Ant1011-1.ppt [Modo de compatibilidad] - GR · Dpto. de Señales, Sistemas y Radiocomunicaciones...

46
1 AntenasDpto. de Señales, Sistemas y Radiocomunicaciones Antenas José Luis Besada Sanmartín Leandro de Haro y Ariet Manuel Sierra Pérez ANT 1 Consultas: José Luis Besada Sanmartín Despacho C-417 Leandro de Haro Ariet: Despacho C-411 Manuel Sierra Pérez: Despacho C-418 Presentación de la Asignatura TEMARIO Introducción 0,6 créditos Antenas lineales y Método de los Momentos 0,8 créditos Principios de equivalencia 0,4 créditos Antenas de Ranura y Parches 0,2 créditos Bocinas 0,4 créditos Arrays. Análisis 0,4 créditos Arrays. Síntesis 0,8 créditos Diseño de arrays reales. 0,4 créditos ANT 2 Reflectores 0,4 créditos Diseño de reflectores 0,4 créditos Antenas independientes de la frecuencia 0,4 créditos Medida de antenas 0,2 créditos Dan 54 horas

Transcript of Ant1011-1.ppt [Modo de compatibilidad] - GR · Dpto. de Señales, Sistemas y Radiocomunicaciones...

1

“Antenas”

Dpto. de Señales, Sistemas y Radiocomunicaciones

Antenas

José Luis Besada SanmartínLeandro de Haro y Ariet

Manuel Sierra Pérez

ANT 1

Consultas:José Luis Besada Sanmartín Despacho C-417Leandro de Haro Ariet: Despacho C-411Manuel Sierra Pérez: Despacho C-418

Presentación de la Asignatura

TEMARIO• Introducción 0,6 créditos• Antenas lineales y Método de los Momentos 0,8 créditosy• Principios de equivalencia 0,4 créditos• Antenas de Ranura y Parches 0,2 créditos• Bocinas 0,4 créditos• Arrays. Análisis 0,4 créditos• Arrays. Síntesis 0,8 créditos• Diseño de arrays reales. 0,4 créditos

ANT 2

• Reflectores 0,4 créditos• Diseño de reflectores 0,4 créditos• Antenas independientes de la frecuencia 0,4 créditos• Medida de antenas 0,2 créditos• Dan 54 horas

2

Materiales y Evaluación del Curso

• Notas de clase que incluyen:– Transparencias – Algunas notas aclaratorias

Artíc los sobre temas específicos– Artículos sobre temas específicos

• Programas básicos de diseño de antenas lineales, arrays y de aperturas.– Programa AWAS o 4NEC2: Antenas lineales– Programa SABOR: Bocinas y Reflectores– Programa CST Microwave: Programa generalista

• Evaluación:

ANT 3

• Evaluación:– Problemas de carácter teórico/práctico propuestos en clase– Ejercicio de diseño realizado individualmente o en pequeños grupos

• Se entregarán informes parciales• Se presentarán públicamente los resultados de estos ejercicio

Bibliografía

• “Antenas”, Angel Cardama. Ediciones U.P.C. 1993.• “Antenas and Radiowave Propagation”, R.E. Collin. Mc Grawn Hill 1985.p g• “Antenna Theory. Analysis and Design”. C. Balanis. John Wiley&Sons. 1997.• “Antenna Theory and Design”. W. L. Stuzman. John Wiley&Sons. 1981.

ANT 4

3

Antenas - Introducción

• Concepto de Antena.• Tipos de Antena.• Distribución de Corriente.• Rendimiento de Radiación.• Campo radiado por un Elemento de Corriente.• Campos de Radiación de una Antena.

Concepto de Antena

• Una antena es un “dispositivo capaz de radiar y recibir ondas de radio” que adapta la entrada/ salida del receptor/ transmisor al medio.

• Las propiedades de una buena antena son:– Buen Rendimiento– Buena direccionalidad u omnidireccionalidad (dependiendo de la aplicación)

Medio

ReceptorTransmisor

Antena RxAntena Tx

4

Servicios y Bandas de Radio

Analog and Digital Mobile Services

DBS: Direct Broadcasting Services

Bandas de Microondas yGuías Rectangulares Normalizadas

Banda Frecuencias(GHz)

Denominación de GuíasE I A

Banda Guía(GHz)(GHz) E.I.A. (GHz)

L 1-2 WR-650 1,2-1,7S 2-4 WR-430

WR-2841.7-2.62,6-3,9

C 4-8 WR-187WR-137

3,9-65,8-6,2

X 8-12,4 WR-90WR-75

8,2-12,410-15

Ku 12,4-18 WR-62 12,4-18K 18-26,5 WR-42 18-26,5

Ka 26,5-40 WR-28 26,5-40mm 40-300 WR-19, WR-22, WR-15, etc. -

a

bDenominación E.I.A.El número que acompaña a WR es la dimensión interna a de la guía de onda en centésimas de pulgada. (1”=25.4 mm). b≈0,5a

TE10

λc=2a

5

Tipos de Antenas

S ú l “ d d di ió ”• Según el “modo de radiación” se definen cuatro grupos de antenas:– elementos de corriente

(eléctrica o magnética),– antenas de onda progresiva,– arrays y

aperturas

10K 100K 1M 10M 100M 1G 10G 100G

ElementosOnda Progresiva

Arrays

Aperturas

Frecuencia (Hz)

– aperturas.

0.01 0.1 1 10 100 1000

ElementosOnda Progresiva

ArraysAperturas

Tamaño de antena en λ

Antenas LinealesElementos de Corriente y Onda Progresiva

Análisis convencional aproximado: Postulación de corriente y Potencial Vector Retardado.

Análisis preciso: Método de los Momentos

6

Arrays

A áli i Li lid d E M ll• Análisis: Linealidad E. Maxwell= Superposición => Principio de Multiplicación de Diagramas.

• Factor de Array: Función de la Geometría y de las corrientes de alimentación.

• Diseño circuital de la red de distribución.

Aperturas (Bocinas)

A áli i P i i i d E i l iAnálisis: Principios de Equivalencia Electromagnética “Campos radiados = Transformada de Fourier del Campo de la Apertura”Lóbulo principal según eje de la estructura de anchura típica a -3 dB. BW 70λ/D (º)BW-3dB ≈ 70λ/D (º)D= Dimensión de la Apertura en el

plano considerado.

7

Aperturas (Reflectores)

C i t l di• Convierte el diagrama poco directivo del alimentador en otro más directivo.

• Análisis:– Óptica Geométrica– Óptica Física– GTD

PTD– PTD, etc

Aperturas (Lentes)

C i l f d lCorrigen la fase de la onda esférica del alimentador y la convierten en una onda localmente planaAnálisis:ÓÓptica Geométrica+ Principios de

Equivalencia

8

Distribución de Corrientes

• Es la función que define la forma ( )I I k L⎛⎜

⎞• Es la función que define la forma que toma la corriente sobre la antena

• Está fijada por las condiciones de contorno de E.M.

Et (sobre conductores)=0

( )I z I k z= −⎛⎝⎜

⎞⎠0 0 2

sen

( )I z I k L z= −⎛⎝⎜

⎞⎠⎟0 0 2

sen

Rendimiento de Radiación

• Para una antena elijamos una superficie S que la rodee.• El campo total es:

C i

r r rE E Ei s= +r

– Campo impreso– Campo dispersado

• Realizando un Balance de Energía mediante el Teorema de Poynting:

Ei

J(r´)

(V)

S

ε0 µ0

σ=0

ε´´=σ/ω[ ] [ ]− ⋅ = ⋅ + ⋅∫∫∫ ∫∫∫ ∫∫

12

12

12

Re Re* * *r r r r r r rj E dV E E dV (ExH ) dSextc iv s sAntena S

σ

rEs

Ei

σ

• El rendimiento de radiación vale:• Para que el rendimiento sea alto una de las

dimensiones de la antena debe ser, al menos, comparable a λ .

