07 Regresi Non Linier

download 07 Regresi Non Linier

of 38

Transcript of 07 Regresi Non Linier

  • 8/18/2019 07 Regresi Non Linier

    1/38

    Nonlinear Regression

    SujantokoMathematic Engineering

    Ocean Engineering FTK ITS

    1

  • 8/18/2019 07 Regresi Non Linier

    2/38

  • 8/18/2019 07 Regresi Non Linier

    3/38

    Nonlinear Regression

    Given n data points ),(,...),,(),,( 2211 nn y x y x y x best fit )( x f y =to the data, where )( x f is a nonlinear function of x .

    ),(nn

    y x

    )( x f y =,

    22

    ),(ii

    y x−

    ),(11

    y x ii

    . .

    3

  • 8/18/2019 07 Regresi Non Linier

    4/38

    RegressionExponential Model

    4

  • 8/18/2019 07 Regresi Non Linier

    5/38

    Exponential Model

    ),(,...),,(),,( 2211 nn y x y x y xGiven best fit bx

    ae y = to the data.

    ,nn

    ),( 22 y xbxae y =),(

    ii y x

    )(ii

    x f y −

    Figure. Exponential model of nonlinear regression for y vs. x data

    ,11

    5

  • 8/18/2019 07 Regresi Non Linier

    6/38

    n ng onstants o xponent a o e

    ( )∑ −= n bxir iae yS 2

    e sum o e square o e res ua s s e ne as

    =i 1Differentiate with respect to a and b

    n

    021

    =−−=∂ =

    ii x

    i

    xi

    r eaea

    ( )( ) 021

    =−−=∂∂ ∑

    =

    ii bxi

    n

    i

    bxi

    r eaxae yb

    S

    6

  • 8/18/2019 07 Regresi Non Linier

    7/38

    Finding Constants of Exponential Model

    Rewriting the equations, we obtain

    01

    2

    1

    =∑+∑−== i

    bx

    i

    bxi

    ii eae y

    02 =∑−∑ n bx

    in bx

    iiii e xae x y

    == ii

    7

  • 8/18/2019 07 Regresi Non Linier

    8/38

    Finding constants of Exponential Model

    ∑n bx

    iie y

    ∑= =

    n bx

    i

    iea 2

    1

    Substituting a back into the previous equation

    =i 1

    21∑

    − = n bx

    bxn

    ii

    bxn i

    i

    i

    e y

    1

    1

    21 ∑ ==

    = i in

    i

    bxii i ie

    he constant b can be found through numerical

    methods such bisection method.8

  • 8/18/2019 07 Regresi Non Linier

    9/38

    -Many patients get concerned when a test involves injection of a

    few drops of Technetium-99m isotope is used. Half of thetechritium-99m would be gone in about 6 hours. It, however,takes about 24 hours for the radiation levels to reach what weare exposed to in day-to-day activities. Below is given therelative intensity of radiation as a function of time.

    t(hrs) 0 1 3 5 7 9

    . .

    . . . . . .

    9

  • 8/18/2019 07 Regresi Non Linier

    10/38

    Example 1-Exponential Model cont.

    The relative intensity is related to time by the equationt λ =

    Find:

    a) The value of the regression constants λ andb) The half-life of Technium-99m

    c) Radiation intensity after 24 hours

    10

  • 8/18/2019 07 Regresi Non Linier

    11/38

    Plot of data

    11

  • 8/18/2019 07 Regresi Non Linier

    12/38

    n n f h M l t Ae λ γ =e va ue o λ is oun y so ving t e non inear equation

    n t iλ

    ( ) 01

    2

    2

    1

    1=∑−∑=

    =

    =

    =

    n

    i

    t i

    n t

    it i

    n

    ii

    i

    i

    i et et f λ λ

    λ γ λ

    1=in

    ==n

    ii

    i

    e A 1

    γ

    =i

    ie1

    12

  • 8/18/2019 07 Regresi Non Linier

    13/38

    Setting up the Equation in MATLAB

    ( ) 01

    2

    2

    1

    1=∑

    ∑−∑=

    =

    =

    =

    n

    i

    t in t

    i

    t i

    t i

    n

    ii

    i

    i

    i

    i et e

    et f λ λ

    λ γ

    γ λ

    1=i

    rs

    γ 1.000 0.891 0.708 0.562 0.447 0.35513

  • 8/18/2019 07 Regresi Non Linier

    14/38

    Settin u the E uation in MATLAB21

    ∑= n t

    n

    i

    t i

    t nie

    λ

    λ

    λ γ

    −1

    121 ∑

    −=

    == i

    in

    it

    ii

    iie λ

    .

