DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

50
DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ José Miguel González - 2006135580 Liseth Nayibe Javela - 2006135130

Transcript of DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Page 1: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y

AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ

José Miguel González - 2006135580Liseth Nayibe Javela - 2006135130

UNIVERSIDAD SURCOLOMBIANAFACULTAD DE INGENIERIA

PROGRAMA DE INGENIERIA AGRICOLASANEAMIENTO RURAL. B- 2009

Neiva - Huila

Page 2: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y

AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ

José Miguel González - 2006135580Liseth Nayibe Javela - 2006135130

Presentado a:Msc. EDUARDO VALENCIA GRANADA

UNIVERSIDAD SURCOLOMBIANAFACULTAD DE INGENIERIA

PROGRAMA DE INGENIERIA AGRICOLASANEAMIENTO RURAL. B- 2009

Neiva - Huila

Page 3: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

CONTENIDO

INTRODUCCION

1. PROPUESTA 1.1 Trampa de Grasas1.2 Desnatador1.3 Filtro en arena o filtro vertical1.4 Alberca Biológica

2. GENERALIDADES2.1 Propuesta2.2 Localización

3. DISEÑO

3.1 Esquema General de la PTAR

3.2 Propuesta 1. Sistema de tratamiento de Aguas residuales Domesticas3.2.1 Información Básica3.2.2 Cálculos Básicos3.2.3 Diseño Conceptual3.2.4 Diseño Físico

3.2.4.1 Diseño de la Trampa de Grasas3.2.4.2 Diseño de la Alberca Biológica3.2.4.3 Diseño del canal con buchón de agua

3.3 Propuesta 2. Sistema de Tratamiento de Aguas residuales provenientes del beneficio de café3.3.1 Diseño Conceptual3.3.2 Diseño Físico3.3.3 Diseño del desnatador3.3.4 Diseño del filtro vertical3.3.5 Diseño del canal con buchón de agua

3.4 Ventajas del Proyecto

4. PRESUPUESTO

CONCLUSIONES

BIBLIOGRAFÍA

PLANOS

Page 4: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

LISTA DE ABREVIATURAS

Af = Afluente

Ef = Efluente

QAR = Caudal de agua residual

L = Largo

bl = Borde Libre

h = Altura

a = Ancho

b = base

V = Volumen

THR = Tiempo de Retención Hidráulica

As = Área superficial

PTAR = Planta de Tratamiento de Aguas Residuales

DBO = Demanda Bioquímica de Oxigeno

SS = Sólidos Suspendidos

CF = Coliformes Fecales

N = Nitrógeno

P = Fosforo

AR = Aguas Residuales

mm = Milímetros

L = Litros

T.S.A.M = Tanque Séptico de Acción Múltiple

Page 5: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

LISTA DE TABLAS

Tabla 1. Caracterización de Aguas residuales domésticas.

Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.

Tabla 5. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando Alberca Biológica.

Tabla 6. Dimensiones de las Unidades del sistema de tratamiento de ARD.

Tabla 7. Caracterización de las Aguas Residuales del Café

La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores.

Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.

Tabla 10. Beneficios de la PTAR

Page 6: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

LISTA DE FIGURAS

Figura 1. Sistema General de la PTAR

Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.

Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD

Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.

Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.

Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica.

Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.

Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.

Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.

Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.

Figura 12. Vista planta y corte longitudinal del Filtro Vertical.

Figura 13. Vista planta y corte longitudinal del Desnatador.

Figura 14. Esquemas vista planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Figura 15. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Page 7: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

INTRODUCCION

En la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito en el departamento del Huila, encontramos la finca de don Freddy Méndez un pequeño caficultor que cuenta con 5 hectáreas cultivadas en café, la producción de la zona se estima en 9000 Kg/ha – año de café cereza.

La problemática de la zona, es que la fuente hídrica se esta viendo afectada por que el agua utilizada para el beneficio del café es arrojada sin ningún tratamiento a la quebrada la magdalena, y aguas abajo esta es tomada para el abastecimiento de la escuela de la vereda, no siendo poco los campesinos no solo vierten el agua del beneficio del café si no que también arrojan las AR de sus viviendas. Estas aguas se han convertido en un problema de salud pública para la región por que los alumnos de la escuela sin tener conocimiento del alto grado de contaminación del agua, beben de esta y por consecuencia se han visto dificultades de salud en los menores.

Don Freddy arraigado en sus costumbres comete el error de contaminar como el resto de campesinos, en vista de esto se le propone una alternativa para el tratamiento de las aguas residuales de su vivienda y de las aguas residuales del beneficio del café.

Para las aguas residuales del beneficio del café se mostrara el diseño de una PTAR integrada por un desnatador, un filtro vertical y un canal de plantas acuáticas y se le planteara la posibilidad de un reusó de estas aguas residuales, así como también un reusó a las aguas residuales domesticas.