P P PENTREGADA DISIPADA RADIADA= +

Rendimiento =P

PRADIADA

ENTREGADA

9

Vector de Poyting y Unidades

• Densidades de Corriente: J = I/dS [A/m2], Js=I/dC [A/m]• Campos: E [V/m], H [A/m]• Densidad de Potencia transportada por la onda radiada <S>=[Watios/m2]• Densidad de Potencia transportada por la onda radiada <S>=[Watios/m2]

Amplitudes complejas de los campos en valores de pico.

• Permitividad del vacío:

• Permeabilidad del vacío:

[ ]< >= ×S E H12

Re *r r

r rE y H

[ ]επ0

9136

10= − Faradios m/

[ ]µ π074 10= − Henrios m/Permeabilidad del vacío:

• Conductividad:

• Velocidad de propagación:

• Impedancia del vacío:

[ ]c m s= = ⋅1 3 100 08µ ε /

[ ]η µ ε π0 0 0 0 120 377= = = = =Z E H Ω

[ ]σ 1/ Ω⋅ =m Siemens

Campo radiado por un elemento de corriente

• La fuente de radiación más simple es un elemento lineal de corriente situado en el seno de un medio isótropo, homogéneo, indefinido y sin pérdidas.

• Los campos producidos por esta fuente permiten aplicando superposición• Los campos producidos por esta fuente permiten, aplicando superposición, calcular los campos radiados por fuentes extensas. Introduciendo los potenciales A y Φ

( )( )

r r r

r r r r

r

B A B

E j A E j BA j Ec Lorentz

= ∇ × ⇐ ∇⋅ =

= −∇Φ − ⇐ ∇ × = −

∇⋅ + =

0

0ω ω

ωµεΦ .

z rr

µ ε,

J I dSz =

Idl( ) ( ) ( ) ( )r r r r r r

otras Ec de Maxwell

A r k A r J rk

k A Jz z

+ ⇒

+ = − ′=

⎫⎬⎭

+ = −2

202

2µω µε

µ

.

∆∆ x y

dV dl dSz

= ⋅

Ec. escalar, con fuente Jz puntual

10

Campo radiado por un Elemento de Corriente

• Como este problema y su fuente presentan simetría esférica, la anterior ecuación queda así:

1 2 2d r dA k A Jz⎛⎝⎜

⎞⎠

+ = −µ[1]

• Esta es la ecuación esférica de Bessel cuyas soluciones son:

2r drr

drk A Jz z⎝⎜ ⎠

+ = µ

( )

( )

A r C er

A C ez

jkr

jkr

1 1=−

Propagación hacia r → ∞ La solución física de nuestro problema

( )A r Crz2 2= Propagación hacia r → 0

C J dV Idlz1 4 4= =

µπ

µπ

Integrando sobre la Ecuación Completa [1]sobre una esfera de r → 0

Onda Retardada. Cte. de propagación

• Valor instantáneo del elemento de corriente:

( ) ( )[ ] ( )I t I j t I t= =Re exp cosω ω

– r/c=tiempo de propagación o retardo que tarda la onda en viajar desde el foco emisor al punto de observación.

– A gran distancia en un intervalo ∆r<<r la onda esférica se comporta como plana de longitud de onda

( ) ( )[ ] ( )jp

( ) [ ] ( )r r rA r t A e z C e

re z C

rt kr z C

rt r

cj t

jkrj t, Re Re $ $ cos $ cos= =

⎣⎢

⎦⎥ = − = −⎛

⎝⎜⎞⎠⎟

⎣⎢

⎦⎥

−ω ω ω ω1

1 1

( ) ( )

λπ

ω µ επ

π λ

λ

= = = =

= =

=

cT c fk

constante de propagacion kPara en cm cm f GHz

2 1 2

230

0 0 0

0

dimensiones :

11

Campo radiado por un Elemento de Corriente

• Los campos que produce el elemento de corriente son:

r rH A= ∇ ×

1 z$S tit dr r

H A

Ej

H

= ∇ ×

= ∇ ×1

µ

ωε

( )r 6 744 844

A er

Idl r

zjkr

= −−µ

πθ θ θ

4$ cos $ sen

Sustituyendo

Si kr>>1 (r>>λ) predominan los términos en 1/r frente a 1/r2 o 1/r3

( )r

r

Hr

rA A Idlr

jkr

e

E j Idlk

r jkr r

kr

jkr r

e

rjkr

jkr

= −⎡⎣⎢

⎤⎦⎥

= +⎛⎝⎜

⎞⎠⎟

= +⎛⎝⎜

⎞⎠⎟

+ − + +⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

$ $ sen

$ cos $ sen

φ∂∂

∂∂θ

φθ

πηπ

θ θθ

θ 41

21

21

2 3

2

2 3

r

r

H jkI dl er

E j kI dl er

jkr

jkr

=

=

sen $

sen $

θπ

φ

η θπ

θ

4

4

Campos de radiación: E ⊥ r, H⊥ r, E⊥ H

Campo radiado por un Elemento de Corriente

• La densidad de Potencia Radiada (dada por el vector de Poynting) está dirigida radialmente hacia afuera y decrece como 1/r2 (onda esférica progresiva):

• Los términos de campo 1/r2 y 1/r3 producen un <S> imagi-nario (estos términos de E y H están en cuadratura de fase) y no contribuyen en la potencia radiada real.

[ ] ( ) ( )< >= × =r r rS E H r I dl

kr

12 32

2 22 2

2 2Re $sen* η θπ

12

Campos de Radiación de una Antena

• Una distribución real de corriente se tratará como formada por elementos de corriente Jsituados en r’.

• El potencial total radiado será la superposición.

( ) ( )dA r er r

J r dVjk r rr rr r

r rr r

=− ′

′− − ′µ

π4 ′rr

P

x y

z

j

rr

( )r rJ r′

r rr r− ′

( ) ( )r rr r

r r

r r

A rJ r e

r rdv

jk r r

V=

′− ′

′− − ′

′∫µπ4

y

( ) ( )r rr r

r r

r r

A rJ r e

r rdSs

jk r r

S=

′− ′

′− − ′

′∫µπ4

( ) ( )r rr

r rr

r r

A rI r e

r rdl

jk r r

L=

′− ′

′− − ′

′∫µπ4

Volumen Superficie Línea

Campos de Radiación de una Antena Regiones

• El espacio que envuelve una antena se subdivide en tres regiones:– Región de Campo Próximo Reactivo (r<λ):

Aquella región junto a la antena donde el campo reactivo predomina.

– Región de Campo Próximo Radiante (Zona de Fresnel):Región intermedia entre la de Campo Reactivo y la de Campo Lejano. Predominan las campos de radiación pero la distribución angular es función de la distancia a la antena.