    t=[0 1 3 5 7 9]amma= 1 0.891 0.708 0.562 0.447 0.355

    syms lamdasum1=sum(gamma.*t.*exp(lamda*t));

    sum2=sum(gamma.*exp(lamda*t));sum3=sum(exp(2*lamda*t));

    = .

    f=sum1-sum2/sum3*sum4;14

  • 8/18/2019 07 Regresi Non Linier

    15/38

    Calculating the Other Constant

    The value of A can now be calculated

    ∑6 t i ie λ γ

    ==6

    2 t

    i

    i

    e

    9998.0=

    =1i

    The exponential regression model then is

    t e 1151.09998.0 −=γ

    15

  • 8/18/2019 07 Regresi Non Linier

    16/38

    Plot of data and regression curve

    t e 1151.0 9998.0 −=γ

    16

  • 8/18/2019 07 Regresi Non Linier

    17/38

    ( )241151.09998.0 −×= eγ 2103160.6 −×=

    his result implies that only

    10316.6 2× −

    .9998.0 =

    radioactive intensity is left after 24 hours.

    17

  • 8/18/2019 07 Regresi Non Linier

    18/38

    H m w rk • What is the half-life of technetium 99m

    • Compare the constants of this regressionmo e wit t e one w ere t e ata is

    transformed.• Write a program in the language of your

    choice to find the constants of the model(fortran, matlab, matchad, maple)

    18

  • 8/18/2019 07 Regresi Non Linier

    19/38

    o ynom a o e

    ),(,...),,(),,( 2211 nn y x y x y xGiven best fitm

    m xa... xaa y +++= 10)2( −≤ nm to a given data set.

    ),(nn

    y x

    m

    m xa xaa y +++= K

    10

    ),(22

    y x

    ),(ii

    y x

    ),(11

    y x)( ii x f y −

    Figure. Polynomial model for nonlinear regression of y vs. x data

    19

  • 8/18/2019 07 Regresi Non Linier

    20/38

    Polynomial Model cont.

    The residual at each data point is given bymimiii xa xaa y E −−−−= ...10

    T e sum o t e square o t e resi ua s t en is

    ∑=

    =n

    iir E S

    1

    2

    ( )∑=

    −−−−=n

    i

    mimii xa xaa y

    1

    2

    10 ...

    20

  • 8/18/2019 07 Regresi Non Linier

    21/38

    Polynomial Model cont.

    To find the constants of the polynomial model, we set the derivativeswith respect to ia where∂ nS

    ,,1 mi K= equal to zero.

    ( ) 0)(....2

    ....

    10

    110

    0

    =−−−−−=∂∂

    =−−−−−=∂

    =

    i

    nmimii

    r

    iimii

    x xa xaa yaS

    xaaa ya

    n

    MMMM

    0)(....2110 =−−−−−=∂ ∑=

    mi

    i

    mimii

    m

    r

    x xa xaa ya

    21

  • 8/18/2019 07 Regresi Non Linier

    22/38

    Polynomial Model cont.

    These equations in matrix form are given by⎤⎡

    nn

    =⎥⎥

    ⎢⎢

    ⎞⎜

    ⎛ ⎟

    ⎞⎜

    ⎛ ⎟

    ⎞⎜

    ⎠⎜

    ⎝ ⎟

    ⎠⎜

    ∑∑∑

    ∑∑=

    +

    ==n

    ii

    ii

    nmi

    n

    i

    n

    i

    i

    mi

    ii

    y x

    y

    a

    a

    x x x

    x xn1

    1

    0

    12

    11

    ......

    ...

    ⎦⎢

    ⎦⎣

    ⎦⎢

    ⎠ ⎞

    ⎝ ⎛

    ⎠ ⎞

    ⎝ ⎛

    ⎠ ⎞

    ⎝ ⎛ ∑∑∑∑

    =

    =

    ==

    +

    =

    ===

    n

    ii

    mi

    mn

    i

    mi

    n

    i

    mi

    n

    i

    mi

    y x

    a

    x x x11

    2

    1

    1

    1

    ...

    ...

    ...........

    The above equations are then solved for maaa ,,, 10 K

    22

  • 8/18/2019 07 Regresi Non Linier

    23/38

    Example 2-Polynomial ModelRegress the thermal expansion coefficient vs. temperature data toa second order polynomial.

