13 Accesorios de voladura

17
/ Capítulo 13 J J ACCESORIOS DE VOLADURA ../ J 1. INTRODUCCION Paralelamente a la evolución de los explosivos los accesorios de iniciación han sufrido desde los años cuarenta un fuerte desarrollo tecnológico con el que se ha intentado alcanzar los siguientes objetivos: J - La iniciación enérgica de los explosivos de las últi- mas generaciones, mucho más insensibles que las dinamitas clásicas pero también más seguros. - El control de los tiempos de iniciación para mejorar la fra gme nta ción. - La reducción del nivel de vibraciones, onda aérea y proyecciones producidas en las voladuras. - El cebado puntual, en fondo o en cabeza del ba- rreno, o el cebado lineal de toda la columna de explosivo. - La mayor rapidez y flexibilidad de as operaciones de arranque manteniendo un elevado grado de se- guridad para el personal e instalaciones. J' J -' Actualmente, el sistema de energetización de los detonadores llamados ordinarios por medio de mecha lenta, que implica un alto riesgo de accidentes para los artilleros y una falta de control de los tiempos de salida con unas repercusiones negativas en el rendimiento de las voladuras y en las alteraciones a que pudieran dar lugar éstas, ha sido casi totalmente sustituido por sis- temas más seguros y fiables que pueden clasificarse en dos grupos: J .¡' J LlNEA MAESTRA DE DISPARO J J CORDON DE BAJA ENERGIA J J Figl.lra 13.1, Conect ador deplástico en cordón detonant e de muy baja energía. - Sistemas eléctricos, y - Sistemas no eléctricos En el presente capítulo se describen para cada grupo las características de los diferentes accesorios de ini- ciación y de otros elementos de utilidad para la co- rrecta ejecución de las voladuras. 2. SISTEMAS NO ELECTRICOS DE INICIA- CION 2.1. Detonadores iniciados por cordones detonant s de muy bajo gramaje Los cordones de muy baja energía están constitui- dos por un alma de pentrita con un gramaje variable entre 0,8 y 1,5 glm rodeada de hilados y de una cubierta de plástico flexible con un diámetro aproximado de unos 3 mm. El detonador situado en uno e los extre- mos del cordón es similar al eléctrico, con la única diferencia de que el inflamador es el propio cordón, y suele estar rematado por un conectador de pl stico como el de la Fig. 13.1 con el que se enlaza al cordón maestro de disparo de mayor gramaje. Estos detonadores se comercializan en el extranjero con diferentes nombres Anodet, Detaline, Primadet, . etc. Presentan una gran ventaja que es la no iniciación de los agentes explosivos,como son los hidrógeles y el ANFO, pudiendo así conseguirse el cebado en el "fondo. 2.2. Detonadores Nonel o sistemas de tubo de choque Constan de un tubo delgado de plástico transpa- rente e 3 mm de diámetro recubierto en su interior por una fina película de explosivo de 20 mglm y una cápsula detonadora semejante a la de los detonado- res eléctricos. La velocidad de l onda de choque dentro del tubo es de unos 2.000 mis y no es lo sufi- cientemente potente para iniciar a los explosivos en conta to con dicho tubo, por muy sensibles que és- tos sean, por lo que también puede efectuarse de forma efectiva el cebado en fondo. 171

Transcript of 13 Accesorios de voladura

Page 1: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 1/17

apítulo 13

ACCESORIOS DE VOLADURA

INTRODUCCION

Paralelamente a la evolución de los explosivos los

ccesorios de iniciación han sufrido desde los años

uarenta un fuerte desarrollo tecnológico con el que se

a intentado alcanzar los siguientes objetivos:

La iniciación enérgica de los explosivos de las últi-

mas generaciones, mucho más insensibles que las

dinamitas clásicas pero también más seguros.

El control de los tiempos de iniciación para mejorar

la fragmentación.

La reducción del nivel de vibraciones, onda aérea y

proyecciones producidas en las voladuras.

El cebado puntual, en fondo o en cabeza del ba-rreno, o el cebado lineal de toda la columna de

explosivo.

La mayor rapidez y flexibilidad de las operacionesde arranque manteniendo un elevado grado de se-

guridad para el personal e instalaciones.

Actualmente, el sistema de energetización de los

etonadores llamados ordinarios por medio de mecha

enta, que implica un alto riesgo de accidentes para los

rtilleros y una falta de control de los tiempos de salidaon unas repercusiones negativas en el rendimiento de

las voladuras y en las alteraciones a que pudieran dar

ugar éstas, ha sido casi totalmente sustituido por sis-

emas más seguros y fiables que pueden clasificarse en

os grupos:.¡'

LlNEA MAESTRA DE DISPARO

CORDON DE

BAJA ENERGIA

Figl.lra 13.1, Conectador deplástico en cordón detonante demuy baja energía.

- Sistemas eléctricos, y

- Sistemas no eléctricos

En el presente capítulo se describen para cada grupolas características de los diferentes accesorios de ini-

ciación y de otros elementos de utilidad para la co-

rrecta ejecución de las voladuras.

2. SISTEMAS NO ELECTRICOS DE INICIA-

CION

2.1. Detonadores iniciados por cordones

detonantes de muy bajo gramaje

Los cordones de muy baja energía están constitui-

dos por un alma de pentrita con un gramaje variableentre 0,8 y 1,5 glm rodeada de hilados y de una cubierta

de plástico flexible con un diámetro aproximado deunos 3 mm. El detonador situado en uno de los extre-

mos del cordón es similar al eléctrico, con la única

diferencia de que el inflamador es el propio cordón, y

suele estar rematado por un conectador de plástico

como el de la Fig. 13.1 con el que se enlaza al cordón

maestro de disparo de mayor gramaje.

Estos detonadores se comercializan en el extranjero

con diferentes nombres Anodet, Detaline, Primadet,

. etc. Presentan una gran ventaja que es la no iniciación

de los agentes explosivos,como son los hidrógeles y elANFO, pudiendo así conseguirse el cebado en el

"fondo.

2.2. Detonadores Nonel o sistemas de tubo de

choque

Constan de un tubo delgado de plástico transpa-rente de 3 mm de diámetro recubierto en su interior

por una fina película de explosivo de 20 mglm y unacápsula detonadora semejante a la de los detonado-res eléctricos. La velocidad de la onda de choque

dentro del tubo es de unos 2.000 mis y no es lo sufi-cientemente potente para iniciar a los explosivos encontacto con dicho tubo, por muy sensibles que és-tos sean, por lo que también puede efectuarse deforma efectiva el cebado en fondo.