Se planteara una PTARD para las aguas que salen de la vivienda y esta contara con una trampa de grasas, una alberca biológica y un canal con plantas acuáticas.

Con esto se busca disminuir la contaminación de la quebrada la magdalena y también reducir los volúmenes de agua de la quebrada Rio lindo que abastece a la finca, por que estas aguas residuales ya tratadas contribuirán al riego del cultivo de café y a otros usos agrícolas.

Page 8: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

1. Propuesta

Implementar un sistema de tratamiento para darle solución a la contaminación generada por las aguas domesticas y las aguas procedentes del beneficio de café cuando estas son vertidas a la quebrada La Bonita sin ningún tipo de tratamiento, trayendo como efecto el deterioro de la fuente hídrica; para tal fin se desea realizar una PTAR con dos sistemas uno para ARD (aguas residuales domesticas) y una con Aguas residuales de café, el primero cuenta con trampa de grasas, alberca biológica y un canal con plantas y el segundo cuenta con lo anterior más un desnatador. A continuación se da la descripción de las unidades:

1.1 Trampa de GrasasLas trampas de grasa son tanques pequeños, diseñados y construidos para separar la grasa y aceite de las aguas residuales. El agua residual llega caliente a la trampa de grasas, en donde, por choque térmico disminuye su temperatura, Los sólidos en suspensión o las partículas líquidas (aceites o grasas) flotan debido a que su densidad es menor a la del agua. (González, 2009).

1.2 Desnatador Un desnatador es un dispositivo usado para separar, por gravedad, las partículas en suspensión en una masa de agua. La sedimentación es un proceso muy importante, por esto se utiliza como un pretratamiento en lo sistemas, ya que las partículas que se encuentran en el agua pueden ser perjudiciales en los procesos de tratamiento, debido a que elevadas turbiedades inhiben los procesos biológicos y se depositan en el medio filtrante causando pérdidas de carga y deterioro de la calidad del agua efluente de los filtros. En el sedimentador se remueven partículas inferiores a 0,2 mm y superiores a 0,05 mm. (OPS, 2005).

1.3 Filtro en Arena o filtro Vertical Los filtros de arena o filtro vertical, son los elementos más utilizados para filtración de aguas con cargas bajas o medianas de contaminantes, que requieran una retención de partículas de hasta veinte micras de tamaño. Las partículas en suspensión que lleva el agua son retenidas durante su paso a través de un lecho filtrante de arena. Una vez que el filtro se haya cargado de impurezas, alcanzando una pérdida de carga prefijada, La calidad de la filtración depende de varios parámetros, entre otros, la forma del filtro, altura del lecho filtrante, características y granulometría de la masa filtrante, velocidad de filtración. http://www.sefiltra.com/filtros-de-arena.php

1.4 Alberca BiológicaUna alberca biológica Es un sistema de tratamiento de aguas residuales utilizado para el tratamiento de pequeños caudales, generalmente de tipo doméstico o de las explotaciones pecuarias; consiste en un tanque donde se siembran plantas acuáticas que son las que realizan el tratamiento y se complementa con un filtro (Almario, 2008)

Page 9: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

2. Generalidades2.1 Propuesta

Se proponen dos tipos de tratamientos uno para las ARD y el otro para las aguas provenientes del beneficio del café.

- Alternativa 1. Para las ARD, Como un tratamiento preliminar, se construirá una trampa de grasas, esta ayudara a remover todas las partículas en flotación, grasas y aceites. El tratamiento Primario será a cargo de una alberca biológica esta removerá un porcentaje de DBO, SS, N y F. En el tratamiento secundario se construirá un canal con plantas acuáticas, esta terminara de remover las concentraciones de DBO, SS, N, F y Cf. El tratamiento se concluye con un reusó de las AR tratadas en el cultivo del café.

- Alternativa 2. AR del beneficio del café, para el tratamiento preliminar se construirá un desnatador que ayudara a quitar las partículas en flotación, se complementara con un filtro vertical que removerá DBO y SS, ya el tratamiento secundario se realizara con un canal de plantas acuáticas esta estructura con ayuda de las plantas removerán el restante de DBO, SS, N, F y Cf. Este tratamiento culminara como el de las ARD, en un reusó en el cultivo del café.

2.2 LocalizaciónLa finca de Don Freddy Méndez esta ubica en la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito. Cuenta con buenas vías de acceso y servicio de trasporte cada hora de una ruta de colectivo que llega hasta la finca. Cuenta con una extensión de 5 hectáreas sembradas en café, es una empresa familiar, y cuenta con una extensión de 32 hectáreas.

