Aserrin Transformacion Hidroliticas Biomasa 230708

30
UNIVERSIDAD DE PINAR DEL RÍO “Hermanos Saíz Montes de Oca” FACULTAD DE AGRONOMÍA Y FORESTAL CENTRO DE ESTUDIOS DE BIOMASA VEGETAL Perspectivas de aprovechamiento del aserrín mediante su transformación hidrolítica y como fuente de Biomasa para diversos fines RESUMEN Tesis presentada en opción al grado científico de Doctor en Ciencias Forestales Autor: Lic. Esther Alvarez Godoy Pinar del Río 1999

Transcript of Aserrin Transformacion Hidroliticas Biomasa 230708

UNIVERSIDAD DE PINAR DEL RÍO “Hermanos Saíz Montes de Oca”

FACULTAD DE AGRONOMÍA Y FORESTAL CENTRO DE ESTUDIOS DE BIOMASA VEGETAL

Perspectivas de aprovechamiento del aserrín mediante su transformación hidrolítica y como

fuente de Biomasa para diversos fines

RESUMEN Tesis presentada en opción al grado científico de Doctor en Ciencias Forestales Autor: Lic. Esther Alvarez Godoy

Pinar del Río 1999

ÍNDICE

Pág. 1. INTRODUCCIÓN 1 2. REVISION IBLIOGRÁFICA 4 2.1. Principales residuos generados por las industrias de elaboración de la madera

4

2.2. Tipos de tratamientos empleados en el mejoramiento de residuos madereros 5 2.3. Algunos usos de los principales residuos madereros transformados 7 3. MATERIALES Y MÉTODOS 9 3.1. Diagnóstico de la situación de los residuos madereros en la provincia de

Pinar del Río 9

3.2. Estimación del volumen de aserrín generado durante el aserrado de la madera en el aserradero “Combate de la Tenería”

9

3.3. Composición química del aserrín de Pinus caribaea Morelet var. caribaea del aserradero “Combate de la Tenería”

9

3.4. Caracterización del aserrín con vistas a su transformación por la vía hidrolítica.

10

3.4.1. Obtención del cuadro cinético de la prehidrólisis 11 3.4.2. Caracterización del producto obtenido mediante la prehidrólisis 12 3.4.3. Cálculo del rendimiento de la masa sacarificada 12

3.5. Diseño y construcción de un hidrolizador para el scalado 12 3.6. Valoración de las cualidades alimenticias de la masa sacarificada de Pinus caribaea Morelet var. caribaea y Eucalyptus saligna Sm

12

4. RESULTADOS Y DISCUSIÓN 13 4.1. Situación de los residuos madereros en la provincia de Pinar del Río 13 4.2. Estimado del volumen de aserrín de Pinus caribaea var. caribaea que se

genera en el aserradero “Combate de la Tenería” 14

4.3. Composición química del aserrín de Pinus caribaea var. caribaea generado en el aserradero “Combate de la Tenería” y sus posibles usos

15

4.4. Características del aserrín de Pinus caribaea. Morelet var. caribaea y Eucalyptus saligna Sm con vistas a su transformación por la vía hidrolítica.

17

4.4.1. Regímenes de prehidrólisis del aserrín de Pinus caribaea y Eucalyptus saligna.

17

4.4.2. Características del aserrín hidrolizado 19 4.4.3. Rendimiento de la masa sacarificada 19 4.5. Características del hidrolizador 19 4.6. Cualidades alimenticias de la masa sacarificada de madera de Pinus caribaea Morelet var. caribaea y Eucalyptus saligna Sm

19

5. CONCLUSIONES 22 6. RECOMENDACIONES 22 7. REFERENCIAS BIBLIOGRÁFICAS 23

1. INTRODUCCIÓN

Un obstáculo para la sustentabilidad de los bosques y las industrias forestales lo constituye el nivel

de desechos producidos, tanto en los bosques mismos, como en las plantas procesadoras de madera.

La Comunidad Científica Internacional reconoce que la situación de los residuos es un problema

global que requiere una atención urgente. Muchas conferencias recientes de las Naciones Unidas,

incluyendo la Conferencia de las Naciones Unidas sobre el Medio Ambiente (Río de Janeiro, 1992);

la Conferencia Global sobre Desarrollo Sostenible de los Pequeños Estados Insulares en Desarrollo

(Barbados, 1994) y la Conferencia Mundial sobre Reducción de desastres (Yokohama, 1994), han

planteado la necesidad de crear mejores estrategias para reducir el volumen de los residuos. En

1990, bajo la dirección de la Organización Internacional de las Maderas Tropicales, se estableció un

proyecto para evaluar el nivel de desechos y recomendar formas de reducirlos (Noack, 1995). Más

reciente aún, en la Tercera Conferencia de las Partes, del Convenio Marco Climático de la ONU, se

aprobaron una serie de resoluciones denominadas Protocolo de Kyoto, donde se prevé asistencia a

los países en desarrollo, mediante el “Mecanismo de Desarrollo Limpio” para la fijación o

reducción de las emisiones de dióxido de carbono (Ramos, 1998).

En los países desarrollados, donde la actividad industrial del sector forestal tiene un aporte

significativo en la economía, los residuos de maderas son utilizados industrialmente en un 50 % con

tendencia al alza, en una gran variedad de usos (Granja y Molina, 1992).

Por otro lado, la Comunidad mundial está muy preocupada por el uso sostenible de los recursos

naturales por parte de las generaciones presentes y futuras, y por la calidad del medio ambiente.

Tiende a crearse una ética ambiental; se habla, por ejemplo, cada vez más, de usar sin abusar, de

reutilizar los recursos, de hacer más con menos.

En la provincia de Pinar del Río se encuentran las mayores reservas forestales del país. La

superficie cubierta de bosques alcanza el 38,6%, correspondiendo el primer lugar a las coníferas, las

cuales representan el 30,7% del total de la superficie boscosa (Informe provincial al 2do Congreso

Forestal, 1998). El interés industrial fundamental de estos bosques de coníferas es la obtención de

madera en bolo para producir madera aserrada, la cual constituye su renglón económico principal.

El segundo lugar, por su abundancia en la provincia, lo ocupa el género Eucalyptus, cuya madera

hasta el momento tiene diversos usos como material de construcción, en la producción de cujes de

tabaco y para postes de electricidad (Peñalver, 1991). Estos usos se van a incrementar en los

próximos años con la ejecución del Programa de Desarrollo Económico Forestal, donde se prevé la

explotación de esta especie para la elaboración de tableros, madera aserrada y madera para astillas,

entre otros (Programa de Desarrollo Económico Forestal hasta el año 2015).

1

La industria de transformación de la madera genera altos volúmenes de residuos, los cuales en su

mayoría se convierten en desechos sólidos o basura. Los volúmenes anuales que se acumulan de

aserrín de pino en la provincia alcanzan entre 5 000 y 7 000 m3 y hasta el momento no se ha hecho

un uso racional de esta biomasa, la cual al no ser evacuada con prontitud, en pocos días, puede

obstaculizar el proceso productivo y por otro lado, su acumulación provoca efectos ambientales

negativos tales como:

* Que al descomponerse los mismos, se devuelva a la atmósfera el dióxido de carbono contenido en

la materia orgánica.

* Que por la incidencia del sol y las altas temperaturas, se provoca en las grandes pilas de aserrín

una pirólisis a baja temperatura, producto de lo cual se emiten gases contaminantes al medio. Por

otro lado, esta combustión aumenta la temperatura en la zona, provocando un efecto invernadero.

* Que estos residuos se conviertan en un medio ideal para la generación de plagas y enfermedades.

Por otro lado, la biomasa forestal que se origina en el proceso de aserrado de la madera,

fundamentalmente aserrín, constituye un material lignocelulósico que por su naturaleza química

(entre 60 -70 % de polisacáridos ) puede compararse con la del bagazo de caña y otros derivados de

ésta, los cuales en Cuba ya se utilizan industrialmente, aportando a la sociedad diversos productos.

Los extraordinarios adelantos alcanzados en los últimos años en el campo de la Ciencia y la

Tecnología representan un reto difícil, particularmente para los países en desarrollo. Tales avances

brindan nuevas oportunidades, pero para aprovecharlas, el país debe aumentar rápidamente su

capacidad para aplicar las nuevas tecnologías a las condiciones socioculturales y ambientales

existentes (Comisión del Sur, 1991). A partir de lo analizado anteriormente, se puede plantear que:

No se aprovechan adecuadamente los residuos madereros que se originan en las principales

industrias de elaboración de la madera en Pinar del Río, los cuales constituyen un

contaminante ambiental, que son susceptibles de ser transformados en productos socialmente

útiles, si son tratados adecuadamente por diferentes métodos de la tecnología química

moderna.

Especialmente importante resulta el tratamiento hidrolítico para convertir al aserrín en un sustrato

con valor zootécnico. En el texto de este trabajo se pueden encontrar varios ejemplos de productos

obtenidos a partir de residuos forestales con diversos fines. De esta manera, es evidente que: Si, el

aserrín que se origina como principal residuo de las industrias procesadoras de madera, se

caracteriza desde el punto de vista de su composición química que evidencie el potencial orgánico e

inorgánico de este residuo, se determina el régimen óptimo de prehidrólisis que ablande su

estructura fibrosa, enriqueciéndolo en azúcares de fácil asimilación, entonces se dispondrá de una

materia prima para diversos usos y de un producto que puede constituir un suplemento en la ración

animal.

2

A la Universidad de Pinar del Río, única en Cuba que forma profesionales en la especialidad

forestal, corresponde llevar adelante este tipo de tarea. Según datos de la Unión Internacional de las

organizaciones de Investigación Forestal, el 75 % de las investigaciones forestales de América

Latina y el Caribe están concentradas en cinco países (Argentina, Brasil, Chile, Colombia y

México) y el 41 % corresponde a las Universidades (Guevara, 1995).