171

Page 2: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 2/17

"-

',,-

'-

"-

"

"-

"-

Foto 13.1. Detonador None! (Nitro-Nobe!).

La iniciación puede realizarse mediante un detona-

or, un cordón detonante o una pistola especial car-ada con cartuchos de fogueo.

Los intervalos de retardo con los que se comerciali-an estos detonadores de fabricación sueca son de 25

s, 100 ms, 200 ms y 500 ms, abarcando desde uniempo mínimo de 75 ms hasta un máximo de 2.000ms,

ependiendo de los números de la serie. En otros pai-

es donde se fabrican bajo patente, los tiempos deetardo pueden diferir de los anteriores.

Para el cálculo de las voladuras hay que tener enuenta el retardo debido a la transmisión de la onda de

hoque a través del tubo, que es de unos 0,5 ms por

ada metro de longitud.

Con el fin de dotar a este sistema de mayor flexibili-

ad y reducir el coste, actualmente el detonador Nonel

e utiliza con una longitud de tubo reducida en combi-

~

-z-~_/

ura 13.2. Esquema de encendido con detonadores None!y conectado res.

"-

nación con un cordón detonante de muy bajo gramaje "

(1 g/m) uniéndolos mediante conectadores de plástico.

Un inconveniente práctico que plantea este tipo dedetonador es la imposibilidad de comprobar los cir-cuitos de disparo, teniendo que basarse ésta en lasimple inspección visual.

'"

2.3. Detonadores Hercudet

El sistema está formado por un explosor especial

~- TUBO

CIERRE

A!RE Cc"ECTADOR f'MPlE CONECTADOR EN T, ~

CONEC~~~~] 1DOBLE ~

U 00 /~""'OOOTUBO--~

CARGA DE ¡GNICION

ElEMEOJTO DE RETARDO

Cr,RG,' PRIMARIA

PROTECTOR- ,

CAF.OA BASE

Figura 13.3. Detonador Hercudet y piezas de conexión detubos.

Page 3: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 3/17

onectado a los detonadores mediante un fino tubo de

lástico que cierra el circuito. Elexplosor introduce en

icho circuito una mezcla gaseosa de dos componen-es, oxígeno más gas combustible, iniciando la explo-ión de la misma cuando toda la línea está llena de esa

ezcla. la detonación se propaga a una velocidad de

.400 mis, iniciando a su paso los detonadores pero no

l explosivo en contacto con los tubos, por lo queambién hace factible el cebado en fondo.

los detonadores son de tipo convencional, instan-

áneos o temporizados con intervalos de retardo de 50s para los primeros números y 60 ms para los últimos,

barcando un tiempo total desde 50 ms hasta 850 ms.n estos detonadores la parte eléctrica se ha sustituido

or dos tubos de plástico que sobresalen del casquillo

el detonador unos 10 cm para trabajos de cielo

bierto y 4,8 ó 7,2 m para voladuras subterráneas.

la ventaja principal que presenta este detonador

rente a otros no eléctricos es la posibilidad de com-

robar que el circuito de la pega está bien hecho, ya quee introduce en el mismo un determinado caudal de

ire o nitrógeno midiendo a continuación la presión.

n la Fig. 13.4 se representa un esquema de conexión.

~~

.

'8LE .

~"". ~-~.: CAMARA " '

1

., MEZCLADO IIGNICION

IGAS INER~e -- I- I

r-::=::;~-_/"-- . COC90 Foe90 P~90 I~E /r L_--~

EXPLOSOR HERCUDET /ICIRCUITO

"w,",]ITll"J"':'~~'"ERCUDET .--

AREA DE VOLADURA

Figura 13.4. Esquema de circuito con detonadores Hercu-det.

Foto 13.2. Multiplicador temporizado Deckmaster.

2.4. Multiplicadores temporizados

Este grupo de accesorios consta normalmente de un

multiplicador convencional con una funda de plástico

que dispone de un orificio lateral,a modo de generatriz

por donde pasa el cordón detonante de bajo gramaje

de 3 a 6 g/m. El «elemento de tiempo» va inserto en el

multiplicador y está provisto de una cápsula iniciadora

o sensor próximo al cordón detonante, un elemento de

transmisión y un detonador temporizado.

Este tipo de multiplicador se utiliza básicamente en

aquellas voladuras donde las columnas de explosivo

se seccionan e inician en tiempos distintos con el fin de

reducir las cargas operantes. los tiempos nominales

de secuenciación dependen de las diferentes casas

fabricantes, entre las que destacamos:

- Deckmaster de Atlas Powder Co. de 25 ms y 50 ms

de intervalos de tiempo con un retardo máximo dela serie de 400 ms.

- Austin ADP de 25, 50 Y 75 ms de intervalos deretardo.

- Slider de la Cll, Inc. Fi"g. 13.5 etc.

El número de intervalos puede ampliarse significati-vamente combinando este sistema con el clásico de

cebado en cabeza con detonadores eléctricos de mi-

crorretardo.

CAPSULA DECIERRE

ORIFICIO DE PASO

ALOJAMIENTO DELA CAPSULA

DETONADOR NONEL

GUlA DE PASO DELCORDON DETONANTE

PROTECCION DEPLASTICO

TUBO DE TRANSMI-SION DELDETONADOR

CORDON DETONANTE

HENDIDURA EN :'NGULORECTO PARA FIJACION

Figura 13.5. Elementos y ensamblaje de un multiplicadortemporizado Slider.

173

Page 4: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 4/17

Relés de microrretardo en superficie y en ba-rreno

El relé de microrretardo en superficie es un acce-orio que intercalado en una línea de cordón deto-ante introduce un desfase de tiempo en la transmi-ión de la onda de detonación.

Están constituidos por un elemento de microrre-rdo con dos pequeñas cargas explosivas adosadas aus lados y alojadas en una vaina metálica.

En los de diseño antiguo, el cordón se engarza alsquillo metálico mediante el empleo de unas tenaci-las y en los más modernos, que son de plástico, seispone en los extremos de unos huecos especialesue permiten con un pasador en forma de cuña fijarorrectamente el cordón detonante. Fig. 13.6.

CAPSULACaRDaN DE ALUMINIO

- ~:.::\:.::..~"':) )~ ID~

\$=~=~.~","~' .~.~ ~~Q)

)\) . - """.-. '.; . CUNA

ELEMENTODE VAINADEPLASTlCORETARDO

o / J¡r~:[CASQUILLO ELEMENTO

DE ALUMINIO DE RETA.RDO

rJ

gura 13.6. Tipos de relés de microrretardo de superficie.

