50150022...

39
DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ José Miguel González - 2006135580 Liseth Nayibe Javela - 2006135130 UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA AGRICOLA SANEAMIENTO RURAL. B- 2009 Neiva - Huila

Transcript of 50150022...

Page 1: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y

AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ

José Miguel González - 2006135580 Liseth Nayibe Javela - 2006135130

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA

PROGRAMA DE INGENIERIA AGRICOLA SANEAMIENTO RURAL. B- 2009

Neiva - Huila

Page 2: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y

AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ

José Miguel González - 2006135580 Liseth Nayibe Javela - 2006135130

Presentado a: Msc. EDUARDO VALENCIA GRANADA

UNIVERSIDAD SURCOLOMBIANA FACULTAD DE INGENIERIA

PROGRAMA DE INGENIERIA AGRICOLA SANEAMIENTO RURAL. B- 2009

Neiva - Huila

Page 3: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

CONTENIDO

INTRODUCCION

1. PROPUESTA 1.1 Trampa de Grasas 1.2 Desnatador 1.3 Filtro en arena o filtro vertical 1.4 Alberca Biológica

2. GENERALIDADES

2.1 Propuesta 2.2 Localización

3. DISEÑO

3.1 Esquema General de la PTAR

3.2 Propuesta 1. Sistema de tratamiento de Aguas residuales Domesticas

3.2.1 Información Básica 3.2.2 Cálculos Básicos 3.2.3 Diseño Conceptual 3.2.4 Diseño Físico

3.2.4.1 Diseño de la Trampa de Grasas 3.2.4.2 Diseño de la Alberca Biológica 3.2.4.3 Diseño del canal con buchón de agua

3.3 Propuesta 2. Sistema de Tratamiento de Aguas residuales provenientes

del beneficio de café 3.3.1 Diseño Conceptual 3.3.2 Diseño Físico 3.3.3 Diseño del desnatador 3.3.4 Diseño del filtro vertical 3.3.5 Diseño del canal con buchón de agua

3.4 Ventajas del Proyecto

4. PRESUPUESTO

CONCLUSIONES BIBLIOGRAFÍA PLANOS

Page 4: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

LISTA DE ABREVIATURAS

Af = Afluente

Ef = Efluente

QAR = Caudal de agua residual

L = Largo

bl = Borde Libre

h = Altura

a = Ancho

b = base

V = Volumen

THR = Tiempo de Retención Hidráulica

As = Área superficial

PTAR = Planta de Tratamiento de Aguas Residuales

DBO = Demanda Bioquímica de Oxigeno

SS = Sólidos Suspendidos

CF = Coliformes Fecales

N = Nitrógeno

P = Fosforo

AR = Aguas Residuales

mm = Milímetros

L = Litros

T.S.A.M = Tanque Séptico de Acción Múltiple

Page 5: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

LISTA DE TABLAS

Tabla 1. Caracterización de Aguas residuales domésticas. Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila. Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila. Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila. Tabla 5. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando Alberca Biológica. Tabla 6. Dimensiones de las Unidades del sistema de tratamiento de ARD. Tabla 7. Caracterización de las Aguas Residuales del Café

La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores.

Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.

Tabla 10. Beneficios de la PTAR

Page 6: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

LISTA DE FIGURAS

Figura 1. Sistema General de la PTAR Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD. Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD. Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas. Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica. Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción. Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua. Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café. Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café. Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café. Figura 12. Vista planta y corte longitudinal del Filtro Vertical. Figura 13. Vista planta y corte longitudinal del Desnatador. Figura 14. Esquemas vista planta, corte longitudinal y corte transversal del Canal con Buchón de Agua. Figura 15. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Page 7: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

INTRODUCCION

En la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito en el departamento del Huila, encontramos la finca de don Freddy Méndez un pequeño caficultor que cuenta con 5 hectáreas cultivadas en café, la producción de la zona se estima en 9000 Kg/ha – año de café cereza. La problemática de la zona, es que la fuente hídrica se esta viendo afectada por que el agua utilizada para el beneficio del café es arrojada sin ningún tratamiento a la quebrada la magdalena, y aguas abajo esta es tomada para el abastecimiento de la escuela de la vereda, no siendo poco los campesinos no solo vierten el agua del beneficio del café si no que también arrojan las AR de sus viviendas. Estas aguas se han convertido en un problema de salud pública para la región por que los alumnos de la escuela sin tener conocimiento del alto grado de contaminación del agua, beben de esta y por consecuencia se han visto dificultades de salud en los menores. Don Freddy arraigado en sus costumbres comete el error de contaminar como el resto de campesinos, en vista de esto se le propone una alternativa para el tratamiento de las aguas residuales de su vivienda y de las aguas residuales del beneficio del café. Para las aguas residuales del beneficio del café se mostrara el diseño de una PTAR integrada por un desnatador, un filtro vertical y un canal de plantas acuáticas y se le planteara la posibilidad de un reusó de estas aguas residuales, así como también un reusó a las aguas residuales domesticas. Se planteara una PTARD para las aguas que salen de la vivienda y esta contara con una trampa de grasas, una alberca biológica y un canal con plantas acuáticas. Con esto se busca disminuir la contaminación de la quebrada la magdalena y también reducir los volúmenes de agua de la quebrada Rio lindo que abastece a la finca, por que estas aguas residuales ya tratadas contribuirán al riego del cultivo de café y a otros usos agrícolas.