El sector silvícola de nuestro país aportará nuevos ingresos a la Economía Nacional cuando

comience a considerar importantes todos los productos que se pueden derivar del bosque, entre

ellos, los residuos. Por todo lo antes expuesto, el objetivo general de este trabajo es: Determinar el

potencial orgánico e inorgánico del aserrín, como principal residuo de la industria de elaboración de

la madera y sus posibilidades como materia prima para diversos fines.

Esta propuesta es novedosa y valiosa por sus aportes al conocimiento, pues desde el punto de vista

teórico, se contará con la caracterización química del aserrín de Pinus caribaea var. caribaea de la

localidad de Macurijes, Guane, como fuente de Biomasa para diversos usos, el establecimiento de

los regímenes óptimos para la prehidrólisis del aserrín de Pinus caribaea y Eucalyptus saligna y la

caracterización de la masa sacarificada de aserrín de estas dos especies como suplemento

carbohidratado en correspondencia con las Normas Internacionales establecidas. En el aspecto

práctico, se dispone de masa de madera sacarificada a partir de aserrín de Pinus caribaea y

Eucalyptus saligna, un producto con cualidades alimenticias, a escala de banco. Se dispone,

además, de un material bibliográfico acerca de los residuos madereros, tema poco abordado en la

literatura forestal cubana, de gran utilidad para estudiantes y profesionales del sector. El trabajo

presenta, además, aporte económico y medio-ambiental, ya que sienta las bases para la futura

utilización industrial de un material abundante y desaprovechado, que rendirá aportes a la economía

y se disminuirá su efecto contaminante al medio. Los objetivos específicos propuestos son:

1- Determinar cuáles son los principales residuos de madera que se originan en la provincia de Pinar

del Río y los usos a que se destinan.

2- Cuantificar el volumen de aserrín que se genera en un turno de trabajo en el aserradero “Combate

de la Tenería”, Guane, y proponer sus posibles usos.

3- Caracterizar desde el punto de vista de su composición química, el aserrín generado durante el

proceso de aserrado de la madera en el aserradero “Combate de la Tenería”.

4- Determinar los regímenes óptimos de prehidrólisis para el aserrín de Pinus caribaea y

Eucalyptus saligna de la localidad de Macurijes.

5- Establecer los principales indicadores de la masa sacarificada de Pinus caribaea y Eucalyptus

saligna y sus posibles usos.

3

2. REVISIÓN BIBLIOGRÁFICA

2.1. Principales residuos generados por las industrias de elaboración de la madera.

Residuos de madera se consideran aquellos que no hayan sido reducidos a partículas pequeñas,

consistentes fundamentalmente en residuos industriales, ejemplo, desechos de aserraderos,

despuntes, recortes, duramen de trozas para chapas, desechos de chapas, aserrín, corteza (se

excluyen las briquetas, residuos de carpintería, ebanisterías) (FAO, 1986).

La acumulación de los residuos en los aserraderos puede llegar a obstaculizar el desarrollo del

proceso productivo, por lo que es necesario que sean evacuados con prontitud. Las entidades que

venden estos productos se preocupan por mantenerlos bien almacenados, bajo techo, sobre lonas,

pero en la mayoría de los casos estos residuos permanecen a la intemperie, en grandes pilas, en las

cercanías de las industrias. El destino que se les da a los diferentes residuos no es el más racional.

Algunas entidades generadoras los venden o regalan a empresas que les dan diferentes usos; en

muchas ocasiones se envían a los vertederos o se incineran indiscriminadamente. La incineración es

una técnica derrochadora, ya que la materia orgánica es rica en nutrientes y su destino final debe ser

el retorno al suelo para mantener su fertilidad.

Principalmente utilizan residuos madereros la industria químico-forestal y la de tableros (Arends et

al., 1985). La industria químico-forestal utiliza como materia prima, entre otros, astillas y aserrín y

los productos que se derivan de esta industria son alcohol, levadura forrajera, furfural, y más

recientemente, suplementos alimenticios carbohidratados, minerales y/o proteicos para la

alimentación animal (Jolkin, 1989).

Algunos usos son los siguientes: Como generadores de electricidad en los aserraderos y las fábricas

de tableros contrachapados, utilizando residuos de madera como combustible (Bintley y Gowen,

1994); para obtención de harina de madera, la cual se emplea extensamente en la manufactura de

linóleo, explosivos de nitroglicerina y gran variedad de plásticos y otros productos moldeados

(Panshin, 1959); en la industria de tableros compuestos, incluidos los tableros duros, los tableros

aislantes, los de fibra de densidad media y otros, aprovechan una gran variedad de especies arbóreas

y residuos como astillas, virutas, recortes de madera y aserrín (Maloney, 1986; Riddle, 1988). Las

virutas de madera, así como la corteza son muy utilizadas en las granjas avícolas como cama para

las aves y otros animales de cría (Brake, 1992; Oconnell et al., 1997). En el Instituto de

Investigaciones Forestales (IIF), han realizado varios trabajos que demuestran la efectividad de

residuos madereros en la formación de aglomerados con cemento (Manzanares, 1984, 1991, 1998).

Estudios realizados en 1994 en Brasil, demostraron que los residuos de madera cuestan tres veces

4

menos que la madera en bolo y que pueden suplir toda la madera que hasta ahora se utiliza en la

industria de aglomerados en ese país (Oliveira, 1995).

El precio de los residuos ha ido en aumento en la última década. Según Anuario de los productos

Forestales (FAO, 1986, 1997), entre 1984 y 1995, este valor se duplicó.

Numerosas ecuaciones han sido desarrolladas para estimar el aserrín generado durante el proceso de

aserrado de la madera. La mayoría de estas ecuaciones relacionan la masa de aserrín con el

diámetro (generalmente al cuadrado) y la longitud de la troza, como las establecidas por Phillips y

Schroeder (1975) para encino negro y por Clark y colaboradores (1976) para abeto amarillo, citados

por Patterson (1993), quien a su vez defiende su hipótesis acerca de la inclusión de otras variables

que inciden en el rendimiento como densidad de la madera, número de cortes de la sierra y surtido

de madera. En otros trabajos encaminados al cálculo de los rendimientos de madera aserrada,

estiman de forma secundaria los residuos totales y entre ellos el aserrín (Plank, 1982; Willits, 1991;

Fahey, 1993).

2.2. Tipos de tratamientos empleados en el mejoramiento de residuos madereros.

Desde hace tiempo se conoce que después de la deslignificación de las paredes celulares de las

plantas lignificadas y de cambiar su estructura por diferentes métodos, se eleva la descomposición

fermentativa de los polisacáridos de la madera. Algunos experimentos “in vitro” han comprobado

que la trituración de la madera en cierta medida aumenta su digestibilidad. Para la transformación

de la biomasa lignocelulósica en sustancias digeribles por los animales es necesario:

1- Producir cambios en la estructura física de los tejidos vegetales lignificados, destruyendo o

debilitando los enlaces entre las fibras.

2- Elevar la capacidad de reacción del complejo de polisacáridos del material vegetal (en primer

lugar de la celulosa) mediante la transformación de su estructura intermolecular altamente

orientada y su despolimerización.

3- Transformar los polisacáridos con el objetivo de crear en el producto una relación óptima de

mono, oligo y polisacáridos.

4- Enriquecer el material durante el proceso de transformación química o después de éste con

proteínas, aminoácidos, grasa, macro y microelementos y sustancias biológicamente activas

(Utkin, 1984).

Esta transformación se logra mediante los siguientes métodos: Acción física sobre la biomasa por

corte mecánico, radiólisis, tratamiento térmico y otros; acción de catalizadores químicos; acción de

microorganismos o fermentos para lograr una conversión biológica; por esquema complejo donde

5

se conjuguen varios métodos. Cada uno de estos métodos presenta ventajas y limitaciones. Los

principales métodos químicos utilizados para elevar la digestibilidad de la biomasa vegetal son el

tratamiento alcalino y la hidrólisis de los polisacáridos hasta mono y oligosacáridos mediante

catalizadores ácidos o salinos. El tratamiento alcalino debilita los enlaces carbohidrato-lignina,

destruyéndose los polisacáridos, lo que provoca el desprendimiento de diferentes grupos de

sustancias. Dos grupos de industrias utilizan los tratamientos químicos de la madera: la de celulosa-

papel y la industria hidrolítica.

La sacarificación de los desechos de madera se basa en las diferentes condiciones en que se

efectúan las reacciones de hidrólisis para las hemicelulosas y la celulosa. Las hemicelulosas se

hidrolizan fácilmente sin catalizadores a elevada temperatura hasta 100 0C y presión hasta 0,2

MPa; la celulosa sin catalizadores prácticamente no se hidroliza incluso a 200 0C. En el tratamiento

de autohidrólisis, el catalizador lo constituye el ácido acético que se libera de las hemicelulosas.

Este es un tratamiento termomecánico, transcurre en aparatos desfibradores de alta presión, elevada

temperatura y en sólo varios segundos, con lo cual cambia la estructura física de la madera. Este

método fue desarrollado en Canadá por la Firma Stake Technology Ltd.). De esta manera, se han

empleado diferentes métodos, predominando los que utilizan catalizadores ácidos o los que

prescinden de ellos. Independientemente del equipamiento que se utilice, las transformaciones

químicas del material durante la hidrólisis ácida utilizando diferentes métodos, conduce a la

obtención de los mismos productos. En su composición entran azúcares y celulosa de fácil

asimilación, lo cual determina su valor zootécnico.