Los tiempos de retardo son siempre de milisegundos

suelen oscilar entre 10 y 100 ms, dependiendo de la

asa fabricante. En España se comercializan de 15 y5 ms.

Foto 13.3. Relé de microrretardo.

'-..

La utilización de estos elementos permite conseguirsecuencias con un número ilimitado de intervalos de

tiempo, pues incluso pueden colocarse más de uno enserie dentro del mismo ramal de cordón entre cada dos '-..

barrenos.

Los otros relés, denominados de microrretardo en

barrenos, son en esencia semejantes a los anteriores, ~

pues están formados por un pequeño cilindro de alu-minio con un extremo abierto donde se inserta el cor-

dón detonante que inicia la carga del barreno y en el '-..

otro extremo una pequeña anilla por donde se enhebrael cordón de menor gramaje que constituye la línea

maestra. Fig. 13.7.Los tiempos de microrretardo varían desde los 25 ms "-

hasta los 1.000 ms y se necesita uno por cada barreno.

Con el fin de eliminar el riesgo de fallos es aconseja-

ble disponer en las voladuras de un circuito doble de '--iniciación.

CORDON DE LlNEA MAESTRA'--

~

'--

'--

RELE DEMICRORRETARDO

~ '--

CORDON DETONANTEDEL BARRENO

~ .~

'--

Figura 13.7. Relé de microrretardo en barreno..

'-

"2.6. Detonadores ordinarios y mecha lenta

Los detonadores ordinarios están formados por un

casquillo de aluminio que contiene dos cargas: una "-carga base de un explosivo de alta velocidad de deto-nación en el fondo del tubo y una carga primaria de unexplosivo más sensible. Fig. 13.8.Se inician por medio de un ramal de mecha lenta

que se engarza al detonador con una tenacillas omordaza especial. Esa mecha lenta está fabricada "-por un núcleo de pólvora rodeada de varias capas dehilados y materiales impermeabilizantes, resistentesa la abrasión, a la humedad y a los esfuerzos mecá-. '-nlCos.

~

Page 5: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 5/17

CASQUILLO MEZCLADEIGNICION

CARGAPRIMARIA

Figura 13.8. Detonador ordinario.

El corte de !a mecha lenta para que se produzca un

uen contacto con la mezcla de ignición del detonadorebe ser normal al eje del núcleo de la misma. Fig. 13.9.

INCORRECTO

)~~~~~~~t~\~~~\\~MECHA SEPARACION CAPSULA

CORRECTO

~~:~~)~\;;;~~;:c~'\.~MECHA CONTACTO

CAPSU LA

igura 13.9. Iniciación con mecha lenta y detonador con-vencional.

El tiempo de combustión es normalmente de 2 mi-

utos por metro, con una tolerancia del :i: 10%.Las aplicaciones de estos accesorios se han ido re-

uciendo a lo largo del tiempo, siendo en estos mo-

entos muy esporádica su utilización.

Un sistema muy útil para encender simultáneamente

n gran número de mechas, en condiciones de seguri-

ad y rapidez, lo constitu'ye el formado por los cordo-

>1'

ORIFICIODE PASO

~.. CONECTADOR

DE MECHA

MECHA LENTA

nes de ignición, que pueden llegar a tener velocidades

de propagación de hasta 3 mis, y los conectado res de

mecha. Fig. 13.10.

Elencendido del cordón de ignición puede llevarse a

cabo por tres métodos: llama de un mechero, resisten-cia eléctrica o con una mecha lenta.

2.7. Cordones detonantes

Estos cordones disponen de un núcleo de pentrita

en cantidad variable (3, 6,12,40 Y100 g/m) rodeado

por varias capas de hilados y fibras textiles, con unrecubrimiento exterior de cloruro de polivinilo que

permite que tengan unas caracteristicas adecuadas de

flexibilidad, impermeabilidad, resistencia a la tracción

ya la humedad.La velocidad de detonación es de unos 7.000 mis.

Los tipos de empalmes que pueden realizarse se indi-

can en la Fig. 13.11.En el cordón de 3 glm deben eliminarse tales uniones,

a no ser que se efectúen con cordones de gramaje

superior. Si bien la aplicación básica de estos acceso-

jl ".=:::'hl~

'C/', . ~ cr

,

,J,"~ '> c

íJ~

(C~.~

~~1c~.

=1>=~~

Figura 13.11. Empalmes con cordón detonante.

MECHA LENTA

)

(

~

jCORDON DE

IGNICION

~

Figura 13.10. Sistema de encendido rápido de mecha de seguridad.

Page 6: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 6/17

ios es la de transmitir la detonación iniciada por un

etonador a una carga de explosivo, se emplean entros usos como los que se indican en la Tabla 13.1.

TABLA 13.1

Foto 13.4. Cordones detonantes de diferente gramaje.

También existen en el mercado cordones reforzados

ara trabajos submarinos y otros especiales antigrisú.

'"SISTEMAS ELECTRICOS DE INICIACION

1. Detonadores eléctricos convencionales

Estos accesorios están constituidos por una cápsula

e aluminio o cobre en la que se aloja un inflamador,

n explosivo iniciador y un explosivo base. Fig. 13.12.

a potencia de los detonadores viene dada por la can-

idad de fuiminato de mercurio de que disponen, nor-

almente de 1 ó 2 gramos que corresponden a los

úmeros de potencia 6 y 8 respectivamente, o cual-

uier otro explosivo equivalente, por ejemplo pentrita

rensada, etc.Si el detonador es de retardo o microrretardo entre el

"--

inflamador y el explosivo primario existe un elementopirotécnico retardador.

'-

HilOS DE ALlMENTACION

'-

"--

TAPaN DE CIERRE

'-

VAINA METALlCA

INFlAMADOR

OPERCUlO

PORTA RETARDO

PASTA RETARDADORA

.~

CARGA PRIMARIA

CARGA BASE

I

1 Ir"!.'

'-

o b'--

Figura 13.12. Detonadores eléctricos. Instantáneos y Tem- '--porizados.

'-

Los detonadores eléctricos se clasifican en funciónde las siguientes características:

.~

1. Tiempos de detonación.

2. Características eléctricas, y

3. Aplicaciones.

'--

De acuerdo con el lapso de tiempo transcurrido en-

tre el momento en que se energetiza el detonador y el --

instante en que se produce la detonación de las cáp-

sulas se agrupan en:

"-- Detonadores instantáneos

Detonadores temporizados. De retardo y de mi-crorretardo. "-

En España la serie de detonadores de retardo (500

ms) fabricados por UEE consta de doce números, y la '-de detonadores de microrretardo de 20 y30 ms con 15y

18 números respectivamente.

