012).

Lactobacillus obligado homofermentativoa 1 2 16 16 16 1 1 4 4

Lactobacillus acidophilus, grupo 1 2 16 64 16 1 1 4 4

Lactobacillus obligado heterofermentativob 2 n.r. 16 32 64 1 1 8 4

Lactobacillus reuteri 2 n.r. 16 64 64 1 1 16 4

Lactobacillus facultativo heterofermentativoc 4 n.r. 16 64 64 1 1 8 4

Lactobacillus plantarum/pentosus 2 n.r. 16 64 n.r. 1 2 32 8

Lactobacillus rhamnosus 4 n.r. 16 64 32 1 1 8 4

Lactobacillus casei/paracasei 4 n.r. 32 64 64 1 1 4 4

Bifidobacterium 2 2 64 n.r. 128 1 1 8 4

Pediococcus 4 n.r. 16 64 64 1 1 8 4

Leuconostoc 2 n.r. 16 16 64 1 1 8 4

Lactococcus lactis 2 4 32 64 32 1 1 4 8

Streptoccocus thermophilus 2 4 32 64 64 2 2 4 4

Especies de Bacillus n.r. 4 4 8 8 4 4 8 8

Propionibacterium 2 4 64 64 64 0.5 0.25 2 2

Otros Gram + 1 2 4 16 8 0.5 0.25 2 2

n.r., no requeridoa incluidos L. delbrueckii,, L. helveticusb incluido L. fermentumc incluidas las especies homofermentativas de L. salivarius

Enterococcus faecium 2 4 32 1024 128 4 4 4 4 16

Escherichia coli 8 2 8 16 8 16 16 256 2 8

Am

pici

lina

Van

com

icin

a

Gen

tam

icin

a

Kan

amic

ina

Estr

epto

mic

ina

Eritr

omic

ina

Clin

dam

icin

a

Tetr

acic

lina

Clo

ranf

enic

ol

Am

pici

lina

Van

com

icin

a

Gen

tam

icin

a

Kan

amic

ina

Estr

epto

mic

ina

Eritr

omic

ina

Clin

dam

icin

a

Tilo

sina

Tetr

acic

lina

Clo

ranf

enic

ol

Am

pici

lina

Gen

tam

icin

a

Kan

amic

ina

Estr

epto

mic

ina

Tetr

acic

lina

Clo

ranf

enic

ol

Áci

do n

alid

íxic

o

Sulfa

mid

a

Trim

etop

rima

Apr

amic

ina

42

Los resultados se presentan en forma de concentración inhibitoria mínima (MIC) o concentración mí-

nima de un antibiótico específico requerida para inhibir el crecimiento de una cepa bacteriana. Los valores

de la MIC se comparan con los puntos de corte establecidos por la EFSA. Cuando los valores de la MIC son

inferiores a los valores críticos, la cepa se considera sensible (S) al antibiótico específico. Los valores de MIC

mayores de los valores críticos indican la resistencia (R) de la cepa al antibiótico probado. Una dilución al

doble, mayor o menor, puede considerarse aceptable dentro del error de medida. Además, también es

posible que una cepa contenga una resistencia intrínseca a un antibiótico dado. Cuando esta resistencia

no es transferible a ningún otro microorganismo, aún se considera que la cepa tiene un uso seguro.

2. EL MICROBIOMA INTESTINAL

43

KallergenTh® es un adyuvante dietético simbiótico complementario a base de fructo-oligosacáridos

(FOS) y una mezcla equilibrada de dos cepas probióticas, Lactobacillus rhamnosus LR05 y Bifidobacterium

lactis BS01, seleccionadas apropiadamente gracias a sus características y actividad biológica demostrada.

Al volver a equilibrar de forma eficaz la relación Th1/Th2 constituye una intervención complementaria

válida del tratamiento farmacológico o hiposensibilizador. Las cepas probióticas utilizadas se selecciona-

ron sobre la base de sus propiedades antinflamatorias y también por su potencial efecto de promover la

respuesta inmunitaria del tipo Th1, y la relación entre las 2 cepas se eligió para optimizar ambos efectos.

Se ha demostrado que la microencapsulación en una matriz de lípidos es 5 veces más eficaz para lograr

la colonización intestinal (Del Piano y cols., 2010) en comparación con la administración de probióticos no

microencapsulados

3.1 Composición

Lactobacillus rhamnosus LR05

Lactobacillus rhamnosus es un miembro del género Lactobacillus, perteneciente al tipo Firmicutes. Son

bacilos grampositivos no esporuladores que producen ácido láctico como producto final del metabolismo

fermentativo. Sobreviven a un pH de 4-5.

Sobre la base de las características fermentativas los miembros del género Lactobacillus se dividen en 3

grupos y L. rhamnosus pertenece al grupo del que forman parte las especies heterofermentativas facultativas.

L. rhamnosus se utiliza ampliamente y se ha demostrado que tiene efectos beneficiosos sobre la salud

humana (Ashraf y cols., 2014) (Figura 3.1).

Figura 3.1 L. rhamnosus.

KALLERGEN Th®3.

44

Bifidobacterium animalis subesp. lactis BS 01

El género Bifidobacterium es un miembro de la familia Bifidobacteriaceae perteneciente al tipo Acti-

nobacteria.

Taxonomía

En la primera década del siglo XX Tissier aisló de las heces de los lactantes alimentados con leche ma-

terna microorganismos con forma bífida anaerobios grampositivos que no producían ningún tipo de gas

y los clasificó en la especie Bacillus bifidus.

Más tarde, Orla-Jensen, al estudiar a las bacterias productoras de ácido láctico, también encontró que

Bacillus bifidus producía este ácido y lo situó en la familia Lactobacteriacee; lo llamó Lactobacillus bifidus.

No obstante, en 1924 Orla-Jensen propuso como taxón independiente al género Bifidobacterium, nom-

brado Lb. bifidus, basándose únicamente en los elementos morfológicos y el análisis de los productos de

la fermentación, que duró hasta los años 70.

La asignación de un cierto lugar taxonómico a B. bifidus fue, de hecho, especialmente complicada por

su alto polimorfismo.

En 1957 terminó lo que Poupard (Poupard y cols., 1973) llamó «primer período», durante el que no

hubo ningún cambio significativo en el conocimiento de las bifidobacterias debido a la falta de un medio

de cultivo adecuado para el aislamiento y el mantenimiento del microorganismo.

En 1957 comenzó el «segundo período» gracias a la identificación de un material complejo capaz de

permitir el crecimiento selectivo de B. bifidus. Conseguido el cultivo, Dehnert instituyó una clasificación

de las bifidobacterias en 5 grupos sobre la base de las características morfológicas y su capacidad de fer-

mentar 24 azúcares (Dehnert, 1957).

Se produjo un punto de inflexión con los datos de la hibridación ADN-ADN (Scardovi y cols., 1970;

Scardovi y cols., 1971) que estableció cuantitativamente el grado de homología entre dos especies, lo que

proporcionó un criterio taxonómico mucho más significativo e independiente del hábitat del microor-

ganismo. Posteriormente, estos datos se correlacionaron con éxito con los patrones electroforéticos de

proteínas solubles, que se utilizan también de forma sistemática (Mattarelli y cols., 1992).

El resultado de la reclasificación sobre la base de estos criterios ha llevado a reconocer 25 especies que

pertenecen al género Bifidobacterium, mencionado en el Manual of Systematic Bacteriology de Bergey.

Las bifidobacterias son bastoncillos en forma de Y (bífidos) o V, inmóviles, asporógenas y grampositivas

de dimensiones de entre 2 y 5 micras. La forma de bastoncillo se mantiene solo en condiciones nutriciona-

les óptimas, tales como las que caracterizan el hábitat natural, mientras que en cultivos de laboratorio se

observan formas irregulares con bultos, protuberancias y ramificaciones.

Bifidobacterium animalis subesp. lactis es un miembro del género Bifidobacterium, que pertenece al tipo

Actinobacteria. Son bacterias bífidas (en forma de Y), grampositivas, no formadoras de esporas, inmóviles y

que se consideran comúnmente bacterias lácticas, aunque difieren en muchas de sus características.

3. KALLERGENTh®

45

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Las condiciones óptimas para el crecimiento de las bifidobacterias son temperaturas entre 36° y 38°

C, pH entre 6 y 7 (a un pH inferior a 5,5 no se observa crecimiento), generalmente anaerobiosis y un bajo

potencial de oxidorreducción del suelo. La necesidad de la anaerobiosis se debe a la ausencia de catalasas,

responsables de la eliminación del H2O

2, que de hecho, cuando se acumula produce una inhibición de la

enzima fructosa 6-P fosfocetolasa y la consiguiente inhibición del proceso de fermentación. Realmente,

las diferentes cepas tienen una tolerancia variable al O2 gracias a una débil actividad de la catalasa. Los

cultivos de bifidobacterias se conservan en infusiones a 4° C durante un mes, mientras que el liofilizado

puede mantenerse durante años.

Inicialmente se describieron dos especies bacterianas diferentes: Bifidobacterium animalis y Bifido-

bacterium lactis.