El método más estudiado actualmente es el vapor-explosión, el cual según varios autores supera a

los métodos tradicionales por las ventajas que ofrece en cuanto a rapidez, pero indudablemente,

tiene mayor complejidad tecnológica (Ogarkov, 1990; Bouchard, 1990). Puede utilizar realizarse

con ácidos diluidos o prescindir de ellos, en dependencia del material tratado (Coombs y Carrasco,

1992).

La hidrólisis enzimática es una reacción heterogénea influenciada por las características

estructurales del sustrato, tal como la cristalinidad y el contenido de lignina.. Se realiza con

microorganismos a temperatura de 30 - 40 oC, a presión atmosférica, lo cual le confiere ventajas con

relación al tratamiento de hidrólisis ácida. La sacarificación por métodos biológicos, utilizando

microorganismos directamente sobre los materiales leñosos, constituye un procedimiento muy

lento. Por este motivo, en la mayoría de los casos ella va precedida de tratamiento químico.

6

2.3. Algunos usos de los principales residuos madereros transformados.

Hace más de un siglo que se conocen procedimientos para la transformación de la madera en

melaza, la cual puede ser utilizada en la alimentación de bovinos de la misma forma que la melaza

de caña. Asimismo, se sabe que la celulosa tiene un elevado valor energético para los rumiantes.

Durante la Segunda Guerra Mundial se utilizó en grandes cantidades en los países escandinavos. El

ganado equino digiere muy bien la celulosa y los cerdos adultos también (Göhl, 1982). Se conoce

que varios países como Estados Unidos, Finlandia y Australia realizan experimentos que

demuestran la efectividad de la utilización de residuos de la industria de la elaboración primaria de

la madera y el follaje en la obtención de alimento animal a partir de la tecnología química moderna

y la biotecnología. En Canadá, la firma Stake Technology Ltd., comercializa un producto bajo la

marca comercial “Procell” obtenido de los desechos del bosque, descrito como un producto fibroso,

de olor agradable, buen gusto y que eleva el apetito, el cual constituye un suplemento alimenticio en

la dieta animal (Utkin, 1984). A partir de los prehidrolizados de maderas duras producen xilitol, que

es un azúcar que reduce la incidencia de caries dentales, con un poder edulcorante comparable a la

sacarosa (Hillis y Brown, 1984). En la antigua URSS se reportan diferentes experiencias acerca de

la obtención de suplementos carbohidratados y/o proteicos a partir de aserrín, astillas y corteza,

empleando diferentes métodos (Ladinskaya y Naumenko, 1987; Semenintin, 1985). Ensayos

realizados por diferentes investigadores dan fe del valor nutritivo de tales suplementos. Ejemplos lo

constituyen los siguientes:

- Al suministrar suplemento carbohidratado obtenido a partir de astillas de madera a novillos y

vacas lactantes, se comprobó que su valor nutritivo es elevado y equivale a 0,5-0,6 unidades

alimenticias (Levanova, 1987).

- Se suplementó una dieta alimenticia para toros de ceba con masa sacarificada de madera, en dosis

de 4 kg por cabeza al día y se observó un aumento en 32 % en peso de los animales con respecto al

grupo de control (Strielsky, 1989).

- En Estados Unidos, un grupo de investigadores estableció diferentes dosis para las cuales la

madera de álamo descortezado y la pulpa de álamo podían ser suministrados en la dieta de ovinos y

vacunos (Fritsdiel et al., 1976).

- En Canadá estudiaron la posibilidad de utilizar álamo para sustituir parte de la ración de ganado de

leche y carne, para lo cual se sometió a tratamiento térmico virutas trituradas. El producto obtenido

se mezcló con sustancias proteicas y vitaminas, se enriqueció con maíz y urea. Al suministrarlo a

los animales se obtuvieron resultados muy positivos (Gromov, 1984).

En la agricultura son numerosos los reportes científicos acerca de la utilización del aserrín y la

corteza de especies forestales en la elaboración de compost para la fertilización orgánica y el

7

mejoramiento de los suelos en diferentes países (Milbocker, 1991; Dangler, 1993; Guedes, 1994;

Borazjani et al., 1997).

El aserrín solo, como fertilizante, es poco efectivo, ya que contiene bajo contenido de elementos

nutritivos: aproximadamente 0,1 % de N, 0,02 % de P2O5 y 0,12 % de K2O. Si se suministra fresco,

sin compostar, puede provocar carencia de Nitrógeno en la planta en el primer y a veces en el

segundo años de haberlo suministrado al suelo. Por otra parte, el complejo lignocelulósico del

aserrín puede ser utilizado para aumentar el nivel de humus del suelo. Efecto positivo y continuado

del aserrín se observó con su introducción en forma de capas para la reforestación en suelos pobres,

arenosos. Ejemplo de esto se observó en Estados Unidos durante un experimento en el cual al cabo

de 14 años de plantado un bosque, se conservó sólo el 7 % sin enmienda, y para el suelo que tuvo

aserrín, 43 - 50 %, con un diámetro y altura de los árboles 2-3 veces superior.

En Chile un grupo de investigadores estudiaron el comportamiento de mezclas suelo-aserrín-ceniza

y comprobaron la posibilidad de utilización de estos residuos como mejoradores de la fertilidad de

los suelos, ya que las mezclas producen un incremento en el nivel de elementos nutritivos (Crez,

1990). Fueron estudiados por investigadores brasileños los efectos de residuos de Leucaena

leucocephala en la fertilidad de dos tipos de suelos en Paraná y se comprobó que hubo reducción de

la acidez y del aluminio intercambiable, además de un incremento en el contenido de calcio,

potasio, materia orgánica y fósforo (Carneiro, 1995). En Cuba también se han realizado trabajos

encaminados a demostrar la efectividad de estos residuos forestales con fines agrícolas. En el

Instituto de Investigaciones Forestales (IIF), por ejemplo, obtuvieron un abono orgánico a partir de

residuos boscosos, cepas microbiológicas y agentes químicos (Harewood et al., 1989).

8

3. MATERIALES Y MÉTODOS

3.1. Diagnóstico de la situación de los residuos madereros en la provincia de Pinar del Río

Este estudio se basa en la obtención de información sobre el estado actual de los residuos madereros

en la provincia de Pinar del Río. Para ello se estructuró una encuesta dirigida a las entidades

procesadoras de madera, es decir, aserraderos y carpinterías (estatales y particulares). La encuesta

se aplicó mediante un muestreo aleatorio simple en ocho municipios de la provincia. En ella se

contemplan los siguientes aspectos: cantidad de residuos generados, clasificación, almacenamiento,

disposición y destino final de los residuos.

3.2. Estimación del volumen de aserrín originado durante el aserrado de la madera en el

aserradero “Combate de la Tenería”

Para la realización de este experimento se seleccionó el aserradero “Combate de la Tenería”,

ubicado en la localidad de Macurijes, municipio Guane. La especie seleccionada fue Pinus caribaea

Morelet var. caribaea, la cual representa aproximadamente el 90 % de la madera que se elabora en

este aserradero. El tamaño de la muestra para el cálculo del volumen de aserrín se determinó por la

expresión (Freud, 1980):

n = t2 cv2 / E2

donde:

t: t student para 95 % de confianza

cv: coeficiente de variación (%)

E: Error de muestreo (10 %)

Los datos se tomaron de 120 trozas de Pinus caribaea (60 de 4 m y 60 de 3 m), de forma aleatoria,

en el interior del establecimiento. A las trozas se les midió el diámetro en el extremo inferior y la

longitud. Las mediciones de diámetro se realizaron con una forcípula de aluminio. Los cálculos se

realizaron mediante las ecuaciones establecidas por Egas (1998) para la especie Pinus caribaea, en

las condiciones de este aserradero.

Para el cálculo de volumen de trozas:

Vcc = e ( -8,9070 + 0,8135. ln Dr + 2,0085. ln l + 0,9343. ln C ) + (π/4). (Dr/100)2. l

Vsc = e ( -9,2832 + 1,8116. ln Dr + 1,2533.ln l )

Para el cálculo del porcentaje de aserrín en la línea de grandes y pequeñas dimensiones,

respectivamente:

% aserrín = 7,5554 - 0,0020 Dr2

% aserrín = 11,8000 - 0,0112 Dr2

El volumen de aserrín se calculó como sigue:

9

V aserrín = Vtroza . % aserrín / 100

donde:

Dr : diámetro en el extremo (cm)

l: longitud (m)

Vcc : volumen de madera con corteza (m3)

Vsc : volumen de madera sin corteza (m3)

Cd: conicidad

3.3. Composición química del aserrín Pinus caribaea Morelet var. caribaea del aserradero

“Combate de la Tenería”

Para la realización de este experimento se tomó muestra de aserrín de Pinus caribaea Morelet var.

caribaea obtenido como residuo en el propio aserradero de Macurijes. La toma de la muestra se

realizó por el método del agotamiento en la pila, según se establece por el Control técnico-químico

de las producciones hidrolíticas (Emilianova, 1979). En el laboratorio la muestra se tamizó hasta

partículas entre 0,4 - 0,6 mm según norma standard TAPPI y se envasó en frascos de cristal para su

posterior análisis.

La caracterización química consistió en la determinación de los contenidos de celulosa, lignina,

cenizas, sustancias solubles en agua a 95 oC y sustancias solubles en disolventes orgánicos (mezcla

benceno-etanol), así como de la ceniza. La determinación de celulosa y lignina se realizó al material

libre de extractivos, para lo cual se extrajo la muestra en equipo Soxhlet con mezcla benceno-etanol

(2:1) durante ocho horas, cuatro horas con etanol y finalmente con agua durante una hora, en baño

de agua hirviente. Se emplearon las normas standard TAPPI para el estudio de la composición

química de madera (TAPPI, 1964). 3.4. Caracterización del aserrín con vistas a su transformación por la vía hidrolítica

Con este objetivo se estudió el aserrín de madera de Pinus caribaea Morelet var. caribaea y

Eucalyptus saligna Sm , dos especies que crecen en la región de Macurijes y representan a dos tipos

diferentes de maderas, de coníferas y latifolias, respectivamente.