Todos los detonadores eléctricos presentan cierta

dispersión en los tiempos de iniciación, siendo mayor "-en los números más altos de la serie, tal como ha

demostrado Winzer (1979) en un exhaustivo estudio

con cámaras ultrarrápidas. El rango de variación nor- '-

mal suele estar comprendido entre el5 y eI10%. Birch

(1983) da una fórmula para estimar la desviación típica

en milisegundos a partir del número de detonador '--

«nd»:

CaRDaN

DETONANTE APLICACIONES

(g/m)

1,5-3 . Iniciación de multiplicadores yexplosivos muy sensibles.

6 . Líneas maestras conectandobarrenos.

12-20 . Iniciación de explosivos conven-cionales y de baja sensibilidad.

40 . Prospecciones slsmicas.100 . Voladuras de contorno y demo-

liciones.

Page 7: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 7/17

TABLA 13.2

Fuente: Unión Española de Explosivos, S. A.

O"ts = (3 + 2 . nd)

Desde el punto de vista eléctrico los detonadores se

clasificansegúnel impulsodeencendidooenergíaporunidad de resistencia eléctrica que se precisa para

provocar la inflamación de lapíldora del detonador. Asípues, los detonadores se denominan Sensibles (S),

Insensibles (1)y Altamente Insensibles (Al).Las características eléctricas de los detonadores es-

pañoles se indican en la Tabla 13.2.En lo referente a las aplicaciones, además de los

convencionales, existen en el mercado detonadores

resistentes a altas presiones de agua para voladurassubmarinas, detonadores de cobre para ambientesgrisuosos o inflamables y detonadores para prospec-ciones sísmicas.

En las voladuras, los detonadores eléctricos se co-

nectan entre sí formando un circuito que se une a lafuente de energía por medio de la línea de tiro. Los

tipos de conexión que son posibles realizar son:

- En serie, Fig. 13.13.

~~~ Trn--~:Figura3.13. Circuito en serie.

La resistencia total del circuito «RT» que resulta es:

RT = RL + n (Rp+ 2 m x rt) = RL + n x RD

donde:

RL = Resistencia de la línea de tiro (O).

Rp = Resistencia del puente del detonador (O).n = Número de detonadores.

m = Metraje de los hilos del detonador (m).

r 1 = Resistencia por metro lineal de hilo.

Para cobre de 0,6 mm de diámetro el valor es

0,065 O/m.

RD = Resistencia total del detonador (O).

Este tipo de circuito es el más utilizado por su senci-

llez y por la posibilidad de comprobación por simplecontinuidad del mismo. Si el número de detonadores

esalto, latensión del explosor necesario eselevada y elamperaje que resulta espequeño puesviene dado por:

I = V/RT

En paralelo, Fig. 13.14.

ttt-::::j", Bn2 83

Figura 13.14. Circuito en paralelo.

RT = RL + ~n

Este sistema de conexión se utiliza sobre todo en

" trabajos subterráneos y es recomendable cuando elriesgo de derivaciones es alto.

- En serie-paralelo, Fig. 13.15.

En conexiones equilibradas se tiene:

RT = R + RD. nsL -

np

donde:

ns = Número de detonadores en serie.

np = Número de series en paralelo.

177

TIPO DE DETONADORCARACTERISTICAS ELECTRICASDE LOS DETONADORES UEE S I Al

Resistencia de puente1,2-1,6 0,4-0,5 0,03-0,05

Ohmios (O)

Impulso de encendido .0,8-3 8-16 1.100-2.500(mW. seg/O)

Corriente de seguridad0,18 0,45 4

Amperios (A)

Corriente de encendidoen series recomendada

25mperios (A) 1,2 2,5

Page 8: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 8/17

Q

<:

I IRLI II I

!!Figura 13.15. Circuito serie-paralelo.

Este tipo de circuito se emplea cuando el número de

etonadores es muy grande y es necesario reducir laesistencia total para adaptarse a la capacidad del ex-

Una fórmula para determinar el número óptimo de

eries en paralelo a partir de un conjunto de detona-

ores, disponiendo ya de un explosor, es:

2 Resistencia total del conj unto de detonadores-,-P Resistencia de la línea e hilos de conexión

Si a pesar de ese cálculo la intensidad eléctrica esti-

ada para cada serie no es suficiente para iniciar ade-uadamente a los detonadores las alternativas de ac-

ación son: cambiar la línea de tiro por otra más ro-usta de menor resistencia eléctrica o sustituir el ex-

losor por otro de mayor voltaje.

Este tipo de circuito es muy efectivo cuando las vo-

duras tienen menos de 300 barrenos. El desequilibriodmisible entre series es del::':: 5%.

La unión de los hilos de los detonadores entre sí o

on la línea de tiro debe hacerse de acuerdo con los

squemas recomendados en la Fig. 13.16.

J~D ..~~

igura 13.16. Conexiones recomendadas en los circuitoseléctricos.

Cuando no existan garantías de aislamiento o se

eseen agilizar los trabajos de ~onexión podrán em-learse conectadores rápidos.

Las comprobaciones de los circuitos se realizarán

on un óhmetro diseñado para que la intensidad de

lida no exceda de 0,025 A y la corriente de cortocir-

uito sea inferior a 0,050 A. Las etapas de comproba-

ión pueden dividirse de la siguiente forma:

a) Antes de la conexión del circuito. Comprobar la "-

continuidad y el aislamiento de la línea de tiro, y si

se estima necesario cada detonador individual-

mente, tomando la precaución de introducir la "-

cápsula dentro de un bloque de madera o una

tubería de acero para proteger al artillero de una

posible explosión accidental.

b) Después de la conexión, Comprobar la resisten-

cia total del circuito. Cuando el esquema es en

serie las resistencias menores a las calculadas \.

son debidas a la falta de conexión de todos losdetonadores o a una derivación en el circuito. Si

la resistencia es demasiado alta existe un falso.

contacto o el número de detonadores es superior \.

al calculado. Y por último, si la resistencia es

infinita el circuito está abierto. Cualquiera de

esas anomalías se corregirá subdividiéndose el "-

circuito y determinando el punto donde se loca-liza el fallo.

"

"-

En los circuitos en paralelo se recomienda compro-

bar individualmente cada detonador y en los esquemas

serie-paralelo proceder a comprobar cada serie y veri- "

ficar si éstas están equilibradas.

3.2. Detonadores eléctricos Magnadet.Multiplicadores Magna

En 1981 apareció en el mercado el detonador "-

eléctrico Magnadet, comercializado por la ICI, quepresenta frente a los convencionales numerosas

ventajas como son:

- Las corrientes errantes continuas o alternas con-

vencionales de 50 ó 60 Hz no pueden iniciarlo.

- Pasa la prueba de electricidad estática alemana

con descarga a 30 kV Y 2.500 picofaradios y la

francesa de 10 kW y 2.000 picofaradios.

- Es más seguro que los detonadores convenciona-

les frente a la energía de radio frecuencia.

- La posibilidad de derivaciones es prácticamente

nula, pue-s cada detonador actúa independiente-

mente como en un circuito paralelo.

\,

La característica especial de este detonador es que

se conecta al explosor a través de un transformador. El

primario está constituido por la línea de tiro que se une

" al explosor y el secundario por un anillo toroidal de

ferrita y los hilos de la cápsula detonante. Fig. 13.17.

La iniciación del detonador sólo puede producirse

cuando el primario se conecta a una fuente de co-

rriente alterna de frecuencia igualo superior a 15 kHz.

Por esto, se precisan explosores especiales por en-

cima de la indicada hasta los 30 kHz y permiten com-

probar fácilmente si la impedancia del circuito está por

debajo del límite aceptable.

La batería de que disponen es recargable y permite

efectuar hasta 100 disparos si se parte de su carga

máxima. El multiplicador Magna se basa en el mismo

principio y está diseñado para alojar dos detonadores

Magnadet con una longitud de hilos conductores re-

ducida a 5 cm. El circuito primario pasa a través de un

\

Page 9: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 9/17

EXPLOSOR

TOROIDEDE FERRITA

@CIRCUITO

8PROTECTORDEPLASTICO

DETONADOR

MADEJA

Figura 13.17. Detonador Magnadet.

rificio central tal como puede observarse en la Foto.

Foto 13.5. Multiplicador Magna.

.3. Detonadores temporizados electrónicos

Desde mediados de los años 80, diversos fa,9ricantesexplosivos comenzaron a desarrollar los detonado-s temporizados electrónicos. Estos accesorios permi-n, por su gran precisión, un excelente control del pro-eso de fragmentación, así como de las vibraciones y

Los componentes principales de un detonador elec-rónico se representan en la Fig. 13.18. En esenciaonsisten de una unidad de retardo electrónica y unonador instantáneo.

Se distingue un circuito integrado, o microchip (4),e constituye el corazón del detonador, un condensa-or para almacenar energía (5), y unos circuitos deguridad (6) conectados a los hilos que sirven de pro-cción frente a diversas formas de sobrecargas eléctri-

s. El propio microchip posee unos circuitos de seguri-

dad internos. La cerilla inflamadora (3) para la inicia-

ción de la carga primaria (2) está especialmente dise-

ñada para proporcionar un tiempo de iniciación peque-ño con la mínima dispersión.

Figura 13.18. Detonador electrónico.

El sistema de encendido consta, pues, de un conden-