Page 8: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

1. Propuesta

Implementar un sistema de tratamiento para darle solución a la contaminación generada por las aguas domesticas y las aguas procedentes del beneficio de café cuando estas son vertidas a la quebrada La Bonita sin ningún tipo de tratamiento, trayendo como efecto el deterioro de la fuente hídrica; para tal fin se desea realizar una PTAR con dos sistemas uno para ARD (aguas residuales domesticas) y una con Aguas residuales de café, el primero cuenta con trampa de grasas, alberca biológica y un canal con plantas y el segundo cuenta con lo anterior más un desnatador. A continuación se da la descripción de las unidades:

1.1 Trampa de Grasas Las trampas de grasa son tanques pequeños, diseñados y construidos para separar la grasa y aceite de las aguas residuales. El agua residual llega caliente a la trampa de grasas, en donde, por choque térmico disminuye su temperatura, Los sólidos en suspensión o las partículas líquidas (aceites o grasas) flotan debido a que su densidad es menor a la del agua. (González, 2009).

1.2 Desnatador

Un desnatador es un dispositivo usado para separar, por gravedad, las partículas en suspensión en una masa de agua. La sedimentación es un proceso muy importante, por esto se utiliza como un pretratamiento en lo sistemas, ya que las partículas que se encuentran en el agua pueden ser perjudiciales en los procesos de tratamiento, debido a que elevadas turbiedades inhiben los procesos biológicos y se depositan en el medio filtrante causando pérdidas de carga y deterioro de la calidad del agua efluente de los filtros. En el sedimentador se remueven partículas inferiores a 0,2 mm y superiores a 0,05 mm. (OPS, 2005).

1.3 Filtro en Arena o filtro Vertical

Los filtros de arena o filtro vertical, son los elementos más utilizados para filtración de aguas con cargas bajas o medianas de contaminantes, que requieran una retención de partículas de hasta veinte micras de tamaño. Las partículas en suspensión que lleva el agua son retenidas durante su paso a través de un lecho filtrante de arena. Una vez que el filtro se haya cargado de impurezas, alcanzando una pérdida de carga prefijada, La calidad de la filtración depende de varios parámetros, entre otros, la forma del filtro, altura del lecho filtrante, características y granulometría de la masa filtrante, velocidad de filtración. http://www.sefiltra.com/filtros-de-arena.php

1.4 Alberca Biológica

Una alberca biológica Es un sistema de tratamiento de aguas residuales utilizado para el tratamiento de pequeños caudales, generalmente de tipo doméstico o de las explotaciones pecuarias; consiste en un tanque donde se siembran plantas acuáticas que son las que realizan el tratamiento y se complementa con un filtro (Almario, 2008)

Page 9: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

2. Generalidades

2.1 Propuesta

Se proponen dos tipos de tratamientos uno para las ARD y el otro para las aguas provenientes del beneficio del café.

- Alternativa 1. Para las ARD, Como un tratamiento preliminar, se

construirá una trampa de grasas, esta ayudara a remover todas las

partículas en flotación, grasas y aceites. El tratamiento Primario será a

cargo de una alberca biológica esta removerá un porcentaje de DBO, SS, N

y F. En el tratamiento secundario se construirá un canal con plantas

acuáticas, esta terminara de remover las concentraciones de DBO, SS, N, F

y Cf. El tratamiento se concluye con un reusó de las AR tratadas en el

cultivo del café.

- Alternativa 2. AR del beneficio del café, para el tratamiento preliminar se

construirá un desnatador que ayudara a quitar las partículas en flotación, se

complementara con un filtro vertical que removerá DBO y SS, ya el

tratamiento secundario se realizara con un canal de plantas acuáticas esta

estructura con ayuda de las plantas removerán el restante de DBO, SS, N,

F y Cf. Este tratamiento culminara como el de las ARD, en un reusó en el

cultivo del café.