La finca está ubicada en una zona cafetera, la base de la economía siempre ha sido el café, auto sostenible, y actualmente se encuentra en el proceso de mejoramiento agroforestal para implementar el ecoturismo en esta zona. Cuenta con 5 hectáreas que están dedicadas al cultivo del café, el plátano, la yuca y especies menores que complementan la seguridad alimenticia de este grupo familiar conformado por doce personas. Las restantes 27 hectáreas constituyen una reserva forestal que la conservan y desean ampliarla para seguir siendo fuente generadora de agua y oxígeno para el mundo. Los suelos son muy actos para la producción de café y presenta muy buena retención de agua, produciendo cafés especiales y con muy buena comercialización.

Page 10: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

3. Diseño

3.1 Esquema General de la PTAR

En la Figura 1 se muestra el esquema general de la PTAR en donde se encuentran integrados el sistema de tratamiento de ARD y el sistema de tratamiento de aguas provenientes del benéfico del café integrados, posteriormente cada sistema será analizada por separado.

Figura 1. Esquema general de la PTAR

3.2 SISTEMA 1: SISTEMA DE TRATAMIENTO DE AGUAS ESIDUALES DOMESTICAS

3.2.1 Información básica

Para caracterizar las aguas residuales, se tomo información de la literatura (ver tabla 1) y resultados de estudios realizados a algunos municipios del Huila (ver tablas 2, 3). Los valores finalmente seleccionados para este estudio se muestran en la tabla 4, semejándose a una agua residual media de acuerdo a Metcalf & Eddy.

Page 11: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Tabla 1. Caracterización de Aguas residuales domésticas.

PARAMETRO UNIDADESCONCENTRACIÓN

DEBIL MEDIA FUERTEDBO5 mg/L 110 220 400

DQO mg/L 250 500 1000SS mg/L 100 220 350ST mg/L 350 720 1200Grasas mg/L 50 100 150N mg/L 20 40 85P mg/L 4 8 15CT N°/100 ml 106 - 107 107 - 108 107 -109

Fuente: González. 2009

Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

MUNICIPIOQ T OD DBO5 DQO SS ST N P G-A CF

L/s °C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/LUFC/100mlNMP/100ml

Algeciras 14,8 25.9 1,07 109 198,7 108 294 3,5 1,29 - 1,6E+13Baraya 19,88 26 0,67 112 165 245 - 0,021 0,063 208 8500

Campoalegre

16,8 21 3 284 460,2 272 - 44,5 5,78 - 16x108

Colombia 4,82 23.5 0,8 223,5 337,5 85 - 5,7 - -Hobo 25 23.5 1,03 200 327 278 164 0,22 2,19 - -Iquira 6,32 25.3 1,0 110 207 310 - 116 194 - 22,5Neiva 617 28 - 192 350 145 471 16,4 6,3 3,2 24x104

Palermo 5,3 - - 147 358 84 - 0,76 - -Rivera 39,51 24 1,15 80 157 107 - 0,33 9,2 27,65 -

Santa maría 13,38 20 2,9 158 322 188 - 20,5 1,59 - 14x108 Tello 15,7 - 0,3 231 488 185 - 1,2 1,6 - -

Teruel 21,54 - - 105,31 255,25 93,25 - - - - -Villavieja 4,17 - - 245 - 180 - - - - -Yaguará 13 - - 380 629 4,16 - - - 18,2 -

Fuente: Narváez. 2009

Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.

PARAMETRO UNIDADES PITAL ISNOS

DBO5 mg/L 100 216

DQO mg/L 344 464SS mg/L 233 203ST mg/L 337 347

P mg/L 6.43 1.56

Fuente: Narváez, Silva. 2009.

Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.

PARAMETRO UNIDADES CONCENTRACIÓNDBO mg/L 200SS mg/L 250Grasas mg/L 100N mg/L 40P mg/L 8CF UFC/100 ml 108

Fuente: Narváez, Silva. 2009.

Page 12: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

PoblaciónPara las ARD, el número de habitantes en la vivienda de don Freddy es de 12 personas

3.2.2 Cálculos Básicos

Caudal de aguas residuales (QAR)En el cálculo se utilizo la siguiente fórmula: QAR=D∗CR∗P

D: Dotación CR: Coeficiente de retornoP: Población

- Dotación (D): Tomando como base el RAS 2000 titulo B, tabla B2.2 y teniendo en cuenta que en el sector rural los consumos de aguas son mayores al sector urbano se adoptó: D = 200 L/Hab-día

- Coeficiente de retorno (CR): Según el RAS 2000 titulo D, tabla D3.1 se adoptó:CR = 0.8