El aserrín de Pinus caribaea se obtuvo de la pila en el aserradero, según se describe en el epígrafe

3.3. La muestra del aserrín de Eucalyptus saligna se obtuvo mediante aserrado en sierra circular de

banco, de seis árboles de 10 años de edad, seleccionados al azar en áreas de la Empresa Forestal

Macurijes, los cuales fueron talados, descortezados manualmente y secados de forma natural. En

todos los casos las muestras se tamizaron hasta tamaño de partícula de 0,4-0,6 mm, según norma

standard TAPPI y conservadas en frascos de cristal para su posterior análisis.

10

Se realizó una caracterización química de los materiales a utilizar para valorar su posible

potencialidad con fines hidrolíticos. Esta consistió en la cuantificación de los polisacáridos

fácilmente hidrolizables (PFH), polisacáridos difícilmente hidrolizables (PDH), según Emilianova

(1958) y de cenizas por el método TAPPI, como se describió en 3.3.

3.4.1. Obtención del cuadro cinético de la prehidrólisis.

Los parámetros que se determinaron con este fin fueron: hidromódulo, catalizador y régimen

óptimo de temperatura y tiempo.

Se seleccionó el valor de hidromódulo tres (HM=3) para realizar el tratamiento, por tratarse de una

hidrólisis de bajo módulo, con el fin de que asegure, además, la humedad adecuada del producto

final. Como catalizador se utilizó dihidrógenofosfato de calcio -Ca(H2PO4)2- (superfosfato de calcio

de calidad forrajera), sustancia que posee actividad catalítica conocida (Morozov, 1988). Esta es

una sal ácida, capaz de generar iones hidronio al hidrolizarse y a la vez, enriquece al hidrolizado

con elementos minerales calcio y fósforo.

Para el tratamiento de prehidrólisis se mezclaron 5 g de aserrín con 15 mL de agua (HM=3) y se

adicionó el catalizador, superfosfato de calcio de calidad forrajera, en estado sólido, en cantidad

suficiente para que su concentración alcance 4 % en base a masa seca de aserrín. La mezcla se agitó

y se introdujo cuidadosamente en el autoclave, el cual se calentó en baño de glicerina, con regulador

automático de temperatura. Se estudiaron los siguientes regímenes:

Temperatura (oC) Tiempo (min)

150 20 40 60 80 100 120

160 20 40 60 80 100 120

170 20 40 60 80 100 120

Transcurrido el tiempo de reacción, el autoclave se enfrió. Para cada tratamiento, al producto

obtenido se le determinó el contenido como porcentaje, de sustancias reductoras totales, por el

método ebullostático (Emilianova, 1969). Con los datos experimentales alcanzados, se obtuvo un

modelo matemático, que permitió el establecimiento del régimen de prehidrólisis para cada una de

las especies estudiadas, con mayor precisión. El método que se utilizó fue un método matemático de

Estimación no Lineal (método iterativo) del tipo quasi-Newton, con auxilio del paquete

STATISTIC sobre Windows. El tiempo óptimo se seleccionó derivando el modelo para la

temperatura escogida, con auxilio del paquete DERIVE sobre Windows.

11

3.4.2. Caracterización del producto obtenido mediante la prehidrólisis

Se determinaron los indicadores organolépticos mediante examen visual (estado físico, olor, color).

3.4.3. Cálculo del rendimiento de la masa sacarificada

El rendimiento se calcula por la expresión:

R (%) = (masa del producto / masa de la materia prima) .100. (Jolkin, 1989)

donde: R es el rendimiento de masa sacarificada.

3.5. Diseño y construcción de un hidrolizador para el escalado

Una vez establecidas las condiciones experimentales a nivel de laboratorio, se procedió al diseño de

un reactor para la transformación del aserrín a mayor escala, al cual se le denominó hidrolizador. El

equipo consiste en un recipiente vertical, hermético, de 1,072 m de altura y un diámetro exterior de

55,0 cm. Está construido totalmente de acero inoxidable AESI 304 con la finalidad de garantizar la

calidad del producto y el trabajo en el medio ácido. Cuenta con un Termómetro de Carátula de

rango 0-200 ºC con vaina para su aislamiento y otros dispositivos como manómetro, válvula de

seguridad, válvula de esfera para la extracción del producto y para la entrada y salida del vapor. El

rolo interior fue pulido espejo, posee una camisa donde circulará el vapor, la cual está recubierta

con lana de vidrio, así como su fondo. El cierre del equipo es por medio de bridas y grapas. Se le

incorpora en el interior del equipo, fijado por medio de pasadores, un cesto de malla para el

deposito de los materiales a hidrolizar. El equipo está apoyado sobre tres patas que van ancladas al

suelo por mediación de pernos de anclaje.

3.6. Valoración de las cualidades alimenticias de la madera sacarificada de Pinus caribaea

Morelet var. caribaea y Eucalyptus saligna Sm.

Al aserrín sacarificado se le determinan algunas características que manifiesten sus cualidades como

alimento, según los indicadores que se establecen para suplementos alimenticios (Jolkin, 1989).

Se utilizó masa de madera sacarificada de Pinus caribaea y Eucalyptus saligna, obtenidas en

condiciones de laboratorio, bajo los regímenes óptimos que fueron previamente establecidos: 160 oC-61 min para Pinus caribaea y 160 oC-71 min para Eucalyptus saligna.

Esta masa sacarificada, previo a los análisis fue neutralizada con amoníaco concentrado, ya que el

pH del producto es bajo (< 4).

Se realizó la determinación de humedad, sustancias reductoras libres (SRL) y totales (SRT),

celulosa, fibra bruta, proteína bruta, extracto etéreo, sustancias solubles en agua, digestibilidad,

cenizas, pH, furfural y ácidos orgánicos.

12

4. RESULTADOS Y DISCUSIÓN

4.1. Situación de los residuos madereros en la provincia de Pinar del Río.

Se realizaron encuestas en varias entidades generadoras de residuos (carpinterías y aserraderos) de

ocho municipios de la provincia de Pinar del Río. La valoración de los resultados se realizó

atendiendo a los aspectos que se reflejan en la encuesta.

Se pudo constatar que no se cuantifican los residuos en ninguna de las entidades encuestadas, ni

como volumen, masa o porcentaje. Esto, por supuesto, representa una dificultad, pues no se puede

conocer con qué potencialidades del residuo se cuenta al querer enfrentar una tarea encaminada a su

utilización.

Por el estudio realizado se concluyó que son cinco los tipos de residuos madereros que se generan

indistintamente en las entidades encuestadas. Ellos son: aserrín, costanera, corteza, viruta y leña.

Esta clasificación concuerda con la que se reporta en la literatura. Por ejemplo, en el aserradero de

Valsaín, España, consideran que son tres los residuos fundamentales que se originan durante el

aserrado: corteza, serrín y astillas (Espiga, 1994). En Bogotá, Colombia, por estudio realizado en

depósitos de madera, fábricas de muebles, carpinterías y ebanisterías de la ciudad, consideran tres

tipos de residuos: virutas, aserrín y retal (Granja y Molina, 1992). Estos son los materiales

considerados por la industria como desperdicios o residuos.

En los aserraderos los residuos se separan, en las carpinterías se mezclan. En ninguno de los

establecimientos estudiados existen áreas especializadas para el almacenamiento, ni se toman

medidas para la protección de los residuos, es decir, estos permanecen a la intemperie. Este es un

aspecto que conspira contra el uso posible de los residuos. En otros países sí se toman medidas para

su almacenamiento temporal. Granja y Molina (1992), refieren cómo en Bogotá para este fin

algunas entidades destinan dentro de sus plantas un área especial para almacenar los residuos.

Además, utilizan recipientes tales como lonas y canecas plásticas y metálicas. No disponer de áreas

para el almacenamiento de los residuos puede acarrear problemas medioambientales, riesgos de

incendios y dificultades en el desarrollo normal del trabajo.

La corteza se bota en su totalidad. Esto demuestra el desconocimiento por parte de las empresas del

valor que posee este residuo y la falta de iniciativas para la búsqueda de soluciones encaminadas al

aprovechamiento de los residuos. El aserrín es el que más variedad de uso presenta según estas

categorías, si se tiene en cuenta, además, que es el residuo común a todas las entidades encuestadas.

13

Distribuido como porcentaje, los mayores usuarios de estos residuos son: hogares (38 %), empresas

estatales (26 %), granjas avícolas (16 %), educación (10 %) y hospitales (10 %). Los hogares son

los que más se benefician, dado su uso como combustible. Con este fin se usa la leña y el aserrín.

En Educación, hospitales y otras entidades, el aserrín se utiliza como elemento de aseo para los

pisos. En las granjas avícolas el aserrín y la viruta son demandados para ser usados como camas

para aves. Esta es una práctica mundial, como lo atestiguan los trabajos de Brake (1992) y Oconnell

(1997). Entre las Empresas Estatales que más utilizan los residuos se encuentran la tabacalera,

acopio y transporte. Otros usuarios de residuos, pero en menor cantidad, son: Empresa de cultivos

varios, Empresa porcina, Salud Pública, Educación.

