Artigo Vera[1]

download Artigo Vera[1]

of 7

Transcript of Artigo Vera[1]

  • 8/3/2019 Artigo Vera[1]

    1/7

  • 8/3/2019 Artigo Vera[1]

    2/7

  • 8/3/2019 Artigo Vera[1]

    3/7

  • 8/3/2019 Artigo Vera[1]

    4/7

    Eventheinteriorofweatherablemineralsmight

    becomeexploited byectomycorhizalhyphae. Thin

    sectionmicrographsoffeldsparsandhornblendes

    fromconiferousforestsoilshowopentunnelswith

    roundedends, curvedtracksandadiameterof

    310 m(Refs 32,34). Thetunnelswithaconstantdiameterdiffermorphologicallyfromthe

    crystallographicallyorientedetchpitsandsaw-tooth

    cracksthatwouldresultfromchemicalweathering35

    (Box 4). Thepresenceofhyphaeinsidethetunnels

    indicatesthatsinglehyphaereachtheinteriorofthe

    tunneledweatherableminerals32,34,36.Exudationof

    organicacidsatthehyphaltipswouldfreeessential

    cationssuchasK+, Ca2+ andMg2+ fromthemineral

    interior32 andcould beresponsibleforformationof

    thetunnels32,34,36. Subsequenttransportofdissolved

    cationsthroughtheectomycorrhizalmycelium

    towardsthehosttreerootscould benefittree

    growth37. Ithas beenshownthatisotopicallylabeled

    Mgcan betranslocatedoveradistanceofseveral

    centimeterstoectomycorrhizalroots, improvingthe

    Mgnutritionofthehostplant37. Somefeldspars

    containapatiteinclusions32,38 andectomycorrhizal

    hyphaemightaccesstheseenclosedP sources

    throughtunnelgrowth, therebyexploitinga

    mineralPsourceunavailabletoplantroots.

    SelectivedissolutionofCa-richinclusionsinVOLCANIC GLASS has beenascribedtoacidexcretion

    byinvadingplantsymbioticfungalhyphae36 and

    bacteriaingroundwatersystemsselectively

    colonizeandweatherP-richfeldsparswhenP is

    inshortsupply38.

    Implications of ectomycorrhizalweathe ring

    Theimplicationsofectomycorrhizalfungalmineral

    weatheringaremanifold.

    First, itredefinesourtraditionalviewontherole

    ofectomycorrhizalfungiinrootnutrientuptake. The

    effectofmineralnutrientMOBILIZATION by

    ectomycorrhizalfungiaddstotheestablished

    quantitativeeffectsonuptakeandtranslocationof

    dissolvedelementsfromthesoilsolutionandthe

    TRENDSin Ecology & Evolution Vo l.16 No.5 May 2001

    http://tre e.trends.com

    251Review

    As well as the quantit ati ve effects on p lan t

    nutrien t uptake (increase in uptake surface and

    exp loited soil vo lume),the ectomycorrh iza l

    fungus inf luences the uptake of p lan t nutrientsin two qua lit ative ways:

    (F ig. Ia) Via enzyme producti on ,the

    ectomy corrhiza l fungus can utilize organic

    nitrogen (N) and phosphoro us (P) forms,

    which would otherwise remain large ly

    unava ilab le to roots. Nutrien t mobiliza tion

    from am ino acids , pep tides, proteins , am ino

    sugars,chitin and nucleic acids has been

    showna,toge ther with transfer of N and P

    into the host plan ta,b. Direct hyphal absorption

    of am ino acids and simple peptide s can

    also occur a.

    (F ig. Ib) The ectomycorrh iza l fungus canmobil ize P, potass ium (K),calci um (Ca) and

    magnesium (Mg) from so lid m ineral substra tes

    through organ ic acid excre tionc,d,e.In addit ion,

    tunnels in weatherable m inerals enable

    ectomycorrh iza l hyphae to reach the inter ior of

    the m inerals and access P from a pa tit e

    inclus ions . Essential nutrien ts be come

    ava ilab le to the host plant via the

    ectomycorrh iza l myceliumc. Ana logous to

    the ir organ ic nutrien t mob ili zing capab ilities ,

    the abilities of d ifferent ectomycorrh iza l fung i

    to mobil ize inorganic nu trien ts m ight be

    sp ecies speci fic f.

    References

    a Chalot, M. and Brun,A. (1998)Physiology of

    organicnitrogenacquisition by ectomycorrhizal

    fungiandectomycorrhizas. FEMSMicrobiol. Rev.

    22, 2144

    Box 3.Nutrientmob ilizationbyectomycorrhizalfungi

    I

    b Antibus, R.K. etal. (1997)Rootsurface

    phosphataseactivitiesanduptakeof32P-

    labelledinositolphosphateinfield-collected

    gray birchandredmapleroots. Mycorrhiza

    7, 3946c Wallander, H. (2000)UptakeofP from

    apatite byPinussylvestrisseedlings

    colonized bydifferentectomycorrhizal

    fungi. PlantSoil218, 249256

    d Wallander, H.andWickman, T. (1999)Biotite

    andmicroclineaspotassiumsourcesin

    ectomycorrhizalandnon-mycorrhizalPinus

    sylvestrisseedlings. Mycorrhiza9, 2532

    e Wallander,H. (2000)Use ofstrontium

    isotopesandfoliarKcontentto estimate

    weatheringofbiotite induced bypineseedlingscolonised by ectomycorrhizal

    fungifromtwodifferentsoils.PlantSoil

    222, 215229

    f Lapeyrie,F. etal. (1991)Phosphate-

    solubilizingactivityofectomycorrhizal

    fungiinvitro. Can. J. Bot. 69, 342346

  • 8/3/2019 Artigo Vera[1]