QAR=200 L/hab−dia∗0 . 8∗12hab=1920 L/día

QAR=1.92 m3/día

Caracterización de las aguas residuales del beneficio del café El café maduro presenta una composición en la cual el grano, que es la parte aprovechable para el proceso, representa el 20% del volumen total de la fruta, de manera tal que, el procesamiento de beneficiado genera un 80% del volumen procesado en desechos. El café es procesado de varias formas, en el tradicional no es usado ningún tipo de tratamientos de aguas o subproductos de cosecha (cáscara). El ecológico si usa un proceso de tratamientos de aguas y subproductos del café. El beneficio tradicional utiliza 10 L de agua por Kg de café pergamino y el beneficio ecológico utiliza 1 L/Kg de café pergamino. (Cortes, 2009)

La tabla 5, presenta una caracterización de las aguas residuales del beneficio del café, realizada por el comité de cafeteros en el departamento del Huila.

Page 13: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Tabla 5. Caracterización de las Aguas Residuales del CaféParámetros Unidades Valor

pH Unidades 4,06DBO mg/l 9700DQO mg/l 19800SS mg/l 7000

Fuente: Laboratorio Agualimsu 2004

- La cosecha dura dos meses y Don Freddy recoge un 60% de la producción en la cosecha por hectárea. Y en el beneficio tradicional utiliza 10 L de agua por Kg de café pergamino.

- la producción de la zona se estima en 9000 Kg/ha – año de café cereza

Caudal de aguas residuales provenientes del beneficio del café (QAR)En el cálculo se utilizo la siguiente fórmula: QAR=D∗PD: Dotación P: Producción

- Dotación (D): De la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009) se Tomo que en el beneficio tradicional se utiliza 10 L de agua por Kg de café pergamino:

- Producción (P): Producción de café cereza por cosecha en las 5 hectáreas de don Freddy.

P=PCafe∗%derecoleccion∗¿de ha

PCafe: Producción de café al año en la zona

- Producción (PCafe): En la zona se estima una producción de 9000 Kg/ha – año de café cereza, y don Freddy recoge un 60% de la producción en la cosecha por hectárea.

P=9000Kg

ha−año∗60 %∗5ha=27000

Kgaño

Page 14: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

QAR=10LKg

∗27000Kgaño

=270000

Laño

∗1m3

1000L∗1año

60d=4.5

m3

dia

QAR= 4.5 m3/día3.2.3 Diseño Conceptual

La figura 2, muestra el esquema general, donde las aguas grises (lavaplatos, lavadero, lavamanos y ducha) provenientes de la vivienda pasan por una trampa de grasas que cumple la labor de atrapar grasas, aceites y detergentes. El efluente de esta trampa de grasas, con el afluente de aguas negras (baterías sanitarias) de la vivienda se une y pasa por una alberca biológica donde se sembraran heliconias y su objetivo es remover los sólidos suspendidos, material flotante y parte de la concentración de DBO, F y N. El efluente de la alberca biológica pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.

Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.

Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.La figura 3, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (trampa de grasas), un tratamiento primario (alberca biológica) y un tratamiento secundario (Un canal con Buchón de Agua).

Page 15: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD

Diagrama de subproductosEn La figura 4, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.

Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.

Eficiencia teórica de sistemas de Tratamiento de ARD Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales domesticas, que utiliza albercas bilógicas, trampa de grasas para el tratamiento de las AR, de la tesis “Sistemas Descentralizados Integrados y Sostenibles Para el Tratamiento De Aguas Residuales Domesticas En El Sector Rural Del Departamento Del Huila” de (Narváez y Silva, 2009). La tabla 6, muestra las eficiencias esperadas para el sistema de tratamiento.

Page 16: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Tabla 6. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando Alberca Biológica. (González, 2009).

PARAMETRO AFLUENTE EFLUENTE % REMOCIONDBO (mg/L) 200 10,7 95SS (mg/L) 250 6 98

GRASAS (mg/L) 100 4 96N (mg/L) 40 6,2 85P (mg/L) 8 3,7 54

CF NMP/100ml 108 104 99,9 FUENTE: González. 2009.

3.2.4 DISEÑO FISICO

Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007).

3.1.4.1 Diseño De La Trampa De GrasasPara el diseño de acuerdo al RAS, la trampa debe tener 0.25m2 por 1.0 L/s de agua residual.

QAR = caudal de aguas residuales (L/s)A = Área (m2)a = Ancho (m)L = Longitud (m)h = Altura (m)

Cálculo del área (m2)

A=0 . 022 L/s1 .0L /s

∗QAR

QAR = 0.022L/s (Ya calculado)

A=0 . 25m2

1 .0 L/ s∗0 . 022L /s A= 0.0055m2

Page 17: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Cálculo de la longitud (L)

Si se calcula cuadrada

A=L2 L=√0 .0055m2

L= 0.074 m

Por construcción las dimensiones serán las siguientes (González, 2009):

La figura 5 muestra el esquema de la vista en planta y corte longitudinal de la trampa de grasas.