    Temperature, T(oF)

    Coefficient ofthermal

    expansion, α 5.00E-06

    6.00E-06

    7.00E-06

    o e f

    f i c i e n

    t , α

    . temperature vs α

    n n o F)

    80 6.47×10 −6

    40 6.24×10 −6

    −40 5.72×10 −63.00E-06

    4.00E-06

    a l e x p a n s i o n

    ( i n

    / i n

    / o F )

    −120 5.09×10 −6

    −200 4.30×10 −6

    −280 3.33×10 −61.00E-06

    2.00E-06

    -400 -300 -200 -100 0 100 200

    o

    T h e r

    −340 2.45×10 − ,

    Figure. Data points for thermal expansion coefficient vstemperature.

    23

  • 8/18/2019 07 Regresi Non Linier

    24/38

    Example 2-Polynomial Model cont.

    2210 T aT aaα ++=We are to fit the data to the polynomial regression model

    210 , , square of the residuals with respect to each variable and setting thevalues equal to zero to obtain

    ⎡⎥

    ⎞⎛ ⎞⎛ ⎞⎛

    ⎠ ⎞

    ⎝ ⎛

    ⎠ ⎞

    ⎝ ⎛

    ∑∑∑===

    n

    n

    ii

    nnn

    n

    ii

    n

    ii

    aT T n

    10

    32

    1

    2

    ⎥⎥

    ⎦⎢⎢

    ⎥⎦⎢⎣

    ⎥⎥

    ⎦⎢

    ⎢⎢

    ⎠ ⎞

    ⎝ ⎛

    ⎠ ⎞

    ⎝ ⎛

    ⎠ ⎞

    ⎝ ⎛ ⎠⎝ ⎠⎝ ⎠⎝ ∑∑∑∑

    =

    =

    ===

    ===n

    iii

    iii

    n

    ii

    n

    ii

    n

    ii

    ii

    ii

    ii

    T a

    T T T 1

    2

    12

    1

    1

    4

    1

    3

    1

    2

    111

    α

    24

  • 8/18/2019 07 Regresi Non Linier

    25/38

    Example 2-Polynomial Model cont.

    The necessary summations are as followsTable. Data points for temperature vs. α 5

    72 105580.2 ×=∑ iT

    empera ure,(oF)

    oe c en othermal expansion,

    α (in/in/ oF)

    80 6.47×10 −6

    40 6.24×10 −6

    1=i

    77

    1

    3 100472.7 ×−=∑=i

    iT

    −40 5.72×10 −6

    −120 5.09×10 −6

    −200 4.30×10 −6

    10

    1

    4 101363.2∑=

    ×=i

    iT

    57

    103600.3 −×=α −280 3.33×10 −6

    −340 2.45×10 −61=i

    37

    1

    106978.2 −=

    ×−=∑i

    iiT α

    17

    1

    2 105013.8 −

    =

    ×=∑i

    iiT α

    25

  • 8/18/2019 07 Regresi Non Linier

    26/38

    Example 2-Polynomial Model cont.

    ⎤⎡ ×⎤⎡⎤⎡ ××− −5052 103600.3105800.2106000.80000.7 a

    Using these summations, we can now calculate 210 , a ,aa

    ⎦⎢

    ⎣ ×

    ×−=⎥

    ⎦⎢

    ⎣⎥

    ⎦⎢

    ⎣ ××−×

    ×−××−−

    1

    3

    2

    11075

    752

    105013.8

    106978.2

    101363.2100472.7105800.2

    100472.7105800.210600.8

    a

    a

    Solving the above system of simultaneous linear equations we have

    ×−××

    =⎥

    11

    9

    6

    1

    0

    102218.1

    102782.6

    100217.6

    a

    a

    a

    The polynomial regression model is then2

    210α ++= T aT aa21196 T101.2218T106.2782106.0217 −−− ×−×+×=

    26

  • 8/18/2019 07 Regresi Non Linier

    27/38

    Linearization of Data

    To find the constants of many nonlinear models, it results in solvingsimultaneous nonlinear equations. For mathematical convenience,some of the data for such models can be linearized. For exam le thedata for an exponential model can be linearized.

    As shown in the previous example, many chemical and physical processesare overned b the e uation

    bxae y =Taking the natural log of both sides yields,

    Let y z ln= and aa ln0 =We now have a linear regression model where xaa z 10 +=(implying) oaea = with ba =1

    27

  • 8/18/2019 07 Regresi Non Linier

    28/38

    Linearization of data cont.

    Using linear model regression methods, z x z xn

    n

    i

    n n

    iii − ∑∑ ∑

    1

    2

    1

    2

    1

    x xn

    an

    i

    n

    i

    ii ⎟

    ⎞⎜

    ⎛ −

    =

    ∑ ∑= =

    == =

    _

    1

    _

    0 xa z a −=

    Once 1, aa o are found, the original constants of the model are found as

    0

    1

    aea =

    28

  • 8/18/2019 07 Regresi Non Linier

    29/38

    Example 3-Linearization of dataMany patients get concerned when a test involves injection of a radioactive

    material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach whatwe are exposed to in day-to-day activities. Below is given the relative intensityof radiation as a function of time .