Actualmente ambos se consideran pertenecientes a la especie B. animalis con distinción en 2 subespe-

cies Bifidobacterium animalis subesp. animalis y Bifidobacterium animalis subesp. lactis.

Los nombres antiguos B. animalis y B. lactis se utilizan aún en el etiquetado de los productos (Figura

3.2).

Figura 3.2 Bifidobacterium lactis.

La cepa Bifidobacterium animalis subesp. lactis BS 01 viene comúnmente indicada como Bifidobacte-

rium lactis BS 01.

3.2 Identificación de la especies y de la cepa

Ambas cepas probióticas L. rhamnosus LR05 y B. lactis BS01 son de origen humano y no han sido mo-

dificadas con técnicas genéticas, y se almacenan en la base de datos con los códigos DSM 19739 y LMG

46

P-21384.

Las cepas se caracterizan principalmente por la evaluación de:

- Las características bioquímicas y el perfil enzimático

- La electroforesis en gel de acrilamida para determinar el perfil de las proteínas totales; (Fig 3.3).

Figura 3.3 Perfil de las proteínas totales de L. rhamnosus LR05 y B. lactis BS01.

Siguiendo las indicaciones de las directrices nacionales europeas las distintas cepas se han identificado

a nivel molecular mediante:

• Reacción en cadena de la polimerasa (PCR) (Figura 3.4.)

1. Cepa de muestra: Lactobacillus rhamnosus DSM 197392. Cepa de muestra: LR 05 (ID 1602) DSM 19739 – Banco celular maestro3. Cepa de muestra: LR 05 (ID 1602) DSM 19739. Producto liofilizado4. Referencia positiva: Lactobacillus rhammanosus ATCC 531035. Referencia negativa: Lactobabacillus casei DSM 20011

1. Referencia negativa: Lactobacillus plantarum DSM 98432. Cepa de muestra: BS 01 (ID 1195) LMG P-21384 – Banco celular maestro3- Cepa de muestra: BS 01 (ID 1195) LMG P-21384 – Banco celular de trabajo4- Referencia positiva: Bifidobacterium animalis subesp. Lactis DSM 10140

2.000 pb

750 pb

300 pb

1.500 pb 750 pb 300 pb

1. Marcador de PCR Sigma 50-2.000 pb2. Referencia positiva: L. rhamnosus DSMZ 200213. Referencia positiva: L. rhamnosus ID 11324. Cepa de muestra: L. rhamnosus LR 05 (ID1602) DSM 197395. Referencia positiva: L. rhamnosus ID 11296. Referencia negativa: L. casei DSM 200117. Blanco experimental: Sin ADN

1. Marcador de PCR Sigma 50-2.000 pb2. Blanco experimental: Sin ADN3. Cepa de muestra: B. lactis BS01 (ID 1195) LMG P-213844. Referencia positiva: B. lactis DSM 101405. Referencia positiva: B. lactis ID 16666. Referencia negativa: B. breve DSM 201219

Reacción positiva de L. rhamnosus Reacción positiva de Bifidobacterium animalis subesp. lactis.

3. KALLERGENTh®

47

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Figura 3.4 PCR de L. rhamnosus LR05 y B. lactis BS01.

- Electroforesis en gel de campo pulsado (PFGE) (Figura 3.5);

Figura 3.5 PFGE de L. rhamnosus LR05 y B. lactis BS01.

- secuenciación del gen 16S (codificador del ARN ribosómico de 16S, permite obtener una identifica-

ción precisa de los microorganismos que se están estudiando y su consiguiente localización taxonómica.)

1. Marcador: Equipo de marcador de ADN2. Blanco experimental: Sin ADN3. Equipo positivo: ADN control4. Cepa para comparación: B. animalis DSM 201045. Cepa para comparación: B. lactis ID 10716. Cepa para comparación: B. lactis ID 10717. Cepa de muestra: B. lactis BS01 LMG P-213848. Cepa de muestra: B. lactis BS01 LMG P-213849. Cepa para comparación: B. bifidum DSM 2045610. Cepa para comparación: B. longum DSM 2021911. Cepa para comparación: B. lactis DSM 10140

cuadro a cuadro b

4.072 pb

3.054 pb

2.016 pb

1.636 pb

1.016 pb

506 pb

1. Marcador electroforético: Sigma 50-1.000 kb2. Cepa de muestra: L. rhamnosus LR05 (ID1602) DSM 197393. Cepa para comparación: L. rhamnosus LR04 ID 1132

48

3.3 Formulación

Tabla 3.1 Componentes funcionales.

3.4 FOS

Actilight®950P es la mezcla de fructo-oligosacáridos (FOS) utilizada en KallergenTh®.

Las características de Actilight®950P son:

• FOS solubles en las fibras alimentarias

• FOS de cadena corta de moléculas de fructosa unidas a moléculas de sacarosa

• Grado de polimerización comprendida entre 3 y 5

A continuación se presentan las características físicas (Tabla 3.2)

Tabla 3.2 Características fisicoquímicas de Actilight®950P

COMPONENTES FUNCIONALES

Composición media por dosis (sobre de 2,6 g) por 100 g de polvo

Bifidobacterium lactis BS01 ≥ mil de millones de células ≥ 38,5 miles de millones de células

Lactobacillus rhamnosus LR05 ≥ mil de millones de células ≥ 38,5 miles de millones de células

Fructo-oligosacáridos (FOS) 2.500 mg 94 g

Humedad ≤ 3,3 g/100g

Sustancia seca ≥ 96,7 g/100g

Fructo-oligosacáridos Valor típico

≥ 93 Alrededor de 95

g/100g DS

GF2 37±6 g/100g FOS

GF3 53±6 g/100g FOS

GF4 10±6 g/100g FOS

Azúcares ≤ 7 g/100g DS

Cenizas conductivimétricas < 0,05 g/100g DS

pH (20°C, 30% p/v) 6.5±1

Poder edulcorante (solución al 10%)

-30 % respecto a sucrosa

Densidad aparente (20° C) -0,5-0,6 g/ml

3. KALLERGENTh®

49

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Se garantiza su composición microbiológicamente pura (Tabla 3.3).

Tabla 3.3 Características microbiológicas de Actilight®950P.

3.5 La microencapsulación

Para ser eficaz y proporcionar beneficios para la salud del anfitrión, los probióticos deben permanecer

vitales hasta que los use el consumidor.

En particular, las células probióticas deben sobrevivir durante el procesamiento y en el producto final

al que se incorporan (complementos alimenticios y alimentos funcionales) hasta la fecha de caducidad.

Además deben ser capaces de sobrevivir al paso a través del tubo digestivo, mantener la capacidad de

proliferar y colonizar el intestino y producir metabolitos activos útiles para una homeostasis intestinal

correcta. Para hacer frente a estos problemas, se ha desarrollado una tecnología de micro-encapsulación

que reviste las células probióticas de KallergenTh® de una matriz de ácidos grasos vegetales para su uso

alimentario (Figura 3.6).

Figura 3.6 La microencapsulación.

El revestimiento proporciona una barrera eficaz y permite a los probióticos transitar indemnes a través

del ambiente ácido del estómago y alcanzar el intestino donde pueden llevar a cabo su actividad biológica

(Charteris 1998; Del Piano 2008).

Recuento total en placa ≤ 10.000 CFU/10 g DS

Hongos ≤ 50 CFU/10 g DS

Levaduras ≤ 50 CFU/10 g DS

Enterobacteriacea No detectables CFU/10g DS

Poli-L-lisina

Cubierta de alginato

Núcleo de alginato que

contiene células bacterianas

Quitosano entrecruzado con genipina

50

Tabla 3.4 Ventajas de la microencapsulación (datos internos).

La mayor capacidad colonizadora de la forma microencapsulada se ha demostrado también en una

prueba en vivo utilizando las mismas cepas recubiertas y sin recubrir. Los resultados mostraron que se

obtuvo la colonización con ambas formas al mismo tiempo aunque con dosis hasta 5 veces menores en el

caso de la cepa microencapsulada (2 mil millones de CFU/día del probiótico microencapsulado respecto a

10 mil millones de CFU/día de la forma sin recubrir) (Del Piano2010).

Tabla 3.5 Ventajas de la microencapsulación (datos internos)

Además, un estudio más reciente cruzado con asignación aleatoria y a doble ciego (en prensa) ha

confirmado la equivalencia, en términos de capacidad colonizadora, del uso de una mezcla de cepas pro-

bióticas microencapsuladas (5 mil millones de CFU/día) y las correspondientes sin recubrimiento, pero en

una dosis 5 veces superior (25 mil millones de CFU/día).

Al mismo tiempo, el revestimiento protege a las células de una posible degradación debida a factores

externos del ambiente (humedad, acidez, presión osmótica, oxígeno y luz) y garantiza una mayor super-

vivencia durante algunos pasos críticos del proceso (p. ej., la presión osmótica).