Vista en planta Corte Longitudinal

Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.

3.1.4.2 Diseño De La Alberca Biológica Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1Altura de la Alberca biológica h = 0.8mLa figura 6 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica.

a= 0.6m L= 0.6m h= 0.6m

Page 18: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Vista en planta

Corte longitudinal Detalle del Filtro

Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica.

- Cálculos de las tanques con Buchón de Agua.

Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). V = Volumen (m3)TRH = Tiempo de Retención Hidráulica (día)QAR = Caudal de Aguas Residuales (m3/día)As = Área superficial (m2)h = Altura (m)a = Ancho (m)L = Largo (m)

Calculo del volumen (V)

V=Q AR∗THRQAR = 1.92m3/díaTRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

V=1 . 92m3 /dia∗1dia V = 1.92 m3

Page 19: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Cálculo del área superficial (As)

V=As∗h As=V

h

Teniendo en cuenta la profundidad de las raíces del Buchón de agua, la profundidad de la alberca se adopta:

h = 0.8 m

As=1 .92m3

0. 8m

Relación largo ancho

L=a 2=1

Cálculo del ancho (a)

As=a∗L As=2a∗a As=(2a )2 a=√ As2

a=√ 2 .4m2

2 a=1.1m

Cálculo del largo (L)

L=a∗2 L=2.2mL=2a

Para efectos de construcción la longitud de cada tanque es:

L=1m

- Cálculo del Filtro Anaerobio El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.Vf = Volumen del filtro (m3)

As = 2.4 m2

Page 20: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

P = población (Hab)Vp = Volumen per cápita de filtro (m3/hab)C = Coeficiente de mayoración de volumenhf = Altura del filtro (m)hc = Perdida de cabeza (m)hs = Altura del sobrenadante (m)h1 = Altura capa de Arena (m)h2 = Altura capa de Gravilla (m)h3 = Altura capa de Grava (m)Lf = Largo del filtro (m)af = Ancho del filtro (m)

Cálculo del Volumen del filtro (Vf).

Vf=P∗Vp∗C

Vp = 0.05m3/habP = 12 Hab C = 1.2 Equivalente al 20%

Vf=12Hab∗0 . 05m3

Hab∗1 . 2

Altura del filtro (hf)

hf=h−hc−hs

hc = 0.1m Por el paso del liquido por la intersección del filtrohs = 0.1m Por Sobrenadanteh = 0.8 m

hf=0.6m

Para efectos de construcción:

Vf = 0.7m3

hf=0 .8−0 .1−0 .1

Page 21: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Largo del filtro (Lf)

Vf=af∗Lf∗hf

Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.

Lf= Vfaf∗hf

Lf= 0 . 7m3

1m∗0 . 6m Lf=1.2m

El filtro se divide en dos compartimientos de L=0.6m, para asegurar el flujo descendente – ascendente. La figura 9 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica para efectos de construcción.

Vista en planta

Corte longitudinal Detalle del Filtro

Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.

3.1.4.3 Diseño Del Canal Con Buchón de AguaSe diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH).

h1 = 0.2m Arena h2 = 0.2m Gravilla

h3 = 0.2m Grava

Page 22: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

V = Volumen (m3)TRH = Tiempo de Retención Hidráulica (día)QAR = Caudal de Aguas Residuales (m3/día)As = Área superficial (m2)h = Altura (m)a = Ancho (m)L = Largo (m)

Calculo del volumen (V)

V=Q AR∗THRQAR = 1.92m3/díaTRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

V=1 . 92m3 /dia∗1dia V = 1.92 m3

Cálculo del área superficial (As)

V=As∗h As=V

h

Teniendo en cuenta la profundidad de las raíces del Buchón de Agua, la profundidad de la alberca se adopta:

h = 0.8 m

As=1 .92m3

0. 8m

Relación largo ancho

L=a 2=1

Cálculo del ancho (a)

As=a∗L As=2a∗a As=(2a )2

a=√ As2

a=√ 2 .4m2

2 a=1.1m

As = 2.4 m2

Page 23: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Cálculo del largo (L)

L=a∗2 L=2.2mL=2a

Para efectos de construcción la longitud del tanque es:

L=2m

La figura 8 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua, para efectos de construcción.