2.2 Localización

La finca de Don Freddy Méndez esta ubica en la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito. Cuenta con buenas vías de acceso y servicio de trasporte cada hora de una ruta de colectivo que llega hasta la finca. Cuenta con una extensión de 5 hectáreas sembradas en café, es una empresa familiar, y cuenta con una extensión de 32 hectáreas. La finca está ubicada en una zona cafetera, la base de la economía siempre ha sido el café, auto sostenible, y actualmente se encuentra en el proceso de mejoramiento agroforestal para implementar el ecoturismo en esta zona. Cuenta con 5 hectáreas que están dedicadas al cultivo del café, el plátano, la yuca y especies menores que complementan la seguridad alimenticia de este grupo familiar conformado por doce personas. Las restantes 27 hectáreas constituyen una reserva forestal que la conservan y desean ampliarla para seguir siendo fuente generadora de agua y oxígeno para el mundo. Los suelos son muy actos para la producción de café y presenta muy buena retención de agua, produciendo cafés especiales y con muy buena comercialización.

Page 10: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

3. Diseño

3.1 Esquema General de la PTAR

En la Figura 1 se muestra el esquema general de la PTAR en donde se encuentran integrados el sistema de tratamiento de ARD y el sistema de tratamiento de aguas provenientes del benéfico del café integrados, posteriormente cada sistema será analizada por separado.

Figura 1. Esquema general de la PTAR

3.2 SISTEMA 1: SISTEMA DE TRATAMIENTO DE AGUAS ESIDUALES

DOMESTICAS

3.2.1 Información básica

Para caracterizar las aguas residuales, se tomo información de la literatura (ver tabla 1) y resultados de estudios realizados a algunos municipios del Huila (ver tablas 2, 3). Los valores finalmente seleccionados para este estudio se muestran en la tabla 4, semejándose a una agua residual media de acuerdo a Metcalf & Eddy.

Page 11: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Tabla 1. Caracterización de Aguas residuales domésticas.

PARAMETRO UNIDADES CONCENTRACIÓN

DEBIL MEDIA FUERTE

DBO5 mg/L 110 220 400

DQO mg/L 250 500 1000

SS mg/L 100 220 350

ST mg/L 350 720 1200

Grasas mg/L 50 100 150

N mg/L 20 40 85

P mg/L 4 8 15

CT N°/100 ml 106 - 10

7 10

7 - 10

8 10

7 -10

9

Fuente: González. 2009

Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

MUNICIPIO

Q T OD DBO5 DQO SS ST N P G-A CF

L/s °C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L UFC/100ml NMP/100ml

Algeciras 14,8 25.9 1,07 109 198,7 108 294 3,5 1,29 - 1,6E+13

Baraya 19,88 26 0,67 112 165 245 - 0,021 0,063 208 8500

Campoalegre 16,8 21 3 284 460,2 272 - 44,5 5,78 - 16x108

Colombia 4,82 23.5 0,8 223,5 337,5 85 - 5,7 - -

Hobo 25 23.5 1,03 200 327 278 164 0,22 2,19 - -

Iquira 6,32 25.3 1,0 110 207 310 - 116 194 - 22,5

Neiva 617 28 - 192 350 145 471 16,4 6,3 3,2 24x104

Palermo 5,3 - - 147 358 84 - 0,76 - -

Rivera 39,51 24 1,15 80 157 107 - 0,33 9,2 27,65 -

Santa maría 13,38 20 2,9 158 322 188 - 20,5 1,59 - 14x108

Tello 15,7 - 0,3 231 488 185 - 1,2 1,6 - -

Teruel 21,54 - - 105,31 255,25 93,25 - - - - -

Villavieja 4,17 - - 245 - 180 - - - - -

Yaguará 13 - - 380 629 4,16 - - - 18,2 -

Fuente: Narváez. 2009

Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

PARAMETRO UNIDADES PITAL ISNOS

DBO5 mg/L 100 216

DQO mg/L 344 464

SS mg/L 233 203

ST mg/L 337 347

P mg/L 6.43 1.56

Fuente: Narváez, Silva. 2009.

Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.

PARAMETRO UNIDADES CONCENTRACIÓN

DBO mg/L 200

SS mg/L 250

Grasas mg/L 100

N mg/L 40

P mg/L 8

CF UFC/100 ml 108

Fuente: Narváez, Silva. 2009.