Además, este tipo particular de revestimiento permite usar células probióticas en aplicaciones que no

son posibles en la forma tradicional no cubierta, especialmente en aplicaciones alimentarias extremas

como bebidas, zumos de frutas, leche, yogur, queso fresco, matriz acuosa, cremas, etc.

Una ventaja adicional de los probióticos microencapsulados es la prolongación de la vida útil del pro-

ducto final gracias al efecto barrera que el revestimiento proporciona a las células. Esto significa que puede

asegurarse una buena estabilidad incluso en las formas de administración históricamente problemáticas,

como los viales, las cápsulas de gelatina blanda, los comprimidos y las cápsulas.

Líquidos biológicos Probiótico microencapsulado comparado con la misma cepa no revestida

Jugo gástrico humano Mejora de la supervivencia mayor del 250%

Secreción pancreática estimulada Mejora de la supervivencia mayor del 250%

Mezcla de jugos orgánicos

(jugos gástricos, secreciones pancreática y biliar)

Mejora de la supervivencia de 8 veces

MEJORA DEL PORCENTAJE DE SUPERVIVENCIA (estudio in vitro)

Cultivo liofilizado Dosis eficaz para obtener la misma colonización intestinal

Las comparaciones se llevaron a cabo durante el tratamiento con

la cuantificación del probiótico fecal en el tiempo cero, a los 10 y

a los 21 días

Sin revestimiento (tradicional) 10 mil millones de CFU/día

Microencapsulado (revestido) 2 mil millones de CFU/día

MEJORA DEL PORCENTAJE DE COLONIZACIÓN (ensayos clínicos en seres humanos)

3. KALLERGENTh®

51

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Los beneficios de los probióticos microencapsulados en el producto acabado comprenden:

• La eficacia de la colonización con un menor número de células probióticas (cantidad cinco veces in-

ferior)

• Aumento de la vida útil del producto terminado

• Uso en una amplia variedad de formas de administración como matrices alimentarias generalmente

poco adecuadas para la administración de microorganismos probióticos

• Coste inferior con igual eficacia del probiótico

• Mayor satisfacción del cliente

3.6 Seguridad

Las especies que pertenecen al género Lactobacillus y Bifidobacterium se consideran seguras tal y

como se ha publicado en muchos estudios (Snydman, 2008); estas especies bacterianas están presentes

en las listas QPS de la EFSA para garantizar la seguridad de los productos biológicos utilizados para la ali-

mentación (Lista de unidades taxonómicas propuesta para estado QPS http://www.efsa.europa.eu/EFSA/

Scientific_Opinion/sc_op_ej587_qps_en.pdf.).

Además de una larga historia de uso seguro en la alimentación humana, nunca se encontró ninguna

actividad tóxica o peligrosa en la especie B. lactis ni L. rhamnosus. Ninguna de estas cepas ha adquirido

resistencia a los antibióticos.

Probiotical Spa ha asegurado que KallergenTh® está libre de alérgenos según la legislación vigente

(Dir. 2007/68 / CE, DL n. 114/2006, DL n. 178/2007) y sucesivas modificaciones. En particular hay garantía

respecto a los siguientes productos y derivados: cereales que contiene gluten, crustáceos, huevos, pesca-

do, cacahuetes, soja, leche, nueces, apio, mostaza, semillas de sésamo, altramuz, moluscos (dióxido de

azufre y sulfitos en concentraciones de hasta 10 mg/kg o 10 mg/l expresado como SO2).

KallergenTh®, además de los FOS, no contiene azúcares añadidos de ningún tipo ni saborizantes.

52

3.7 Evaluación de la resistencia a los antibióticos

Ambas cepas se encuentran dentro de los valores de resistencia a los antibiótico establecidos por la

EFSA (Tablas 3.6 y 3.7).

Tabla 3.6 Evaluación de la resistencia a los antibióticos de L. rhamnosus LR05.

Tabla 3.7 Evaluación de la resistencia a los antibióticos de B. lactis BS01.

^ Las cepas comerciales se usan como referencia. Las cepas no se identifican en este documento por razones éticas. Los datos pueden solicitarse.* MIC (concentración inhibitoria mínima). Valores mediante evaluación del anillo de inhibición en agar con tiras Etest.** Los límites de la EFSA (European Food Safety Authority) se indican en rojo para la identificación de las cepas resistentes de Lactobacillus rhamnosus (The EFA Journal, 2005)

Leyendas de los antibióticosAC = Amoxicilina XM = Cefuroxima GM = Gentamicina EM = Eritromicina CM = Clindamicina LZ = LinezolidAM = Ampicilina IP = Imipenem CI = Ciprofloxacino CH = Claritromicina TC = Tetraciclina QDA = Qinupristina/DalfopristinaFX = Cefoxitina VA = Vancomicina RI = Rifampicina AZ = Azitromicina CL = Cloranfenicol

CEPA

L. rhamnosus LR DSM 19739

Cepa comercial de Lactobacillus ̂

Cepa comercial de Bifidobacterium ̂

^Las cepas comerciales se usan como referencia. Las cepas no se identifican en este documento por razones éticas. Los datos pueden solicitarse.*MIC (concentración inhibitoria mínima). Valores mediante evaluación del anillo de inhibición en agar con tiras Etest.** Los límites de la EFSA (European Food Safety Authority) se indican en rojo para la identificación de las cepas resistentes de Lactobacillus rhamnosus (The EFA Journal, 2005)

Legendas de los antibióticosAC = Amoxicilina XM = Cefuroxima GM = Gentamicina EM = Eritromicina CM = Clindamicina LZ = LinezolidAM = Ampicilina IP = Imipenem CI = Ciprofloxacino CH = Claritromicina TC = Tetraciclina QDA = Qinupristina/DalfopristinaFX = Cefoxitina VA = Vancomicina RI = Rifampicina AZ = Azitromicina CL = Cloranfenicol

CEPA

B. animalis subesp. lactis

Cepa comercial de Bifidobacterium ̂

Cepa comercial de Lactobacillus ̂

3. KALLERGENTh®

53

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

3.8 Características

3.8.1 Resistencia a las secreciones gástricas y biliaresPara ser eficaces, los probióticos deben resistir el ácido del estómago, las sales biliares y sobrevivir du-

rante el tránsito gastrointestinal con el fin de colonizar el epitelio intestinal (Pan y cols., 2010).

Los estudios realizados in vitro por Probiotical han demostrado que Lactobacillus rhamnosus LR05 y

Bifidobacterium lactis BS01 son sumamente resistentes a las condiciones de un pH bajo y sobreviven a las

concentraciones de bilis presentes en el duodeno (Tablas 3.8 y 3.9).

Tabla 3.8 Evaluación de la resistencia a los jugos gástricos, las secreciones pancreáticas, la bilis y las sales biliares de L.

rhamnosus LR05.

Supervivencia en líquidos biológicos (%)

Cepas Líquidos biológicos Tras diferentes tiempos En presencia de bilis de contacto (en minutos)^ en el medio^^

5’ 30’ 60’ Jugo gástrico humano 80 59 28

Jugo gástrico simulado 97 35 19

Lactobacillus rhamnosus Secreción pancreática simulada 95 82 79 LR 05 DSM 19739 Bilis humana 89 Sales biliares 58

Jugo gástrico humano 88 60 25

Jugo gástrico simulado 90 30 19

Cepa comercial de Secreción pancreática simulada 88 80 73 Lactobacillus® Bilis humana 84

Sales biliares 55

Jugo gástrico humano 96 40 35

Jugo gástrico simulado 90 30 25

Cepa comercial de Secreción pancreática simulada 88 80 40 Bifidobacteirum® Bilis humana 46

Sales biliares 4

54

Tabla 3.9 Evaluación de la resistencia a los jugos gástricos, las secreciones pancreáticas, la bilis y las sales biliares de B. lactis BS01.

Supervivencia en líquidos biológicos (%)

Cepas Líquidos biológicos Tras diferentes tiempos En presencia de bilis de contacto (en minutos)^ en el medio^^

5’ 30’ 60’ Jugo gástrico humano 96 44 40

Jugo gástrico simulado 88 64 23

Bifidobacterium animalis Secreción pancreática simulada 88 71 48 subesp. Lactis BS 01 LMG P-21384 Bilis humana 46

Sales biliares 4

Jugo gástrico humano 96 40 35

Jugo gástrico simulado 90 65 25

Cepa comercial de Secreción pancreática simulada 88 65 40 Bifidobacteirum® Bilis humana 46

Sales biliares 4

Jugo gástrico humano 88 60 25

Jugo gástrico simulado 90 30 19

Cepa comercial de Secreción pancreática simulada 88 80 73 Lactobacillus®

Bilis humana 84

Sales biliares 55

3. KALLERGENTh®

55

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

3.9 Inmunomodulación

3.9.1 Especie, especificidad de la cepa: estudios in vitroLa capacidad del probiótico de equilibrar la respuesta inmunitaria se evalúa in vitro en CMSP estudiando

el perfil de citocinas secretadas tras la incubación con el probiótico (BioLab - Probiotical, datos internos).