sador y de un conmutador electrónico, cuya salida es lacerilla inflamadora.

En cuant') a los tiempos de retardo, los detonadoreselectrónicos tienen unas posibilidades mucho mayores

que los convencionales. Los accesorios se fabrican conun determinado número de período o escalón, que noestablece el tiempo de retardo sino el orden en el queocurren las detonaciones. El tiempo de duración del

período se programa y almacena instantes antes de lavoladura sobre una RAM o una EPROM si el explosor(tarjeta de hardware) admite preprogramación, utilizán-dose intervalos que van desde pocos milisegundoshasta 500 ms.

De esta manera, es posible alcanzar un mismo tiem-po de diferentes formas. Por ejemplo, 500 ms pueden

conseguirse con el detonador nQ20 programado a 25

ms, o con el nQ1 programado a 500 ms. Las posibilida-des son tan amplias que algunas marcas ofrecen ran-gos de tiempos que van desde 1 ms hasta 15 s.Los microchips proporcionan unos tiempos de retardo

muy precisos, con una exactitud del orden del 0,1% delintervalo programado.Otras características de los detonadores electrónicos

son:

- No pueden explosionar sin un código de activaciónúnico.

- Reciben la energía de iniciación y el código de acti-vación desde el aparato de programación y mando.

- Están dotados de protecciones frente a sobreten-

siones. Los pequeños excesos de carga se disipaninternamente a través de los circuitos de seguri-dad, mientras que los altos voltajes ( > 1000 V) selimitan por medio de un cortacorriente.

- Son insensibles a los efectos de tormentas, radio

frecuencia y electricidad estática.- Latensióndeoperaciónes pequeña( < 50V), que

es una gran ventaja considerando el riesgo decorrientes errantes.

El aparato explosor sirve, además de para energeti-

zar los detonadoras, para programar previamente lostiempos de respuesta de éstos.En esencia está formado por un microprocesador

central o CPU que gobierna el resto de elementos pro-pios de un ordenador y cuyo modo de funcionamiento

puede variarse a través de los programas de control.

Page 10: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 10/17

Foto 13.6. Detonadores electrónicosy componentes(cortesía de ICI Explosives).

El acceso al artillero está restringido mediante un

digo secreto de usuario (palabra clave o password),n el cual el equipo no funciona.Los detonadores se conectan en paralelo a un cableuno o varios hilos, a través de los que se envía tantoinformacióncomo la energía a los detonadores.

RACION MANUAL OPERACION AUTOMATICA

(IntemJpciOO pooible)

~pr.;ooarbo1ooe:/ rL decaiga

II

Detonador

Foto 13.7. Unidad de programación y mando

(cortesía de ICI Explosives).

El primerpasoconsisteen comprobarla continuidadde la línea y, a continuación, se procede a la selección

del tiempo de retardo de los detonadores. Previamente,el aparato emite señales de chequeo a los detonado-res. Si todo es correcto se continua; en caso contrarioaparece un mensaje de error.Después se cargan los condensadores de los deto-

nadores y, a continuación, se da la orden de disparo.

En la Fig. 13.19 se representa un diagrama de funcio-nes simplificado.En cualquier instante la operación puede ser inte-

rrumpida procediendo el sistema a pedir el código deentrada o password.

OPERACIONAUTOMATICA

(IntemJpciOO Imposible)

Explosor

Ii~

I

Detonación después

---+ de los tiempos deretardo indMduales

Figura 13.19. Diagrama de bloques del funcionamientode un detonador electrónico.

El número de detonadores que es posible conectar al

arato explosor varía según los fabricantes, desde,,¡:.

0 en el caso de los detonadores ExEx de'la ICI con

Expert Explosives Blasting System, hasta 500 en los

cesorios y equipos desarrollados por NitroNobel.

El principal obstáculo hoy en día para el empleo de

tos detonadores es el económico, pues hasta que no

llegue a una fabricación masiva los costes unitariosán altos.

En las grandes obras y explotaciones mineras ese

brecoste quedará compensado can el aumento delámetro de perforación, haciendo que la repercusiónlos accesorios sea cada vez menor por unidad de

lumen de roca arrancada, y también por las exigen-

as de seguridad en los trabajos de envergadura o der complejidad.

4. FUENTES DE ENERGIA

La" fuentesdeenergíaparala iniciación de los deto-

nadores eléctricos son: Explosores, Baterías y Red deEnergía Eléctrica.Tanto las baterías como las líneas eléctricas son

fuentes de energía poco adecuadas para el disparo devoladuras y sólo en casos especiales y con una autori-

zación expresa podrán emplearse.

4.1. Explosores convencionales

Dentro del grupo de explosores los más utilizados

son los de condensador. Mediante una magneto de

Page 11: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 11/17

manivela o una pila se carga progresivamente el con-densador, cerrándose el circuito deforma automática o

controlada cuando latensión alcanzada enelmismo esla adecuada y se produce la descarga de corriente en

un tiempo muy breve.

RsK,

Rz

z,

z,

Cl IC"

D,~ T T

C, tDz I I

03 I

R,¡¡¡'z, R.

Z4 Kz

C.

ThDi R.

Figura 13.20. Esquema eléctrico de explpsor de condensa-

dores.

Para comprobar que el modelo de explosor que se

posee en un trabajo determinado es el correcto, o parael dimensionamiento del mismo, cOnviene efectuar los

siguientes cálculos:

1. Energia Total Disponible «Eo" en el explosor

E= J..-CV2o 2

siendo C la capacidad en faradios del explosor y V la

tensión en voltios que alcanza el condensador en elmomento del disparo.

2. Energia Suministrada al Circuito «Eo" durante

un corto período de tiempo que normalmente es

de unos 5 ms.

E = E (1-Q,Q1/RTxC

d o -e )

.,

3. Intensidad Efectiva «1EF" que será suministradaal circuito.

/'EF = V

Ed

0,005~ RT

4. Impulso de encendido. «Si"

s = EdI R =IEF2xtT

Ejemplo:

Se desea disparar una voladura de 10 barrenos con

detonadores Al con una longitud de madeja de 3 m y

una linea de tiro que tiene una resistencia de 5 Q. Se

dispone de un explosor con C = 200 JlF Y V = 1.100 V

con un tiempo de descarga de 5 ms. Se quiere com-

probar si ese explosor es suficiente para energetizarlos detonadores de la voladura.

1.° RT = RL + n x RD = 5 + 10 x (0,05 + 2 x 3 x

x 0,065) = 9,4 Q

2.° Eo = 0,5 x 200 x 10-0 X 1.1002 = 121 Julios

3.0 Ed = 121 x (1 - e-5,32) = 120,4 Julios

-~/ 120,4, =50,61A4.° IEF - V'0,005X9;4

5.° Si = 50,622 X 5 = 12.809,3 mW.s/Q

luego «S¡" es mayor que 1.100 - 2.500 m W.s/Q quees la sensibilidad eléctrica de los detonadores Al. El

Factor de Seguridad <:eria:

12.809,3 = 5,12FS = 2.500

4.2. Iniciación por corriente alterna

~

La energetización de las voladuras utilizandQ co-rriente alterna de una línea industrial o procedente de

un grupo generador no es aconsejable, pues como losvalores de la tensión varían con el tiempo con un dura-ción del ciclo de 20 ms, nunca se sabe con qué intensi-

dad se energetiza la voladura, pudiendo en conse-cuencia dar lugar a fallos.

Este método sólo suele emplearse en trabajos sub-terráneos.

4.3. Explosores secuenciales

En operaciones donde el diámetro de perforación

obliga a subdividir la columna de explosivo para redu-