– Región de Campo Lejano (Zona de Radiación, Zona de Fraunhofer):La distribución angular del campo es independiente de la distancia r a la antena.

r D y r≥ >>2 2

λλ D: Dimensión Máxima de la Antena

13

Campos de Radiación de una AntenaAproximaciones de Campo Lejano

• Cuando k ⎜r-r’⎜ >>1 y r>>r’max ⇔ r >>λ , r ≥ (2D2)/λ

[ ]R r r r r r r r rr

r rr

= − ′ = + ′ − ⋅ ′ = + ′⎛⎝⎜

⎞⎠⎟

−⋅ ′⎡

⎣⎢⎢

⎦⎥⎥

r r r rr

2 2 1 22 1 2

2 1 2$

( ) ( )r r r r r

A r er

J r e dVjkr

jkr r

V= ′ ′

−⋅ ′

′∫∫∫µπ4

$ R r r rr

r r r≈ −⋅ ′⎛

⎝⎜⎞⎠⎟

⎣⎢

⎦⎥ = − ⋅ ′1 1

22$

$r

r

( ) ( )r rr r

r r

r r

A rJ r e

r rdv

jk r r

V=

′− ′

′− − ′

′∫µπ4

r rr rmax>> ′

• Los campos de Radiación cuando k ⎜r-r’⎜ >>1 valen:

( )( )( ) ( )

r r rr

r r r r

H j r A H r E

E j r A r E H r

= − × =×

= − × × = ×

ωη ηω η

$$

$ $ $

r r

r

r

E HE rH r

⊥⊥⊥

$

$

Interpretación Geométrica de la Aproximación

L i t t ió ét i d l• La interpretación geométrica de la aproximación es la que se da en la figura

– Si el punto de observación se considera a distancia infinita el vector de distancia R se considera paralelo a la dirección de observación r por lo que entonces: r

′r

R r r= − ′r r

rr

rJs

P

R r r r r r′ ≈ ′r r r

$$r r⋅ ′rR r r r r r= − ′ ≈ − ⋅ ′

14

Condición de Campo Lejano

• El máximo error de fase cometido permite definir un criterio de distancia mínima.

El máximo error de fase es:

• Este criterio de rmin=2D2/λ es necesario aplicarlo a la hora de realizar medidas de

R r D= +2

2

4

Dr r r r− ⋅ ′ =$

r

′rr

PEl máximo error de fase es:

k r D r k D22 2

4 8r+ −

⎝⎜⎜

⎠⎟⎟ =

antenas, si bien a veces es insuficiente para medidas de lóbulos secundarios muy bajos.

Dando un valor de π/8 (=22,5º), que introduce poco error en los cálculos:

r DMinima ≈

2 2

λ

Campos de Radiación de una AntenaPropiedades

• Los campos de radiación de cualquier antena cumplen:– La dependencia de E y H con r es la de una onda esférica e-jkr/r.

– Los campos E y H dependen de θ y φ puesto que la onda esférica es no homogénea.

– La onda esférica radiada se comporta localmente como plana:r

r rE rH r

E H⊥⊥

=$

– Los campos E y H no poseen componente radiales:

( )( )r r

r rA r A r A A

E j r A rr( ) $ $ $

$ $

= + +

= − × ×

⎫⎬⎪

⎭⎪

θ φθ φ

ω

E HE j A E HE j A E H

r r= == − == − − =

0 0

θ θ θ φ

φ φ φ θ

ω ηω η

15

Campos de Radiación de una AntenaPropiedades

– La densidad de potencia radiada por la onda decrece como 1/r2. Si el medio no tiene pérdidas toma el valor:

( ) ( )[ ]22

– La expresión más general del campo de una antena en función de Fθ y Fφ (funciones escalares complejas) es:

( ) ( )( )eˆFˆFˆ)r(Eˆ)r(E)r(Ejkr−

φφθ+θφθ=φ+θ=rrrr

[ ] ( ) ( )[ ] ( ) ( )[ ]r

r,F,F

21r,E,E

21HERe

21S 2

2222* φθ+φθ

η=φθ+φθ

η=×>=< φθ

φθ

rrr

( ) ( )( )r

,F,F)r(E)r(E)r(E φθφθ φφθ+θφθ=φ+θ=

Campos de Radiación de una Antena en Coordenadas Esféricas

z

( ) ( )< >= +⎡⎣⎢

⎤⎦⎥

r r rS E E r1

22 2

ηθ φ θ φθ φ, , $

θ

$r

Vector de Poynting

Campo Eléctrico Radiador r r rE r E r E r( ) ( ) $ ( ) $= +θ φθ φ

φ θ

00 2

≤ ≤≤ <

θ πφ π

x y

16

Parámetros de Transmisión de una Antena

• Impedancia de Entrada,• Diagrama de Radiación,• Intensidad de Radiación,• Directividad, • Ganancia y Eficiencia,• PolarizaciónPolarización

Parámetros Básicos de una Antena

• Parámetros susceptibles de ser medidos y definidos de acuerdo con el standard del IEEE 145-1973.

• Permiten, desde el punto de vista de sistemas, tratar la antena como una caja negra.

• Se definen parámetros de tipo circuital y de tipo direccional.• La mayoría de estos parámetros se definen en transmisión, si bien son válidos

también en recepción.

17

La antena como elemento de circuitoImpedancia de entrada.

• La antena presenta a la linea de transmisión una impedancia Zi.

Z VIi =I

• Circuitos Equivalentes de Transmisión y Recepción.

ILínea de Transmisión AntenaVZ0

Z R jXi i i= +( )( )

R fX f

i

i

⎧⎨⎩

Xi(f)=0, Antena Resonante

Z0 ZL=Zi Z0

Zg=Zi

Vc.a

La antena como elemento de circuito Parámetros alternativos.

• La parte real de la impedancia de entrada es la suma de la resistencia de p ppérdidas y la resistencia de radiacion.

• Otros parámetros alternativos a la impedancia de entrada, más fácilmente medibles en el rango de alta frecuencia son:

R R Ri perdidas radiacion= +

R PIradiacion

radiada≅ 2 2

Rendimiento = =+

PP

RR R

radiada

entregada

radiacion

perdidas radiacion

medibles en el rango de alta frecuencia son:– Coeficiente de Reflexión:

– Pérdidas de Retorno (dB):– Relación de Onda Estacionaria (ROE):

20logρ

ROE =+−

11

ρρ

ρ =−+

Z ZZ Z

i

i

0

0

18

Parámetros de RadiaciónDiagramas de Radiación

• Se definen como una representación gráfica de las propiedades de radiación de una antena (intensidad de radiación, amplitud y fase de los campos, etc) en función de las coordenadas direccionales del espacio.

• Se representarán diagramas de:– campo : ⎢Ε ⎢, Εθ,Εφ,arg(Εθ), arg(Εφ), ECP, EXP, etc– potencia : <S>

• Los formatos que pueden tomar los diagramas son:– Diagramas Absolutos: se representan los diagramas para una potencia y una distancia

constante.– Diagramas Relativos: normalizados respecto al máximo valor de la función

drepresentada. • La representación suele hacerse en escala logarítmica (dB). Entonces los

diagramas de potencia y de campo coinciden ya que:

• Las coordenadas respecto a las que se representan los diagramas son: (θ, φ), (u, v)

10 20log log< >< >

=S

SE

Emax max

uv

==

sen cossen sen

θ φθ φ

Diagramas de Radiación

D d l t d i t d t ió áfi li di• Desde el punto de vista de representación gráfica se realizan diagramas:– Tridimensionales– Diagramas 2D:

• Representación en forma de curvas de Nivel.– Cortes θ=cte y φ=cte:

• Cortes del Digramas de Radiación por superficies planas. φ=cte y θ=π/2 • Para antenas directivas y polarización lineal suele bastar con conocer los

di d l l i i ldiagramas de los planos principales:– Plano E: contiene el vector E y a la dirección de máxima radiación– Plano H: contiene el vector H y a la dirección de máxima radiación

19

Diagramas de RadiaciónPlanos Principales

y

z

x

Representación Tridimensional

DiagramaTridimensionalen coordenadas(u,v)

20

Diagrama Bidimensional

v

Diagrama 2Den coordenadas(u,v)

uv

==

sen cossen sen

θ φθ φ

0 dB

u

Cortes del Diagrama de Radiación

20

15

10

5

0

F1ri

Corte en φ=0º

(v=0)

100 50 0 50 10035

30

25

θi

21

Sistemas de Representación:Polar y Cartesiano

60

90

1201

0

0

30

60120

150

180

0.2

0.4

0.6

0.8

Eimax( )E

15

10

5

0

EdBi

210

240

270

300

330

θi

90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 9020

15

θideg

Polar (Lineal) Cartesiano (dB)

Tipos de Diagramas

At di d l i i d l t l ifi• Atendiendo al servicio que da la antena se clasifican en:– Isotrópicos (cuasi-isotrópico)– Direccionales:Concentra la radiación fundamentalmente en un pequeño cono angular:

• Pincel: Haz cónico (p.e. para comunicaciones punto a punto)• Abanico (p.e. antenas sectoriales de estaciones base de sist. móviles)• Haz contorneado, típicos para dar cobertura ajustada en servicios DBS• Haz conformado, típicos de radar de vigilancia (csc2)• Multihaz (varios lóbulos principales)

– Omnidireccionales: Direccionales en un plano e isotrópicos en el otro.– Multidiagrama: Varios diagramas simultáneos.– Antenas de Haz Reconfigurable

22

Ejemplos de Diagramas

Diagrama multihaz de haces contorneadosde la antena DBS del satélite HISPASAT.