    Table. Relative intensity of radiation as a function 1 , γ

    t(hrs) 0 1 3 5 7 9

    1.000 0.891 0.708 0.562 0.447 0.355γ

    of time

    0.5

    n s i

    t y o

    f r a d

    i a t i o n

    0

    0 5 10

    R e l a t

    i v e i n t

    ,

    Figure. Data points of relative radiation intensity

    vs. time29

  • 8/18/2019 07 Regresi Non Linier

    30/38

    Example 3-Linearization of data cont.

    Find:a) The value of the regression constants A λ and

    T e a - i e o Tec nium-99m

    c) Radiation intensity after 24 hours

    The relative intensity is related to time by the equationt Aeλ γ =

    30

  • 8/18/2019 07 Regresi Non Linier

    31/38

    Example 3-Linearization of data cont.

    t Ae λ γ =Exponential model given as,

    γ += nn Assuming γ ln= z , ( ) Aa o ln= and λ =1a we obtain

    t aa z 10 +=This is a linear relationship between z and t

    31

  • 8/18/2019 07 Regresi Non Linier

    32/38

    Example 3-Linearization of data cont.

    Using this linear relationship, we can calculate 10 , aa∑∑ ∑−n

    i

    n n

    iii z t z t n

    where

    ∑ ∑= =

    == =

    ⎞⎜

    ⎛ −=

    n

    i

    n

    ii

    t t n

    a

    1

    2

    1

    2

    1

    1

    t a z a 10 −=

    1a=λ

    0a

    e=

    32

  • 8/18/2019 07 Regresi Non Linier

    33/38

    Example 3-Linearization of Data cont.

    Summations for data linearization are as followsTable. Summation data for linearization of data model With 6=n

    1 0 1 0.00000− 0.0000− 0.0000

    i it iγ ii z γ ln= ii z t 2

    it 000.25

    1

    ∑=

    =i

    it

    −=6

    8778.2 z 3456

    3579

    .0.7080.5620.4470.355

    .−0.34531−0.57625−0.80520−1.0356

    .−1.0359−2.8813−5.6364−9.3207

    .9.000025.00049.00081.000

    =1ii

    ∑=

    −=6

    1

    990.18i

    ii z t

    25.000 −2.8778 −18.990 165.00∑ 00.1656

    1

    2 =∑=i it

    33

  • 8/18/2019 07 Regresi Non Linier

    34/38

    Example 3-Linearization of Data cont.

    Calculating 10, aa

    ( ) ( )( )218778.225990.186 −−−=a 11505.0−=

    . −

    ( )25

    11505.08778.2

    0 −−−

    =a 4

    106150.2 −

    ×−=

    Since( ) Aa ln0 =

    e=4106150.2 −×−= e 99974.0=

    also11505.01 −== aλ

    34

  • 8/18/2019 07 Regresi Non Linier

    35/38

    Example 3-Linearization of Data cont.Resulting model is t e 11505.099974.0

    −×=γ

    1t 11505.0−

    0.5

    Relative

    Intensity

    e .. ×=γ

    oRadiation,

    0

    0 5 10

    Time, t (hrs)

    Figure. Relative intensity of radiation as a function oftemperature using linearization of data model.

    35

  • 8/18/2019 07 Regresi Non Linier

    36/38

    Example 3-Linearization of Data cont.

    The regression formula is thent e 11505.099974.0 −×=γ 1=

    02 =t

    ( ) ( )e.e. .t . 9997402

    1999740 0115050115050 =× −−

    ( )hours.t

    .t .

    .e .

    02486

    50ln115050

    50

    ==−

    =−

    36

  • 8/18/2019 07 Regresi Non Linier

    37/38

    Example 3-Linearization of Data cont.c) The relative intensity of radiation after 24 hours is then

    ( )2411505.099974.0 −= eγ .=

    This implies that only %3216.610099983.0

    103200.6 2 =×× −

    of the radioactive

    material is left after 24 hours.

    37

  • 8/18/2019 07 Regresi Non Linier

    38/38

    Comparison

    Table. Comparison for exponential model with and without datalinearization.

    With data linearization(Example 3)

    Without data linearization(Example 1)

    A 0.99974 0.99983

    − . − .

    Half-Life (hrs) 6.0248 6.0232

    Relative intensityafter 24 hrs.

    6.3200×10 −2 6.3160×10 −2

    The values are very similar so data linearization was suitable tofind the constants of the nonlinear exponential model in this

    .

    38