Bifidobacterium lactis BS01 induce la secreción de las interleucinas IL-12 e IFN-, con acción proinfla-

matoria, y de las interleucinas IL-4 e IL-10, con acción inmunorreguladora (Figura 3.7).

Figura 3.7 Secreción citocínica, media ± EEM de 8 experimentos independientes. La estadística significativita se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consi-deran estadísticamente significativos. La producción de las citocinas IL-12p70 e IL-10 se evaluó en los sobrenadantes del cultivo tras 1 día de estimulación. La producción de IFN- y de IL-4 se evaluó en los sobrenadantes del cultivo tras 5 días de estimulación con Bifidobacterium lactis BS01.

56

Lactobacillus rhamnosus LR05 induce solo la secreción de IFN- y de IL-10 respecto a las condiciones

basales (Figura 3.8).

Figura 3.8 Secreción citocínica con BS01, media ± EEM de 8 experimentos independientes. La estadística significativita se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consideran estadísticamente significativos. La producción de las citocinas IL-12p70 e IL-10 se evaluó en los sobrenadantes del cultivo tras 1 día de estimulación. La producción de IFN- y de IL-4 se evaluó en los sobrenadantes del cultivo tras 5 días de estimulación con Lactobacilluss rhamnosus LR05.

Inmunidad natural

Después de un día, la estimulación con la cepa BS 01 ha determinado (Figura 3.9.):

- Una disminución significativa en el porcentaje de monocitos circulantes (CD14+);

- Un aumento de las células dendríticas totales (linaje-/HLA-DR+);

- Un aumento significativo en la subpoblación de linfocitos NK (CD16+/CD56+).

Después de un día, la estimulación con la cepa LR 05 ha determinado (Figura 3.10.):

- Una disminución significativa en el porcentaje de monocitos circulantes (CD14+);

- Un aumento significativo en el porcentaje de células dendríticas totales (linaje-/HLA-DR+);

- Un aumento significativo en el porcentaje de linfocitos NK (CD16+/CD56+).

3. KALLERGENTh®

57

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Figura 3.9 Respuesta proliferativa de la inmunidad natural con BS01, media ± EEM de 8 experimentos independientes. La estadística significativita se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consideran estadísticamente significativos.

Figura 3.10 Respuesta proliferativa de la inmunidad natural con LR05, media ± EEM de 8 experimentos independientes. La estadística significativita se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consideran estadísticamente significativos.

Inmunidad adquirida

Después de cinco días, la estimulación con la cepa BS 01 ha determinado (Figura 3.11.):

- No tiene efecto sobre las subpoblaciones de linfocitos Th (CD3+/CD4+) ni citotóxicos (CD3+/CD8+);

- Un aumento significativo en el porcentaje de linfocitos Th reguladores (CD4+/CD25+) en las

condiciones de prueba;

- Sin efecto en el porcentaje de linfocitos B circulantes totales (CD19+/CD20+).

Después de cinco días, la estimulación con la cepa LR 05 ha determinado (Figura 3.12.):

- Un aumento significativo en el porcentaje de linfocitos Th (CD3+/CD4+);

- Sin efecto en el porcentaje de linfocitos T citotóxicos (CD3+/CD8+);

- Un aumento significativo en el porcentaje de linfocitos T reguladores (CD4+/CD25+);

- Un ligero aumento en el porcentaje de linfocitos B circulantes totales (CD19+/CD20+).

58

Figura 3.11 Respuesta proliferativa de la inmunidad adquirida con BS01, media ± EEM de 8 experimentos independientes. La estadística significativita se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consideran estadísticamente significativos.

Figura 3.12 Respuesta proliferativa de la inmunidad adquirida con LR05, media ± EEM de 8 experimentos independientes. La estadística significativa se ha calculado utilizando la prueba de la t de Student. Los valores de p < 0,05, calculados respecto a la basal (CMSP no estimuladas) se consideran estadísticamente significativos.

3. KALLERGENTh®

59

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

3.9.2 Especie, especificidad de la cepa: estudios en vivo

La capacidad de B. lactis KCTC 5727 de regular el sistema inmunitario se evaluó en un modelo animal

de inflamación. B. lactis es capaz de prevenir la aparición de colitis aguda en ratones y de suprimir el desa-

rrollo de la colitis asociada al cáncer de colon (Kim y cols., 2010)

3.9.3 Especie, especificidad de la cepa: estudios clínicos

La capacidad inmunomoduladora de LGG se ha evaluado en un estudio clínico (Sindhu y cols., 2014)

por medio de la evaluación de la respuesta inmunitaria en niños con gastroenteritis y positividad frente al

rotavirus o Cryptosporidium (se excluyeron las coinfecciones).

El tratamiento consistió en tomar una cápsula diaria con 1010 CFU. Se extrajeron muestras de sangre en

tiempos predeterminados para evaluar la concentración de anticuerpos específicos (IgA, IgG, IgM) frente

al antígeno.

Los resultados mostraron que el tratamiento con LGG daba como resultado una inducción más rápida

de la IgG en los niños con diarrea por rotavirus que en el grupo control, lo que indicaba una estimulación

inmunitaria específica por parte del probiótico (Sindhu y cols., 2014).

Wickens (Wickens y cols., 2008) analizó el efecto de la administración de las 2 cepas de probióticos

Lactobacillus rhamnosus HN001 y Bifidobacterium lactis HN019 en la prevención del eccema y la DA.

En este estudio se trató a 474 mujeres desde la semana 35ª de embarazo hasta el 6º mes de lactancia

con L. rhamnosus HN001, B. lactis HN019 o placebo. A sus hijos se les distribuyó al azar para recibir el mis-

mo tratamiento desde el nacimiento hasta los 2 años de edad.

Se han seleccionado mujeres embarazadas que tuvieran ellas mismas o el padre del niño un anteceden-

te positivo de eccema, asma o rinoconjuntivitis.

Como criterios de valoración del estudio se evaluó la presencia de eccema y de atopia mediante pruebas

intraepidérmicas a la edad de 2 años.

El tratamiento con L. rhamnosus HN001 redujo significativamente el riesgo de eccema comparado con

el placebo.

Se obtuvo el mismo resultado con el tratamiento con B. lactis HN019.

Ninguno de los dos tratamientos tuvo un efecto significativo en la reducción del riesgo de atopia.

Algunos años más tarde, el mismo grupo (Wickens y cols., 2012) analizó el seguimiento (90%) a los 4

años de edad.

Este estudio muestra que dos años después del final del tratamiento con probióticos se reduce la

prevalencia de eccema en los niños tratados con L. rhamnosus HN001, y lo mismo puede decirse de la

rinoconjuntivitis. Mientras que el tratamiento con B. lactis HN019 no redujo ninguno de estos trastornos.

60

Por último, Morgan (Morgan y cols., 2014) realizó un estudio con asignación aleatoria y a doble ciego

utilizando las mismas cepas de probióticos.

Este estudio evaluó 33 polimorfismos de un solo nucleótido (SNP) que causan una predisposición al

eccema en 331 niños.

Los resultados mostraron que los niños que reciben tratamiento con L. rhamnosus HN001 tienen una

menor prevalencia de eccema, en comparación con el placebo, a pesar de que el componente génico de

sufrir la enfermedad era de alto riesgo.

B. lactis HN019 fue capaz de proteger sólo frente a algunos SNP, pero no frente a todos.

En un metanálisis, Yao (Yao y cols., 2010) comparó los estudios clínicos más recientes sobre el uso de

los probióticos en los trastornos alérgicos y la atopia.

Este estudio reveló que el uso de probióticos en los recién nacidos con alto riesgo de alergia disminuye

la aparición del eccema y de la atopia (Figura 3.13).

Figura 3.13 Metanálisis del eccema y la DA.

3. KALLERGENTh®

61

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

La comparación de los distintos estudios realizados muestra también que los probióticos administra-

dos en los períodos prenatal y posnatal evitan el riesgo de eccema comparado con la administración solo

posnatal (Figura 3.14).

Figura 3.14 Metanálisis del asma y la rinitis alérgica (tomado de Yao y cols., 2010).

En este metanálisis se hace hincapié también en la especificidad de la cepa del probiótico; es especial-

mente evidente que el tratamiento con LGG solo o en combinación con otros probióticos obtiene mejores

resultados (Figura 3.15).

Figura 3.15 Metanálisis por cepa de probiótico (tomado de Yao y cols., 2010).

62

Por último, comparó 11 estudios entre cuyos criterios de valoración se encontraba disponible la pun-

tuación SCORAD, y también en este caso se observó una mejora de los trastornos con el uso de probióticos

(Figura 3.16).

Figura 3.16 Criterios de valoración por la puntuación SCORAD.

Conclusiones

Los resultados de los estudios in vitro, en vivo y de los estudios clínicos indican que ciertos probióticos

son capaces de estimular el sistema inmunitario mediante la promoción y la activación de la respuesta

inmunitaria.

Los efectos de los probióticos son específicos de la cepa, pero se necesitan más estudios para determi-

nar la eficacia de cada una de ellas.