El precio para los residuos, vendidos en el lugar de origen está determinado por la oferta y la

demanda existente para cada uno de ellos, aunque poseen precios locales. En 1998, en el aserradero

“La Jagua”, municipio La Palma, se vendió el aserrín a 50 centavos el saco; en el aserradero

“Combate de la Tenería” la leña en este mismo año se vendió a 10,00 pesos / m3. La leña es el único

residuo que tiene precio oficial según la Lista Oficial de Precios, el cual para Empresas Estatales

equivale a 6,25 pesos / m3 y 6,01 USD para Empresas como el Turismo (sub-delegación Forestal,

Agricultura).

Este estudio ha permitido establecer un diagnóstico del estado actual de los residuos madereros en

la provincia y se puede concluir que existe un potencial de recursos poco aprovechados,

fundamentalmente aserrín y corteza, los cuales pueden encontrar utilización para diversos usos.

4.2. Estimado de volumen de aserrín de Pinus caribaea var. caribaea que se genera en el

aserradero “Combate de la Tenería”

Estimar el volumen de aserrín que se genera en esta instalación permitirá conocer de cuanta materia

se dispone para proponer alguna vía de aprovechamiento. Fueron calculados los volúmenes y

porcentajes de aserrín de Pinus caribaea para las líneas de grandes dimensiones (trozas de 4 m de

largo) y de pequeñas dimensiones (trozas de 3 m de largo).

El volumen total de madera en troza resultó 32,77 m3 para la línea de 4 m y de 22,10 m3 para la

línea de 3 m. En total como promedio en una jornada de trabajo se elaboran 54,87 m3 de madera en

troza. Los porcentajes de aserrín generado fueron de 6,13 % y de 8,40 % para las líneas de cuatro y

tres metros respectivamente. Mediante una media ponderada, se obtiene un porcentaje promedio,

considerando las dos líneas, de 7,05 % de aserrín. Esto representa un volumen de aserrín de 3,86 m3

en un turno de trabajo. Este valor expresado como masa, considerando la densidad de la madera

14

verde de Pinus caribaea var. caribaea de 976,75 kg/m3, según Guevara (1998), equivale a 3,80

toneladas métricas en doce horas de trabajo.

Se encuentra similitud en los resultados de Fahey y colaboradores (1993), quienes estimaron el

rendimiento de Pinus ponderosa en el estado de Arizona, Estados Unidos, y obtuvieron valores

entre 6,7 - 8,8 % de aserrín para árboles de diámetros semejantes a los utilizados en este

experimento.

Los resultados que se han obtenido evidencian que no es correcto el criterio generalizado acerca de

que el volumen de aserrín que se obtiene durante el aserrado de la madera es de un 10 %. Este valor

depende de varios factores, como son el diámetro, la longitud, el tipo de sierra, el esquema de corte,

la calidad de la troza, los defectos de la madera, y otros. Los volúmenes de aserrín calculados dan fe

de la existencia de una biomasa aprovechable para varios fines, que van desde los energéticos hasta

la obtención de productos químicos. Esta cifra aumenta notablemente si se considera que en la

provincia existen doce aserraderos generando los mismos residuos.

4.3. Composición química del aserrín de Pinus caribaea var. caribaea generado en el

aserradero “Combate de la Tenería” y sus posibles usos.

Del estudio de la composición química del aserrín de Pinus caribaea var. Caribaea, se puede

observar que la celulosa es el componente mayoritario en la especie de pino estudiada, con valores

que se encuentran en el rango de 43,10- 45,61 %. La lignina, que constituye el segundo componente

en abundancia en la pared celular de las plantas lignificadas, se encuentra en valores que oscilan

entre 28,41 - 31,27 %.

Para madera de coníferas se reportan valores muy similares a los obtenidos en este experimento.

Jolkin (1989) informa como promedio para la madera de pino 44,1 % de celulosa; Sjöstrom (1981),

para madera de Pinus silvestri, 40 % de celulosa y 27,7 % de lignina; Echenique y Robles (1993),

para maderas en general, reportan contenidos de celulosa entre 45 y 50 % y de lignina entre 20 y 30

%.

Los pinos de la región de Viñales, según estudios realizados por Irulegui y colaboradores (1989),

muestran un contenido de celulosa para la especie Pinus caribaea, entre 47,6- 1,1 % y la lignina en

el rango de 29,17-30,76 % , mientras Carballo (1991) reporta un contenido de celulosa entre 55,04 -

58,42 % y entre 27- 9 % de lignina para la misma especie.

Las sustancias solubles en agua a 95 oC oscilan entre 2,79-3,90 %, en tanto los solubles en

disolventes orgánicos ofrecen valores entre 3,08-4,71 %. Estos valores se corresponden con los

15

reportados por Díaz (1986) para la madera de pino, también con los informes de Echenique y

Robles (1993), quienes refieren que el contenido total de extractivos en la madera se encuentra en el

rango de 0-10 %. Para las especies Pinus caribaea y Pinus tropicalis de la región de Viñales,

estudiados por Irulegui (1986) y Carballo (1991), el contenido de sustancias solubles en agua a 95 oC alcanza valores entre 3,24-12,3 %.

Las sustancias minerales, reportadas como total de cenizas, se encuentran en el rango de 0,48-0,68

%. Este resultado coincide con lo planteado por los investigadores en la química de la madera,

como Sjöstrom (1981), Jolkin (1989) y Emilianova (1979), quienes señalan para las maderas un

contenido mineral no superior al 1 %.

Por cuanto la composición química depende de las condiciones climáticas y edafológicas y de la

edad de los árboles, entre otros factores, se comprende la necesidad de caracterizar la madera en

cada región donde ella se elabora. Por la composición química que exhibe la madera de Pinus

caribaea var. caribaea de la localidad de Macurijes, se puede recomendar el uso de esta biomasa

para la obtención de diversos productos. Por su contenido en carbohidratos, en la industria celulosa-

papel o la industria hidrolítica que genera productos tan importantes como levadura forrajera, etanol

combustible, furfural y otros. Según Kalincha (1978), de 10 kg de residuos de coníferas se pueden

obtener 22,1 % de alcohol y 4-5 kg de levadura seca, con un contenido de aproximadamente 50 %

de proteína.

La lignina es uno de los polímeros orgánicos renovables sobre la tierra y constituye la fuente más

importante de material fenólico en el futuro, debido a los cada vez más limitados recursos

petroleros. No obstante, por largo tiempo se le ha considerado un subproducto de la industria de

pulpa y papel, cuyo único aprovechamiento ha sido su poder calórico. Actualmente existe una gran

necesidad de desarrollar nuevos procesos o re-evaluar los ya conocidos para la mejor utilización de

la lignina en la preparación de adhesivos, resinas, dispersantes y fenoles de baja masa molar

(Gandini, 1992).

El conocimiento del contenido mineral es también muy necesario para algunas industrias como la

hidrolítica, ya que los minerales pueden neutralizar parcialmente el medio ácido necesario para el

proceso. Las presencia en la madera de este grupo de compuestos le confiere a la misma una gran

importancia por los usos a que actualmente se está destinando, como se muestra a continuación:

En el estado de Mississipi utilizan residuos de la industria de muebles compostados con estiércol, lo

que ha tenido uso exitoso como abono para las pequeñas empresas (Borazjani, 1997). En la

Universidad de Idaho, E.U., la ceniza que se obtuvo de la madera que fue usada como combustible

16

en una planta generadora de electricidad, se utilizó compostada con otros residuos orgánicos y

resultó ser un sustituto económico de la cal (Campbell, 1997). El complejo lignocelulósico del

aserrín y la corteza puede ser utilizado, además, para elevar el nivel de humus del suelo.

4.4. Características del aserrín de Pinus caribaea Morelet var. caribaea y Eucalyptus saligna

Sm con vistas a su transformación por la vía hidrolítica.

Esta caracterización consistió en la determinación de polisacáridos fácil y difícilmente hidrolizables

(PFH y PDH) y de la ceniza. Se observa un contenido de polisacáridos fácilmente hidrolizables de

18,40 % para Pinus caribaea y de 20,5 % para Eucalyptus saligna. Estos polisacáridos representan

fundamentalmente las hemicelulosas del tejido vegetal. Incluye, además, al almidón y las pectinas.

Los polisacáridos difícilmente hidrolizables representan a la celulosa y alcanzan, para la madera de

Pinus caribaea, un valor de 49,9 % y un valor de 37,9 % para Eucalyptus saligna. Las cenizas se

encuentran en un 0,40 %, lo cual ha sido discutido anteriormente, en el epígrafe 4.3. para Pinus

caribaea y en un 0,16 % para Eucalyptus saligna.

Tanto por el contenido en polisacáridos fácil como difícilmente hidrolizables, los valores que se

alcanzaron para la madera de P. caribaea, coinciden con los que se han determinado por otros

autores para especies de coníferas (Ernst, 1982; Utkin, 1984). Emilianova (1969), reporta como

promedio para madera de pino 17,84 % de PFH y 47,65 % de PDH. Villar y colaboradores (1991)

estudiaron el comportamiento de la madera de Pinus cubensis de la región de Moa, y encontraron la

siguiente composición en polisacáridos: 15,3 % de PFH y 36,5 % de PDH. Las maderas de

coníferas presentan un menor contenido de PFH que las latifolias y mayor de PDH.

En cuanto a los valores alcanzados para E. saligna, estos resultados coinciden con los reportados

por Ladinskaya y Naumenko (1987) para madera de álamo: entre 16,3-17,4 % de PFH y entre 39,6 -

43,0 % de PDH. Por el porcentaje de polisacáridos fácilmente hidrolizables elevado, de 18,40 % y

20,5 % para P.caribaa y E. saligna, respectivamente (Este porcentaje en las maderas alcanza

valores entre 15 y 30 %), se cataloga a estas maderas como materia prima valiosa para el

tratamiento prehidrolítico.