Diagramas de la antena TVA-GOV (antena multidiagrama) del satélite HISPASAT.

Diagramas de Radiación

LOBULO ió d l di• LOBULO: porción del diagrama delimitada por regiones de radiación más débil.

– Lóbulo Principal (contiene la dirección máxima radiación)

– Lóbulos secundarios, los no principales.

– Lóbulos laterales (adyacentes al lóbulo 20

15

10

5

0

F1ri

Lóbulo Principal

Lóbulo Lateral

Lóbulos laterales (adyacentes al lóbulo principal)

– Lóbulo posterior, en dirección opuesta al principal.

100 50 0 50 10035

30

25

θi

Lóbulos Secundarios

23

Diagramas de Radiación

Ot á t d l di d• Otros parámetros del diagrama de radiación son:

– Nivel de Lóbulos Secundarios (del mayor lóbulo secundario respecto al principal)

– Ancho del haz principal a -3dB (entre puntos de potencia mitad).

– Ancho del haz principal entre nulos. 25

20

15

10

5

0

F1ri

BW-3dB

Nivel de Lóbulo Lateral

p p– Relación delante detrás, (relación entre

el lóbulo principal y el posterior).100 50 0 50 100

35

30

θi

BWNulos

BWn dB≈ −2 3,25 BW

Intensidad de Radiación

• Angulo Sólido:– Zona del espacio abarcada por una sucesión de lineas radiales con vértice en el centro

de una esfera.2– Su unidad es el estereoradián ( ángulo sólido que abarca una superficie esférica r2 con

un radio r).

• Intensidad de Radiación:– Es la potencia radiada por unidad de ángulo sólido.

dA r d d2 senθ θ φd

dAr

r d dr

d dΩ = = =2 2

sensen

θ θ φθ θ φ

( ) ( ) ( )US r dA

dr S rθ φ

θ φθ φ,

, ,, ,=

< >= < >

Ω2

24

Directividad

• Ganacia Directiva: D(θ,φ)– Cociente entre la intensidad de radiación en una dirección y la intensidad de radiación

de una antena isótropa

• Directividad: D0.

( ) ( ) ( )DU

UUPIsotropica radiada

θ φθ φ

πθ φ

,, ,

= = 4

( )P U d dradiada === ∫∫ θ φ θ φ θ

φ

π

θ

π, sen

0

2

0

0– Ganancia directiva en la dirección de máxima radiación.– Siempre mayor o igual que 1 (0 dBi).– Expresada en dBi vale: 10 log D0.

Ganancia y Eficiencia

• Ganacia de Potencia: G(θ,φ)

( ) ( )GUP

θ φ πθ φ

,,

= 4

• Ganancia: G0.– Ganacia de Potencia en la dirección de máxima radiación.– Puede ser menor que 1– Expresada en dBi vale: 10 log G0.

• Eficiencia

( )Pentregada

Eficiencia PP

GD

radiada

entregada

= = 0

0( ) ( )G Eficiencia Dθ φ θ φ, ,= ⋅

• P.I.R.E.:Potencia Isotrópica Radiada Equivalente

( ) ( ) ( ) [ ]< >=⋅

≡SG P

rPIRE

rW mentθ φ

θ φπ

θ φπ

,, ,

/.

4 42 22

Las curvas de P.I.R.E. se trazan normalemente en dBW

25

Directividad versus Ancho de Haz

• A partir del diagrama normalizado de potencia:

( ) ( )fUUmax

θ φθ φ

,,

= ≤ 1

donde ΩA es el ángulo sólido del haz y

• Para antenas directivas, tipo pincel

max

( ) ( )( )

( )( )

( ) ( )A

0,f4,fD

4 d,f,f4

4 d,U,U4,D

Ωφθ

π=φθ=π Ωφθ

φθπ=

π Ωφθφθ

π=φθ∫∫

DA

04

Ω1

z

θ1r

ΩA

• Condición de normalización:

( )ΩA r r

r r d d

Anchuras de haz a dB

Dr:rad

d dos

≅ ⋅ −

≅⋅

=⋅

⎛⎝⎜

⎞⎠⎟

θ θ

πθ θ θ θ

1 2

01 2 1 2

3

4 41 253,:gra

( )D dθ φ ππ

, Ω4

4∫ = xy

1rθ2r

Polarización

• Es la “figura que traza en función del tiempo, para una dirección fija, el extremo del vector del campo radiado y su sentido de giro, visto por un

rE E E

E E eE E e

j

j= +==

⎧⎨⎪

⎩⎪θ φ

θ θδ

φ φδθ φ

θ

φ

$ $ ( )( )

E E tE E t

i

i

θ θ θ

φ φ φ

ω δω δ

= += +

coscos

Tiempo

θτ

observador desde la antena”.

Eliminando t

θφ

φ

φ

φ

φ

θ

θ

θ

θ

δ−δ=δ

δ=⎟⎟

⎜⎜

⎛+δ−⎟

⎟⎠

⎞⎜⎜⎝

⎛ 2

2

iii

2

i senEE

cosEE

EE2

EE

φ

τ OAOB

Elipse de Polarización

CW

26

Tipos de Polarización

τ δθ φ=⎛

⎜⎜

⎟12

22 2atanE E

E Ecos

Características de la Elipse

• Angulo del Eje Mayor con θ

AR OAOB

asinE E

E Esin= =

+

⎜⎜

⎟⎟cot 1

22

2 2θ φ

θ φ

δ

θ φ−⎝⎜

⎠2 E E

• Relación Axial

g j y

θτ OA

Si δ= π/2 la elipse está centrada en los ejes (τ=0)

• Sentido de Giro de Polarización (Circular o Elíptica)A derechas (CW, RHC):A izquierdas (CCW, LHC):

δ < 0δ > 0

Tipos de Polarización:

φ

OAOB

CW

Tipos de Polarización:

• Lineal: El campo se mueve sobre una recta (AR=∞).

• Circular: El extremo del campo se mueve sobre una circunferencia (AR=1)( ) ( )RHCº90oLHC90yEE −=δ°=δ= φθ

a b E c E) ) )δ θ φ= = =0 0 0

• Una polarización cualquiera se puede poner como contribución de dos componentes ortogonales entre sí.

( ) ( ) ( )rE E Eθ φ θ φ θ θ φ φθ φ, , $ , $= +

Polarización:Componentes Copolar y Contrapolar

se puede poner como contribución de dos componentes ortogonales entre sí.

XPCXPCCPCCPC uEuEE +=r( ) ( ) ( )

rE E Eθ φ θ φ θ θ φ φθ φ, , $ , $= +

XPXPCPCP uEuEE +=r

0uu0uu *XPCCPCXPCP =⋅=⋅

( )

( ) φ+

φ−

=

±=

jXPCPXPC

jXPCPCPC

euju2

1u

euju2

1u

m

• Estas componentes pueden ser lineales (ECP,EXP) o circulares (ECPC, EXPC).• Las antenas se construyen para radiar principalmente una de las componentes que

se denominan:– Componente Copolar (la deseada).– Componente Contrapolar (la no deseada).