Sin embargo pruebas experimentales sólidas apoyan el uso de los probióticos como coadyuvante en

el tratamiento de la DA, con una reducción de los síntomas del eccema y de las enfermedades asociadas.

3. KALLERGENTh®

63

En los últimos años se han publicado numerosos ensayos clínicos sobre el tratamiento de la DA (Baque-

rizo Nole y cols., 2014).

4.1 Probiotics as a Novel Adjuvant Approach to Atopic Dermatitis

Manzotti y cols. Journal of Contemporary Immunology (2014) Vol. 1 No. 2 pp. 57-66

Estudio observacional abierto realizado en 107 sujetos adultos con DA compro-bada.

Objetivo del estudio: Conocer el efecto de la administración de Bifidobacterium lactis BS 01, Lactoba-

cillus rhamnosus LR 05 y fructo-oligosacáridos (FOS) en el tratamiento de la DA en la vida diaria de los pa-

cientes y evaluar la eficacia de estas 2 cepas; porque, aunque los estudios in vitro son una gran herramienta

para obtener datos parciales, usted tiene que considerar que las interacciones directas entre las bacterias

comensales y los leucocitos de la sangre periférica en vivo son muy limitadas debido a la presencia de la

barrera epitelial.

A los pacientes se les administró una combinación simbiótica de Lactobacillus rhamnosus LR05, Bifido-

bacterium lactis BS01 y fructo-oligosacáridos (FOS) (KallergenTh®) durante 4 meses.

A los pacientes se les evaluó la gravedad de la DA utilizando el índice SCORAD y una escala analógi-

co-visual (EAV) relativa a la expresión clínica global de la enfermedad y al número de fármacos corticoes-

teroides, antihistamínicos e inhibidores de la calcineurina utilizados.

Tratamiento

KallergenTh®, Lactobacillus rhamnosus LR05 (≥ 109 CFU/sobre)/Bifidobacterium lactis BS01 (≥ 109

CFU/sobre)/fructo-oligosacáridos (2,5 g) se tomó a diario (1 sobre) durante 4 meses.

El estudio se desarrolló en tres períodos consecutivos: visita basal (T0), evaluación el consumo del sim-

biótico después de 2 meses (T1) y evaluación después de 4 meses (T2) del inicio del tratamiento.

En T2 se estudió a 79 sujetos, con una cifra de abandonos del 26% en T1, lo que es aceptable al tratarse

de un estudio observacional abierto.

KALLERGEN Th®:estudios clínicos

4.

64

Criterios de valoración

Los parámetros analizados durante cada visita son los siguientes:

• Características demográficas

• EAV de la expresión clínica global de la enfermedad

• Clasificación SCORAD

• Tratamiento concomitante con fármacos corticoesteroides, antihistamínicos e inhibidores de la cal-

cineurina.

Resultados

Los resultados fueron una reducción significativa del número de pacientes con un valor de SCORAD >

40 y entre 20-40 después del tratamiento en T1 y T2 (p <0,0001 y p <0,01) con respecto a la situación de

base en T0, lo que indica un efecto positivo sobre el trastorno cutáneo (extensión, intensidad y evaluación

subjetiva) (Figura 4.1).

El número de pacientes con un valor de SCORAD <20 se incrementó después del tratamiento en T1 y

T2 con respecto a la situación basal en T0.

Figura 4.1 Evolución de la puntuación SCORAD.

4. KALLERGENTh®: estudios clínicos

65

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Las variaciones de la puntuación media en la EAV en las visitas T1/T2 no fue sin embargo relevante

respecto a la situación basal en T0 (respectivamente 4,45 ± 0,28, p = 0,22 y 4,84 ± 0,35, p = 0,35 frente a

4,74 ± 0,32) (Figura 4.2).

Figura. 4.2 Evaluación de la EAV.

El uso concomitante de corticoesteroides en los últimos 2 meses disminuyó de forma significativa de

4,97±1,01 mg/día de prednisona en T0 a 1,18 ±0,43 en T1 y a 0,34 ± 0,19 en T2 (p < 0,0001) (Figura 4.3).

Figura 4.3 Consumo de prednisolona.

Punt

uaci

ón en

EAV

Pred

niso

na, m

g/dí

a (o

equi

vale

nte)

66

El uso concomitante de antihistamínicos disminuyó de modo significativo de 28,07 ± 2,96 comprimidos

en los últimos 2 meses en T0 a 20,01 ± 2,52 en T1 y finalmente a 12,09 ± 2,67 en T2 (p < 0,0001, Figura 4.4).

No hubo diferencias en el número de envases de inhibidores de la calcineurina en T1, mientras que

hubo una disminución estadísticamente significativa en T2 respecto a T0 (p = 0,01, Figura4.5).

Figura 4.4 Consumo de antihistamínicos.

Figura 4.5 Consumo de inhibidores de la calcineurina.

Com

prim

idos

de a

ntih

istam

ínic

oIn

hibi

dore

s de l

a cal

cineu

rina (

enva

ses d

e tac

rolim

ús)

4. KALLERGENTh®: estudios clínicos

67

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Conclusiones

Los datos de este estudio apoyan un posible efecto positivo del simbiótico formado por múltiples espe-

cies y cepas (KallergenTh®), que consta de Lactobacillus rhamnosus LR05, Bifidobacterium lactis y FOS

BS01, administrado a pacientes con DA durante un período de seguimiento de 4 meses.

Los trastornos asociados, incluidos la urticaria, la alergia alimentaria, el síndrome de alergia oral (SAO),

la alergia a los medicamentos y la distribución de la sensibilización alérgica, fueron muy heterogéneos

entre los distintos pacientes y hubo un claro predominio de una sensibilización específica.

Basándose en los resultados de este estudio, la administración regular de esta combinación simbiótica

KallergenTh® puede proporcionar una oportunidad de conseguir un efecto positivo sobre la DA con una

reducción significativa de su gravedad después de 2 y 4 meses de tratamiento, en comparación con la si-

tuación basal, lo que indica la importancia de los efectos de las cepas específicas Lactobacillus rhamnosus

LR05 y Bifidobacterium lactis BS01.

La reducción de la administración concomitante de antihistamínicos y corticoesteroides administrados

por vía oral y de inhibidores de la calcineurina durante el tratamiento con esta combinación simbiótica po-

dría interpretarse como una prueba indirecta del efecto beneficioso de la mezcla Lactobacillus rhamnosus

LR05, Bifidobacterium lactis BS01 y FOS en el tratamiento de la DA.

Tenga en cuenta que el uso de productos microencapsulados, capaz de ofrecer una protección consi-

derable frente a los jugos gástricos, y la adición del prebiótico FOS pueden ser factores importantes que

garanticen una mejor colonización del intestino, con un número creciente de bacterias vivas, y ser por tanto

factores que influyan de forma positiva en el efecto de Lactobacillus rhamnosus LR05 y Bifidobacterium

lactis BS01.

Estos datos apoyan la hipótesis de que una administración adecuada de simbióticos con múltiples

especies y cepas puede ser un nuevo abordaje adyuvante para los síntomas de la DA, y que Lactobacillus

rhamnosus LR05 y Bifidobacterium lactis BS01 son importantes para este propósito.

Se necesitan más estudios y ensayos con asignación aleatoria con poblaciones más grandes de pa-

cientes para confirmar este efecto positivo, prestando una especial atención a los resultados de la cepa

específica, la utilidad de integración concomitante de prebióticos y probióticos, la optimización de la dosis

y la microencapsulación.

68

4.2 Un caso di dermatite eczematosa Fabio Maria Agostinis 2014

Caso clínico de una paciente de 15 años que sufría una dermatitis eccematosa pruriginosa en las 4

extremidades, el cuello y la cara.

• Antecedentes familiares: la madre sufría una rinitis persistente moderada/grave por sensibilización

a los ácaros.

• Antecedentes personales lejanos y próximos: había sufrido DA en los primeros 3-4 años de vida que

se resolvió completamente en la edad preescolar, pero desde hacía 3 años los síntomas cutáneos

habían reaparecido y eran especialmente molestos durante las estaciones de la primavera y el vera-

no. Desde hace 4-5 años sufre de conjuntivitis y rinitis alérgica estacional leve persistente y padece

un SAO provocado por el kiwi, el melón, el tomate y la sandía.

Pruebas diagnósticas: las pruebas cutáneas y sanguíneas confirmaron la sensibilización a los ácaros del

polvo y al polen de las gramíneas y del abedul. Se encontraron concentraciones sanguíneas reducidas de

vitamina D (12 ng/ml).

Exploración física: lesiones cutáneas eritematosas con lesiones papulares con costra y signos de rascado

en la cara, el tronco y los pliegues de las extremidades superiores e inferiores.

La puntuación de SCORAD, 55/103, clasificó su DA como grave (Figura 4.6).

Figura 4.6 Lesiones a simple vista.

No tenía síntomas respiratorios; la mucosa nasal estaba pálida e hipertrófica en la rinoscopia anterior.

Se entregó una nota informativa para evitar los factores irritantes.