4.4.1. Regímenes de prehidrólisis del aserrín de Pinus caribaea y Eucalyptus saligna.

Para cada combinación de temperatura y tiempo se determinó el porcentaje de sustancias reductoras

totales (SRT). El contenido de sustancias reductoras totales expresa la cantidad de mono y

oligosacáridos presentes en la disolución, formados a partir de las hemicelulosas, aunque incluye

una pequeña cantidad de otras sustancias reductoras que han pasado al hidrolizado durante el

tratamiento.

17

Con los datos obtenidos y el tratamiento estadístico descrito, se obtuvieron las curvas que

representan el proceso de prehidrólisis para cada temperatura durante el tiempo de reacción.

Teniendo en cuenta que el mayor porcentaje de sustancias reductoras aparece a la temperatura de

160 oC, derivando la función correspondiente, se obtiene que el tiempo óptimo de reacción es 60,93

min.

De esta manera, se seleccionó como el mejor régimen para la hidrólisis de la madera de Pinus

caribaea: 160 oC-61 min y como el mejor régimen de prehidrólisis para el aserrín de Eucalyptus

saligna: 160 oC-71 min. Estos resultados coinciden con los regímenes que han sido establecidos

para maderas de latifolias. Por ejemplo, Ernst (1984) mediante tratamiento hidrobarotérmico sin

catalizador reporta rendimientos de azúcar entre 8-10 % para el siguiente régimen: temperatura

entre 140-170 oC y tiempo de 1,5-3 horas. Diversos regímenes para la prehidrólisis han sido

establecidos por varios investigadores en diferentes partes del mundo y varían según el tipo de

tratamiento y del material vegetal que se emplee.

Para madera de coníferas, estos constituyen ejemplos de algunos regímenes: En el CNIC,

prehidrolizaron madera de Pinus cubensis, Pinus tropicalis y Pinus caribaea con diferentes

concentraciones y proporciones de ácido nítrico y sulfúrico como catalizador y recomiendan

realizar el tratamiento a temperatura de 140 oC en tiempos superiores a 45 minutos (López Planes,

1983). Por otra parte, Villar y colaboradores (1991), para residuos del aserrado de madera de Pinus

cubensis de la región de Moa, establecieron como régimen óptimo de prehidrólisis 180 oC - 40 min,

mediante el cual se alcanzó 11 % de azúcares, por tratamiento con vapor, en ausencia de

catalizador. Ladinskaya y Naumenko (1987), para maderas en general, establecieron como

parámetros óptimos de prehidrólisis: temperatura entre 145 - 160 oC y tiempo de 2 hasta 3 horas.

Ningún régimen puede garantizar, en principio, un rendimiento teórico de azúcares, ya que parte de

ella se descompone, lo cual se demuestra por la presencia de furfural en el hidrolizado. Durante el

proceso de prehidrólisis, a la disolución pasan, además, productos de la descomposición del tejido

vegetal como ácido acético, ácidos urónicos, formaldehído, trazas solubles de lignina y además

productos de la descomposición de los azúcares (furfural, hidroximetil-furfural, ácido fórmico,

ácido levulínico). El contenido de las sustancias del primer grupo depende fundamentalmente de la

composición del material. El rendimiento de los productos de la hidrólisis de los polisacáridos

depende directamente de los parámetros del proceso.

18

4.4.2. Características del aserrín hidrolizado

El producto que se obtiene como resultado de la prehidrólisis del aserrín es en sí, lignocelulosa

enriquecida en azúcares (mono y oligosacáridos) y se denomina “Masa de madera sacarificada”. Por

sus características físicas, la masa sacarificada de madera de Pinus caribaea y de Eucalyptus

saligna constituye una masa suave y desgranada que conserva el aspecto del material inicial. Posee

color pardo y olor agradable.

4.4.3. Rendimiento de la masa sacarificada

El rendimiento para ambas especies se encuentra entre 95 - 99 %, ya que el producto se utiliza

completamente. Las pérdidas que ocurren son debidas a la impregnación del producto en las

paredes del autoclave, por lo que se considera una tecnología prácticamente sin residuos (Jolkin,

1989).

4.5. Características del hidrolizador

El reactor diseñado tiene una capacidad de 60 litros y estará acoplado a una caldera de vapor para su

calentamiento. Las etapas fundamentales de trabajo en este equipo son las siguientes:

1. Carga del hidrolizador con la mezcla aserrín-agua-catalizador.

2. Calentamiento con vapor.

4. Cocción.

5. Descompresión.

6. Descarga de la masa sacarificada.

4.6. Cualidades alimenticias de la masa sacarificada de madera de Pinus caribaea Morelet var.

caribaea y Eucalyptus saligna Sm.

Los resultados del estudio de algunos indicadores de la masa sacarificada de aserrín de Pinus

caribaea y Eucalyptus saligna, obtenida a escala de laboratorio destacan que mediante el

tratamiento de prehidrólisis se alcanza un rendimiento de sustancias reductoras totales superior al

10 % para las dos especies. Las SRT representan los mono y oligosacáridos existentes en el

hidrolizado como producto de la hidrólisis de las hemicelulosas. Este contenido de azúcares le

confiere a los hidrolizados de madera cualidades de sustratos idóneos para el crecimiento de

microorganismos. Para asegurar una actividad normal de la microflora y buena actividad

celulolítica, deberá estar presente cierta cantidad de carbohidratos solubles o fácilmente

fermentables en los alimentos (Dearriba, 1988). En el cromatograma de madera sacarificada de

Eucalyptus saligna se aprecia la presencia de los azúcares xilosa y arabinosa, los cuales aparecen en

proporción 4:1, lo que evidencia el predominio de cadenas de arabinoxilano en las macromoléculas

19

de hemicelulosas de la madera de esta especie, característico en las maderas de latifolias (Sharkov,

1962).

El contenido de sustancias solubles en agua aumenta considerablemente con respecto al material

inicial. Se alcanzan valores de 23,0 % para la madera de Pinus caribaea y 18,0 % para la madera de

Eucalyptus saligna. La existencia de un contenido elevado de sustancias solubles en agua, asegura

parte de la digestibilidad de los alimentos.

El extracto etéreo mide fundamentalmente el contenido de grasa bruta y comprende no sólo aceites

y grasas, sino también ácidos grasos, resinas, etc. Para Pinus caribaea este valor es de 1,60 %,

superior al encontrado para Eucalyptus saligna (0,31). Los pinos, como se conoce, se caracterizan

por su elevado contenido de sustancias resinosas (Jolkin, 1989).

El contenido de nitrógeno, expresado como proteína bruta se encuentra entre 3-5 %. Como se

observa, el nivel de proteína es bajo, ya que el contenido promedio de proteína en un pienso es de

16 % (Göhl, 1982). Las maderas en su estado natural tienen contenido muy bajo de nitrógeno, este

valor se eleva hasta 5 % debido al amoníaco que se adicionó al producto durante la neutralización.

Se conoce que la deficiencia de nitrógeno disminuye la digestibilidad de la fibra y además, que

parte del nitrógeno que necesitan los organismos celulolíticos debe ser nitrógeno no proteico. Esto

no justifica la falta de nitrógeno proteico y es la causa por la que los materiales de este tipo se

tratan con microorganismos para enriquecerlos proteicamente y elevar su nivel nutritivo.

La fibra cruda o fibra bruta representa los polímeros estructurales que contiene el producto: lignina,

celulosa y una fracción pequeña de hemicelulosas. Para Pinus caribaea la fibra cruda representa

58,0 %, mientras que para Eucalyptus saligna es menor (40 %).

La lignina se transforma poco durante este procedimiento, solamente algunas fracciones de baja

masa molar se separan de ella. La incrustación física de la lignina en las fibras de las plantas la hace

inaccesible a las enzimas que normalmente provocarían su digestión. La lignina, además de ser

indigerible, actúa como una barrera física que envuelve a la celulosa y las hemicelulosas,

impidiendo su exposición al ataque de los microorganismos del rumen.

La digestibilidad “in vitro” expresa la proporción en que se encuentran los nutrimentos digeribles y

su utilización con respecto al total del alimento. Los valores de digestibilidad que alcanza el

producto, como se observa, es mayor para el E.saligna que para P. caribaea: 49 % y 32 %

respectivamente. Estos valores se corresponden con lo que se reporta en la literatura para masa

sacarificada de madera de coníferas y latifolias. Mediante el tratamiento, la digestibilidad aumenta

20

notablemente. Según Utkin (1984), la digestibilidad natural de la madera de coníferas alcanza sólo

el 5 %, en tanto para latifolias es de 8-20 %.

El furfural es una sustancia tóxica y su presencia en los alimentos está sujeta a reglamentación

(menos de 0.1 %). En el hidrolizado de pino se registró 0,017 % y en el de eucalipto, trazas. Los

ácidos orgánicos aparecen para los hidrolizados de ambas especies en muy bajas concentraciones

(trazas). Para Eucalyptus saligna se adjunta cromatograma. Las bajas concentraciones de ácido

acético y furfural, están relacionados con el régimen de hidrólisis seleccionado. Tanto el ácido

acético como el furfural, constituyen sustancias tóxicas para los microorganismos (Parajó, 1993).

Por tanto, el hidrolizado de madera de Pinus caribaea y Eucalyptus saligna obtenido bajo el

régimen de prehidrólisis establecido constituye buen sustrato para los procesos fermentativos.