27

Antena Receptora

(sobre eje y)z( ) ( ) ( )rE E Eθ φ θ φ θ θ φ φθ φ, , $ , $= +

Polarización:Diagramas Copolar y Contrapolar

( ) ( ) ( ) xpXPcpCP u,Eu,E,E φθ+φθ=φθr

φ

θ E φ

E θ

x yComponentes CP y XP:• Lineales:3ª Definición de Ludwig para componentes lineales (Medidas)

( ) ( ) ( )( ) ( ) ( ) φφθ−φφθ=φθ

φφθ+φφθ=φθ

φθ

φθ

sen,Ecos,E,Ecos,Esen,E,E

XP

CP

( )( )

E E jE e

E E jE e

RHCj

LHCj

= −

= +

+

12

12

θ φφ

θ φφ

• Circulares

x

y

φ

Relaciones útiles entre Polarizaciones

θLHC

EL⎪⎧ =ρ

∆0

E

Relación de Polarización CircularCircular Izq.

φRHC

RHC

EREL

ER

EL

⎪⎩

⎪⎨

∞=ρ=ρ∞≤ρ≤=ρ

10EE

LHC

RHC

⎩⎨⎧

<>

∞≤≤=−+

=0r0r

AR1rAREEEE

rLHCRHC

LHCRHC

qLinealCircular Der.

Relación Axial

Giro a derechasGiro a Izquierdas

1r1r

11r

−+

=ρ−ρ+ρ

=

Conversiones

AR=1 Polarización CircularAR=∞ Polarización Lineal

28

Diagramas CP-XP típicos de una estación terrena

CP

XP

La Antena en Recepción

• Teorema de Reciprocidad,Si A T M di A R C d i l• Sistema Antena T-Medio-Antena R como Cuadripolo Lineal y Reciproco,

• Reciprocidad de los Diagramas, • Cálculo de la Tensión inducida en c.a.,• Fórmula de Friis,• Área Equivalente,• Ecuación del Radar,cuac ó de ada ,• Temperatura de Ruido de Antena,• Análisis del Ruido. Antenas Frías.

29

Introducción

• Antena en TransmisiónAli t d t ió V ( i t d– Alimentada por una tensión V0 (corriente de entrada I0).

– Se genera una distribución de corriente I(l), que está fijada por las Ecuaciones de Maxwell y sus condiciones de contorno.

– I(l) radia unos campos lejanos E, H que localmente presentan propiedades de onda plana.

E

H

I0V0 dlI(l)

rEtang conductor

= 0

Introducción

• Antena en Recepción– Si sobre la misma antena incide una onda

localmente plana (sobre el volumen que ocupa la I1t

antena), producida por otra antena transmisora alejada, con unos campos Ei y Hi.

– Se inducen en los conductores unas corrientes Ii(l), responsables de un campo dispersado Es que cumple la condición de contorno:

– Con la antena en circuito abierto aparece una Ei

( )r r r rE E E Ei s

tang conductortangi

tangs+ = ⇒ = −0

Con la antena en circuito abierto aparece una tensión Vca.

– La tensión Vca es función de de Ei y Hi (función a su vez de la corriente I1t de la antena transmisora, de su geometría y de la distancia entre ambas).

– Se puede definir una impedancia mutua Z21=Vca2/I1t que mide el acoplo entre ambas antenas con la receptora en c.a.

VcadlIi(l)

Ei

Hi

30

Teorema de Reciprocidad de Lorentz

• Dos conjuntos de fuentes Ja y Jb (que pueden existir simultáneamente o en instantes sucesivos, pero de la misma frecuencia) limitadas a un volumen finito, que producen campos Ea,Ha y Eb,Hb cumplen que:p , y , p q

( )∇⋅ × − × = ⋅ − ⋅r r r r r r r rE H E H E J E Ja b b a b a a b

( )( ) ( )∇ ⋅ × − × =

= × − × ⋅ = ⋅ − ⋅

∫∫∫∫∫ ∫∫∫

r r r r

r r r r r r r r rE H E H dv

E H E H ds E J E J dv

a b b a

V

a b b a b a a b

rJ a

rJ b

r rE Ha a,r rE Hb b,

Ecuaciones de Maxwell

( ) ( )∫∫ ∫∫∫S V

Para R= ∞ (Ondas Esféricas).

( )H

EZ

H EZ

E H E H ds E J dV E J dVa b b a

S

b a

V

a b

V

θφ

φθ

= −

=

⎬⎪⎪

⎭⎪⎪

× − × ⋅ = ⇒ ⋅ = ⋅∫∫ ∫∫∫ ∫∫∫0

0

0r r r r r r r r r

Terorema de Reciprocidad de LorentzAplicado a Antenas

Sean dos antenas 1 y 2 con fuentes a y br r r r r r r rE J dsdl E J dsdl E J dsdl E J dsdla b

ANT

a b

ANT

b a

ANT

b a

ANT1 1 2 2 1 1 2 21 2 1 2

⋅ + ⋅ = ⋅ + ⋅∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

I1a

Vca2a

r r r r

r r r rE J dsdl E I dl I V

E J dsdl E I dl I V

a b

ANT

a b

ANT

bcaa

b a b a a b

2 2 2 2 2 22 2

⋅ = ⋅ = −

⋅ = ⋅ = −∫∫∫ ∫∫∫∫ ∫

Fuente a

Ya que sobre los conductores (donde existe corrientes) los campos se anulan

1 2 1 2

r rE J dsdla b

ANT 1 11

0⋅ =∫∫∫r rE J dsdlb a

ANT 2 22

0⋅ =∫∫∫

I2b

Vca1b

E J dsdl E I dl I VANT ANT ca1 1 1 1 1 1

1 1

⋅ = ⋅ = −∫∫∫ ∫

ANTENA 1 ANTENA 2

Fuente b I V I V

Z Z VI

VI

bcaa a

cab

a b caa

acab

b

2 2 1 1

21 122

1

1

2

=

= = =

31

Sistema Antena T-Medio-Antena R como Cuadripolo Lineal y Reciproco

1 I1 2I2r rE H

~

1’

V1

Zg

Vg

Transmisor 2’

V2 ZL

ReceptorMedio (ε0,µ0,σ=0)

E Hi i,

Z V Z V1 1

[Z]

I1

V1

I2

V2

V Z I Z IV Z I Z I

1 11 1 12 2

2 21 1 22 2

= += +

ZI

ZI

Z VI

Z VI

I I

I I

111

1 012

1

2 0

212

1 022

2

2 0

2 1

2 1

= =

= =

= =

= =

Z Z12 21= Teorema de Reciprocidad

Sistema Antena T-Medio-Antena Rcomo Cuadripolo Lineal y Reciproco

I21 2

Z Z Z ZI1 I2 I1

V1 V2

1’ 2’

Z11-Z12 Z22-Z12

Z12

Cuadripolo Equivalente en T

[Z]V1 V2><

Antenas transmitiendo y alejadas (d<<λ)

Z ZZ Z

yZ ZZ Z

IT

IR

IT

IR

11

22

12

12

≈≈

<<<<

2I2

V1 V2

1

1’ 2’

ZIT ZIR

Z12~Zg

Vg

Transmisor

ZL

Receptor

I1

32

Circuito Equivalente extremo Transmisor

I11

jZg

I21 2

ZIT ZIRZg Z

I1 Z ZIT12 <<

V1

1’

ZIT=RIT+jXIT~ Vg

Transmisor

V1 V2

1’ 2’

Z12~ Vg

Transmisor

ZL

Receptor

><

Potencia Disponible del Transmisor (ZIT=Zg*):