Le recomendamos realizar baños de 10-15 minutos en la bañera con agua tibia (máx. 35° C) y con lejía:

1 taza de café llena (unos 90/100 ml), 3 veces a la semana hasta el siguiente control.

4. KALLERGENTh®: estudios clínicos

69

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

Después enjuagarse abundantemente con un jabón graso, secarse con suaves palmaditas sin frotarse

la piel y aplicarse abundante crema emoliente en la piel todavía húmeda.

También se le recomendó el siguiente tratamiento:

• Aplicar por la noche sobre las lesiones fluticasona en crema hasta el control completo de la infla-

mación.

• Aplicar sobre las lesiones de la cara tacrolimús al 0,1% en pomada por la mañana y por la noche.

• Usar cremas emolientes por la mañana.

• Tomar 100.000 UI al mes de vitamina D por vía oral hasta la siguiente primavera.

• Beber líquidos regularmente durante todo el día.

• Tomar KallergenTh®, en una dosis de 1 sobre al día durante 4 meses entre las comidas.

La paciente regresó a la visita pasados 2 meses. Las lesiones cutáneas se habían atenuado significativa-

mente. La curación era casi completa y había desaparecido completamente el prurito.

En resumen, el SCORAD se situó en 7/103 (Figura 4.7).

Figura 4.7 Lesiones a simple vista en la visita de control.

En la siguiente visita, la paciente había completado el tratamiento con KallergenTh® durante los 4

meses prescritos. Sin embargo el tratamiento tópico con corticoesteroides y tacrolimús se había interrum-

pido desde hacía aproximadamente 2 meses. El tratamiento de mantenimiento se basaba únicamente en

el complemento mensual de vitamina D y en una hidratación constante y abundante de la piel.

70

La paciente refirió su plena satisfacción con el tratamiento realizado y adquirió seguridad y serenidad en

las relaciones interpersonales. El tratamiento emoliente solo, la vitamina D y el consumo de los probióticos

parecen, por tanto, haber mantenido un buen control de los síntomas de la piel en los últimos 2 meses

(Figura 4.8).

Figura 4.8 Lesiones en la visita de control a los 4 meses.

4. KALLERGENTh®: estudios clínicos

71

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

4.3 Use of probiotics in atopic dermatitis Xavier Sierra

En el Congreso de Adyuvantes en Alergia de 2013 (Barcelona, España), el Dr. Sierra presentó una serie

de casos clínicos muy interesantes.

Cuatro pacientes (tres niños y un adolescente) habían sido tratados con KallergenTh® durante un pe-

ríodo mínimo de 2 meses. Durante ese período los pacientes habían usado cremas emolientes y productos

complementarios para su higiene (Syndets).

Resultados

Hubo una mejoría de las lesiones y de los síntomas en los cuatro pacientes con una SCORAD de grado

moderado/intenso.

Caso n.º 1: Niño de 2 años. El paciente presentaba un eritema difuso con algunas vesículas y múltiples

erosiones por rascado en la piel de las mejillas, los pliegues de los codos y los huecos poplíteos. También

mostraba algunas placas cutáneas diseminadas en los muslos y los tobillos (Figura 4.9). Después de 45 días

de tratamiento con KallergenTh®, el prurito y las lesiones habían desaparecido por completo (Figura 4.10).

Figura 4.9 Lesiones antes del tratamiento. Figura 4.10 Lesiones después del tratamiento.

Caso n. º 2: niño de 3 años. El paciente presentaba placas cutáneas diseminadas por la mayor parte

del tronco y las extremidades, con prurito que le hacían rascarse y le causaban una fuerte irritabilidad. Al

paciente se le trató con KallergenTh®, emolientes cutáneos y la aplicación de una crema con mupirocina

en algunas lesiones escoriadas que mostraban signos de infección. Después de 2 meses, el paciente pre-

sentaba una remisión casi completa de las lesiones de la piel y el prurito había desaparecido por completo.

Caso n. º 3: niña de 1 año. La paciente mostraba abundantes lesiones a nivel de las extremidades infe-

riores, especialmente en los huecos poplíteos (Figura 4.11). Se observaron también lesiones en la espalda,

los brazos y el cuello. Después de 2 meses de tratamiento se observó la desaparición de los síntomas.

72

Figura 4.11 Las lesiones antes del tratamiento.

Caso No. 4: Niña adolescente de 17 años. Había presentado DA en la infancia. Algunos episodios ante-

riores se habían tratado con corticoesteroides tópicos y cremas a base de tacrolimús. Sufría de un intenso

prurito y lesiones difusas y eritematosa, liquenificadas y erosionadas en los brazos, las muñecas, la espalda,

el abdomen y las piernas (Figura 4.12). Después de seguir el tratamiento con KallergenTh®, las lesiones

se redujeron considerablemente y el prurito desapareció.

Figura 4.12 Las lesiones antes del tratamiento en la nuca y el abdomen.

Conclusiones

Las observaciones descritas en estos casos clínicos indican que el uso de Lactobacillus rhamnosus LR05

y Bifidobacterium lactis BS01 puede constituir un enfoque terapéutico alternativo de considerable interés.

4. KALLERGENTh®: estudios clínicos

73

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

4.4 A propósito de un caso: terapia coadyuvante con simbióticos en dermatitis atópica severa

Manuel Rial Prado, Vanesa García Paz, Angela Meijide Calderon, Olinda Perez Quintero, Leticia Vila Sexto

Recientemente se ha presentado al Congreso Nacional de la Sociedad Española de Alergología e In-

munología Clínica (SEAIC 2014, Salamanca, España) un caso clínico muy interesante en el que se utilizó

KallergenTh®.

Se presentó el caso de un paciente que sufría desde hacía 4 años una forma grave de DA (SCORAD> 40)

desde los primeros años de la vida.

El paciente había sido tratado con 15 ciclos/año de corticoesteroides sistémicos seguidos de ciclospori-

na A y, cuando no era insuficiente, con metotrexato subcutáneo. Después de 4 meses de tratamiento con

metotrexato se inició el tratamiento adyuvante con KallergenTh®.

Durante los primeros 4 meses de tratamiento con metotrexato subcutáneo se observó una mejora de

las lesiones faciales, pero una persistencia de las lesiones descamativas y liquenificadas en las extremidades

con mayor afectación en las zonas de flexión (Figura 4.13)

Figura 4.13 Lesiones liquenificadas.

74

Después del tratamiento adyuvante con KallergenTh® se observó una clara mejoría de las lesiones en

las extremidades, y se mantuvo con una dosis mínima de inmunomoduladores (Figura 4.14).

Figura 4.14 Mejora de las lesiones.

Este caso demuestra claramente que el uso de una mezcla de probióticos seleccionados, como

KallergenTh®, es capaz de demostrar una mejora de la respuesta clínica sin aumentar las dosis de los

inmunomoduladores.

4. KALLERGENTh®: estudios clínicos

75

1. Abrahamsson TR, Jakobsson T, Bottcher MF, Fredrik-son M, Jenmalm MC, Bjorksten B, Oldaeus G. Probio-tics in prevention of IgE-associated eczema: a dou-ble-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol 2007;119:1174–80

2. Abramovits W. Atopic dermatitis. J Am Acad Derma-tol. 2005;53:S86-93.

3. Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Bo-guniewicz M, Eigenmann P, Hamid Q, Kapp A Leung DY, Lipozencic J, Luger TA, Muraro A, Novak N, Pla-tts-Mills TA, Rosenwasser L, Scheynius A, Simons FE, Spergel J, Turjanmaa K, Wahn U, Weidinger S, Wer-fel T, Zuberbier T; European Academy of Allergolo-gy . Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergo-logy and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Con-sensus Report. Allergy. 2006;61:969-87.

4. Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial ba-rrier. Nat Chem Biol 2012;8:36-45.

5. Ashraf R, Shah NP. Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr. 2014;54:938-56.

6. Baquerizo Nole KL, Yim E, Keri JE. Probiotics and prebiotics in dermatology. J Am Acad Dermatol. 2014;71:814-21.

7. Mattarelli P, Crociani F, Mucci M, Biavati B Different electrophoretic patterns of cellular soluble proteins in Bifidobacterium animalis.Microbiologica. 1992 Jan;15(1):71-4

8. Bieber T. Atopic dermatitis. N Engl J Med. 2008; 358:1483-94.

9. Bjorksten B, Naaber P, Sepp E, et al. The intestinal mi-croflora in allergic Estonian and Swedish 2-yearold children. Clin Exp Allergy 1999;29:342-6.

10. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol 2009;

44: 26-46.Boyle RJ, Tang ML. The role of probiotics in the management of allergic disease. Clin xp Allergy. 2006; 36:568-76.

11. Boyle RJ,Bath-Hextall FJ, Leonardi-Bee J, Murrell DF, Tang ML. Probiotics for the treatment of eczema: a systematic review. Clin Exp Allergy 2009;39:1117-27

12. Brouwer ML, Wolt-Plompen SA, Dubois AE, van der Heide S, JansenDF, Hoijer MA, Kauffman HF, Duiver-man EJ. No effects of probiotics on atopic dermatitis in infancy: a randomized placebo-controlled trial. Clin Exp Allergy. 2006;36:899–906

13. Caballero-Franco C, Keller K, De Simone C, et al. The VSL#3 probiotic formula induces mucin gene expres-sion and secretion in colonic epithelial cells. Am J Phy-siol Gastrointest Liver Physiol 2007;292:G315-22.