En cuanto a la composición mineral estudiada, el total de cenizas para la masa sacarificada de Pinus

caribaea es de 3,88 % y de 3,80 % para Eucalyptus saligna. Esta ceniza la componen

fundamentalmente los óxidos, silicatos y fosfatos de los elementos metálicos. Se detectó la

presencia de 23 elementos. Se destaca que los mayores porcentajes corresponden a los elementos

calcio (0.38 % y 0,31 %) para masa sacarificada de Pinus caribaea y Eucalyptus saligna,

respectivamente y fósforo (0,32 % para P. caribaea y 0,30 % para E. saligna, respectivamente), lo

cual está determinado por la presencia del catalizador (superfosfato de calcio al 4 %). Se encontró

también cantidades significativas de Na, K, Mg, Fe. De otros elementos sólo aparecen trazas.

Estos resultados coinciden con lo reportado por Sjöstrom (1981) y Jolkin (1989).

Tanto la masa de Pinus caribaea como la de Eucalyptus saligna satisfacen las exigencias de

suplementos alimenticios carbohidratados, según norma soviética TUOP 64 -11- 105 - 86 (Jolkin,

1989).

21

5. CONCLUSIONES

1- El volumen de aserrín que se genera en el aserradero más moderno de Pinar del Río asciende a

3,8 toneladas métricas en un turno de doce horas de trabajo, sin embargo, el 70 % del aserrín en esta

provincia se desperdicia.

2- Los indicadores que caracterizan a este aserrín, como materia prima en el aprovechamiento

integral de la madera de Pinus caribaea var. caribaea son los siguientes: 43,10-45,61 % de

celulosa; 28,41-31,27 % de lignina; 0,48 - 0,68 % de cenizas; 2,79-3,90 % de sustancias solubles en

agua a 95 oC y 3,08-4,71 % de sustancias solubles en benceno-etanol, en base a masa absolutamente

seca, lo cual le confiere características de materia prima para diversos usos.

3- El régimen óptimo de prehidrólisis de Pinus caribaea var. caribaea es 160 oC-61 min, y la masa

sacarificada que por esta vía se obtiene, presenta las siguientes propiedades: 16,15 % de sustancias

reductoras totales; 23,00 % de sustancias solubles en agua; 3,90 % de proteína bruta; 58,00 % de

fibra bruta; 3, 80 % de elementos minerales y 32,00 % de digestibilidad.

4- El régimen óptimo de prehidrólisis del Eucalyptus saligna Sm es 160 oC-71 min y la masa

sacarificada que por esta vía se obtiene, presenta las siguientes propiedades: 13,29 % de sustancias

reductoras totales; 18,00 % de sustancias solubles en agua; 5,14 % de proteína bruta; 40,00 % de

fibra bruta; 3, 88 % de elementos minerales y 49,00 % de digestibilidad.

5- La masa sacarificada de aserrín de Pinus caribaea var. caribaea y de Eucalyptus saligna Sm

poseen cualidades que permiten su utilización como suplementos alimenticios, lo cual se

corresponde con las normas internacionales establecidas para estos productos.

6. RECOMENDACIONES

- Se recomienda tener en cuenta los resultados de esta tesis para el aprovechamiento del aserrín,

como fuente de Biomasa para diversos fines.

- Que el procedimiento de prehidrólisis del aserrín utilizado en esta tesis constituya el fundamento

necesario para el establecimiento de una Planta Piloto destinada a la obtención de masa de

madera sacarificada.

- Que el procedimiento para el aprovechamiento del aserrín establecido en esta tesis, se extienda a

otras especies de coníferas y latifolias.

- Que se amplíen las pruebas de laboratorio de la masa sacarificada de aserrín en la alimentación

animal y otros usos.

- Que se incluyan los resultados de esta tesis en los programas de docencia de pre y post-grado, en

la especialidad de Ingeniería Forestal.

22

7. REFERENCIAS BIBLIOGRAFICAS

A.O.A.C. (1965). Official methods of analysis of A.O.A.C. 10 th. Edit. Assoc of Official

Agricultural Chemists. Washington D.C.

Becker, M. (1992). Economic value of non - wood products from tropical forests. IUFRO

Centennial Meeting. Berlin.

Bedrin, A. K. (1987) .Corteza de abeto blanco-valioso material para la producción de productos

químico - forestales. Guid. y Lesokh. Prom. No. 5: 8-10.

Belluomini, M. (1995). Posibles barreras preexistentes en Prosopis alba (Gris) contra el ataque de

Criodion augustatum Buquet en comparación con Prosopis nigra (Gris). Quebracho No. 3 : 65

- 68.

Borazjani, H.; S. Diehl; H. Stewart. (1997). Production of compost from furniture manufacturing

wood wastes. Forest Products Journal. 47 (2): 47 - 48.

Bouchard, J. (1990). Steam/aqueous thermomechanical process of the hemicelluloce in hardwoods.

Biomass. 23 (1): 243 - 247.

Brake, J. D. (1992). Evaluation of the Chemical and Physical Properties of Hardwood used as a

Broiler Litter material. Poultry Science. No. 71: 467 - 472.

Brauns and Brauns. (1960). The chemistry of lignin suplement. N. Y. 577 p.

Browning, B. (1967). Methods of wood chemistry. Vol.II. Interscience Publishers. E.U.

Bruce, A. M.and P. J. Whiteside. (1981).Introduction to Atomic Absorption Spectrophotometriy.

Second Edition. Pye Unicam Ltd. England. 82p.

Carballo L. (1990). The influence of Chemical Composition and of the age of caribaea Pine wood

on Physical and Mechanical properties as well as on the yield of sulfate pulp. Dissertation for

the degree of CSc. Zvolen. 114 p.

Carballo, L. y I. Melcer. (1991). Estudio de la composición química de la madera de Pinus caribaea

que crece en Pinar del Río, Cuba. Zbornik Vedeckych Prac. Zvolen. p.70.

Carneiro, A. (1995). Efectos de leucaena Leucocephala en la fertilidad de dos tipos de suelo en

Paraná. Floresta. 22 (1 - 2).

Comisión del Sur. (1991). Desafío para el Sur. Fondo de Cultura Económica. México. p.11-30.

Dangler, J. M. (1993). Lime aplications increase extended swetpotato transplant production in

heated beds. Journal of plant nutrition, 16 (11): 2281-2288.

Dearriba, J. (1988). Fisiología y Bioquímica de la digestión en el rumiante. Edit. Oriente. Santiago

de Cuba. 83 p.

Díaz, A. (1986). Ciencia de la madera. Ministerio de Educación Superior. La Habana. 195 p.

Echenique, R. (1993). Ciencia y Tecnología de la madera I. Textos Universitarios. Univ.

Veracruzana. México. p. 21- 60.

23

Egas, A. F. (1998). Consideraciones para el incremento de la eficiencia de la conversión de madera

en rollo de Pinus caribaea en sierras de bandas. Tesis presentada en opción al grado científico

de Dr en Ciencias Forestales. P. del Río. 116 p.

Emilianova, Y. Z.; T.A. Batrakov (1958). Determinación de azúcares por métodos cromatográficos.

Zhurnal Analitich. Khim. No.1.

Emilianova, Y. Z. (1969). Control químico-técnico de las producciones hidrolíticas. Edit. Lesnaya

Prom. Moscú. 366 p.

Ernst, L. K. (1982). Productos forrajeros a partir de los residuos del bosque. Edit. Lesnaya Prom.

Moscú.166 p.

Ernst, L. K. y S. I. Ladinskaya. (1984). Problemas de la utilización de los recursos forrajeros del

bosque. Lesnoe Khoziaistvo. No. 3: 4 - 5.

Espiga, F. (1994). El aserradero de Valsaín. Montes No. 36. Madrid p.11-18.

Fahey, T. (1993). Product recovery at ponderosa pine in Arizona and New Mexico. Research Paper.

Portland; O.R. 18 p.

Freud, J.E. (1980). Estadística Elemental Moderna. Edit. Pueblo y Educación. La Habana. 466 p.

Gandini, A. (1992). Polymers from Renewable Resources. Comprehensive Polymer Science. First

Supplement. Pergamon Press. New York. p. 543 - 544.

Gilbert, B. (1997). Industrial Production of Amazonian Natural Products. In: Phytochemical

Diversity: A source of new Industrial Production. The Royal Society of Chemistry. Information

services. Cambridge. p. 237-244.

Göhl, B. (1982). Piensos tropicales. Colección FAO: Producción y Sanidad Animal. Roma. 550 p.

Granja, C. y J. Molina. (1992). Estimación y usos de los residuos generados por industrias de

la transformación de madera en Bogotá. Colombia FORESTAL. 3 (5): 27-35.

Gueles, Y. C.; N.A. Vasilieva; L. A Gusarova. (1989). Residuos de corteza-materia prima potencial

para la producción de proteína comestible. Guid. y Lesokh. Prom. No. 2: 2-4.

Guevara, M (1998). Estudio preliminar de la densidad de madera verde en bolo de Pinus caribaea.

Tesis de Ingeniería Forestal. Universidad de Pinar del Río. 39 p.

Guevara, R. (1995). Perspectives for Forestry Research in the Latin America Tropics in the last

lustrum of the 20th Century. IUFRO. XX World Congress. Finlandia. Vol II. p. 107-114.

Hafizoglu, H; M. Usta; O. Bilgin (1997). Wood and bark composition of Picea orientalis (L) Link.

Holzforschung. 51 (2): 114 -118.

Harewood, Ch., et al. (1989). Proceso tecnológico para la producción de compost como abono

orgánico a partir de residuos boscosos. Resúmenes. Primer Congreso Forestal de Cuba. La

Habana. p. 130.

24

Irulegui, A. y L. Ramírez (1986). Evaluación de la potencialidad papelera de las especies Pinus

caribaea y Pinus tropicalis de Viñales, Pinar del Río. Rev. Forestal Baracoa. 16 (2): 7-27.