Page 12: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Población

Para las ARD, el número de habitantes en la vivienda de don Freddy es de 12

personas

3.2.2 Cálculos Básicos

Caudal de aguas residuales (QAR) En el cálculo se utilizo la siguiente fórmula:

PCRDQAR **

D: Dotación CR: Coeficiente de retorno P: Población - Dotación (D): Tomando como base el RAS 2000 titulo B, tabla B2.2 y teniendo en cuenta que en el sector rural los consumos de aguas son mayores al sector urbano se adoptó: D = 200 L/Hab-día - Coeficiente de retorno (CR): Según el RAS 2000 titulo D, tabla D3.1 se adoptó: CR = 0.8

díaLhabdiahabLQAR /192012*8.0*/200

QAR=1.92 m

3/día

Caracterización de las aguas residuales del beneficio del café

El café maduro presenta una composición en la cual el grano, que es la parte

aprovechable para el proceso, representa el 20% del volumen total de la fruta, de

manera tal que, el procesamiento de beneficiado genera un 80% del volumen

procesado en desechos. El café es procesado de varias formas, en el tradicional

no es usado ningún tipo de tratamientos de aguas o subproductos de cosecha

(cáscara). El ecológico si usa un proceso de tratamientos de aguas y

subproductos del café. El beneficio tradicional utiliza 10 L de agua por Kg de café

pergamino y el beneficio ecológico utiliza 1 L/Kg de café pergamino. (Cortes,

2009)

La tabla 5, presenta una caracterización de las aguas residuales del beneficio del café, realizada por el comité de cafeteros en el departamento del Huila.

Page 13: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Tabla 5. Caracterización de las Aguas Residuales del Café

Parámetros Unidades Valor

pH Unidades 4,06

DBO mg/l 9700

DQO mg/l 19800

SS mg/l 7000 Fuente: Laboratorio Agualimsu 2004

- La cosecha dura dos meses y Don Freddy recoge un 60% de la producción

en la cosecha por hectárea. Y en el beneficio tradicional utiliza 10 L de

agua por Kg de café pergamino.

- la producción de la zona se estima en 9000 Kg/ha – año de café cereza

Caudal de aguas residuales provenientes del beneficio del café (QAR)

En el cálculo se utilizo la siguiente fórmula:

PDQAR *

D: Dotación P: Producción - Dotación (D): De la tesis “Evaluación preliminar de los sistemas de tratamiento

de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata –

Huila” de (Cortes y Ríos, 2009) se Tomo que en el beneficio tradicional se utiliza

10 L de agua por Kg de café pergamino:

- Producción (P): Producción de café cereza por cosecha en las 5 hectáreas de don Freddy.

: Producción de café al año en la zona

- Producción ( ): En la zona se estima una producción de 9000 Kg/ha – año de

café cereza, y don Freddy recoge un 60% de la producción en la cosecha por hectárea.

QAR= 4.5 m

3/día

Page 14: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

3.2.3 Diseño Conceptual

La figura 2, muestra el esquema general, donde las aguas grises (lavaplatos, lavadero, lavamanos y ducha) provenientes de la vivienda pasan por una trampa de grasas que cumple la labor de atrapar grasas, aceites y detergentes. El efluente de esta trampa de grasas, con el afluente de aguas negras (baterías sanitarias) de la vivienda se une y pasa por una alberca biológica donde se sembraran heliconias y su objetivo es remover los sólidos suspendidos, material flotante y parte de la concentración de DBO, F y N. El efluente de la alberca biológica pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.

Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.

Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar. La figura 3, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (trampa de grasas), un tratamiento primario (alberca biológica) y un tratamiento secundario (Un canal con Buchón de Agua).

Page 15: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento

de ARD Diagrama de subproductos

En La figura 4, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.

Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.

Eficiencia teórica de sistemas de Tratamiento de ARD

Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales domesticas, que utiliza albercas bilógicas, trampa de grasas para el tratamiento de las AR, de la tesis “Sistemas Descentralizados Integrados y Sostenibles Para el Tratamiento De Aguas Residuales Domesticas En El Sector Rural Del Departamento Del Huila” de (Narváez y Silva, 2009). La tabla 6, muestra las eficiencias esperadas para el sistema de tratamiento.

Page 16: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Tabla 6. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando

Alberca Biológica. (González, 2009).

PARAMETRO

AFLUENTE

EFLUENTE

% REMOCION

DBO (mg/L) 200 10,7 95

SS (mg/L) 250 6 98 GRASAS (mg/L) 100 4 96

N (mg/L) 40 6,2 85

P (mg/L) 8 3,7 54 CF NMP/100ml 108 104 99,9

FUENTE: González. 2009.

3.2.4 DISEÑO FISICO

Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las

albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los

Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio

de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007).