14. Caramia G, Atzei A, Fanos V. Probiotics and the skin. Clin Dermatol. 2008;26:4–11.

15. Charteris WP. et al. Development and application of an in vitro methodology to determine the transit to-lerance of potentially probiotic Lactobacillus and Bi-fidobacterium species in the upper human gastroin-testinal tract. J Appl Microbiol. 1998; 84 (5):759-768.

16. Darsow U, Lübbe J, Taïeb A, Seidenari S, Wollenberg A, Calza AM, Giusti F, Ring J; European Task Force on Atopic Dermatitis. Position paper on diagnosis and treatment of atopic dermatitis. J Eur Acad Dermatol Venereol. 2005;19:286-95.

17. De Azevedo MS, Innocentin S, Dorella FA, Rocha CS, Mariat D, Pontes DS, Miyoshi A, Azevedo V, Langella P, Chatel JM. Immunotherapy of allergic diseases using probiotics or recombinant probiotics. J Appl Micro-biol. 2013;115:319-33.

18. DEHNERT J. [Examination of the gram-positive fecal flora in a breast-fed infant]. Zentralbl Bakteriol Orig. 1957 Jul;169(1-2):66-83.

19. Del Piano M. et al. In Vitro Sensitivity of Probiotics to Human Pancreatic Juice. J Clin Gastroenterol. 2008; 42 (3): S170-173

BIBLIOGRAFÍA

76

20. Del Piano M. et al. Evaluation of the intestinal colo-nization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. J Clin Gastroenterol. 2010 Sep;44 Suppl 1:S42-6.

17. Del Piano M. Is microencapsulation the future of pro-biotic preparations?. Gut Microbes. 2011;2:120-3.

18. Delcenserie V, Martel D, Lamoureux M, Amiot J, Bou-tin Y, Roy D. Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol. 2008;10(1-2):37-54.

19. EFSA. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally ad-ded to food and feed (2013 update). EFSA Journal 2013;11(11):3449

20. EFSA. Guidance on the assessment of bacterial sus-ceptibility to antimicrobials of human and veterinary importance. EFSA Journal 2012. 10(6):2740.

21. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrländer C, Heederik D, Piarroux R, von Mutius E; GABRIELA Transregio 22 Study Group. Ex-posure to environmental microorganisms and child-hood asthma. N Engl J Med. 2011; 364:701-9.

22. Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy. 2013; 68:974-82.

23. Feleszko W, Jaworska J, Rha RD. Probioticinduced suppression of allergic sensitization and airway in-flammation is associated with an increase of T regu-latory-dependent mechanisms in a murine model of asthma. Clin Exp Allergy 2007;37: 498–505

24. Forno, E., Onderdonk, A.B., McCracken, J., Litonjua, A.A., Laskey, D., Delaney, M.L., Dubois, A.M., Gold, D.R. Diversity of the gut microbiota and eczema in early life. Clin Mol Allergy 2008;22:6–11.

25. Ghadimi, D., Feolster-Holst, R., de Vrese, M., Winkler, P., Heller, K.J. and Schrezenmeir, J. Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytoki-ne production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobio-logy 2008;213:677–692.

26. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.J Nutr. 1995;125:1401-12

27. Giovannini M, Agostoni C, Riva E,Salvini F, Ruscitto A, Zuccotti GV, Radaelli G; Felicita Study Group. A randomized prospective double blind controlled trial on effects of long-term consumption of fermented milk containing Lactobacillus casei in preschool chil-

dren with allergic asthma and/or rhinitis. Pediatric Res 2007;62:215-20.

28. Gruber C, Wendt M, Sulser C, Lau S, Kulig M, Wahn U, Werfel T, Niggemann B.Randomized, place-bo-controlled trial of Lactobacillus rhamnosus GG as treatment of atopic dermatitis in infancy. Allergy. 2007;62:1270–6).

29. Hartemink R. Prebiotic effect of non-digestible oligo and polysacchrides PhD thesis; University of Wage-ningen, The Netherlands 1999.

30. Holgate. Allergy 3rd ed. Mosby-Elsevier 2006

31. Huang XZ, Zhu LB, Li ZR, Lin J. Bacterial colonization and intestinal mucosal barrier development. World J Clin Pediatr. 2013;2:46-53.

32. Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical me-chanisms. J Nutr Biochem 2011;22:699-711

33. Iliev ID, Kitazawa H, Shimosato T, et al. Strong immu-nostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynu-cleotide pattern. Cell Microbiol 2005;7:403-14.

34. Iliev ID, Tohno M, Kurosaki D, et al. Immunostimula-tory oligodeoxynucleotide containing TTTCGTTT mo-tif from Lactobacillus rhamnosus GG DNA potentia-lly suppresses OVA-specific IgE production in mice. Scand J Immunol 2008;67:370-6.

35. Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S. Probiotics in the management of atopic eczema. Clin Exp Allergy. 2000;30:1604–10.

36. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salmi-nen S. Probiotics: effects on immunity. Am J Clin Nutr. 2001;73:444S-450S.

37. Johannsen H, Prescott SL. Practical prebiotics, probio-tics and synbiotics for allergists: how useful are they? Clin Exp Allergy 2009;39:1801-14.

38. Kalliomäki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A. Guidance for substantiating the evi-dence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr. 2010; 140:713S-21S.

39. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Kos-kinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebocontrolled trial. Lancet. 2001 7;357:1076-9.

40. Kalliomaki M, Salminen S, Poussa T, Isolauri E. Probio-tics during the first 7 years of life: a cumulative risk re-

BIBLIOGRAFÍA

77

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

duction of eczema in a randomized, placebo-contro-lled trial. J Allergy Clin Immunol. 2007;119:1019–21.

41. Kansagra K, Stoll B, Rognerud C, Niinikoski H, Ou CN, Harvey R, Burrin D. Total parenteral nutrition adversely affects gut barrier function in neona-tal piglets. Am J Physiol Gastrointest Liver Physiol 2003;285:G1162-G1170.

42. Kim JY, Choi YO, Ji GE. Effect of oral probiotics (Bi-fidobacterium lactis AD011 and Lactobacillus aci-dophilus AD031) administration on ovalbuminindu-ced food allergy mouse model. J Microbiol Biotechnol 2008;18:1393–400.

43. Kim SW, Kim HM, Yang KM, Kim SA, Kim SK, An MJ, Park JJ, Lee SK, Kim TI, Kim WH, Cheon JH. Bifido-bacterium lactis inhibits NF-kappaB in intestinal epi-thelial cells and prevents acute colitis and colitis-as-sociated colon cancer in mice. Inflamm Bowel Dis 2010;16:1514–1525

44. Kim NY and Ji GE. Effects of probiotics on the pre-vention of atopic dermatitis. Korean J Pediatr 2012;55:193–201.

45. Kopp MV, Hennemuth I, Heinzmann A, Urbanek R. Randomized, double-blind, placebo-controlled trial of probiotics for primary prevention: no clinical effects of Lactobacillus GG supplementation. Pedia-trics. 2008;121:e850–6.

46. Kramer MF, Heath MD. Probiotics in the treatment of chronic rhinoconjunctivitis and chronic rhinosinusitis. J Allergy (Cairo). 2014; 2014:983635.

47. Kubo A, Nagao K, Amagai M. Epidermal barrier dys-function and cutaneous sensitization in atopic disea-ses. J Clin Invest. 2012;122:440-7.

48. Kuitunen M, Kukkonen K, Juntunen-Backman K, Kor-pela R, Poussa T, Tuure T, Haahtela T, Savilahti E. Pro-biotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total co-hort. J Allergy Clin Immunol. 2009;123:335–41

49. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Back-man K, Korpela R, Poussa T, Tuure T, Kuitunen M. Pro-biotics and prebiotic galactooligosaccharides in the prevention of allergic diseases: a randomized, dou-ble-blind, placebo-controlled trial. J Allergy Clin Im-munol. 2007;119:192–8.

50. Lilly DM, Stillwell RH. Probiotics: growth-promoting factors produced by microorganisms. Science. 1965 Feb 12;147(3659):747-8.

51. Linee Guida su probiotici e prebiotici, Revisione Mag-gio 2013 (Ministero della Salute). http://www.salute.

gov.it/imgs/C_17_pubblicazioni_1016_allegato.pdf

52. Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003;361:151-60.

53. Majamaa H, Isolauri E. Probiotics: a novel approach in the management of food allergy. J Allergy Clin Im-munol. 1997;99:179–85.