Z R jXg g g= +

PVRDT

g

g

=18

2

Potencia Entregada a la antena transmisora: [ ]P I R PET IT DT T= = −1 11

2 2ΓPotencia Entregada a la antena transmisora: [ ]ET IT DT T2 1

Coeficiente reflexión del extremo transmisor: ΓTIT g

IT g

Z ZZ Z

=−

+

*

( )( )⎪⎪⎩

⎪⎪⎨

+

−=Γ

+−

ΓΓ−

Γ−Γ−=

cg

*cg

g

cIT

*cIT

t

2

gt

2

g2

t

DT

ET

ZZZZZZZZ

1

11PPDe otro modo, con coeficientes

medidos respecto a una línea de transmisión común:

Circuito Equivalente extremo Receptor

I22

Z = ZIR

I21 2

ZIT ZIRZg

I1

><

Z ZIR12 <<

V2

2’

Zs ZIR~ ZLVca

Receptor

V1 V2

1’ 2’

IT IR

Z12~g

Vg

Transmisor

ZL

Receptor

><

VV

Z ZZ

Z Z R jX

cag

g IT

s IR IR IR

=+

= = +

12

V1 2

Generador Equivalente de Thevenin

Potencia Disponible en bornes de la antena R (es la entregada al receptor si ZL=ZIR*):

PVRDR

IR

=18

Potencia Entregada al Receptor: [ ]P I R PET L DR R= = −12

122 2Γ

Coeficiente reflexión del Receptor: ΓRL IR

L IR

Z ZZ Z

=−+

*

¡La misma de Transmisión!

33

Reciprocidad de los Diagramas

Diagrama de Radiación: <Si(θ,φ)>|r=cte

ZL

~

1

1’

I1

V1

Zg

Vg

Transmisor

L

(r,θ,φ)<Si(θ,φ)>

Esferar=cte

Sonda(Campo Lejano)

( ) ( ) ( ) [ ] ( )S PV Z

Z Z Z ZZ Zi ER

g

g IT L ISLθ φ θ φ

θ φθ φ, ,

,Re ,∝ =

+ +∝

12

112

2 2

122

Reciprocidad de los Diagramas

Diagrama de Recepción (de la misma antena) ZgVg

2

2’

I2

V2

g

Receptor

ZL(r,θ,φ)

<Si> Esferar=cte

Sonda Transmis(Campo Lejano)

( ) ( )P ZZLθ φ θ φ, ,∝ 12

2

Potencia disipada en ZL:

Este análisis circuital permite poner de manifiesto la reciprocidad (coincidencia) entre los diagramas de transmisión y recepción de una misma antena

34

Cálculo de la Tensión Inducida Vca

Aplicando el Teorema de Reciprocidad a dos terminales sobre una misma antena tipo dipolo:

Antena Transmisor

“1” : Terminales de alimentación de la Antena“2” : Un punto arbitrario de longitud dz

Si la antena funciona en transmisión: Alimentando “1” con un generador de tensión V0Cortocircuitando “2” circula una corriente I(z)

de modo que:

Si la antena funciona en recepción el campo incidente paralelo

( ) ( )Y z IV

I zV

cc21

2

0 0

= =

I0

a

~V0

dz

+

1

2I2cc

dz

1

2

Ezi ~ Ez

idz+

Si la antena funciona en recepción, el campo incidente paralelo (tangente) a la antena induce sobre ella un campo disperso igual y de signo contrario, lo que equivale a situar:

en “2” un generador de tensión Eizdz

y cortocircuitando “1” se produce una corriente dIcc, de modo que: ( )Y z dI

E dzcc

zi12 =Antena

Receptora

dIcc

z z2

1

Cálculo de la Tensión Inducida

( ) ( ) ( ) ( )Y z Y z I z dI dI I z E dzcc i1= ⇒ = ⇒ =

Por el Teorema de Reciprocidad se cumple que:

( ) ( ) ( )Y z Y zV E dz

dIV

I z E dzzi cc z21 12

0 0

= ⇒ = ⇒ =

La corriente total en cortocircuito vale:

Teniendo en cuenta la igualdad de impedancias de entrada en transmisión y en recepción:

Z VI

VIin

ca

cc

= = −0

0

La tensión en circuito abierto vale:

( )I dIV

I z E dzcc ccAntena zi

Antena= =∫ ∫

1

0

( )V I z E dzi= − ∫1

La tensión en circuito abierto vale: ( )VI

I z E dzca zAntena= ∫

0

( )VI

I l E dlcai

Antena= − ⋅∫

1

0

r ry para una distribución lineal curvilinea de corrientes:

Nótese que esta tensión no depende de I0. Es sólo función del campo incidente y de la geometría que fija la distribución de corriente.

35

Cálculo de la Tensión Inducida Vca

En el caso de una antena iluminada por una onda plana de amplitud E0

i la expresión anterior se puedey

z ri Onda Plana Incidente

^plana de amplitud E0 la expresión anterior se puede expresar más explicitamente como:

( )VI

I r E e dlcai jk r r

Antenai= − ′ ⋅′⋅∫

1

00

0r r rr

$

( )r r r

E E ei i jk r ri= − ′⋅ −0

0 $

Para un dipolo corto de Hertz (L<<λ) la tensión inducida en c a vale el producto de su longitud por el

x y

r’

Vca

E0i

H0i

-ri

Incidente

Antena Receptora

^

inducida en c.a. vale el producto de su longitud por el campo paralelo al mismo

E0i

Lz ( )I z I

r z zez L

V E L E Ljk r r

max

cai

zi

i

=′ = ′

≈′ = <<

⎬⎪⎪

⎭⎪⎪

= − ⋅ = −′⋅

0

0 00 12

rr r

r$

$

λ

Fórmula de Friis

• La Ecuación de Friis permite calcular las pérdidas de inserción de un radioenlace en función de parámetros de transmisión de ambas antenas asociados a las pdirecciones en que cada una de ellas ve a la otra.

[ ] [ ]( ) ( )

PP

e eEntregada Rx

Disponible TxT R T R= ⋅ ⋅ − ⋅ − ⋅

⎛⎜

$ $2 2 2

2

1 1Γ Γ

λ

ΓRΓT

( ) ( )R

G GT t t R r r⋅⎛⎝⎜

⎞⎠

⋅ ⋅, ,4

λπ

θ φ θ φ

36

Demostración de la Formula de Friis

Consideremos en primer una antena receptora R funcionando en transmisión, alimentada por I0R.

I0R

x y

z

Prθ

φ

lm

Meridiano

Paralelo

lp( ) ( )

r r r r

A P er

J r e dsRjkr

sRjkr r

S= ′ ′

−⋅ ′∫∫

µπ0

4$

( )rE P E ER R R= +θ φθ φ$ $

φ

Las tensiones inducidas sobre dos dipolos cortos de longitud lm y lp , situados sobre un meriadiano y un paralelo, valen respectivamente:

V E lV E l

mR

m

pR

p

= −= −

θ

φ

Demostración de la Formula de Friis

Invirtiendo los papeles, es decir alimentado con I0R simultáneamente ambos dipolos cortos, por el teorema de reciprocidad, la tensión en bornes de R en circuito abierto vale:abierto vale:

V V V E l E lm pR

mR

p= + = − −θ φ

E j Z l I er

mm R

jkr

jk

θ λ= −

−0

02

Por otra parte los campos que generan los dipolos sobre R son:

(1)

Campo lejano de

n dipolo

zθ=π/2 E j Z Idl e

r

jkr

θ λθ=

−0

2sen

jkr⎛ ⎞ E jZ

l Ie

rp

p R

jkr

φ λ= −

−0

02

( )V j rZ I e

E E E ER

jkrR m R p= − +−

2

0 0

λθ θ φ θ

Despejando lp y lm y sustituyendo en (1) resulta:

un dipolo corto para θ=π/2

θ=-z^ ^ rE j Z Idl e

rz

jkrπλ2 20⎛

⎝⎜⎞⎠⎟ = −

$

37

Demostración de la Formula de Friis

Si en P colocamos una antena transmisora, alimentada con una corriente I0T, que produce sobre R un campo:

Esta tensión V no depende de I puesto que ER ∝ I Sin embargo tanto la

rE E ET T T= +θ φθ φ$ $

La tensión en la antena R vale:

( )V j rZ I e

E ER

jkrR T= − ⋅−

2

0 0

λ r r

Esta tensión V no depende de I0R. puesto que E ∝ I0R. Sin embargo, tanto la geometría como la distribución de corrientes de la antena receptora están implícitas en ER/ I0R.