3.1.4.1 Diseño De La Trampa De Grasas

Para el diseño de acuerdo al RAS, la trampa debe tener 0.25m2 por 1.0 L/s de agua residual. QAR = caudal de aguas residuales (L/s) A = Área (m2) a = Ancho (m) L = Longitud (m) h = Altura (m) Cálculo del área (m2)

ARQsL

sLA *

/0.1

/022.0

QAR = 0.022L/s (Ya calculado)

sLsL

mA /022.0*

/0.1

25.0 2

A= 0.0055m2

Page 17: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Cálculo de la longitud (L) Si se calcula cuadrada

2LA 20055.0 mL L= 0.074 m

Por construcción las dimensiones serán las siguientes (González, 2009): La figura 5 muestra el esquema de la vista en planta y corte longitudinal de la trampa de grasas. Vista en planta Corte Longitudinal

Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.

3.1.4.2 Diseño De La Alberca Biológica

Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1 Altura de la Alberca biológica h = 0.8m La figura 6 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica.

a= 0.6m L= 0.6m h= 0.6m

Page 18: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Vista en planta

Corte longitudinal Detalle del Filtro

Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica.

- Cálculos de las tanques con Buchón de Agua.

Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). V = Volumen (m3) TRH = Tiempo de Retención Hidráulica (día) QAR = Caudal de Aguas Residuales (m3/día) As = Área superficial (m2) h = Altura (m) a = Ancho (m) L = Largo (m) Calculo del volumen (V)

THRQV AR *

QAR = 1.92m3/día TRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

diadiamV 1*/92.1 3 V = 1.92 m3

Page 19: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Cálculo del área superficial (As)

hAsV * h

VAs

Teniendo en cuenta la profundidad de las raíces del Buchón de agua, la profundidad de la alberca se adopta:

h = 0.8 m

m

mAs

8.0

92.1 3

Relación largo ancho

aL 12 Cálculo del ancho (a)

LaAs * aaAs *2 2

2aAs 2

Asa

2

4.2 2ma

Cálculo del largo (L)

2*aL

aL 2 Para efectos de construcción la longitud de cada tanque es:

- Cálculo del Filtro Anaerobio

El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro. Vf = Volumen del filtro (m3) P = población (Hab)

As = 2.4 m2

Page 20: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Vp = Volumen per cápita de filtro (m3/hab) C = Coeficiente de mayoración de volumen hf = Altura del filtro (m) hc = Perdida de cabeza (m) hs = Altura del sobrenadante (m) h1 = Altura capa de Arena (m) h2 = Altura capa de Gravilla (m) h3 = Altura capa de Grava (m) Lf = Largo del filtro (m) af = Ancho del filtro (m) Cálculo del Volumen del filtro (Vf). CVpPVf **

Vp = 0.05m3/hab P = 12 Hab C = 1.2 Equivalente al 20%

2.1*05.0*123

Hab

mHabVf

Altura del filtro (hf)

hshchhf

hc = 0.1m Por el paso del liquido por la intersección del filtro hs = 0.1m Por Sobrenadante h = 0.8 m

Para efectos de construcción: Largo del filtro (Lf)

hfLfafVf **

Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.

hfaf

VfLf

*

Vf = 0.7m3

1.01.08.0hf

h1 = 0.2m Arena h2 = 0.2m Gravilla h3 = 0.2m Grava

Page 21: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

mm

mLf

6.0*1

7.0 3

El filtro se divide en dos compartimientos de L=0.6m, para asegurar el flujo descendente – ascendente. La figura 9 muestra los esquemas de la vista en planta,

corte longitudinal y corte transversal de la Alberca Biológica para efectos de construcción.

Vista en planta

Corte longitudinal Detalle del Filtro

Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica

para efectos de construcción.

3.1.4.3 Diseño Del Canal Con Buchón de Agua

Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). V = Volumen (m3) TRH = Tiempo de Retención Hidráulica (día) QAR = Caudal de Aguas Residuales (m3/día) As = Área superficial (m2) h = Altura (m) a = Ancho (m) L = Largo (m) Calculo del volumen (V)

THRQV AR *

Page 22: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

QAR = 1.92m3/día TRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

diadiamV 1*/92.1 3 V = 1.92 m3

Cálculo del área superficial (As)

hAsV * h

VAs

Teniendo en cuenta la profundidad de las raíces del Buchón de Agua, la profundidad de la alberca se adopta:

h = 0.8 m

m

mAs

8.0

92.1 3

Relación largo ancho

aL 12 Cálculo del ancho (a)

LaAs * aaAs *2 2

2aAs

2

Asa

2

4.2 2ma

Cálculo del largo (L)

2*aL

aL 2 Para efectos de construcción la longitud del tanque es:

As = 2.4 m2

Page 23: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

La figura 8 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua, para efectos de construcción.