Jolkin, Y. I. (1976). Cromatografía en la química de la madera. 2a. edición. Lesnaya Prom. Moscú.

888 p.

Jolkin, Y.I. (1989). Tecnología de las producciones hidrolíticas. Edit. Lesnaya Prom. Moscú. 496 p.

Jones, H. L. (1963). Método espectrofotométrico para la determinación de furfural. Tappi. 44 (10).

Kalincha, A. A. (1978). El bosque para la agricultura. Edit. Lesnaya Prom. 192 p.

Kokalis-Burelle, N. (1994). Changes in population of soil microorganisms, nematodes, and enzyme

activity associated with application of powdered pine bark. Plant and Soil. No. 162: 175 -194.

Korolkov, I. Y. y V. P. Levanova. (1985). Transformación compleja del material vegetal en

levadura forrajera y alimentos carbohidratados. Guid. y Lesokh. Prom. No. 5: 6-8.

Kurkova, L. G. y V. P. Levanova. (1985). Hidrólisis de bajo módulo de los polisacáridos de

hemicelulosas de residuos de plantas agrícolas. Guid. y Lesokh. Prom. No. 8: 1-3.

Kuznetsov, B. N. (1996 ). The use of non-isobaric pre-hydrolysis for the isolation of organic

compounds from wood and bark. Bioresource Technology. 58 ( 2 ): 181-188.

Ladinskaya, S. I. y Z. M. Naumenko. (1987). Obtención de alimentos carbohidratados a partir de

residuos de madera. Lesnoi zhurnal. No. 1: 92 - 94.

Levanova, V. P. (1987). Obtención de alimento carbohidratado por hidrólisis de los desechos de

plantas agrícolas. Guid. y Lesokh. Prom. No. 4: 6 - 8.

López Planes, R. (1983) . Estudio de la prehidrólisis de Pinus cubensis, tropicalis y caribaea con

ácidos. Publicación interna CENIC.

López, M. E. (1993). Primeros datos sobre el empleo de corteza de pino tratada para el control de

malas hierbas. Actas del Congreso de la Sociedad española de Malherbología. Madrid. p. 272-

275.

Lorin, E. and B.S. Harris (1970). Chemical and Biological Methods for feed Analysis. Animal

Science Department. Utah University.

Manzanares, K. (1984). Manufactura de tableros mineralizados a partir de madera de importación.

Rev. Forestal Baracoa. 14 (2): 45 - 60.

Manzanares, K.; D. Velázquez; J. Valdés; et al. (1991). Aptitud del material de raleo de tres

especies forestales para formar aglomerados con cemento. Rev. Forestal Baracoa 21 (1): 59 -

71.

Manzanares, K.; D. Velázquez y O. Ríos. (1998). Bioconcreto. Un producto forestal para un hábitat

sostenible. Actas del Primer Congreso Latinoamericano IUFRO. Valdivia. Chile.

Martínez, M. (1992). Los pinos mexicanos. Edit. Botas. 3ra. edición. 261 p.

25

Martínez, F. (1983). Obtención de taninos a partir de corteza de dos especies de pinos cubanos.

Revista Forestal Baracoa. 3 (1): 51.

Martínez, J. M.; Manero, J.; Soriano, P, et al. (1992). Effects of dilute acid hydrolysis kinetics of

cellulose of different lignocellulosic biomasses. En: Biomass for Energy, Industry and

Environment. 6th E.C. Conference. Edit. Elsevier Applied Science. N.Y. 1430 p.

Moyson, E. and H. Verachtert. (1992). Lignin peroxidase production by higher fungi and their

impact on the digestibility of lignocellulosic substrates. En: Biomass for Energy, Industry and

Environment. 6th E.C. Conference. Edit. Elsevier Applied Science. N.Y. 1430 p.

Nápoles, I. y R. López Planes. (1987). Hidrólisis y tratamientos químicos a los materiales

celulósicos. Edit. Científico-técnica . La Habana. 176 p.

Negro, M. J.; J. M. Martínez; J. Manero, et al (1992). Study of Steam Explosion pretreatment of

hardwood and softwood feedstocks for enzimatic hydrolysis of cellulose. En: Biomass for

Energy, Industry and Environment. 6th E.C. Conference. Edit. Elsevier Applied Science. N.Y.

1430 p.

Oconnell, J.; W. Meaney (1997). Comparison of shredded newspaper and sawdust as bedding for

clairy cows: Behavioural, clinical and economic parameters. Irish Veterinary Journal 50 (3):

167 - 170.

Odneal, M. and L. Martin. (1990). Fresh and aged pine bark as soil amendments for establishment

of Highbush Blueberry. HortScience 25 (10): 1228 -1229.

Ogarkov, V. I. (1990). Autohidrólisis-explosión del material vegetal y perspectivas de su

utilización. Biotejnologuia. No. 3: 66 - 71.

Orlinsky, B. S. (1984). Suplementos en las raciones. Edit. Rosselkhozizdat. Moscú. 171 p.

Pan, H. (1995). Studies on phenolic and terpenoid constituents extracted from bark of birch, spruce

and pine in Sweden. Doctoral thesis . Sweden.

Parajó, J.C. (1993). Prehydrolysis of Eucalyptus wood with diluite slphuric acid: operation at

atmospheric pressure. Holz als Roh-und Werkstoff No. 51: 357 - 363.

Patterson, D. (1993). Sawdust Predicting Ecuations. Forestry Notes. No.15: 21-23.

Penkina, V. N. (1985). Obtención de proteína en los hidrolizados obtenidos mediante molida en

caliente del material vegetal. Guid. y Lesokh. Prom. 7: 5-6.

Peñalver, A. (1991). Estudio del crecimiento y rendimiento de plantaciones de Eucalyptus sp. en la

provincia de Pinar del Río. Tesis presentada en opción al grado científico de Dr. en Ciencias

Forestales. P. del Río.

Pimentel, D. (1981). Alternativa de las cosechas para el manejo de los sistemas como balance de la

degradación ambiental. Science. vol. 212: 1133.

26

Ramos de Freitas, A. (1998). Contribución de las industrias forestales al desarrollo económico y

social de América Latina. Actas del Primer Congreso Latinoamericano IUFRO. Valdivia.

Chile.

Reitler, F. J. and Carrasco, J. E. (1992). Innovative- ultrafast process for dilute acid hydrolysis of

lignocellulose. En: Biomass for Energy, Industry and Environment. 6th E.C. Conference. Edit.

Elsevier Applied Science. N.Y. 1430 p.

Rojas, J.; M. Chávez; R. Fernández; et al. (1994): Manual de formulación de raciones y alimentos

concentrados para animales. Univ. Lisandro Alvarado. Barquisimeto. Venezuela. p. 55.

Romaha de la Vega, C. (1992). Principales productos forestales no maderables de México. Univ.

Autónoma de Chapingo. México. 376 p.

Romantschuk, H. (1974). De las fábricas de pulpa proteínica para el ganado. Unasylva. 26 (106). p.

15.

Sattler, Y.; C. Grone y A. Zurk. (1993). New compounds of the manumycin group of antibiotics and

a fracilitated rouce for their structure elucidation. Org. Chem. No. 58: 6583.

Schmincke, K. H. (1995). Las industrias forestales, elemento decisivo para el desarrollo socio -

económico. Unasylva 46 (3): 46 - 53.

Semenintin, V. P. (1985). Aprovechamiento de los aserrines de madera por los terneros.

Información Express. Rumiantes. 2 (49): 24 - 27.

Serebrennikov, V. M. (1989). Hidrólisis fermentativa de los residuos de la industria celulosa -

papel. Biotejnologuia. T.5 (5): 576 - 582.

Sharkov, V. Y. (1972). Química de las Hemicelulosas. Editorial Lesnaya Prom. Moscú. 440 p.

Simionescu, G.Y. (1985). The influence of the enzimatic hidrolysis conditions on the

transformation degree of different lignocellulose materials. Cellulose chemistry and

technology. No.19: 525-530.

Sjöström, E. (1981). Wood Chemistry. Fundamentals and Applications. Academic Press. New york.

223 p.

Skoog, D.A.and D. M. West. (1992). Fundamental of Analytical Chemistry. Sixth edition. Edit.

Saunders College Publishing. Philadelphia. 892 p.

Strajov, V. L. (1989). Lignina en jardines y huertos. Guid. y Lesokh. Prom.

No. 3: 18 - 19.

Strelsky, V. A. (1989). Ensayo para la obtención de masa forrajera de madera sacarificada. Guidr. y

Lesokh. Prom. No. 6: 28.

TAPPI. (1964). Technical Association of the Pulp and Paper Industry. TAPPI Monograph Series,

28. New York. 219 p.

27

Teleguin, R. P. (1990). Utilización de recursos madereros secundarios en las industrias de muebles.

Derevoobr. Prom. No. 5: 17

Utkin, G. K. (1984). Obtención de productos de la prehidrólisis del material vegetal. Información

resumen. Serie III. Moscú. 39 p.

Vignote, S. y J. Jiménez. (1996). Tecnología de la madera. Edit. Min. de Agricultura, Pesca y

Almentación. Madrid. 601 p.

Willits, S y T. Fahey (1991). Sugar pine utilization: a 30 year transition. Research Paper. Portland

O. R. 21p.

Woodfin, R. (1978). Ponderosa pine lumber recovery - young growtn in Northern California.

USDA. For. Serv. Res. Pap. PNW - 237. Pacific Northwest Forest and range Experiment

Station. Portland. Oregon. 13 p.

Wyman, E. (1992). Ethanol and methanol from cellulosic biomass. Reprinted from fuels and

electricity from Renewable Resources. Brazil.

28