Vista en planta

Corte longitudinal

Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

La tabla 7 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de ARD

Tabla 7. Dimensiones de las Unidades del sistema de tratamiento de ARDUNIDAD PARAMETRO MEDIDA (m)

Trampa de grasasLongitud 0.6

Ancho 0.6Altura 0.6

Tanque 1 y 2Longitud 1.0

Ancho 1.0Altura 0.8

Page 24: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Filtro anaerobio Longitud 1.2

Ancho 1.2Altura 0.6

Canal con Buchón de AguaLongitud 1.0

Ancho 1.0Altura 0.8

Fuente: Javela y Gonzalez. 2009

3.3 Propuesta 2: SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO DEL CAFÉ

3.3.1 DISEÑO CONCEPTUAL

La figura 9, muestra el esquema general, donde las aguas provenientes del beneficio del café pasan por un desnatador y su objetivo es remover los sólidos suspendidos, material flotante de las AR. El efluente de este desnatador, pasa por un filtro vertical cuya labor es remover parte de la concentración de DBO y S.S. El efluente del Filtro vertical pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.

Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.

Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.La figura 10, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se

Page 25: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (desnatador), un tratamiento primario (filtro vertical) y un tratamiento secundario (Un canal con Buchón de Agua).

Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.

Diagrama De SubproductosEn La figura 11, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.

Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.

Page 26: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Eficiencias Teórica del sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del Café.Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales provenientes del beneficio del café, que utilizan desnatadores y filtros verticales para el tratamiento de las AR, de la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009). La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores.

Tabla 8. Eficiencias Reales en tratamiento de aguas de café PARAMETRO AFLUENTE (Af) EFLUENTE (Ef) % REMOCIÓN DBO 2950 278 90 DQO 24270 1248 95 SS 9115 280 97 G y A 29.2 4.6 84

Fuente: Ríos, 2009

3.3.2 DISEÑO FISICO

Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007).

3.2.2.1 Diseño Del Desnatador El desnatador es utilizado en la propuesta 2 como tratamiento preliminar.

El desnatador se diseño teniendo en cuenta el parámetro de TRH.

Relación largo ancho 2:1V = Volumen (m3)TRH = Tiempo de Retención Hidráulica (días)As = Área Superficial (m2)L = largo (m)a = Ancho (m)h = Altura (m)

Cálculo del volumen (V)

V=Q AR∗TRH

TRH = 3 horas = 0.125 días

V= 0.6m3

Page 27: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

V=4 . 5m3∗0. 125dias

Cálculo del área superficial (As)

As=Vh

La altura se asume: h = 0.6 m

As=0 .6m3

0 .6m

Cálculo de la ancho (a)

L=a 2=1

As=a∗L As=a∗2a As=2a2 a=√ As2

a=√ 12

Cálculo de la longitud (L)L=2a

La figura 12 muestra el esquema de la vista en planta y corte longitudinal del Desnatador. Vista en planta Corte Longitudinal

As= 1 m2

a= 0.7m

L= 1.4

Page 28: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Figura 12. Vista planta y corte longitudinal del Desnatador.3.2.2.2 Diseño Del Filtro Vertical

- Cálculo del Filtro Anaerobio

El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.

Vf = Volumen del filtro (m3)P = población (Hab)Vp = Volumen per cápita de filtro (m3/hab)C = Coeficiente de mayoración de volumenhf = Altura del filtro (m)hc = Perdida de cabeza (m)hs = Altura del sobrenadante (m)h1 = Altura capa de Arena (m)h2 = Altura capa de Gravilla (m)h3 = Altura capa de Grava (m)Lf = Largo del filtro (m)af = Ancho del filtro (m)

Cálculo del Volumen del filtro (Vf).

Vf=P∗Vp∗C

Vp = 0.05m3/habP = 25 Hab C = 1.2 Equivalente al 20%

Vf=25Hab∗0. 05m3

Hab∗1. 2

Vf = 1.5m3

Page 29: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Altura del filtro (hf)

hf=h−hc−hs

hc = 0.1m Por el paso del liquido por la intersección del filtrohs = 0.1m Por Sobrenadanteh = 1 m

hf=0.8m

Para efectos de construcción:

Largo del filtro (Lf)

Vf=af∗Lf∗hf

Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.

Lf= Vfaf∗hf

Lf= 1 . 5m3

1m∗0 . 8m Lf=2m

El filtro se divide en dos compartimientos de L= 1m, para asegurar el flujo descendente – ascendente.

La figura 13 muestra el esquema de la vista en planta y corte longitudinal del Filtro Vertical. Vista en planta Corte Longitudinal

h1 = 0.3m Arena h2 = 0.3m Gravilla h3 = 0.2m Grava

hf=1−0 .1−0 . 1

Page 30: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Figura 13. Vista planta y corte longitudinal del Filtro Vertical.

3.2.2.3 Diseño del Canal con Buchón de Agua

Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1

Altura del Canal con Buchón de Agua h = 0.8m

La figura 14 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.