Para trabajar con potencias: V rZ

E E

I

R T

R

22 2

02

2

02

4=

⋅λr r

Demostración de la Formula de Friis

Calculando en primer lugar:

V 2

PP

VR

I R

rZ

E E

I R I RDR

ET

IR

T IT

R T

R IR T IT

= =⋅

2

02

2 2

02

2

02

02

812

λr r

Definiendo los vectores unitarios de polarización eT y eR como sigue e introduciéndolos en el cociente de potencias.

$e EET

T

T

=v

v

$e EER

R

R

=v

v

PP

rZ

e eE

I R

E

I RDR

ETT R

R

R IR

T

T IT

= ⋅λ2 2

02

2

2

02

2

02$ $

r r

38

Demostración de la Formula de Friis

Finalmente, usando las definiciones de ganancia de potencia y las desadaptaciones de impedancia en lo extremos Tx y Rx.

r22

( ) ( )GUP

rZ

E

I RentregadaI

θ φ πθ φ

π,,

= =4 4 212

0

2

02

PP r

e e G GDR

ETT R T R= ⎛

⎝⎜⎞⎠⎟

⋅λπ4

22

$ $

( )( )PP

PP

ER

DT

DR

ETT R= − −1 12 2Γ Γ ( )( )P

P re e G GER

DTT R T R T R= ⎛

⎝⎜⎞⎠⎟

⋅ − −λπ4

1 12

2 2 2$ $ Γ Γ

M lí it t

( ) ( ) [ ]

[ ] ( ) ( )

PP

e e

RG G

Entregada Rx

Disponible TxT t t R r r T

R T t t R r r

= ⋅ ⋅ − ⋅

⋅ − ⋅⎛⎝⎜

⎞⎠⎟

⋅ ⋅

$ , $ ,

, ,

θ φ θ φ

λπ

θ φ θ φ

2 2

22

1

14

Γ

Γ

ΓRΓT

Mas explícitamente

Factores de Pérdidas

Definiendo las pérdidas del radioenlace en dB como: cabe hablar de:

−⎛

⎝⎜⎜

⎠⎟⎟10 log

PP

Entregada Rx

Disponible Tx

– Pérdidas por desacoplo de polarización:

– Pérdidas por desadaptación de impedancia:

– Pérdidas de propagación de espacio libre:Estas pérdidas están relacionadas con el carácter esférico de la onda transmitida

( )FPP e eT R= − ⋅20 log $ $

[ ] [ ]− − − −10 1 10 12 2log logΓ ΓT R

− ⎛⎝⎜

⎞⎠⎟

204

log λπR

transmitida.

– Ganancias de Potencia: − −G dB y G dBT R( ) ( )

39

Factor de Pérdidas de Polarización

$ $ cos $ sene eT T Tj T= +θ α φ α δ $ $ cos $ sene eR R R

j R= +θ α φ α δ

En el caso más general se puede escribir:

T T Tφ R R Rφ

( )( )FPP e e e e e eT R T R T R= ⋅ = ⋅ ⋅$ $ $ $ $ $*2

( )FPP T R T RT R= − − ⋅ ⋅

+⎛⎝⎜

⎞⎠⎟

cos sen sen sen2 22 22

α α α αδ δ

obteniéndose acoplo perfecto (FPP=1) sólo cuando:

α αδ δ

R T

R T

== −

⎫⎬⎭

Antena receptora y onda incidente (antena transmisora) tienen exactamente la misma polarización: elipses coincidentes y mismo sentido de giro para observadores situados sobre cada una de las antenas.

Factor de Pérdidas de PolarizaciónCasos prácticos

Polarizaciones Lineales(Ejemplo con dipolos)Un desajuste de 1º en la orientación de polarización (variación máxima admitida en estaciones terrenas) causa pequeñas pérdidas en el acoplamiento copolar pero acopla -35 dB de componente contrapolar.

Polarizaciones Circulares

FPP=1 FPP=cos2 ϕp FPP=0

Acoplo perfecto (FPP=1) si el sentido de giro de polarización de ambas antenas coincide. Desacoplo completo si son de sentido contrario.

Polarización Lineal y CircularFPP=1/2 independiente de la orientación de la polarización lineal

40

Área Equivalente

• Si se considera la antena como una apertura capaz de captar energía electromagnética incidente sobre ella, se puede definir un area equivalente de antena como la “relación entre la potencia entregada a la carga y la densidadantena como la relación entre la potencia entregada a la carga y la densidad de potencia de la onda incidente”.

( ) ( )( )

AP

Sedisponible

i

θ φθ φ

θ φ,

,,

=< >

Z i=Zc=ZL

( )Pdisponible θ φ, ( )< >Si θ φ,* Esta definición considera acoplo perfecto de polari ación entre la onda

Zc Z ipolarización entre la onda incidente y la antena, y acoplo perfecto de impedancias

( ) ( )2R

2RTR

2

2T2

TDTER 1eeG4

,iS

r41G1PP Γ−⋅Γ−=

⎟⎠⎞⎜

⎝⎛

πλ

φθ

π444 3444 21( ) ( ) ( )P S A e eER i e T R R= ⋅ −θ φ θ φ, , $ $

2 21 Γ

Fórmula de Friis alternativa

Area Equivalente

• Se relaciona con la ganancia:

λ λ2 2

¡Diagramas de Transmisión y de Recepción idénticos!

• Se relaciona con el área física para las antenas de apertura:

( ) ( )A G A Ge R emaxθ φλπ

θ φλπ

, ,= ⇒ =4 4

A Eficiencia Eficiencia Aemax Radiacion apertura apertura=

Eficiencia de Apertura típicas: εa=0,5 a1

G Aa apertura0 2

4= ε

πλ

41

Ecuación del Radar: Sistema Radar

Z Onda Incidente

~Zg

Vg

Transmisor

Blancoσ

Onda Incidente

Onda Dispersada

R1

R

ΓT

<Si>(θT,φT)

Receptor

ZL

R2

ΓR

Esquema de un sistema radar biestático.En el caso monoestático la antena Tx es la misma que la Rx

<Ss>

(θR,φR)

Sección Recta Radar σ

Es el área de intercepción de potencia incidente que dispersada isotrópicamente en todas las direcciones del espacio produce sobre el receptor una densidad de potencia igual a la proveniente del blanco real

Define las características de reflexión del blanco y para el caso monoestáticodepende de su geometría y composición, y de las polarizaciones manejadas en

σ π=⎛

⎝⎜

⎠⎟

→∞→∞

lim RSSR

R

s

i12

4 22S lim

SRs R

R

i=⎛

⎝⎜

⎠⎟

→∞→∞

12

4 22

σπ

igual a la proveniente del blanco real.

[m2]

p g y p y p jtransmisión y recepción: σhh, σhv, σvv.