Vista en planta

Corte longitudinal

Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de

Agua. La tabla 7 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de ARD Tabla 7. Dimensiones de las Unidades del sistema de tratamiento de ARD

UNIDAD PARAMETRO MEDIDA (m)

Trampa de grasas Longitud 0.6

Ancho 0.6 Altura 0.6

Tanque 1 y 2 Longitud 1.0

Ancho 1.0 Altura 0.8

Filtro anaerobio Longitud 1.2

Ancho 1.2 Altura 0.6

Canal con Buchón de Agua Longitud 1.0

Ancho 1.0 Altura 0.8

Fuente: Javela y Gonzalez. 2009

Page 24: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

3.3 Propuesta 2: SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO DEL CAFÉ

3.3.1 DISEÑO CONCEPTUAL

La figura 9, muestra el esquema general, donde las aguas provenientes del beneficio del café pasan por un desnatador y su objetivo es remover los sólidos suspendidos, material flotante de las AR. El efluente de este desnatador, pasa por un filtro vertical cuya labor es remover parte de la concentración de DBO y S.S. El efluente del Filtro vertical pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.

Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas

Residuales Del Beneficio Del Café.

Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar. La figura 10, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (desnatador), un tratamiento primario (filtro vertical) y un tratamiento secundario (Un canal con Buchón de Agua).

Page 25: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de

tratamiento de Aguas Residuales Del Beneficio Del Café.

Diagrama De Subproductos

En La figura 11, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.

Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.

Eficiencias Teórica del sistema de Tratamiento de Aguas Residuales

Provenientes Del Beneficio Del Café.

Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales provenientes del beneficio del café, que utilizan desnatadores y filtros verticales para el tratamiento de las AR, de la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda

Page 26: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009). La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores. Tabla 8. Eficiencias Reales en tratamiento de aguas de café

PARAMETRO AFLUENTE (Af) EFLUENTE (Ef) % REMOCIÓN

DBO 2950 278 90

DQO 24270 1248 95

SS 9115 280 97

G y A 29.2 4.6 84 Fuente: Ríos, 2009

3.3.2 DISEÑO FISICO

Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las

albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los

Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio

de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007).

3.2.2.1 Diseño Del Desnatador

El desnatador es utilizado en la propuesta 2 como tratamiento preliminar.

El desnatador se diseño teniendo en cuenta el parámetro de TRH. Relación largo ancho 2:1 V = Volumen (m3) TRH = Tiempo de Retención Hidráulica (días) As = Área Superficial (m2) L = largo (m) a = Ancho (m) h = Altura (m) Cálculo del volumen (V)

TRHQV AR *

TRH = 3 horas = 0.125 días

diasmV 125.0*5.4 3

V= 0.6m3

Page 27: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Cálculo del área superficial (As)

h

VAs

La altura se asume: h = 0.6 m

m

mAs

6.0

6.0 3

Cálculo de la ancho (a)

aL 12

LaAs * aaAs 2* 22aAs 2

Asa

2

1a

Cálculo de la longitud (L)

aL 2 La figura 12 muestra el esquema de la vista en planta y corte longitudinal del Desnatador. Vista en planta Corte Longitudinal

Figura 12. Vista planta y corte longitudinal del Desnatador.

As= 1 m2

a= 0.7m

L= 1.4 m

Page 28: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

3.2.2.2 Diseño Del Filtro Vertical

- Cálculo del Filtro Anaerobio

El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro. Vf = Volumen del filtro (m3) P = población (Hab) Vp = Volumen per cápita de filtro (m3/hab) C = Coeficiente de mayoración de volumen hf = Altura del filtro (m) hc = Perdida de cabeza (m) hs = Altura del sobrenadante (m) h1 = Altura capa de Arena (m) h2 = Altura capa de Gravilla (m) h3 = Altura capa de Grava (m) Lf = Largo del filtro (m) af = Ancho del filtro (m) Cálculo del Volumen del filtro (Vf). CVpPVf **

Vp = 0.05m3/hab P = 25 Hab C = 1.2 Equivalente al 20%

2.1*05.0*253

Hab

mHabVf

Altura del filtro (hf)

hshchhf

hc = 0.1m Por el paso del liquido por la intersección del filtro hs = 0.1m Por Sobrenadante h = 1 m

Para efectos de construcción:

Vf = 1.5m3

1.01.01hf

h1 = 0.3m Arena h2 = 0.3m Gravilla h3 = 0.2m Grava

Page 29: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Largo del filtro (Lf)

hfLfafVf **

Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.

hfaf

VfLf

*

mm

mLf

8.0*1

5.1 3

El filtro se divide en dos compartimientos de L= 1m, para asegurar el flujo descendente – ascendente. La figura 13 muestra el esquema de la vista en planta y corte longitudinal del Filtro Vertical. Vista en planta Corte Longitudinal

Figura 13. Vista planta y corte longitudinal del Filtro Vertical.