    5/7

    morerecentlystudied qualitativeeffectsof

    enzymaticreleaseofNandP fromorganicsources16

    (Box 3). Inadditiontoproducingalargesurfacearea

    incontactwiththesoil, ectomycorrhizalhyphaecan

    activelydissolvetheirmineralsurroundingsand

    releaseessentialplantnutrients(Box 3). The

    selectivecolonizationandweathering byectomycorrhizalhyphaeofK-, Mg-orCa-rich

    feldsparscouldspecificallyimproveK, MgorCa

    nutritionoftrees.

    Second, ectomycorrhizalhyphaecanaccess

    enclosednutrientsourcesinmineralsthatare

    unavailabletoroots.Apatiteinclusionsinfeldspars31

    areunavailabletoroots butcould beexploited by

    hyphae. Organicacidexcretioninthetunnelswill

    acceleratefurtherdisintegrationofthemineralsand

    resultinenlargedweatherablesurfaceareas,

    accessibletorootsaswellasfungi. Rootswillpromote

    mineralweathering, butjustastheireffectivityin

    nutrientuptakeisrestricted bytheirlimiteddistributioncomparedtofungalmycelium, their

    effectivityasweatheringagentswillalso be

    restricted.

    Third, excretionofoxalate byectomycorrhizal

    fungicouldreduceeffectsofsoilacidificationonforest

    productivity.Atpresent, acidificationofconiferous

    forestsoils, becauseofanthropogenicatmosphericinputs, iswidespread39. Thisacidificationhas been

    accompanied bychangesinthe basecations:Alratio,

    resultinginhighconcentrationsofAl3+ inthe bulksoil

    solution, whichcouldhamperrootuptakeofCa2+ and

    Mg2+ andinhibitrootelongation. InresponsetoAl

    stress, plantrootsmightsecreteoxalicacidand

    detoxifyAl3+ byformationofAloxalatecomplexes40.

    WhenexposedtoelevatedAl, mycorrhizalpine

    seedlings, aswellasnonmycorrhizalpineseedlings,

    showenhancedoxalicacidproduction29. Inadditionto

    formationofAloxalatecomplexes, ectomycorrhizal

    fungicouldalleviateAlstresstothetrees by

    mobilizing basecations(Ca2+ andMg2+)frommicrositesinaccessibletothetreeroots32.

    Afourthimplicationinvolvessoil-formingprocesses

    andtheirbiogeochemicalconsequences. Takinginto

    accountthatectomycorrhizalassociationsare

    widespreadandwereestablishedatleast50 Mya41,

    mobilizationofmineralelementsbyectomycorrhizal

    hyphaeandectomycorrhizalroottipshasprobably

    contributedtosoilformationandglobalelementcycling

    viaeffectsonmineralweatheringandPODZOLIZATION32.

    Prospects

    Inmost borealforestsystems, Nisthegrowth-

    limitingnutrientforthestandingtrees39,42,43.Nitrogenlimitationimpairsthesynthesisofamino

    TRENDSin Ecology & Evolution Vo l.16 No.5 May 2001

    http://tre e.trends.com

    252 Review

    Fig. 1. Hyphae linking

    plan ts to m inerals. A

    thin-section of (a) a

    cross-sectioned

    ectom ycorrh iza l ro ottip

    illus tra tes how (h)

    ectom ycorrh iza l hyphae,

    emanating from (fm) the

    fungal ma ntle aroun d (r)

    a root, en close (m)

    m ineral pa rticles from the

    ad jacen t so il . The direct

    con tact be tween the

    hyphae and the m inera l

    surface is revealed on (b)

    a SEM p icture of

    branching hyphae tha t

    cover and penetra te a

    m ineral pa rticle. Scale

    bars = 50 m and 10 m

    respecti ve ly.

    Box 4. Formationofetchpits

    Chem ical wea ther ing of m inera ls leads to formation

    of regular ly arranged, and regular ly shaped, angu lar

    cav ities , so-called etch p its. Etch pits form because

    m inera ls disso lve preferentially at and along

    crystallographically de ter m ined dislocations and

    planes. Saw-tooth cracks eventua lly form when side-

    by-side aligned etch pits coalescea (F ig. Ia, from lefttorigh t).

    Th in-secti on m icrographs in cross-polar ized

    ligh t show ing (Fig. Ib) a che m ically weathered

    fe ldspar w ith partly coa lesced e tch pits. By con trast,

    a thin-section m icrograph (Fig.Ic) of a tunne led

    fe ldspar shows a more or less irregular pattern of

    open,tub ular pores, 3-10 m in w idth tha tcriss-cross

    the inter ior of the m ineral. Scale bars = 100 m for

    Fig.Ib and Ic.

    Reference

    a Berner, R.A. andHoldren, G.R. (1979)Mechanismof

    feldsparsweathering. II. Observationsoffeldsparsfromsoils.

    Geochim. Cosmochim. Acta43, 11731185

    I

  • 8/3/2019 Artigo Vera[1]

    6/7

  • 8/3/2019 Artigo Vera[1]

    7/7