Esfera de radio a(>>λ) σhh=σvv=πa2

Placa Plana de area A σmax=4π(Α/λ)2

A 10 GHz: Coche 102 m2

Jumbo 104 m2

Hombre 1 m2

42

Ecuación del Radar

Potencia capturada por el blanco que es radiada isotrópicamente:

( ) ( )P S

P G

Rc i

DT T T T T= =

−σ σ

θ φ

π

1

4

2

12

Γ ,

Densidad de Potencia incidente sobre la antena receptora:

S PRsc=

4 22π

Potencia entregada al receptor: ( ) ( )P e e S GER s R R s R R R= ⋅ −$ $ ,2 22

14

Γλπ

θ φ

( )( ) ( ) ( )P G GER T T T R R R⎛⎜

⎞$ $

, ,2 2 22

λ θ φ θ φBiestático

Monoestático

( )( ) ( ) ( )PP

e eR R

G GER

DTs R T R

T T T R R R= ⋅ − −⎛⎝⎜

⎞⎠

$ $, ,2 2 2

1 2

1 14 4

Γ Γ σλ

πθ φ θ φ

π

( )( )PP

e eR R

GER

DTs R T R= ⋅ − − ⎛

⎝⎜⎞⎠⎟

$ $2 2 2

2

2

021 1

4 4Γ Γ

σπ

λπ

¡Las pérdidas aumentan como 1/R4 !

Temperatura de Ruido de Antena

• Todos los cuerpos con una temperatura diferente de 0ºK desprenden radiación incoherente (ruido).

• La antena capta esa radiación de todos los cuerpos que la rodean a través de su diagrama de radiación.

• Siendo NDR la potencia de ruido disponible en bornes de la antena, su temperatura de ruido se define mediante:

siendo:

– k, cte. de Boltzman=1.38 10-23 (julio/K)

N kT BDR A f≡

– Bf, el Ancho de Banda de Ruido (Hz)– Ta, la temperatura de Ruido de Antena (K)

43

Temperatura de Ruido de Antena

• En función de la Temperatura de Brillo Tb (θ,φ) asociada a la radiación de ruido que incide sobre la antena para la direccion (θ,φ), la Temperatura de Antena Ta se obtiene como:

• Ta depende de orientación de la antena respecto de las radiofuentes celestes y de la atmósfera, pero sobre todo de la banda de frecuencia de trabajo.

( ) ( ) ( ) ( )T T G d T f da bA

b= =∫ ∫1

41

4 4πθ φ θ φ θ φ θ φ

π π, , , ,Ω

ΩΩ

A

Valores Típicos de TA

Antenas de haz estrechoZonas Tropicales: estrecho apuntando con el lóbulo principal a una elevación φ sobre el horizonte con atmósfera clara (sin sumar

ib iPolos

Asociado a los 100 rayos/s

contribución del suelo)

La atenuación atmosférica producida por la lluvia, niebla, etc incrementa la temperatura de antena en el valor de la tabla.

44

Análisis del Ruido

En todo canal de comunicaciones se trata de mantener una relación de señal ruido prefijada de antemano (en función del tipo de comunicación) empleando la señal más débil posible.

RF X Bf

ΓR=0PDRNDR

FI S0N0

ESQUEMA PARA EL ANÁLISIS DEL RUIDO

El ruido de los sistemas fija su nivel de SENSIBILIDAD definida como el mínimo nivel de señal admitida sin degradar una determinada relación señal/ruido.

Ns - Potencia de ruido, generada en el interior del receptor, media a su salida.Tr - Temperatura de ruido equivalente del receptor referida a sus bornas de entrada =(F-1)T0

OL01 244 344

GA,FSN

G PG N N

A DR

A DR S

0

0

=+

N kT BDR A f=

N kT B GS r f A≡

( ) 0TA - Temperatura de ruido de antena.F - Figura de ruido (Si/Ni)/(S0/N0), con Ni=kT0BfT0 - Temperatura de referencia = 290ºKBf - Banda equivalente de ruido ≈ B-3dB de FI.PDR - Nivel de potencia disponible (de señal) en bornes de la antena receptora.

Figura de Ruido y Temperatura equivalente de Ruido del Receptor

Esquema de Medida

GAT0

Ni=kT0B N0=GAkT0B+ GAkTrB F S NS N S

S

NN

i i

ii

≡ =0 0 0

01

FG

G kT B G kT BkT B

TTA

A A r r=+

= +1 10

0 0

q

Si S0( )T F Tr = −1 0

45

Sensibilidad y Parámetro G/T

T T Tr A= +

S G P P PA DR DR DR0

Conocida la Temperatura Total de Ruido del Sistema:

( )SN

G PG N N

PkB T T

PkB T

A DR

A DR S

DR

f A r

DR

f

0

0

=+

=+

=

[ ] [ ]( ) ( )

PP

e e

RG G

DRMinima

Disponible TxT R T R

T t t R r r

= ⋅ ⋅ − ⋅ − ⋅

⋅⎛⎝⎜

⎞⎠⎟

⋅ ⋅

$ $

, ,

2 2 2

2

1 1

4

Γ Γ

λπ

θ φ θ φ

SENSIBILIDAD= PDRMINIMA

G/T = G(dB) -10 log (T(K))

Calculo del resto de parámetros del enlace:• Potencia del Transmisor• Ganancia de las antenas, etc

Fórmula de Friis

SN

SkB

GT

i

f

R0

0

2

4=

< > ⎛⎝⎜

⎞⎠⎟

λπ

R⎝ ⎠4π G/T = G(dB) -10 log (T(K)).Es una medida global del sistema receptor que viene fijada por la ganancia de la antena (GR) y por la calidad del receptor (F). En consumo es muy importante optimizar econó-micamente el diseño jugando con ambos elementos

P S ADR i e=< >

A Ge R=λπ

2

4

Antenas Frías

Puesto que la temperatura total de ruido es:

Para sistemas de microondas que utilizan amplificadores de muy bajo nivel de ruido (masers parmétricos o FET) con temperaturas equivalentes de ruido T del orden de 5 a 10

T T Tr A= +

(masers, parmétricos o FET) con temperaturas equivalentes de ruido Tr del orden de 5 a 10 ºK es muy importante cuidar el diseño de la antena receptora para que no degrade la temperatura total. Se deben usar “ANTENAS FRIAS” de baja TA.

1) Empleando sistemas reflectores de tipo Cassegrain o Gregoriano en vez de reflectores de primer foco.

2) Empleando alimentadores y líneas de conexión de b j é did f i d

Spillover Cielo5 a 10K

bajas pérdidas refrigeradas.

T=Ta+Tr

( )T T e T ea Al

Fl= + −− −2 21α α

e dBT K T K T K KT K T K T K K

l

A F A

A F A

− = − ⇒= = ⇒ = += = ⇒ = +

2 0 2 0 9510 300 9 5 1510 30 9 5 15

α , ,,, ,

SpilloverTierra300K

TrTB

Ta TA

l PDR

P P ei DRl= −2α

<Si>TF=Temperatura Físicade la linea

Ejemplo:

46

Interferencia Solar en Estaciones Terrenas

Movimiento del Sol (t en días)Plano

Solsticiode verano

23º8,7ºi’≤8,7º

E.T.

N

Se produce Interferencia Solar cuando el sol se situa en frente del lóbulo principal de la estación terrena, es decir cuando i ≈ i’.

Para el hemisferio norte esto sucede unos días antes (“0” a 21 días) del equinoccio de i dí d é d l d

( )Ecuador

Solsticiode invierno

-23º

,i

i t≈ 23 2

365sen π

S

primavera y unos días después del de otoño.Calculo de la Duración (para una antena de θº de Ancho de Haz a -3dB)

– Duración Diaria:

– Número de Días en que se produce:

Durante estos periodos si θ<0,5º (Ángulo de visión del disco solar) la TA alcanza la TBRILLO SOL ≈ 20.000K a 4GHz, ≈ 6.000K f> 10GHz

≈ = ≈ ⋅2 2

360 86400480θ

ωθ

θTierra

ºº seg

º seg

≈ ≈ ⋅2

8 7 215θ

θº

, º diasº dias