cir las cargas operantes, se utilizan detonadoreseléctricos de distinto número dentro de cada ba-rreno.

También cuando las voladuras se disparan con un

conjunto grande de barrenos la serie normal de deto-nadores eléctricós puede llegar a suponer una limita-

Page 12: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 12/17

técnica. Para obviareste problemase han desa-rollado, desde hace relativamente poco tiempo, losplosores secuenciales. Básicamente, están consti-idos por un sistema de descarga por condensadoresun equipo electrónico con temporizador para ener-tizar varios circuitos en intervalos de tiempo distin-s. El número de circuitos más común es de 10y cadano de ellos puede programarse en los modelos másompletos con incrementos de 1 ms entre 5 y 999 ms.

Foto 13.8. Explosor secuencia/.

El equipo está constituido por los siguientes ele-

entos: unidad explosora, cable maestro con diez cir-

-;).§+300(f)o1-5

~+ 240U(f)

g

~+180(f)w...J<J:U +120ZW:::>uw

(f) +60(f)oO-::;:W¡: o

50 \ 100 \50 200 250 300

XP S l

\TIEMPO EFECTIVO DE SALIDA(ms)

E LOOR .TIEMPO NOMINALDEL DETONADOR(ms)

-cuitos independientes, comprobador de explosor y

comprobador de circuitos.

El cable maestro de longitud variable está formado

por un alma de 12 hilos y 10 pares terminales a los que "-se conectan los extremos de los circuitos de la pega.

El comprobador de explosor mide el porcentaje de

energía que el explosor es capaz de suministrar en la "-

descarga, y con el comprobador de circuitos se verificasi la resistencia de los diferentes circuitos es admisible

según la capacidad del explosor.

En la Fig. 13.21 se representa una voladura múltipledonde con una serie de detonadores de 12 números se

consiguen 72 instantes de salida diferentes con 6 cir-cuitos. "-

Algunos modelos permiten el control remoto, el

acoplamiento a equipos satélit€s, etc., lo cual es muy

útil sobre todo en trabajos subterráneos.

"-

"-

"-

5. OTROS ACCESORIOS "-

'-5.1. Conectadores

Los conectadores pueden ser de dos tipos, según

se utilicen para conexiones de detonadores eléctri- "'

'-

'-

'-

'-

'-

'-

'-

'-

"-

Figura 13.21. Voladura múltiple disparada con explosor secuencia/."

Page 13: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 13/17

~STRO

"10 "8

CIRCUITOS

"7 #6 "59

RETACADO .

~ ~

25

50 50

75 75

"Neo DETONADORES" '00POR BARRENO

(TIEMPO EN ms ) I ~ ~10 9

100

125

8

125

6

125

4

FRENTE

"4 #3 "2

125

2

TERMINAL

UJf-ZUJo:ll.

125

BARRENO#1

Figura 13.22. Voladura múltiple con cargas secuenciadas dentro de los barrenos.

os o de cordón detonante. Los primeros están for-

ados por un pequeño tubito cerrado por un lado en

l que se introducen los extremos unidos de los hi-

os. Una vez hecho esto, se dobla para garantizar su

etención constituyendo así un elemento eficaz de

islam.iento. Fig. 13.23.

Figura 13.23. Conectador de detonadores eléctricos.

Los conectadores para el éordón detonante sonequeños tubos de plástico que disponen de unaendidura en Ven uno de los extremos que termina

n un taladro dispuesto diametralmente. Permiten la

onexión rápida y segura de las líneas de cordón

etonante de igualo diferente gramaje. Foto 13.9.

Foto 13.9. Conectador de cordón detonante.

Otro tipo de conectador es el que sirve para poner encontacto los detonadores eléctricos con el cc;>rdóneto-

nante, Fig. 13.24. Consisten en pequeños tubos deplástico con sección irregular, alojándose el cordóndetonante en la parte más estrecha y, posteriormente,

183

Page 14: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 14/17

la cápsula del detonador en la más ancha ejerciendouna ligera presión.

Figura 13.24. Conectador entre detonador eléctrico ycordón detonante.

5.2. Tubos omega y enchufables

"-

Para espaciar la carga a lo largo de los barrenos en "-

las voladuras de contorno se utilizan tubos de plás-

tico abiertos longitudinalmente en los que se intro-

duce un cordón detonante y cartuchos separados.

entre sí a la distancia prevista. Fig. 13.25. '--

En las voladuras de contorno el explosivo puede

estar preparado en cartuchos especiales en cuyos.

extremos disponen de unos elementos de unión que '--

permiten preparar con rapidez y segu ridad las co-

lumnas de longitud deseada.

PLASTlCO

'--

CORDON DETONANTE

Figura 13.25. Tubo omega.

Elementos centralizadores y de retención

En las voladuras de contorno de pequeño diáme-

ro, donde las cargas están desacopladas, se utilizan

iezas de plástico en forma de margarita que inser-

adas en los tubos o cartuchos rígidos sirven para

entrar éstos dentro de los barrenos, dejando un ani-

lo coaxial de aire que actúa como amortiguador. Fig.

gura 13.26. Elemento centralizador de cargas de explo-sivo.

'--

'-

'-

'-

En barrenos ascendentes de excavaciones subte-

rráneas, para conseguir la sujeción en los cartuchosse utilizan piezas semejantes a la anterior fabricadas

en un plástico semirrígido. Fig. 13.27.

-1l

'--

'-

'-

'-

'-

'-

'-

Figura 13.27. Pieza de retención de cartuchos. '--

'-.

5.4. Tapones para el retacado de barrenos'-.

Resultados de los estudios de más de diez años de

la Universidad de Missouri-Rolla son los tapones debarrenos llamados "StemTite Blast Control Plugs".

'-

Page 15: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 15/17

Se fabrican con poliestireno moldeado por inyección,

para diámetros de barrenos entre 76 y 165 mm conamaños cada 12 mm.

El efecto de retención de los gases producidos tras la

detonación de los explosivos se traduce en un menor

consumo de éstos, pudiéndose cerrar los esquemas de

perforación, o alcanzar una mejor fragmentación de laroca.

Foto 13.10. Tapones especiales para el retacadode barrenos.

5.5. Tapones de señalización de barrenos

Para el replanteo de las voladuras a cielo abierto y

ara evitar la caída de piedras u otros objetos en losarrenos perforados se emplean tapones troncocó-

nicos de plástico o de madera. Fig. 13.28.

AI

!U.,-/

Figura 13.28. Tapones troncocónicos.

El color de los tapones, que debe contrastar con ele la roca, puede ser el mismo en toda la voladura ocombinación de varios para visual izar la pega,no sólo

n su geometría sino incluso en la secuencia de dis-paro prevista. .

5.6. Embudos

Cuando el explosivo que se emplea es a granel y se

vierte en los barrenos directamente desde los sacos,

es conveniente disponer de un embudo para agilizar

la carga y evitar las pérdidas de explosivo y la mezclade éste con el polvo de perforación. Estos elementos

se construyen de chapa metálica con una anilla ex-

terior a la cual se fija el cordón detonante con el finde evitar su arrastre al interior de los barrenos.

CaRDaNDETONANTE

~

Figura 13.29. Embudo para la carga de explosivos a granel.

5.7. Atacadores

Para efectuar el retacado, comprobar la profundi-

dad de los barrenosy ayudar a la carga de los mis-mos, se utilizan atacadores de madera o de otros

materiales adecuados que no produzcan chispas ocargas eléctricas. El diseño suele ser cilíndrico con

superficie lisay longitudes variables, terminando conuna pieza tronco cónica o cilíndrica de mayor diáme-tro. En ocasiones están constituidos por tramos en-