Vista en planta

Corte longitudinal

Figura 14. Esquemas vista planta y corte longitudinal del Canal Buchón de Agua

Page 31: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

- Cálculos del tanque con Buchón de Agua.

Se diseñó un solo tanque, tomando como parámetro el tiempo de retención hidráulica (TRH).

V = Volumen (m3)TRH = Tiempo de Retención Hidráulica (día)QAR = Caudal de Aguas Residuales (m3/día)As = Área superficial (m2)h = Altura (m)a = Ancho (m)L = Largo (m)

Calculo del volumen (V)

V=Q AR∗THRQAR = 4.5m3/díaTRH = 1dia (Asumido con base al TRH de un Tanque Séptico)

V=4 . 5m3 /dia∗1dia V = 4.5 m3

Cálculo del área superficial (As)

V=As∗h As=V

h

Teniendo en cuenta la profundidad de las raíces de las heliconias, la profundidad de la alberca se adopta:

h = 0.8 m

As=4 .5m3

0 . 8m

Relación largo ancho

L=a 2=1

As = 5.6 m2

Page 32: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Cálculo del ancho (a)

As=a∗L As=2a∗a As=(2a )2

a=√ As2

a=√ 5 .6m2

2 a=1.7m

Cálculo del largo (L)

L=a∗2 L=3.4mL=2a

Para efectos de construcción la longitud del tanque es:

L=3.5m

La figura 15 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Heliconias para efectos de construcción.

Vista en planta

Corte longitudinal

Page 33: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Figura 15. Vista en planta y corte longitudinal del Canal con Buchón de Agua.

La tabla 9 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de las Aguas Residuales del Beneficio del Café.

Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.

UNIDAD PARAMETRO MEDIDA (m)

DesnatadorLongitud 1,4

Ancho 0,7

Altura 0.6

Filtro VerticalLongitud 1.0

Ancho 1.0

Altura 1

Canal con heliconiasLongitud 3,5

Ancho 3,5

Altura 0.8 Fuente: Javela y González. 2009

Page 34: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

3.4 VENTAJAS DEL PROYECTO

Tabla 10. Ventajas de la PTARVENTAJA DESCRIPCIÓN

EN LO SOCIAL

El proyectos trae benéficos en lo social puesto que a las aguas de la quebrada la Bonita ya no llegara la carga contaminante que actualmente es vertida a esta y se disminuirán los riesgos de contraer enfermedades por la posible utilización de esta por parte de las personas y los animales.

Se disminuyen los malos olores e insectos hasta su desaparición que son generados del vertimiento de las aguas no tratadas, dándole un mejor aspecto a la finca.

Se gozara de una agua de mejor calidad que contribuirá al mejoramiento de la calidad de vida de las personas que habitan en la finca y en la región

EN LO AMBIENTAL El tratamiento de las aguas y su reutilización elimina la

carga contaminante que se le estaba vertiendo a la

Page 35: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

quebrada por lo que la calidad del agua es mejor y además se está ayudando a la conservación del agua.

Debido a la disminución de la contaminación los animales y plantas acuáticas que muy posiblemente se estaban afectando y estaban desapareciendo, tendrán muchas más posibilidades de vivir, aquí se está ayudando a la conservación de la fauna existente en la zona

Page 36: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

4. PresupuestoPRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE

PARA TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS

Propuesta 1. Sistema de Tratamiento de ARD

ITEM DESCRIPCION UNI CANTIDAD Vr. Unitario Vr. Parcial

1Tratamiento Preliminar

Trampa de grasas        

Concreto 3000 Psi m3 0,1 269,51 26,2

Muro de ladrillo tolete m2 2,49 29,96 74,6

pañete m3 0,24 231,51 55,33

tuberia PVC Ø 2" ml 0,7 4,27 2,99

Codo 90 PVC Aguas Negras Ø 2" UND 2 2,26 4,52

Tapa de Cemento m2 0,81 38,9 31,51

VALOR PARCIAL 195,15

2Tratamiento Primario

Alberca Biológica        

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

Arena para filtro anaerobio m3 0,2 40 8

Grava para filtro anaerobio m3 0,2 35 7

Gravilla para filtro anaerobio m3 0,2 50 10

VALOR PARCIAL 1.224,62

3Tratamiento Secundario

Canal Con Plantas Acuáticas        

Concreto 3000 Psi m3 0,585 269,511 157,664

Varilla corrugada ml 73 2,403 175,441

Concreto Ciclopeo m3 1,56 83,715 130,596

Muro de ladrillo tolete m2 13 29,96 389,477

pañete m3 1,44 231,511 333,375

tuberia PVC Ø 3" ml 2 4,27 8,54

Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524

VALOR PARCIAL 1.199,62

SUMATORIA DE VALORES PARCIALES 2.619,38

ADMINISTRACION E IMPREVISTOS (15%) 392,908

UTILIDAD (5%) 130,969

IVA SOBRE UTILIDAD (16%) 20,955

COSTO TOTAL DEL PROYECTO 3.164,22PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO

DEL CAFÉ

Page 37: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

Propuesta 2. Sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del Café

ITEM DESCRIPCION UNI CANTIDAD Vr. Unitario Vr. Parcial1 Tratamiento Preliminar

Desnatador          Concreto 3000 Psi m3 0,1 269,51 26,2  Muro de ladrillo tolete m2 2,49 29,96 74,6  pañete m3 0,24 231,51 55,33  tuberia PVC Ø 2" ml 0,7 4,27 2,99  Codo 90 PVC Aguas Negras Ø 2" UND 2 2,26 4,52  Tapa de Cemento m2 0,81 38,9 31,51  VALOR PARCIAL 195,152 Tratamiento Primario

Filtro Vertical          Concreto 3000 Psi m3 0,585 269,511 157,664  Varilla corrugada ml 73 2,403 175,441  Concreto Ciclopeo m3 1,56 83,715 130,596  Muro de ladrillo tolete m2 13 29,96 389,477  pañete m3 1,44 231,511 333,375  tuberia PVC Ø 3" ml 2 4,27 8,54  Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524  Arena para filtro anaerobio m3 0,2 40 8  Grava para filtro anaerobio m3 0,2 35 7  Gravilla para filtro anaerobio m3 0,2 50 10  VALOR PARCIAL 1.224,623 Tratamiento Secundario

Canal Con Plantas Acuáticas          Concreto 3000 Psi m3 0,585 269,511 157,664  Varilla corrugada ml 73 2,403 175,441  Concreto Ciclopeo m3 1,56 83,715 130,596  Muro de ladrillo tolete m2 13 29,96 389,477  pañete m3 1,44 231,511 333,375  tuberia PVC Ø 3" ml 2 4,27 8,54  Codo 90 PVC Aguas Negras Ø 3" UND 2 2,262 4,524  VALOR PARCIAL 1.199,62

  SUMATORIA DE VALORES PARCIALES 2.619,38

  ADMINISTRACION E IMPREVISTOS (15%) 392,908

  UTILIDAD (5%) 130,969

  IVA SOBRE UTILIDAD (16%) 20,955

  COSTO TOTAL DEL PROYECTO 3.164,22

CONCLUSIONES

Los sistemas descentralizados integrados y sostenibles para el tratamiento de aguas residuales, disminuyen la contaminación de ríos y quebradas. Además

Page 38: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

reducen los riesgos sobre la salud de los habitantes del sector rural, mejorando su calidad de vida y el entorno.

Los sistemas descentralizados integrados y sostenibles son de fácil construcción, operación y mantenimiento comparados con otros sistemas convencionales de alto costo; sin embargo para que conserven su eficiencia, se requiere realizar actividades de operación y mantenimiento.

Las eficiencias teóricas de remoción de contaminantes de los sistemas descentralizados integrados y sostenibles propuestos en estudio, se consideran altas por que están alrededor del 80% en DBO, S.S, G y A y el 50% en N y P.

La inversión inicial de los sistemas propuestos en este proyecto, oscilan en $1’800.000. Es una cifra que se puede considerar alta para un campesino de la zona de minifundio del departamento del Huila, sin embargo, la inversión puede recuperar con los productos obtenidos del proceso (reusó – producción) y los ahorros en pago de tasa retributiva.

.

BIBLIOGRAFÍA

Page 39: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

VALENCIA G. E. OLAYA M. M., Generalidades sobre Saneamiento rural, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 1997.

CORTES M. A. RIOS A. T., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2009

NARVAEZ C. P. SILVA. I. J., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva 2009

MEDINA P. A., Manejo de dos residuos de da explotación Porcina en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una alberca biológica. Tesis. Universidad Surcolombiana. Neiva, 2007.

OPS, Organización Panamericana de la Salud, CEPIS, Guía para el diseño de tanques sépticos, tanques imhoff y lagunas de estabilización. Lima. 2005.

ALMARIO. L. F., Diseño De Albercas Biológicas Y Filtros Biológicos Como Sistema De Tratamiento De Aguas Residuales Para La Institución Educativa Guacirco. Neiva-Huila. Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2008

Sitio oficial de Sefiltra. Alcobendas (Madrid). [ref. De 20 enero 2010] web: http://www.sefiltra.com/filtros-de-arena.php

Sitio oficial de Wikipedia [ref. De 20 enero 2010] web: http://es.wikipedia.org/wiki/Tratamiento_de_aguas_residuales.

Page 40: DISEÑO DE UN SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENE

PLANOS