3.2.2.3 Diseño del Canal con Buchón de Agua

Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1 Altura del Canal con Buchón de Agua h = 0.8m La figura 14 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Page 30: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Vista en planta

Corte longitudinal

Figura 14. Esquemas vista planta y corte longitudinal del Canal Buchón de Agua

- Cálculos del tanque con Buchón de Agua.

Se diseñó un solo tanque, tomando como parámetro el tiempo de retención hidráulica (TRH). V = Volumen (m3) TRH = Tiempo de Retención Hidráulica (día) QAR = Caudal de Aguas Residuales (m3/día) As = Área superficial (m2) h = Altura (m) a = Ancho (m) L = Largo (m) Calculo del volumen (V)

THRQV AR *

QAR = 4.5m3/día TRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

diadiamV 1*/5.4 3 V = 4.5 m3

Page 31: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Cálculo del área superficial (As)

hAsV * h

VAs

Teniendo en cuenta la profundidad de las raíces de las heliconias, la profundidad de la alberca se adopta:

h = 0.8 m

m

mAs

8.0

5.4 3

Relación largo ancho

aL 12 Cálculo del ancho (a)

LaAs * aaAs *2 2

2aAs

2

Asa

2

6.5 2ma

Cálculo del largo (L)

2*aL

aL 2 Para efectos de construcción la longitud del tanque es:

As = 5.6 m2

Page 32: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

La figura 15 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Heliconias para efectos de construcción.

Vista en planta

Corte longitudinal

Figura 15. Vista en planta y corte longitudinal del Canal con Buchón de Agua.

Page 33: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

La tabla 9 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de las Aguas Residuales del Beneficio del Café. Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas

Residuales del Beneficio del Café.

UNIDAD PARAMETRO MEDIDA (m)

Desnatador

Longitud 1,4

Ancho 0,7

Altura 0.6

Filtro Vertical

Longitud 1.0

Ancho 1.0

Altura 1

Canal con heliconias

Longitud 3,5

Ancho 3,5

Altura 0.8

Fuente: Javela y González. 2009

Page 34: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

3.4 VENTAJAS DEL PROYECTO

Tabla 10. Ventajas de la PTAR

VENTAJA DESCRIPCIÓN

EN LO SOCIAL

El proyectos trae benéficos en lo social puesto que a las aguas de la quebrada la Bonita ya no llegara la carga contaminante que actualmente es vertida a esta y se disminuirán los riesgos de contraer enfermedades por la posible utilización de esta por parte de las personas y los animales. Se disminuyen los malos olores e insectos hasta su desaparición que son generados del vertimiento de las aguas no tratadas, dándole un mejor aspecto a la finca. Se gozara de una agua de mejor calidad que contribuirá al mejoramiento de la calidad de vida de las personas que habitan en la finca y en la región

EN LO AMBIENTAL

El tratamiento de las aguas y su reutilización elimina la carga contaminante que se le estaba vertiendo a la quebrada por lo que la calidad del agua es mejor y además se está ayudando a la conservación del agua. Debido a la disminución de la contaminación los animales y plantas acuáticas que muy posiblemente se estaban afectando y estaban desapareciendo, tendrán muchas más posibilidades de vivir, aquí se está ayudando a la conservación de la fauna existente en la zona