chufables y flexibles que permiten disponer de lalongitud deseada.

D D, I

~.'~}iD =:.; ~.~.-_~'é,';-n

Figura 13.30. Atacadores.

5.8. Equipos de retacado

En las grandes explotaciones, donde el número ydiámetro de los barrenos es tan elevado que el reta-

cado manual llega a ser lento y costoso, se están

utilizando desde hace varios años equipos mecáni-cos como el de la Fig. 13.31. Básicamente, la má-quina consiste en un pequeño vehículo automotriz

185

Page 16: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 16/17

semejante a una pala de ruedas a la que se ha equi-pado de un sistema bivalva o de empujadores accio-nados por cilindros hidráulicos.

Figura 13.31. Equipo mecánico de retacado para grandesbarrenos.

"-

El tiempo invertido en el retacado de cada barreno

es de unos 30 segundos y actualmente en el mercado

están disponibles modelos para barrenos con diá-

metros entre 160mm y 380 mm. "-

5.9. Instrumentos de medida de la dimensión de la "-

piedra

Los errores de medida varían en el rango de :t 5%. "-

Si las desviaciones no son admisibles se puede vol-ver a reperforar el barreno o a modificar el esquemade carga de la voladura. '-

En la perforación de macizos rocosos, con fuertes

cambios litológicos y grandes alturas de banco, las

desviaciones pueden ser acusadas y llegar a consti- '-tuir un peligro potencial de proyecciones y onda aé-

rea, así como afectar a los resultados de las voladu-

ras.

Actualmente, 'existen en el mercado instrumentos

de medida de la dimensión de la piedra que consis-

ten en una sonda que se introduce en los barrenos y "-

un aparato de radiodetección que maneja un opera-

dor desde el pie del banco. Fig. 13.32.

"-

'-

',-

PROBETA

'-

"-

RECEPTOR

"-

5.10. Sistema de predicción de tormentas

Figura 13.32. Equipo de medida de la piedra. "-

El sistema de predicción de tormentas está constitui-

do por dos componentes principales: la""unidad sensoray la unidad central. "

La unidad sensora está compuesta por un dispositivo

que mide la intensidad del campo electrostático y por

una antena de dos piezas para registrar las señales del

impulso de los relámpagos y el ruido atmosférico que

se genera en las nubes tormentosas durante su desa-

rrollo. El tubo de la antena actúa como soporte de dis-

positivo de ,campo y está sujeto a una base plegable.

La unidad sensora se sitúa en el exterior, en un

espacio abierto.

La unidad central consiste en un armario de aluminio

reforzado con paneles de contr01 y señales, equipo

electrónico para evaluar las señales que llegan y circui-

tos de suministro de energía con un acumulador adicio-

nal en "stand-by". Además, la unidad central incluye el

186

equipo electrónico para controlar las unidades externas

de alarma y registro.

Las señales que llegan de la unidad sensora son

transmitidas a través de un cable protegido, a la unidad

central, que deberá estar preferentemente situada en el

interior o bajo un cobertizo protector si está al aire libre.

Todos los componentes que están expuestos a la

corrosión se fabrican en acero inoxidable o algún otromaterial no corrosivo.

El sistema se puede equipar con unidades de alarma

externa que proporcionan la posibilidad de distribuir

señales de alerta rojas y amarillas por todo el lugar de

trabajo. Las unidades también avisan si el sistema deja

de funcionar por un fallo en el suminis!ro de energía.

Con el objeto de poder avisar de forma eficiente de la

presencia de tormentas y alta intensidad en el campo,

se deben tomar en consideración los tres tipos de tor-

mentas diferentes que se exponen a continuación:

'-

'-

'-

'-

'-

1. Tormentas que están completamente desarrolladas '-

Page 17: 13 Accesorios de voladura

8/4/2019 13 Accesorios de voladura

http://slidepdf.com/reader/full/13-accesorios-de-voladura 17/17

cuando llegan a la zona de alerta.. Tormentas que comienzan a desarrollarse dentro

de la zona de alerta. La primera descarga eléctricapuede ocurrir en este caso dentro de la zona quenos concierne.

. Precipitación en forma de lluvia o nieve con cargaelectrostática. Este tipo de precipitación puede cau-sar relámpagos pequeños.

El tipo 1 se registra a través del dispositivo de campo

la antena de onda de radio que capta la radiación deos relámpagos a una distancia aproximada de 15 km.

Los tipos 2 y 3 son registrados por el dispositivo deampo que capta correctamente la intensidad eléctricael campo en el aire.Todo tipo de tormenta se puede comprobar pordio del registro del "ruido" que siempre se producenubes tormentosas desarrolladas.

Este sistema proporciona alarmas en dos fases:

1. Alerta amarilla.

. Alerta roja.

Una alerta amarilla indica que las condiciones eléctri-cas en la atmósfera son anormales. Esto puede ser unenómeno pasajero, pero si hay una tormenta aproxi-mándose la fase siguiente puede ser de alerta roja.La alerta roja indica que la actividad eléctrica en la

atmósfera no es temporal y, por lo tanto, hay un riesgoconsiderable de que se produzca un relámpago en lazona de alarma dentro de los próximos diez minutos.Debido a que el sistema puede ser preparado para

sensibilidades diferentes, niveles de alerta amarillo yroja, puede ser usado en áreas distintas que sean sen-

sibles al trueno u otra forma de actividad eléctrica en laatmósfera.

BIBLlOGRAFIA

- ARNOlD CO.: »Información Técnica».- ATLAS POWDER CO.: «Información Técnica»

«Handbook of Electric Blasting». 1976.- AUSTIN POWDER: «Información Técnica».- BURGER,J. R.: «NonelectricBlast Initiation».j'E/MJ.April

1982.- CHIRONIS, N. P.: «New Blasting Machine Permits Custom

Programmed Blast Patterns». Coal Age. March 1974.- DICK, R. A., et al.: «Explosives and Blasting Procedures

Manual». USBM, 1983.- DU PONT: «Información Técnica».- ENSIGN BICKFORD CO.: «Información Técnica».- GARCIAMillA, J.: «Optimización de Voladuras en Tajo

Abierto Empleado Deckmasters y Retardos Silenciosos deSuperficie Nonel Primadet». Atltas Powder Int.

- HERCUlES INC.: «InformaciónTécnica».- ICIEXPlOSIVES:«ElectronicDelayDetonator».Downline.

No. 7. July. 1988.- ICI EXPlOSIVES: «The Expert Explosives. Electronic

Delay Detonator». Downline. 1993.- JENSEN, E. B., et al.: «Nonelectric Explosives Detonation

at the Henderson Mine». Mining Engineering. November

Foto 13.11. Equipo de predicción de tormentas.

- lARSSON, B. et al.: «Super ACGurate Detonators - A.Rockblaster's Dream». Nitro Nobel. 1988.

- MOHANTY, B. et al.: «Full-Face Blast. Rounds inShaft Sin-king with Electronic Delay Detonators-A critical Appraisal».S.E.E.1990.

- MORREY, W. B.: «The Magnadet Electric InitiationSys-tem». CIM. Bulletin. November 1982.

- NITRO NOVEL: «Nonel GT. Mahuel de Empleo».- NORABEl AB.: «Información Técnica».- RADIO DETECTION CO.: «GPR 110 Technical Informa-

tion».

- RESEARCH ENERGY OF OHIO INC.: «Sequential BlastingControl Systems and Accesories». 1984.

- RIOS, J.: «Nuevas Tendencias eh la Utilización de losExplosivos». Canteras y Explotaciones. Abril 1982.

- RUKAVINA, M.: «Microchip Blast Cap is Coming». RockProducts. August. 1990.

- UNION ESPAÑOLA DE EXPLOSIVOS: «DetonadoresEléctricos y Equipos Accesorios».«Explosivos y Accesorios».