54. Manzotti G, Heffler E, Fassio F, PANATAD Study Group Probiotics as a Novel Adjuvant Approach to Atopic Dermatitis. Journal of Contemporary Immu-nology 2014;1:57-66

55. Mitsuoka T. Intestinal flora and human health. Asia Pac J Clin Nutr. 1996;5:2-9.

56. Mohamadzadeh, M., Olson, S., Kalina, W.V., Ruthel, G., Demmin, G.L., Warfield, K.L., Bavari, S. and Klaen-hammer, T.R. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci USA 2005;102:2880–2885

57. Moingeon P. Adjuvants for allergy vaccines. Hum Vac-cin Immunother. 2012;8:1492-8.

58. Morgan AR, Han DY, Wickens K, Barthow C, Mitchell EA, Stanley TV, Dekker J, Crane J, Ferguson LR. Diffe-rential modification of genetic susceptibility to child-hood eczema by two probiotics. Clin Exp Allergy. 2014;44:1255-65.

59. Niers L, Martin R, Rijkers G, Sengers F, Timmer-man H, van Uden N, Smidt H, Kimpen J, Hoekstra M. The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy. 2009;64:1349-58.

60. Niers, L.E., Hoekstra, M.O., Timmerman, H.M., Van Uden, N.O., De Graaf, P.M., Smits, H.H., Kimpen, J.L. and Rijkers, G.T. Selection of probiotic bacteria for prevention of allergic diseases: immunomodu-lation of neonatal dendritic cells. Clin Exp Immunol 2007;149:344–352.

61. Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gas-trointest Liver Physiol 2010;298:G807-G819

62. Ongol, M.P., Iguchi, T., Tanaka, M., Sone, T., Ikeda, H., Asano, K. and Nishimura, T. Potential of selected stra-ins of lactic acid bacteria to induce a Th1 immune pro-file. Biosci Biotechnol Biochem 2008;72:2847–2857.

63. Orel R, Trop TK, Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J Gastroenterol 2014;20:11505-11524.

64. Ozdemir O. Various effects of different probiotic stra-ins in allergic disorders: an update from laboratory

78

and clinical data. Clin Exp Immunol. 2010;160:295-304.

65. Pan SJ, Kuo CH, Lam KP, Chu YT, Wang WL, Hung CH. Probiotics and allergy in children--an update review. Pediatr Allergy Immunol. 2010; 21:e659-66.

66. Patterson E, Cryan JF, Fitzgerald GF, Ross RP, Dinan TG, Stanton C. Gut microbiota, the pharmabiotics they produce and host health. Proc Nutr Soc. 2014;73:477-89.

67. Peng W, Novak N. Recent developments in atopic der-matitis. Curr Opin Allergy Clin Immunol. 2014;14:417-22.

68. Poupard JA, Husain I, Norris RF. Biology of the bifido-bacteria. Bacteriol Rev. 1973 un;37(2):136-65.

69 Prescott SL, Bjorksten B. Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immu-nol. 2007;120:255–62.

70 Sánchez-Pérez J, Daudén-Tello E, Mora AM, Lara Su-rinyac N. . Impact of Atopic Dermatitis on Health-Rela-ted Quality of Life in Spanish Children and Adults: The PSEDA Study. Actas Dermosifiliogr. 2013;104:44-52.

71. Scardovi V, Zani G, Trovatelli LD. Deoxyribonucleic acid homology among the species of the genus Bifi-dobacterium isolated from animals. Arch Mikrobiol. 1970;72(4):318-25.

72. Scardovi V, Sgorbati B, Zani G. Starch gel electro-phoresis of fructose-6-phosphate phophoketola-se in the genus Bifidobacterium. J Bacteriol. 1971 Jun;106(3):1036-9.

73 Schabussova, I., Hufnagl, K., Wild, C., Nutten, S., Zuercher, A.W., Mercenier, A. and Wiedermann, U. Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic polysen-sitization. Vaccine 2011;29:1981–1990.

74 Schram-Bijkerk D, Doekes G, Douwes J, Boeve M, Riedler J, Ublagger E, von Mutius E, Benz MR, Persha-gen G, van Hage M, Scheynius A, Braun-Fahrländer C, Waser M, Brunekreef B; PARSIFAL Study Group. Bac-terial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clin Exp Allergy. 2005 Oct;35(10):1272-8.

75. Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Aj-jampur SS, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke CA, Ward HD, Kang G. Immune respon-se and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double- blind, placebo-controlled trial. Clin Infect Dis. 2014;58:1107-15.

76. Smits HH, Engering A, van der Kleij D, et al. Selective probiotic bacteria induce IL-10- producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Im-munol 2005;115:1260-7.

77. Snydman DR, The Safety of Probiotics. Clinical Infec-tious Diseases 2008;46:S104–11.

78. Soh SE, Aw M, Gerez I, Chong YS, Rauff M, Ng YP, Wong HB, Pai N, Lee BW. Probiotic supplementation in the first 6 months of life in at risk Asian infants: effects on eczema and atopic sensitization at the age of 1 year. Clin Exp Allergy. 2009;39:571-8.

79. Strachan DP. Hay fever, hygiene, and household size. Br Medj 1989;299:1259-60

80. Stsepetova J, Sepp E, Julge K, Vaughan E, Mikelsaar M, de Vos WM. Molecularly assessed shifts of Bifido-bacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol Med Microbiol. 2007;51:260–9.

81. Takeda K, Okumura K. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity. J Nutr 2007;137:791S-3S.

82. Takeda K, Suzuki T, Shimada SI, et al. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota Clin Exp Im-munol 2006;146:109-15

83. Taylor AL, Dunstan JA, Prescott SL. Probiotic supple-mentation for the first 6 months of life fails to re-duce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial. J Allergy Clin Immunol. 2007;119:184–91.

84. Thomas DW, Greer FR. Probiotics and prebiotics in pe-diatrics. Pediatrics 2010; 126: 1217-1231.

85. Tien MT, Girardin SE, Regnault B, et al. Anti-inflam-matory effect of Lactobacillus casei on Shigella in-fected human intestinal epithelial cells. J Immunol 2006;176:1228-37.

86. Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC. Monostrain, multistrain and multis-pecies probiotics — A comparison of functionality and efficacy. Int J of Food Microbiology 2004;96:219– 233.

87. Valsecchi C, Marseglia A, Ricci A, Montagna L, Leo-ne M, Marseglia GL, Castellazzi AM. Probiotics and children: is an integration useful in allergic diseases? Pediatr Med Chir 2008;30:197-203.

BIBLIOGRAFÍA

79

«THE QUALITY BEHIND THE EFFICACY»MONOGRAFÍA DEL PRODUCTO

88. Van der Aa LB, Heymans HS, van Aalderen WM, Sprikkelman AB. Probiotics and prebiotics in ato-pic dermatitis: review of the theoretical background and clinical evidence. Pediatr Allergy Immunol 2010;21:e355-67.

89. Ventura V, Zink R. Rapid identification, differentia-tion, and proposed new taxonomic classification of Bifidobacterium lactis. Appl. Environ. Microbiol. 2002;68:6429-6434.

90. Viljanen M, Savilahti E, Haahtela T, Juntunen-Back-man K, Korpela R, Poussa T, Tuure T, Kuitunen M. Pro-biotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double-blind placebocontro-lled trial. Allergy. 2005;60:494–500

91. Vliagoftis H, Kouranos VD, Betsi GI, Falagas ME. Pro-biotics for the treatment of allergic rhinitis and asth-ma: systematic review of randomized controlled trials. Ann Allergy Asthma Immunol. 2008;101:570–9.

92. Watanabe S, Narisawa Y, Arase S, et al. Differences in fecal microflora between patients with atopic der-matitis and healthy control subjects. J Allergy Clin Im-munol 2003;111:587-91.

93. West CE, Hammarstrom ML, Hernell O. Probiotics du-ring weaning reduce the incidence of eczema. Pediatr Allergy Immunol. 2009;20:430-7.

94. Wickens K, Black P, Stanley TV, Mitchell E, Barthow C, Fitzharris P, Purdie G, Crane J. A protective effect of Lactobacillus rhamnosus HN001 against eczema in the first 2 years of life persists to age 4 years. Clin Exp Allergy. 2012;42:1071-9.

95. Wickens K, Black PN, Stanley TV, Mitchell E, Fitzha-rris P, Tannock GW, Purdie G, Crane J; Probiotic Study Group. A differential effect of 2 probiotics in the pre-vention of eczema and atopy: a double-blind, rando-mized, placebo-controlled trial. J Allergy Clin Immu-nol. 2008;122:788-94.

96. Winkler P, Ghadimi D, Schrezenmeir J, Kraehenbuhl JP. Molecular and cellular basis of microflora-host in-teractions.J Nutr. 2007;137(3 suppl 2):756S-772S

97. Yan F, Polk DB. Probiotic bacterium prevents cytoki-ne-induced apoptosis in intestinal epithelial cells. J Biol Chem 2002;277:50959-65.

98. Yao TC, Chang CJ, Hsu YH, Huang JL. Probiotics for allergic diseases: realities and myths. Pediatr Allergy Immunol. 2010;21:900-19.

Joan XXIII, 15-19, 1º 2ª - 08950 Esplugues de Llobregat (Barcelona)[email protected] - wwwallergytherapeutics.es