Page 35: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

4. Presupuesto

PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS

Propuesta 1. Sistema de Tratamiento de ARD

ITEM DESCRIPCION UNI CANTIDAD Vr. Unitario Vr. Parcial

1 Tratamiento Preliminar

Trampa de grasas

Concreto 3000 Psi m3 0,1 269,51 26,2

Muro de ladrillo tolete m2 2,49 29,96 74,6

pañete m3 0,24 231,51 55,33

tuberia PVC Ø 2" ml 0,7 4,27 2,99

Codo 90 PVC Aguas Negras Ø 2" UND 2 2,26 4,52

Tapa de Cemento m2 0,81 38,9 31,51

VALOR PARCIAL 195,15

2 Tratamiento Primario

Alberca Biológica

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

Arena para filtro anaerobio m3 0,2 40 8

Grava para filtro anaerobio m3 0,2 35 7

Gravilla para filtro anaerobio m3 0,2 50 10

VALOR PARCIAL 1.224,62

3 Tratamiento Secundario

Canal Con Plantas Acuáticas

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

VALOR PARCIAL 1.199,62

SUMATORIA DE VALORES PARCIALES 2.619,38

ADMINISTRACION E IMPREVISTOS (15%) 392,908

UTILIDAD (5%) 130,969

IVA SOBRE UTILIDAD (16%) 20,955

COSTO TOTAL DEL PROYECTO 3.164,22

Page 36: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO

DEL CAFÉ

Propuesta 2. Sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del Café

ITEM DESCRIPCION UNI CANTIDAD Vr. Unitario Vr. Parcial

1 Tratamiento Preliminar Desnatador

Concreto 3000 Psi m3 0,1 269,51 26,2

Muro de ladrillo tolete m2 2,49 29,96 74,6

pañete m3 0,24 231,51 55,33

tuberia PVC Ø 2" ml 0,7 4,27 2,99

Codo 90 PVC Aguas Negras Ø 2" UND 2 2,26 4,52

Tapa de Cemento m2 0,81 38,9 31,51

VALOR PARCIAL 195,15

2 Tratamiento Primario Filtro Vertical

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

Arena para filtro anaerobio m3 0,2 40 8

Grava para filtro anaerobio m3 0,2 35 7

Gravilla para filtro anaerobio m3 0,2 50 10

VALOR PARCIAL 1.224,62

3 Tratamiento Secundario Canal Con Plantas Acuáticas

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

VALOR PARCIAL 1.199,62

SUMATORIA DE VALORES PARCIALES 2.619,38

ADMINISTRACION E IMPREVISTOS (15%) 392,908

UTILIDAD (5%) 130,969

IVA SOBRE UTILIDAD (16%) 20,955

COSTO TOTAL DEL PROYECTO 3.164,22

Page 37: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

CONCLUSIONES

Los sistemas descentralizados integrados y sostenibles para el tratamiento de

aguas residuales, disminuyen la contaminación de ríos y quebradas. Además

reducen los riesgos sobre la salud de los habitantes del sector rural, mejorando

su calidad de vida y el entorno.

Los sistemas descentralizados integrados y sostenibles son de fácil

construcción, operación y mantenimiento comparados con otros sistemas

convencionales de alto costo; sin embargo para que conserven su eficiencia, se

requiere realizar actividades de operación y mantenimiento.

Las eficiencias teóricas de remoción de contaminantes de los sistemas

descentralizados integrados y sostenibles propuestos en estudio, se consideran

altas por que están alrededor del 80% en DBO, S.S, G y A y el 50% en N y P.

La inversión inicial de los sistemas propuestos en este proyecto, oscilan en

$1’800.000. Es una cifra que se puede considerar alta para un campesino de la

zona de minifundio del departamento del Huila, sin embargo, la inversión puede

recuperar con los productos obtenidos del proceso (reusó – producción) y los

ahorros en pago de tasa retributiva.

.

Page 38: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

BIBLIOGRAFÍA

VALENCIA G. E. OLAYA M. M., Generalidades sobre Saneamiento rural, Universidad

Surcolombiana, Programa Ingeniería Agrícola. Neiva, 1997.

CORTES M. A. RIOS A. T., Evaluación preliminar de los sistemas de tratamiento de

aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila,

Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2009

NARVAEZ C. P. SILVA. I. J., Evaluación preliminar de los sistemas de tratamiento de

aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila,

Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva 2009

MEDINA P. A., Manejo de dos residuos de da explotación Porcina en la Institución

Educativa El Tejar municipio de Timaná Huila. Diseño de una alberca biológica. Tesis.

Universidad Surcolombiana. Neiva, 2007.

OPS, Organización Panamericana de la Salud, CEPIS, Guía para el diseño de tanques

sépticos, tanques imhoff y lagunas de estabilización. Lima. 2005.

ALMARIO. L. F., Diseño De Albercas Biológicas Y Filtros Biológicos Como Sistema De

Tratamiento De Aguas Residuales Para La Institución Educativa Guacirco. Neiva-Huila.

Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2008

Sitio oficial de Sefiltra. Alcobendas (Madrid). [ref. De 20 enero 2010] web:

http://www.sefiltra.com/filtros-de-arena.php

Sitio oficial de Wikipedia [ref. De 20 enero 2010] web:

http://es.wikipedia.org/wiki/Tratamiento_de_aguas_residuales.

Page 39: 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

PLANOS